224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines RangedConstraintManager, a class that provides a
 | |
| //  range-based constraint manager interface.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
 | |
| 
 | |
| namespace clang {
 | |
| 
 | |
| namespace ento {
 | |
| 
 | |
| RangedConstraintManager::~RangedConstraintManager() {}
 | |
| 
 | |
| ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
 | |
|                                                    SymbolRef Sym,
 | |
|                                                    bool Assumption) {
 | |
|   // Handle SymbolData.
 | |
|   if (isa<SymbolData>(Sym)) {
 | |
|     return assumeSymUnsupported(State, Sym, Assumption);
 | |
| 
 | |
|     // Handle symbolic expression.
 | |
|   } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
 | |
|     // We can only simplify expressions whose RHS is an integer.
 | |
| 
 | |
|     BinaryOperator::Opcode op = SIE->getOpcode();
 | |
|     if (BinaryOperator::isComparisonOp(op) && op != BO_Cmp) {
 | |
|       if (!Assumption)
 | |
|         op = BinaryOperator::negateComparisonOp(op);
 | |
| 
 | |
|       return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
 | |
|     }
 | |
| 
 | |
|   } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
 | |
|     BinaryOperator::Opcode Op = SSE->getOpcode();
 | |
|     assert(BinaryOperator::isComparisonOp(Op));
 | |
| 
 | |
|     // We convert equality operations for pointers only.
 | |
|     if (Loc::isLocType(SSE->getLHS()->getType()) &&
 | |
|         Loc::isLocType(SSE->getRHS()->getType())) {
 | |
|       // Translate "a != b" to "(b - a) != 0".
 | |
|       // We invert the order of the operands as a heuristic for how loop
 | |
|       // conditions are usually written ("begin != end") as compared to length
 | |
|       // calculations ("end - begin"). The more correct thing to do would be to
 | |
|       // canonicalize "a - b" and "b - a", which would allow us to treat
 | |
|       // "a != b" and "b != a" the same.
 | |
| 
 | |
|       SymbolManager &SymMgr = getSymbolManager();
 | |
|       QualType DiffTy = SymMgr.getContext().getPointerDiffType();
 | |
|       SymbolRef Subtraction =
 | |
|           SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
 | |
| 
 | |
|       const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
 | |
|       Op = BinaryOperator::reverseComparisonOp(Op);
 | |
|       if (!Assumption)
 | |
|         Op = BinaryOperator::negateComparisonOp(Op);
 | |
|       return assumeSymRel(State, Subtraction, Op, Zero);
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator::isEqualityOp(Op)) {
 | |
|       SymbolManager &SymMgr = getSymbolManager();
 | |
| 
 | |
|       QualType ExprType = SSE->getType();
 | |
|       SymbolRef CanonicalEquality =
 | |
|           SymMgr.getSymSymExpr(SSE->getLHS(), BO_EQ, SSE->getRHS(), ExprType);
 | |
| 
 | |
|       bool WasEqual = SSE->getOpcode() == BO_EQ;
 | |
|       bool IsExpectedEqual = WasEqual == Assumption;
 | |
| 
 | |
|       const llvm::APSInt &Zero = getBasicVals().getValue(0, ExprType);
 | |
| 
 | |
|       if (IsExpectedEqual) {
 | |
|         return assumeSymNE(State, CanonicalEquality, Zero, Zero);
 | |
|       }
 | |
| 
 | |
|       return assumeSymEQ(State, CanonicalEquality, Zero, Zero);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we get here, there's nothing else we can do but treat the symbol as
 | |
|   // opaque.
 | |
|   return assumeSymUnsupported(State, Sym, Assumption);
 | |
| }
 | |
| 
 | |
| ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
 | |
|     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | |
|     const llvm::APSInt &To, bool InRange) {
 | |
|   // Get the type used for calculating wraparound.
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
 | |
| 
 | |
|   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | |
|   SymbolRef AdjustedSym = Sym;
 | |
|   computeAdjustment(AdjustedSym, Adjustment);
 | |
| 
 | |
|   // Convert the right-hand side integer as necessary.
 | |
|   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
 | |
|   llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
 | |
|   llvm::APSInt ConvertedTo = ComparisonType.convert(To);
 | |
| 
 | |
|   // Prefer unsigned comparisons.
 | |
|   if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | |
|       ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | |
|     Adjustment.setIsSigned(false);
 | |
| 
 | |
|   if (InRange)
 | |
|     return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | |
|                                          ConvertedTo, Adjustment);
 | |
|   return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | |
|                                         ConvertedTo, Adjustment);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
 | |
|                                               SymbolRef Sym, bool Assumption) {
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   QualType T = Sym->getType();
 | |
| 
 | |
|   // Non-integer types are not supported.
 | |
|   if (!T->isIntegralOrEnumerationType())
 | |
|     return State;
 | |
| 
 | |
|   // Reverse the operation and add directly to state.
 | |
|   const llvm::APSInt &Zero = BVF.getValue(0, T);
 | |
|   if (Assumption)
 | |
|     return assumeSymNE(State, Sym, Zero, Zero);
 | |
|   else
 | |
|     return assumeSymEQ(State, Sym, Zero, Zero);
 | |
| }
 | |
| 
 | |
| ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
 | |
|                                                       SymbolRef Sym,
 | |
|                                                       BinaryOperator::Opcode Op,
 | |
|                                                       const llvm::APSInt &Int) {
 | |
|   assert(BinaryOperator::isComparisonOp(Op) &&
 | |
|          "Non-comparison ops should be rewritten as comparisons to zero.");
 | |
| 
 | |
|   // Simplification: translate an assume of a constraint of the form
 | |
|   // "(exp comparison_op expr) != 0" to true into an assume of
 | |
|   // "exp comparison_op expr" to true. (And similarly, an assume of the form
 | |
|   // "(exp comparison_op expr) == 0" to true into an assume of
 | |
|   // "exp comparison_op expr" to false.)
 | |
|   if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
 | |
|     if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
 | |
|       if (BinaryOperator::isComparisonOp(SE->getOpcode()))
 | |
|         return assumeSym(State, Sym, (Op == BO_NE ? true : false));
 | |
|   }
 | |
| 
 | |
|   // Get the type used for calculating wraparound.
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
 | |
| 
 | |
|   // We only handle simple comparisons of the form "$sym == constant"
 | |
|   // or "($sym+constant1) == constant2".
 | |
|   // The adjustment is "constant1" in the above expression. It's used to
 | |
|   // "slide" the solution range around for modular arithmetic. For example,
 | |
|   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
 | |
|   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
 | |
|   // the subclasses of SimpleConstraintManager to handle the adjustment.
 | |
|   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | |
|   computeAdjustment(Sym, Adjustment);
 | |
| 
 | |
|   // Convert the right-hand side integer as necessary.
 | |
|   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
 | |
|   llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
 | |
| 
 | |
|   // Prefer unsigned comparisons.
 | |
|   if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | |
|       ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | |
|     Adjustment.setIsSigned(false);
 | |
| 
 | |
|   switch (Op) {
 | |
|   default:
 | |
|     llvm_unreachable("invalid operation not caught by assertion above");
 | |
| 
 | |
|   case BO_EQ:
 | |
|     return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_NE:
 | |
|     return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_GT:
 | |
|     return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_GE:
 | |
|     return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_LT:
 | |
|     return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_LE:
 | |
|     return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
 | |
|   } // end switch
 | |
| }
 | |
| 
 | |
| void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
 | |
|                                                 llvm::APSInt &Adjustment) {
 | |
|   // Is it a "($sym+constant1)" expression?
 | |
|   if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
 | |
|     BinaryOperator::Opcode Op = SE->getOpcode();
 | |
|     if (Op == BO_Add || Op == BO_Sub) {
 | |
|       Sym = SE->getLHS();
 | |
|       Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
 | |
| 
 | |
|       // Don't forget to negate the adjustment if it's being subtracted.
 | |
|       // This should happen /after/ promotion, in case the value being
 | |
|       // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
 | |
|       if (Op == BO_Sub)
 | |
|         Adjustment = -Adjustment;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end of namespace ento
 | |
| } // end of namespace clang
 |