1177 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1177 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines ExprEngine's support for C expressions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| using llvm::APSInt;
 | |
| 
 | |
| /// Optionally conjure and return a symbol for offset when processing
 | |
| /// an expression \p Expression.
 | |
| /// If \p Other is a location, conjure a symbol for \p Symbol
 | |
| /// (offset) if it is unknown so that memory arithmetic always
 | |
| /// results in an ElementRegion.
 | |
| /// \p Count The number of times the current basic block was visited.
 | |
| static SVal conjureOffsetSymbolOnLocation(
 | |
|     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
 | |
|     unsigned Count, const LocationContext *LCtx) {
 | |
|   QualType Ty = Expression->getType();
 | |
|   if (Other.getAs<Loc>() &&
 | |
|       Ty->isIntegralOrEnumerationType() &&
 | |
|       Symbol.isUnknown()) {
 | |
|     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
 | |
|   }
 | |
|   return Symbol;
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
 | |
|                                      ExplodedNode *Pred,
 | |
|                                      ExplodedNodeSet &Dst) {
 | |
| 
 | |
|   Expr *LHS = B->getLHS()->IgnoreParens();
 | |
|   Expr *RHS = B->getRHS()->IgnoreParens();
 | |
| 
 | |
|   // FIXME: Prechecks eventually go in ::Visit().
 | |
|   ExplodedNodeSet CheckedSet;
 | |
|   ExplodedNodeSet Tmp2;
 | |
|   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
 | |
| 
 | |
|   // With both the LHS and RHS evaluated, process the operation itself.
 | |
|   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
 | |
|          it != ei; ++it) {
 | |
| 
 | |
|     ProgramStateRef state = (*it)->getState();
 | |
|     const LocationContext *LCtx = (*it)->getLocationContext();
 | |
|     SVal LeftV = state->getSVal(LHS, LCtx);
 | |
|     SVal RightV = state->getSVal(RHS, LCtx);
 | |
| 
 | |
|     BinaryOperator::Opcode Op = B->getOpcode();
 | |
| 
 | |
|     if (Op == BO_Assign) {
 | |
|       // EXPERIMENTAL: "Conjured" symbols.
 | |
|       // FIXME: Handle structs.
 | |
|       if (RightV.isUnknown()) {
 | |
|         unsigned Count = currBldrCtx->blockCount();
 | |
|         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
 | |
|                                               Count);
 | |
|       }
 | |
|       // Simulate the effects of a "store":  bind the value of the RHS
 | |
|       // to the L-Value represented by the LHS.
 | |
|       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
 | |
|       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
 | |
|                 LeftV, RightV);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!B->isAssignmentOp()) {
 | |
|       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
 | |
| 
 | |
|       if (B->isAdditiveOp()) {
 | |
|         // TODO: This can be removed after we enable history tracking with
 | |
|         // SymSymExpr.
 | |
|         unsigned Count = currBldrCtx->blockCount();
 | |
|         RightV = conjureOffsetSymbolOnLocation(
 | |
|             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
 | |
|         LeftV = conjureOffsetSymbolOnLocation(
 | |
|             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
 | |
|       }
 | |
| 
 | |
|       // Although we don't yet model pointers-to-members, we do need to make
 | |
|       // sure that the members of temporaries have a valid 'this' pointer for
 | |
|       // other checks.
 | |
|       if (B->getOpcode() == BO_PtrMemD)
 | |
|         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
 | |
| 
 | |
|       // Process non-assignments except commas or short-circuited
 | |
|       // logical expressions (LAnd and LOr).
 | |
|       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
 | |
|       if (!Result.isUnknown()) {
 | |
|         state = state->BindExpr(B, LCtx, Result);
 | |
|       } else {
 | |
|         // If we cannot evaluate the operation escape the operands.
 | |
|         state = escapeValues(state, LeftV, PSK_EscapeOther);
 | |
|         state = escapeValues(state, RightV, PSK_EscapeOther);
 | |
|       }
 | |
| 
 | |
|       Bldr.generateNode(B, *it, state);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert (B->isCompoundAssignmentOp());
 | |
| 
 | |
|     switch (Op) {
 | |
|       default:
 | |
|         llvm_unreachable("Invalid opcode for compound assignment.");
 | |
|       case BO_MulAssign: Op = BO_Mul; break;
 | |
|       case BO_DivAssign: Op = BO_Div; break;
 | |
|       case BO_RemAssign: Op = BO_Rem; break;
 | |
|       case BO_AddAssign: Op = BO_Add; break;
 | |
|       case BO_SubAssign: Op = BO_Sub; break;
 | |
|       case BO_ShlAssign: Op = BO_Shl; break;
 | |
|       case BO_ShrAssign: Op = BO_Shr; break;
 | |
|       case BO_AndAssign: Op = BO_And; break;
 | |
|       case BO_XorAssign: Op = BO_Xor; break;
 | |
|       case BO_OrAssign:  Op = BO_Or;  break;
 | |
|     }
 | |
| 
 | |
|     // Perform a load (the LHS).  This performs the checks for
 | |
|     // null dereferences, and so on.
 | |
|     ExplodedNodeSet Tmp;
 | |
|     SVal location = LeftV;
 | |
|     evalLoad(Tmp, B, LHS, *it, state, location);
 | |
| 
 | |
|     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
 | |
|          ++I) {
 | |
| 
 | |
|       state = (*I)->getState();
 | |
|       const LocationContext *LCtx = (*I)->getLocationContext();
 | |
|       SVal V = state->getSVal(LHS, LCtx);
 | |
| 
 | |
|       // Get the computation type.
 | |
|       QualType CTy =
 | |
|         cast<CompoundAssignOperator>(B)->getComputationResultType();
 | |
|       CTy = getContext().getCanonicalType(CTy);
 | |
| 
 | |
|       QualType CLHSTy =
 | |
|         cast<CompoundAssignOperator>(B)->getComputationLHSType();
 | |
|       CLHSTy = getContext().getCanonicalType(CLHSTy);
 | |
| 
 | |
|       QualType LTy = getContext().getCanonicalType(LHS->getType());
 | |
| 
 | |
|       // Promote LHS.
 | |
|       V = svalBuilder.evalCast(V, CLHSTy, LTy);
 | |
| 
 | |
|       // Compute the result of the operation.
 | |
|       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
 | |
|                                          B->getType(), CTy);
 | |
| 
 | |
|       // EXPERIMENTAL: "Conjured" symbols.
 | |
|       // FIXME: Handle structs.
 | |
| 
 | |
|       SVal LHSVal;
 | |
| 
 | |
|       if (Result.isUnknown()) {
 | |
|         // The symbolic value is actually for the type of the left-hand side
 | |
|         // expression, not the computation type, as this is the value the
 | |
|         // LValue on the LHS will bind to.
 | |
|         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
 | |
|                                               currBldrCtx->blockCount());
 | |
|         // However, we need to convert the symbol to the computation type.
 | |
|         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
 | |
|       }
 | |
|       else {
 | |
|         // The left-hand side may bind to a different value then the
 | |
|         // computation type.
 | |
|         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
 | |
|       }
 | |
| 
 | |
|       // In C++, assignment and compound assignment operators return an
 | |
|       // lvalue.
 | |
|       if (B->isGLValue())
 | |
|         state = state->BindExpr(B, LCtx, location);
 | |
|       else
 | |
|         state = state->BindExpr(B, LCtx, Result);
 | |
| 
 | |
|       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: postvisits eventually go in ::Visit()
 | |
|   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
 | |
|                                 ExplodedNodeSet &Dst) {
 | |
| 
 | |
|   CanQualType T = getContext().getCanonicalType(BE->getType());
 | |
| 
 | |
|   const BlockDecl *BD = BE->getBlockDecl();
 | |
|   // Get the value of the block itself.
 | |
|   SVal V = svalBuilder.getBlockPointer(BD, T,
 | |
|                                        Pred->getLocationContext(),
 | |
|                                        currBldrCtx->blockCount());
 | |
| 
 | |
|   ProgramStateRef State = Pred->getState();
 | |
| 
 | |
|   // If we created a new MemRegion for the block, we should explicitly bind
 | |
|   // the captured variables.
 | |
|   if (const BlockDataRegion *BDR =
 | |
|       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
 | |
| 
 | |
|     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
 | |
|                                               E = BDR->referenced_vars_end();
 | |
| 
 | |
|     auto CI = BD->capture_begin();
 | |
|     auto CE = BD->capture_end();
 | |
|     for (; I != E; ++I) {
 | |
|       const VarRegion *capturedR = I.getCapturedRegion();
 | |
|       const TypedValueRegion *originalR = I.getOriginalRegion();
 | |
| 
 | |
|       // If the capture had a copy expression, use the result of evaluating
 | |
|       // that expression, otherwise use the original value.
 | |
|       // We rely on the invariant that the block declaration's capture variables
 | |
|       // are a prefix of the BlockDataRegion's referenced vars (which may include
 | |
|       // referenced globals, etc.) to enable fast lookup of the capture for a
 | |
|       // given referenced var.
 | |
|       const Expr *copyExpr = nullptr;
 | |
|       if (CI != CE) {
 | |
|         assert(CI->getVariable() == capturedR->getDecl());
 | |
|         copyExpr = CI->getCopyExpr();
 | |
|         CI++;
 | |
|       }
 | |
| 
 | |
|       if (capturedR != originalR) {
 | |
|         SVal originalV;
 | |
|         const LocationContext *LCtx = Pred->getLocationContext();
 | |
|         if (copyExpr) {
 | |
|           originalV = State->getSVal(copyExpr, LCtx);
 | |
|         } else {
 | |
|           originalV = State->getSVal(loc::MemRegionVal(originalR));
 | |
|         }
 | |
|         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExplodedNodeSet Tmp;
 | |
|   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
 | |
|   Bldr.generateNode(BE, Pred,
 | |
|                     State->BindExpr(BE, Pred->getLocationContext(), V),
 | |
|                     nullptr, ProgramPoint::PostLValueKind);
 | |
| 
 | |
|   // FIXME: Move all post/pre visits to ::Visit().
 | |
|   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
 | |
| }
 | |
| 
 | |
| ProgramStateRef ExprEngine::handleLValueBitCast(
 | |
|     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
 | |
|     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
 | |
|     ExplodedNode* Pred) {
 | |
|   if (T->isLValueReferenceType()) {
 | |
|     assert(!CastE->getType()->isLValueReferenceType());
 | |
|     ExTy = getContext().getLValueReferenceType(ExTy);
 | |
|   } else if (T->isRValueReferenceType()) {
 | |
|     assert(!CastE->getType()->isRValueReferenceType());
 | |
|     ExTy = getContext().getRValueReferenceType(ExTy);
 | |
|   }
 | |
|   // Delegate to SValBuilder to process.
 | |
|   SVal OrigV = state->getSVal(Ex, LCtx);
 | |
|   SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
 | |
|   // Negate the result if we're treating the boolean as a signed i1
 | |
|   if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
 | |
|     V = evalMinus(V);
 | |
|   state = state->BindExpr(CastE, LCtx, V);
 | |
|   if (V.isUnknown() && !OrigV.isUnknown()) {
 | |
|     state = escapeValues(state, OrigV, PSK_EscapeOther);
 | |
|   }
 | |
|   Bldr.generateNode(CastE, Pred, state);
 | |
| 
 | |
|   return state;
 | |
| }
 | |
| 
 | |
| ProgramStateRef ExprEngine::handleLVectorSplat(
 | |
|     ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
 | |
|     StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
 | |
|   // Recover some path sensitivity by conjuring a new value.
 | |
|   QualType resultType = CastE->getType();
 | |
|   if (CastE->isGLValue())
 | |
|     resultType = getContext().getPointerType(resultType);
 | |
|   SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
 | |
|                                              resultType,
 | |
|                                              currBldrCtx->blockCount());
 | |
|   state = state->BindExpr(CastE, LCtx, result);
 | |
|   Bldr.generateNode(CastE, Pred, state);
 | |
| 
 | |
|   return state;
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
 | |
|                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | |
| 
 | |
|   ExplodedNodeSet dstPreStmt;
 | |
|   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
 | |
| 
 | |
|   if (CastE->getCastKind() == CK_LValueToRValue) {
 | |
|     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | |
|          I!=E; ++I) {
 | |
|       ExplodedNode *subExprNode = *I;
 | |
|       ProgramStateRef state = subExprNode->getState();
 | |
|       const LocationContext *LCtx = subExprNode->getLocationContext();
 | |
|       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // All other casts.
 | |
|   QualType T = CastE->getType();
 | |
|   QualType ExTy = Ex->getType();
 | |
| 
 | |
|   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
 | |
|     T = ExCast->getTypeAsWritten();
 | |
| 
 | |
|   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
 | |
|   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | |
|        I != E; ++I) {
 | |
| 
 | |
|     Pred = *I;
 | |
|     ProgramStateRef state = Pred->getState();
 | |
|     const LocationContext *LCtx = Pred->getLocationContext();
 | |
| 
 | |
|     switch (CastE->getCastKind()) {
 | |
|       case CK_LValueToRValue:
 | |
|         llvm_unreachable("LValueToRValue casts handled earlier.");
 | |
|       case CK_ToVoid:
 | |
|         continue;
 | |
|         // The analyzer doesn't do anything special with these casts,
 | |
|         // since it understands retain/release semantics already.
 | |
|       case CK_ARCProduceObject:
 | |
|       case CK_ARCConsumeObject:
 | |
|       case CK_ARCReclaimReturnedObject:
 | |
|       case CK_ARCExtendBlockObject: // Fall-through.
 | |
|       case CK_CopyAndAutoreleaseBlockObject:
 | |
|         // The analyser can ignore atomic casts for now, although some future
 | |
|         // checkers may want to make certain that you're not modifying the same
 | |
|         // value through atomic and nonatomic pointers.
 | |
|       case CK_AtomicToNonAtomic:
 | |
|       case CK_NonAtomicToAtomic:
 | |
|         // True no-ops.
 | |
|       case CK_NoOp:
 | |
|       case CK_ConstructorConversion:
 | |
|       case CK_UserDefinedConversion:
 | |
|       case CK_FunctionToPointerDecay:
 | |
|       case CK_BuiltinFnToFnPtr: {
 | |
|         // Copy the SVal of Ex to CastE.
 | |
|         ProgramStateRef state = Pred->getState();
 | |
|         const LocationContext *LCtx = Pred->getLocationContext();
 | |
|         SVal V = state->getSVal(Ex, LCtx);
 | |
|         state = state->BindExpr(CastE, LCtx, V);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_MemberPointerToBoolean:
 | |
|       case CK_PointerToBoolean: {
 | |
|         SVal V = state->getSVal(Ex, LCtx);
 | |
|         auto PTMSV = V.getAs<nonloc::PointerToMember>();
 | |
|         if (PTMSV)
 | |
|           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
 | |
|         if (V.isUndef() || PTMSV) {
 | |
|           state = state->BindExpr(CastE, LCtx, V);
 | |
|           Bldr.generateNode(CastE, Pred, state);
 | |
|           continue;
 | |
|         }
 | |
|         // Explicitly proceed with default handler for this case cascade.
 | |
|         state =
 | |
|             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_Dependent:
 | |
|       case CK_ArrayToPointerDecay:
 | |
|       case CK_BitCast:
 | |
|       case CK_LValueToRValueBitCast:
 | |
|       case CK_AddressSpaceConversion:
 | |
|       case CK_BooleanToSignedIntegral:
 | |
|       case CK_IntegralToPointer:
 | |
|       case CK_PointerToIntegral: {
 | |
|         SVal V = state->getSVal(Ex, LCtx);
 | |
|         if (V.getAs<nonloc::PointerToMember>()) {
 | |
|           state = state->BindExpr(CastE, LCtx, UnknownVal());
 | |
|           Bldr.generateNode(CastE, Pred, state);
 | |
|           continue;
 | |
|         }
 | |
|         // Explicitly proceed with default handler for this case cascade.
 | |
|         state =
 | |
|             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_IntegralToBoolean:
 | |
|       case CK_IntegralToFloating:
 | |
|       case CK_FloatingToIntegral:
 | |
|       case CK_FloatingToBoolean:
 | |
|       case CK_FloatingCast:
 | |
|       case CK_FloatingRealToComplex:
 | |
|       case CK_FloatingComplexToReal:
 | |
|       case CK_FloatingComplexToBoolean:
 | |
|       case CK_FloatingComplexCast:
 | |
|       case CK_FloatingComplexToIntegralComplex:
 | |
|       case CK_IntegralRealToComplex:
 | |
|       case CK_IntegralComplexToReal:
 | |
|       case CK_IntegralComplexToBoolean:
 | |
|       case CK_IntegralComplexCast:
 | |
|       case CK_IntegralComplexToFloatingComplex:
 | |
|       case CK_CPointerToObjCPointerCast:
 | |
|       case CK_BlockPointerToObjCPointerCast:
 | |
|       case CK_AnyPointerToBlockPointerCast:
 | |
|       case CK_ObjCObjectLValueCast:
 | |
|       case CK_ZeroToOCLOpaqueType:
 | |
|       case CK_IntToOCLSampler:
 | |
|       case CK_LValueBitCast:
 | |
|       case CK_FloatingToFixedPoint:
 | |
|       case CK_FixedPointToFloating:
 | |
|       case CK_FixedPointCast:
 | |
|       case CK_FixedPointToBoolean:
 | |
|       case CK_FixedPointToIntegral:
 | |
|       case CK_IntegralToFixedPoint: {
 | |
|         state =
 | |
|             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_IntegralCast: {
 | |
|         // Delegate to SValBuilder to process.
 | |
|         SVal V = state->getSVal(Ex, LCtx);
 | |
|         V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
 | |
|         state = state->BindExpr(CastE, LCtx, V);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_DerivedToBase:
 | |
|       case CK_UncheckedDerivedToBase: {
 | |
|         // For DerivedToBase cast, delegate to the store manager.
 | |
|         SVal val = state->getSVal(Ex, LCtx);
 | |
|         val = getStoreManager().evalDerivedToBase(val, CastE);
 | |
|         state = state->BindExpr(CastE, LCtx, val);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       // Handle C++ dyn_cast.
 | |
|       case CK_Dynamic: {
 | |
|         SVal val = state->getSVal(Ex, LCtx);
 | |
| 
 | |
|         // Compute the type of the result.
 | |
|         QualType resultType = CastE->getType();
 | |
|         if (CastE->isGLValue())
 | |
|           resultType = getContext().getPointerType(resultType);
 | |
| 
 | |
|         bool Failed = false;
 | |
| 
 | |
|         // Check if the value being cast evaluates to 0.
 | |
|         if (val.isZeroConstant())
 | |
|           Failed = true;
 | |
|         // Else, evaluate the cast.
 | |
|         else
 | |
|           val = getStoreManager().attemptDownCast(val, T, Failed);
 | |
| 
 | |
|         if (Failed) {
 | |
|           if (T->isReferenceType()) {
 | |
|             // A bad_cast exception is thrown if input value is a reference.
 | |
|             // Currently, we model this, by generating a sink.
 | |
|             Bldr.generateSink(CastE, Pred, state);
 | |
|             continue;
 | |
|           } else {
 | |
|             // If the cast fails on a pointer, bind to 0.
 | |
|             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
 | |
|           }
 | |
|         } else {
 | |
|           // If we don't know if the cast succeeded, conjure a new symbol.
 | |
|           if (val.isUnknown()) {
 | |
|             DefinedOrUnknownSVal NewSym =
 | |
|               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
 | |
|                                            currBldrCtx->blockCount());
 | |
|             state = state->BindExpr(CastE, LCtx, NewSym);
 | |
|           } else
 | |
|             // Else, bind to the derived region value.
 | |
|             state = state->BindExpr(CastE, LCtx, val);
 | |
|         }
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_BaseToDerived: {
 | |
|         SVal val = state->getSVal(Ex, LCtx);
 | |
|         QualType resultType = CastE->getType();
 | |
|         if (CastE->isGLValue())
 | |
|           resultType = getContext().getPointerType(resultType);
 | |
| 
 | |
|         bool Failed = false;
 | |
| 
 | |
|         if (!val.isConstant()) {
 | |
|           val = getStoreManager().attemptDownCast(val, T, Failed);
 | |
|         }
 | |
| 
 | |
|         // Failed to cast or the result is unknown, fall back to conservative.
 | |
|         if (Failed || val.isUnknown()) {
 | |
|           val =
 | |
|             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
 | |
|                                          currBldrCtx->blockCount());
 | |
|         }
 | |
|         state = state->BindExpr(CastE, LCtx, val);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_NullToPointer: {
 | |
|         SVal V = svalBuilder.makeNull();
 | |
|         state = state->BindExpr(CastE, LCtx, V);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_NullToMemberPointer: {
 | |
|         SVal V = svalBuilder.getMemberPointer(nullptr);
 | |
|         state = state->BindExpr(CastE, LCtx, V);
 | |
|         Bldr.generateNode(CastE, Pred, state);
 | |
|         continue;
 | |
|       }
 | |
|       case CK_DerivedToBaseMemberPointer:
 | |
|       case CK_BaseToDerivedMemberPointer:
 | |
|       case CK_ReinterpretMemberPointer: {
 | |
|         SVal V = state->getSVal(Ex, LCtx);
 | |
|         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
 | |
|           SVal CastedPTMSV =
 | |
|               svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
 | |
|                   CastE->path(), *PTMSV, CastE->getCastKind()));
 | |
|           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
 | |
|           Bldr.generateNode(CastE, Pred, state);
 | |
|           continue;
 | |
|         }
 | |
|         // Explicitly proceed with default handler for this case cascade.
 | |
|         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
 | |
|         continue;
 | |
|       }
 | |
|       // Various C++ casts that are not handled yet.
 | |
|       case CK_ToUnion:
 | |
|       case CK_VectorSplat: {
 | |
|         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
 | |
|                                           ExplodedNode *Pred,
 | |
|                                           ExplodedNodeSet &Dst) {
 | |
|   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | |
| 
 | |
|   ProgramStateRef State = Pred->getState();
 | |
|   const LocationContext *LCtx = Pred->getLocationContext();
 | |
| 
 | |
|   const Expr *Init = CL->getInitializer();
 | |
|   SVal V = State->getSVal(CL->getInitializer(), LCtx);
 | |
| 
 | |
|   if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
 | |
|     // No work needed. Just pass the value up to this expression.
 | |
|   } else {
 | |
|     assert(isa<InitListExpr>(Init));
 | |
|     Loc CLLoc = State->getLValue(CL, LCtx);
 | |
|     State = State->bindLoc(CLLoc, V, LCtx);
 | |
| 
 | |
|     if (CL->isGLValue())
 | |
|       V = CLLoc;
 | |
|   }
 | |
| 
 | |
|   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
 | |
|                                ExplodedNodeSet &Dst) {
 | |
|   if (isa<TypedefNameDecl>(*DS->decl_begin())) {
 | |
|     // C99 6.7.7 "Any array size expressions associated with variable length
 | |
|     // array declarators are evaluated each time the declaration of the typedef
 | |
|     // name is reached in the order of execution."
 | |
|     // The checkers should know about typedef to be able to handle VLA size
 | |
|     // expressions.
 | |
|     ExplodedNodeSet DstPre;
 | |
|     getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
 | |
|     getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Assumption: The CFG has one DeclStmt per Decl.
 | |
|   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
 | |
| 
 | |
|   if (!VD) {
 | |
|     //TODO:AZ: remove explicit insertion after refactoring is done.
 | |
|     Dst.insert(Pred);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // FIXME: all pre/post visits should eventually be handled by ::Visit().
 | |
|   ExplodedNodeSet dstPreVisit;
 | |
|   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
 | |
| 
 | |
|   ExplodedNodeSet dstEvaluated;
 | |
|   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
 | |
|   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
 | |
|        I!=E; ++I) {
 | |
|     ExplodedNode *N = *I;
 | |
|     ProgramStateRef state = N->getState();
 | |
|     const LocationContext *LC = N->getLocationContext();
 | |
| 
 | |
|     // Decls without InitExpr are not initialized explicitly.
 | |
|     if (const Expr *InitEx = VD->getInit()) {
 | |
| 
 | |
|       // Note in the state that the initialization has occurred.
 | |
|       ExplodedNode *UpdatedN = N;
 | |
|       SVal InitVal = state->getSVal(InitEx, LC);
 | |
| 
 | |
|       assert(DS->isSingleDecl());
 | |
|       if (getObjectUnderConstruction(state, DS, LC)) {
 | |
|         state = finishObjectConstruction(state, DS, LC);
 | |
|         // We constructed the object directly in the variable.
 | |
|         // No need to bind anything.
 | |
|         B.generateNode(DS, UpdatedN, state);
 | |
|       } else {
 | |
|         // Recover some path-sensitivity if a scalar value evaluated to
 | |
|         // UnknownVal.
 | |
|         if (InitVal.isUnknown()) {
 | |
|           QualType Ty = InitEx->getType();
 | |
|           if (InitEx->isGLValue()) {
 | |
|             Ty = getContext().getPointerType(Ty);
 | |
|           }
 | |
| 
 | |
|           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
 | |
|                                                  currBldrCtx->blockCount());
 | |
|         }
 | |
| 
 | |
| 
 | |
|         B.takeNodes(UpdatedN);
 | |
|         ExplodedNodeSet Dst2;
 | |
|         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
 | |
|         B.addNodes(Dst2);
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       B.generateNode(DS, N, state);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
 | |
|                                   ExplodedNodeSet &Dst) {
 | |
|   // This method acts upon CFG elements for logical operators && and ||
 | |
|   // and attaches the value (true or false) to them as expressions.
 | |
|   // It doesn't produce any state splits.
 | |
|   // If we made it that far, we're past the point when we modeled the short
 | |
|   // circuit. It means that we should have precise knowledge about whether
 | |
|   // we've short-circuited. If we did, we already know the value we need to
 | |
|   // bind. If we didn't, the value of the RHS (casted to the boolean type)
 | |
|   // is the answer.
 | |
|   // Currently this method tries to figure out whether we've short-circuited
 | |
|   // by looking at the ExplodedGraph. This method is imperfect because there
 | |
|   // could inevitably have been merges that would have resulted in multiple
 | |
|   // potential path traversal histories. We bail out when we fail.
 | |
|   // Due to this ambiguity, a more reliable solution would have been to
 | |
|   // track the short circuit operation history path-sensitively until
 | |
|   // we evaluate the respective logical operator.
 | |
|   assert(B->getOpcode() == BO_LAnd ||
 | |
|          B->getOpcode() == BO_LOr);
 | |
| 
 | |
|   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
 | |
|   ProgramStateRef state = Pred->getState();
 | |
| 
 | |
|   if (B->getType()->isVectorType()) {
 | |
|     // FIXME: We do not model vector arithmetic yet. When adding support for
 | |
|     // that, note that the CFG-based reasoning below does not apply, because
 | |
|     // logical operators on vectors are not short-circuit. Currently they are
 | |
|     // modeled as short-circuit in Clang CFG but this is incorrect.
 | |
|     // Do not set the value for the expression. It'd be UnknownVal by default.
 | |
|     Bldr.generateNode(B, Pred, state);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ExplodedNode *N = Pred;
 | |
|   while (!N->getLocation().getAs<BlockEntrance>()) {
 | |
|     ProgramPoint P = N->getLocation();
 | |
|     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
 | |
|     (void) P;
 | |
|     if (N->pred_size() != 1) {
 | |
|       // We failed to track back where we came from.
 | |
|       Bldr.generateNode(B, Pred, state);
 | |
|       return;
 | |
|     }
 | |
|     N = *N->pred_begin();
 | |
|   }
 | |
| 
 | |
|   if (N->pred_size() != 1) {
 | |
|     // We failed to track back where we came from.
 | |
|     Bldr.generateNode(B, Pred, state);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   N = *N->pred_begin();
 | |
|   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
 | |
|   SVal X;
 | |
| 
 | |
|   // Determine the value of the expression by introspecting how we
 | |
|   // got this location in the CFG.  This requires looking at the previous
 | |
|   // block we were in and what kind of control-flow transfer was involved.
 | |
|   const CFGBlock *SrcBlock = BE.getSrc();
 | |
|   // The only terminator (if there is one) that makes sense is a logical op.
 | |
|   CFGTerminator T = SrcBlock->getTerminator();
 | |
|   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
 | |
|     (void) Term;
 | |
|     assert(Term->isLogicalOp());
 | |
|     assert(SrcBlock->succ_size() == 2);
 | |
|     // Did we take the true or false branch?
 | |
|     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
 | |
|     X = svalBuilder.makeIntVal(constant, B->getType());
 | |
|   }
 | |
|   else {
 | |
|     // If there is no terminator, by construction the last statement
 | |
|     // in SrcBlock is the value of the enclosing expression.
 | |
|     // However, we still need to constrain that value to be 0 or 1.
 | |
|     assert(!SrcBlock->empty());
 | |
|     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
 | |
|     const Expr *RHS = cast<Expr>(Elem.getStmt());
 | |
|     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
 | |
| 
 | |
|     if (RHSVal.isUndef()) {
 | |
|       X = RHSVal;
 | |
|     } else {
 | |
|       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
 | |
|       // known to be false, 1 if the value is known to be true and a new symbol
 | |
|       // when the assumption is unknown.
 | |
|       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
 | |
|       X = evalBinOp(N->getState(), BO_NE,
 | |
|                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
 | |
|                     Zero, B->getType());
 | |
|     }
 | |
|   }
 | |
|   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
 | |
|                                    ExplodedNode *Pred,
 | |
|                                    ExplodedNodeSet &Dst) {
 | |
|   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | |
| 
 | |
|   ProgramStateRef state = Pred->getState();
 | |
|   const LocationContext *LCtx = Pred->getLocationContext();
 | |
|   QualType T = getContext().getCanonicalType(IE->getType());
 | |
|   unsigned NumInitElements = IE->getNumInits();
 | |
| 
 | |
|   if (!IE->isGLValue() && !IE->isTransparent() &&
 | |
|       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
 | |
|        T->isAnyComplexType())) {
 | |
|     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
 | |
| 
 | |
|     // Handle base case where the initializer has no elements.
 | |
|     // e.g: static int* myArray[] = {};
 | |
|     if (NumInitElements == 0) {
 | |
|       SVal V = svalBuilder.makeCompoundVal(T, vals);
 | |
|       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
 | |
|          ei = IE->rend(); it != ei; ++it) {
 | |
|       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
 | |
|       vals = getBasicVals().prependSVal(V, vals);
 | |
|     }
 | |
| 
 | |
|     B.generateNode(IE, Pred,
 | |
|                    state->BindExpr(IE, LCtx,
 | |
|                                    svalBuilder.makeCompoundVal(T, vals)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle scalars: int{5} and int{} and GLvalues.
 | |
|   // Note, if the InitListExpr is a GLvalue, it means that there is an address
 | |
|   // representing it, so it must have a single init element.
 | |
|   assert(NumInitElements <= 1);
 | |
| 
 | |
|   SVal V;
 | |
|   if (NumInitElements == 0)
 | |
|     V = getSValBuilder().makeZeroVal(T);
 | |
|   else
 | |
|     V = state->getSVal(IE->getInit(0), LCtx);
 | |
| 
 | |
|   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitGuardedExpr(const Expr *Ex,
 | |
|                                   const Expr *L,
 | |
|                                   const Expr *R,
 | |
|                                   ExplodedNode *Pred,
 | |
|                                   ExplodedNodeSet &Dst) {
 | |
|   assert(L && R);
 | |
| 
 | |
|   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | |
|   ProgramStateRef state = Pred->getState();
 | |
|   const LocationContext *LCtx = Pred->getLocationContext();
 | |
|   const CFGBlock *SrcBlock = nullptr;
 | |
| 
 | |
|   // Find the predecessor block.
 | |
|   ProgramStateRef SrcState = state;
 | |
|   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
 | |
|     ProgramPoint PP = N->getLocation();
 | |
|     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
 | |
|       // If the state N has multiple predecessors P, it means that successors
 | |
|       // of P are all equivalent.
 | |
|       // In turn, that means that all nodes at P are equivalent in terms
 | |
|       // of observable behavior at N, and we can follow any of them.
 | |
|       // FIXME: a more robust solution which does not walk up the tree.
 | |
|       continue;
 | |
|     }
 | |
|     SrcBlock = PP.castAs<BlockEdge>().getSrc();
 | |
|     SrcState = N->getState();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(SrcBlock && "missing function entry");
 | |
| 
 | |
|   // Find the last expression in the predecessor block.  That is the
 | |
|   // expression that is used for the value of the ternary expression.
 | |
|   bool hasValue = false;
 | |
|   SVal V;
 | |
| 
 | |
|   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
 | |
|     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
 | |
|       const Expr *ValEx = cast<Expr>(CS->getStmt());
 | |
|       ValEx = ValEx->IgnoreParens();
 | |
| 
 | |
|       // For GNU extension '?:' operator, the left hand side will be an
 | |
|       // OpaqueValueExpr, so get the underlying expression.
 | |
|       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
 | |
|         L = OpaqueEx->getSourceExpr();
 | |
| 
 | |
|       // If the last expression in the predecessor block matches true or false
 | |
|       // subexpression, get its the value.
 | |
|       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
 | |
|         hasValue = true;
 | |
|         V = SrcState->getSVal(ValEx, LCtx);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!hasValue)
 | |
|     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
 | |
|                                      currBldrCtx->blockCount());
 | |
| 
 | |
|   // Generate a new node with the binding from the appropriate path.
 | |
|   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
 | |
| }
 | |
| 
 | |
| void ExprEngine::
 | |
| VisitOffsetOfExpr(const OffsetOfExpr *OOE,
 | |
|                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | |
|   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | |
|   Expr::EvalResult Result;
 | |
|   if (OOE->EvaluateAsInt(Result, getContext())) {
 | |
|     APSInt IV = Result.Val.getInt();
 | |
|     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
 | |
|     assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
 | |
|     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
 | |
|     SVal X = svalBuilder.makeIntVal(IV);
 | |
|     B.generateNode(OOE, Pred,
 | |
|                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
 | |
|                                               X));
 | |
|   }
 | |
|   // FIXME: Handle the case where __builtin_offsetof is not a constant.
 | |
| }
 | |
| 
 | |
| 
 | |
| void ExprEngine::
 | |
| VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
 | |
|                               ExplodedNode *Pred,
 | |
|                               ExplodedNodeSet &Dst) {
 | |
|   // FIXME: Prechecks eventually go in ::Visit().
 | |
|   ExplodedNodeSet CheckedSet;
 | |
|   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
 | |
| 
 | |
|   ExplodedNodeSet EvalSet;
 | |
|   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
 | |
| 
 | |
|   QualType T = Ex->getTypeOfArgument();
 | |
| 
 | |
|   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
 | |
|        I != E; ++I) {
 | |
|     if (Ex->getKind() == UETT_SizeOf) {
 | |
|       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
 | |
|         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
 | |
| 
 | |
|         // FIXME: Add support for VLA type arguments and VLA expressions.
 | |
|         // When that happens, we should probably refactor VLASizeChecker's code.
 | |
|         continue;
 | |
|       } else if (T->getAs<ObjCObjectType>()) {
 | |
|         // Some code tries to take the sizeof an ObjCObjectType, relying that
 | |
|         // the compiler has laid out its representation.  Just report Unknown
 | |
|         // for these.
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
 | |
|     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
 | |
| 
 | |
|     ProgramStateRef state = (*I)->getState();
 | |
|     state = state->BindExpr(Ex, (*I)->getLocationContext(),
 | |
|                             svalBuilder.makeIntVal(amt.getQuantity(),
 | |
|                                                    Ex->getType()));
 | |
|     Bldr.generateNode(Ex, *I, state);
 | |
|   }
 | |
| 
 | |
|   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
 | |
| }
 | |
| 
 | |
| void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
 | |
|                                    const UnaryOperator *U,
 | |
|                                    StmtNodeBuilder &Bldr) {
 | |
|   // FIXME: We can probably just have some magic in Environment::getSVal()
 | |
|   // that propagates values, instead of creating a new node here.
 | |
|   //
 | |
|   // Unary "+" is a no-op, similar to a parentheses.  We still have places
 | |
|   // where it may be a block-level expression, so we need to
 | |
|   // generate an extra node that just propagates the value of the
 | |
|   // subexpression.
 | |
|   const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
|   ProgramStateRef state = (*I)->getState();
 | |
|   const LocationContext *LCtx = (*I)->getLocationContext();
 | |
|   Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
 | |
|                                            state->getSVal(Ex, LCtx)));
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
 | |
|                                     ExplodedNodeSet &Dst) {
 | |
|   // FIXME: Prechecks eventually go in ::Visit().
 | |
|   ExplodedNodeSet CheckedSet;
 | |
|   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
 | |
| 
 | |
|   ExplodedNodeSet EvalSet;
 | |
|   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
 | |
| 
 | |
|   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
 | |
|        I != E; ++I) {
 | |
|     switch (U->getOpcode()) {
 | |
|     default: {
 | |
|       Bldr.takeNodes(*I);
 | |
|       ExplodedNodeSet Tmp;
 | |
|       VisitIncrementDecrementOperator(U, *I, Tmp);
 | |
|       Bldr.addNodes(Tmp);
 | |
|       break;
 | |
|     }
 | |
|     case UO_Real: {
 | |
|       const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
| 
 | |
|       // FIXME: We don't have complex SValues yet.
 | |
|       if (Ex->getType()->isAnyComplexType()) {
 | |
|         // Just report "Unknown."
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // For all other types, UO_Real is an identity operation.
 | |
|       assert (U->getType() == Ex->getType());
 | |
|       ProgramStateRef state = (*I)->getState();
 | |
|       const LocationContext *LCtx = (*I)->getLocationContext();
 | |
|       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
 | |
|                                                state->getSVal(Ex, LCtx)));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case UO_Imag: {
 | |
|       const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
|       // FIXME: We don't have complex SValues yet.
 | |
|       if (Ex->getType()->isAnyComplexType()) {
 | |
|         // Just report "Unknown."
 | |
|         break;
 | |
|       }
 | |
|       // For all other types, UO_Imag returns 0.
 | |
|       ProgramStateRef state = (*I)->getState();
 | |
|       const LocationContext *LCtx = (*I)->getLocationContext();
 | |
|       SVal X = svalBuilder.makeZeroVal(Ex->getType());
 | |
|       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case UO_AddrOf: {
 | |
|       // Process pointer-to-member address operation.
 | |
|       const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
|       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
 | |
|         const ValueDecl *VD = DRE->getDecl();
 | |
| 
 | |
|         if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
 | |
|             isa<IndirectFieldDecl>(VD)) {
 | |
|           ProgramStateRef State = (*I)->getState();
 | |
|           const LocationContext *LCtx = (*I)->getLocationContext();
 | |
|           SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
 | |
|           Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // Explicitly proceed with default handler for this case cascade.
 | |
|       handleUOExtension(I, U, Bldr);
 | |
|       break;
 | |
|     }
 | |
|     case UO_Plus:
 | |
|       assert(!U->isGLValue());
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case UO_Deref:
 | |
|     case UO_Extension: {
 | |
|       handleUOExtension(I, U, Bldr);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case UO_LNot:
 | |
|     case UO_Minus:
 | |
|     case UO_Not: {
 | |
|       assert (!U->isGLValue());
 | |
|       const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
|       ProgramStateRef state = (*I)->getState();
 | |
|       const LocationContext *LCtx = (*I)->getLocationContext();
 | |
| 
 | |
|       // Get the value of the subexpression.
 | |
|       SVal V = state->getSVal(Ex, LCtx);
 | |
| 
 | |
|       if (V.isUnknownOrUndef()) {
 | |
|         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       switch (U->getOpcode()) {
 | |
|         default:
 | |
|           llvm_unreachable("Invalid Opcode.");
 | |
|         case UO_Not:
 | |
|           // FIXME: Do we need to handle promotions?
 | |
|           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
 | |
|           break;
 | |
|         case UO_Minus:
 | |
|           // FIXME: Do we need to handle promotions?
 | |
|           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
 | |
|           break;
 | |
|         case UO_LNot:
 | |
|           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
 | |
|           //
 | |
|           //  Note: technically we do "E == 0", but this is the same in the
 | |
|           //    transfer functions as "0 == E".
 | |
|           SVal Result;
 | |
|           if (Optional<Loc> LV = V.getAs<Loc>()) {
 | |
|             Loc X = svalBuilder.makeNullWithType(Ex->getType());
 | |
|             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
 | |
|           } else if (Ex->getType()->isFloatingType()) {
 | |
|             // FIXME: handle floating point types.
 | |
|             Result = UnknownVal();
 | |
|           } else {
 | |
|             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
 | |
|             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
 | |
|                                U->getType());
 | |
|           }
 | |
| 
 | |
|           state = state->BindExpr(U, LCtx, Result);
 | |
|           break;
 | |
|       }
 | |
|       Bldr.generateNode(U, *I, state);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
 | |
| }
 | |
| 
 | |
| void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
 | |
|                                                  ExplodedNode *Pred,
 | |
|                                                  ExplodedNodeSet &Dst) {
 | |
|   // Handle ++ and -- (both pre- and post-increment).
 | |
|   assert (U->isIncrementDecrementOp());
 | |
|   const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | |
| 
 | |
|   const LocationContext *LCtx = Pred->getLocationContext();
 | |
|   ProgramStateRef state = Pred->getState();
 | |
|   SVal loc = state->getSVal(Ex, LCtx);
 | |
| 
 | |
|   // Perform a load.
 | |
|   ExplodedNodeSet Tmp;
 | |
|   evalLoad(Tmp, U, Ex, Pred, state, loc);
 | |
| 
 | |
|   ExplodedNodeSet Dst2;
 | |
|   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
 | |
|   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
 | |
| 
 | |
|     state = (*I)->getState();
 | |
|     assert(LCtx == (*I)->getLocationContext());
 | |
|     SVal V2_untested = state->getSVal(Ex, LCtx);
 | |
| 
 | |
|     // Propagate unknown and undefined values.
 | |
|     if (V2_untested.isUnknownOrUndef()) {
 | |
|       state = state->BindExpr(U, LCtx, V2_untested);
 | |
| 
 | |
|       // Perform the store, so that the uninitialized value detection happens.
 | |
|       Bldr.takeNodes(*I);
 | |
|       ExplodedNodeSet Dst3;
 | |
|       evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
 | |
|       Bldr.addNodes(Dst3);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
 | |
| 
 | |
|     // Handle all other values.
 | |
|     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
 | |
| 
 | |
|     // If the UnaryOperator has non-location type, use its type to create the
 | |
|     // constant value. If the UnaryOperator has location type, create the
 | |
|     // constant with int type and pointer width.
 | |
|     SVal RHS;
 | |
|     SVal Result;
 | |
| 
 | |
|     if (U->getType()->isAnyPointerType())
 | |
|       RHS = svalBuilder.makeArrayIndex(1);
 | |
|     else if (U->getType()->isIntegralOrEnumerationType())
 | |
|       RHS = svalBuilder.makeIntVal(1, U->getType());
 | |
|     else
 | |
|       RHS = UnknownVal();
 | |
| 
 | |
|     // The use of an operand of type bool with the ++ operators is deprecated
 | |
|     // but valid until C++17. And if the operand of the ++ operator is of type
 | |
|     // bool, it is set to true until C++17. Note that for '_Bool', it is also
 | |
|     // set to true when it encounters ++ operator.
 | |
|     if (U->getType()->isBooleanType() && U->isIncrementOp())
 | |
|       Result = svalBuilder.makeTruthVal(true, U->getType());
 | |
|     else
 | |
|       Result = evalBinOp(state, Op, V2, RHS, U->getType());
 | |
| 
 | |
|     // Conjure a new symbol if necessary to recover precision.
 | |
|     if (Result.isUnknown()){
 | |
|       DefinedOrUnknownSVal SymVal =
 | |
|         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
 | |
|                                      currBldrCtx->blockCount());
 | |
|       Result = SymVal;
 | |
| 
 | |
|       // If the value is a location, ++/-- should always preserve
 | |
|       // non-nullness.  Check if the original value was non-null, and if so
 | |
|       // propagate that constraint.
 | |
|       if (Loc::isLocType(U->getType())) {
 | |
|         DefinedOrUnknownSVal Constraint =
 | |
|         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
 | |
| 
 | |
|         if (!state->assume(Constraint, true)) {
 | |
|           // It isn't feasible for the original value to be null.
 | |
|           // Propagate this constraint.
 | |
|           Constraint = svalBuilder.evalEQ(state, SymVal,
 | |
|                                        svalBuilder.makeZeroVal(U->getType()));
 | |
| 
 | |
|           state = state->assume(Constraint, false);
 | |
|           assert(state);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Since the lvalue-to-rvalue conversion is explicit in the AST,
 | |
|     // we bind an l-value if the operator is prefix and an lvalue (in C++).
 | |
|     if (U->isGLValue())
 | |
|       state = state->BindExpr(U, LCtx, loc);
 | |
|     else
 | |
|       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
 | |
| 
 | |
|     // Perform the store.
 | |
|     Bldr.takeNodes(*I);
 | |
|     ExplodedNodeSet Dst3;
 | |
|     evalStore(Dst3, U, Ex, *I, state, loc, Result);
 | |
|     Bldr.addNodes(Dst3);
 | |
|   }
 | |
|   Dst.insert(Dst2);
 | |
| }
 |