1365 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1365 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
| // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| namespace {
 | |
| class SimpleSValBuilder : public SValBuilder {
 | |
| protected:
 | |
|   SVal dispatchCast(SVal val, QualType castTy) override;
 | |
|   SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
 | |
|   SVal evalCastFromLoc(Loc val, QualType castTy) override;
 | |
| 
 | |
| public:
 | |
|   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
 | |
|                     ProgramStateManager &stateMgr)
 | |
|                     : SValBuilder(alloc, context, stateMgr) {}
 | |
|   ~SimpleSValBuilder() override {}
 | |
| 
 | |
|   SVal evalMinus(NonLoc val) override;
 | |
|   SVal evalComplement(NonLoc val) override;
 | |
|   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
 | |
|                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
 | |
|   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
 | |
|                    Loc lhs, Loc rhs, QualType resultTy) override;
 | |
|   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
 | |
|                    Loc lhs, NonLoc rhs, QualType resultTy) override;
 | |
| 
 | |
|   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
 | |
|   ///  (integer) value, that value is returned. Otherwise, returns NULL.
 | |
|   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
 | |
| 
 | |
|   /// Recursively descends into symbolic expressions and replaces symbols
 | |
|   /// with their known values (in the sense of the getKnownValue() method).
 | |
|   SVal simplifySVal(ProgramStateRef State, SVal V) override;
 | |
| 
 | |
|   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
 | |
|                      const llvm::APSInt &RHS, QualType resultTy);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
 | |
|                                            ASTContext &context,
 | |
|                                            ProgramStateManager &stateMgr) {
 | |
|   return new SimpleSValBuilder(alloc, context, stateMgr);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Transfer function for Casts.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
 | |
|   assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
 | |
|   return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
 | |
|                            : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
 | |
|   bool isLocType = Loc::isLocType(castTy);
 | |
|   if (val.getAs<nonloc::PointerToMember>())
 | |
|     return val;
 | |
| 
 | |
|   if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
 | |
|     if (isLocType)
 | |
|       return LI->getLoc();
 | |
|     // FIXME: Correctly support promotions/truncations.
 | |
|     unsigned castSize = Context.getIntWidth(castTy);
 | |
|     if (castSize == LI->getNumBits())
 | |
|       return val;
 | |
|     return makeLocAsInteger(LI->getLoc(), castSize);
 | |
|   }
 | |
| 
 | |
|   if (SymbolRef se = val.getAsSymbol()) {
 | |
|     QualType T = Context.getCanonicalType(se->getType());
 | |
|     // If types are the same or both are integers, ignore the cast.
 | |
|     // FIXME: Remove this hack when we support symbolic truncation/extension.
 | |
|     // HACK: If both castTy and T are integers, ignore the cast.  This is
 | |
|     // not a permanent solution.  Eventually we want to precisely handle
 | |
|     // extension/truncation of symbolic integers.  This prevents us from losing
 | |
|     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
 | |
|     // different integer types.
 | |
|    if (haveSameType(T, castTy))
 | |
|       return val;
 | |
| 
 | |
|     if (!isLocType)
 | |
|       return makeNonLoc(se, T, castTy);
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   // If value is a non-integer constant, produce unknown.
 | |
|   if (!val.getAs<nonloc::ConcreteInt>())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Handle casts to a boolean type.
 | |
|   if (castTy->isBooleanType()) {
 | |
|     bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
 | |
|     return makeTruthVal(b, castTy);
 | |
|   }
 | |
| 
 | |
|   // Only handle casts from integers to integers - if val is an integer constant
 | |
|   // being cast to a non-integer type, produce unknown.
 | |
|   if (!isLocType && !castTy->isIntegralOrEnumerationType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
 | |
|   BasicVals.getAPSIntType(castTy).apply(i);
 | |
| 
 | |
|   if (isLocType)
 | |
|     return makeIntLocVal(i);
 | |
|   else
 | |
|     return makeIntVal(i);
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
 | |
| 
 | |
|   // Casts from pointers -> pointers, just return the lval.
 | |
|   //
 | |
|   // Casts from pointers -> references, just return the lval.  These
 | |
|   //   can be introduced by the frontend for corner cases, e.g
 | |
|   //   casting from va_list* to __builtin_va_list&.
 | |
|   //
 | |
|   if (Loc::isLocType(castTy) || castTy->isReferenceType())
 | |
|     return val;
 | |
| 
 | |
|   // FIXME: Handle transparent unions where a value can be "transparently"
 | |
|   //  lifted into a union type.
 | |
|   if (castTy->isUnionType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Casting a Loc to a bool will almost always be true,
 | |
|   // unless this is a weak function or a symbolic region.
 | |
|   if (castTy->isBooleanType()) {
 | |
|     switch (val.getSubKind()) {
 | |
|       case loc::MemRegionValKind: {
 | |
|         const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
 | |
|         if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
 | |
|           if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
 | |
|             if (FD->isWeak())
 | |
|               // FIXME: Currently we are using an extent symbol here,
 | |
|               // because there are no generic region address metadata
 | |
|               // symbols to use, only content metadata.
 | |
|               return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
 | |
| 
 | |
|         if (const SymbolicRegion *SymR = R->getSymbolicBase())
 | |
|           return makeNonLoc(SymR->getSymbol(), BO_NE,
 | |
|                             BasicVals.getZeroWithPtrWidth(), castTy);
 | |
| 
 | |
|         // FALL-THROUGH
 | |
|         LLVM_FALLTHROUGH;
 | |
|       }
 | |
| 
 | |
|       case loc::GotoLabelKind:
 | |
|         // Labels and non-symbolic memory regions are always true.
 | |
|         return makeTruthVal(true, castTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (castTy->isIntegralOrEnumerationType()) {
 | |
|     unsigned BitWidth = Context.getIntWidth(castTy);
 | |
| 
 | |
|     if (!val.getAs<loc::ConcreteInt>())
 | |
|       return makeLocAsInteger(val, BitWidth);
 | |
| 
 | |
|     llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
 | |
|     BasicVals.getAPSIntType(castTy).apply(i);
 | |
|     return makeIntVal(i);
 | |
|   }
 | |
| 
 | |
|   // All other cases: return 'UnknownVal'.  This includes casting pointers
 | |
|   // to floats, which is probably badness it itself, but this is a good
 | |
|   // intermediate solution until we do something better.
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Transfer function for unary operators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SVal SimpleSValBuilder::evalMinus(NonLoc val) {
 | |
|   switch (val.getSubKind()) {
 | |
|   case nonloc::ConcreteIntKind:
 | |
|     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
 | |
|   default:
 | |
|     return UnknownVal();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::evalComplement(NonLoc X) {
 | |
|   switch (X.getSubKind()) {
 | |
|   case nonloc::ConcreteIntKind:
 | |
|     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
 | |
|   default:
 | |
|     return UnknownVal();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Transfer function for binary operators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
 | |
|                                     BinaryOperator::Opcode op,
 | |
|                                     const llvm::APSInt &RHS,
 | |
|                                     QualType resultTy) {
 | |
|   bool isIdempotent = false;
 | |
| 
 | |
|   // Check for a few special cases with known reductions first.
 | |
|   switch (op) {
 | |
|   default:
 | |
|     // We can't reduce this case; just treat it normally.
 | |
|     break;
 | |
|   case BO_Mul:
 | |
|     // a*0 and a*1
 | |
|     if (RHS == 0)
 | |
|       return makeIntVal(0, resultTy);
 | |
|     else if (RHS == 1)
 | |
|       isIdempotent = true;
 | |
|     break;
 | |
|   case BO_Div:
 | |
|     // a/0 and a/1
 | |
|     if (RHS == 0)
 | |
|       // This is also handled elsewhere.
 | |
|       return UndefinedVal();
 | |
|     else if (RHS == 1)
 | |
|       isIdempotent = true;
 | |
|     break;
 | |
|   case BO_Rem:
 | |
|     // a%0 and a%1
 | |
|     if (RHS == 0)
 | |
|       // This is also handled elsewhere.
 | |
|       return UndefinedVal();
 | |
|     else if (RHS == 1)
 | |
|       return makeIntVal(0, resultTy);
 | |
|     break;
 | |
|   case BO_Add:
 | |
|   case BO_Sub:
 | |
|   case BO_Shl:
 | |
|   case BO_Shr:
 | |
|   case BO_Xor:
 | |
|     // a+0, a-0, a<<0, a>>0, a^0
 | |
|     if (RHS == 0)
 | |
|       isIdempotent = true;
 | |
|     break;
 | |
|   case BO_And:
 | |
|     // a&0 and a&(~0)
 | |
|     if (RHS == 0)
 | |
|       return makeIntVal(0, resultTy);
 | |
|     else if (RHS.isAllOnesValue())
 | |
|       isIdempotent = true;
 | |
|     break;
 | |
|   case BO_Or:
 | |
|     // a|0 and a|(~0)
 | |
|     if (RHS == 0)
 | |
|       isIdempotent = true;
 | |
|     else if (RHS.isAllOnesValue()) {
 | |
|       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
 | |
|       return nonloc::ConcreteInt(Result);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Idempotent ops (like a*1) can still change the type of an expression.
 | |
|   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
 | |
|   // dirty work.
 | |
|   if (isIdempotent)
 | |
|       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
 | |
| 
 | |
|   // If we reach this point, the expression cannot be simplified.
 | |
|   // Make a SymbolVal for the entire expression, after converting the RHS.
 | |
|   const llvm::APSInt *ConvertedRHS = &RHS;
 | |
|   if (BinaryOperator::isComparisonOp(op)) {
 | |
|     // We're looking for a type big enough to compare the symbolic value
 | |
|     // with the given constant.
 | |
|     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
 | |
|     ASTContext &Ctx = getContext();
 | |
|     QualType SymbolType = LHS->getType();
 | |
|     uint64_t ValWidth = RHS.getBitWidth();
 | |
|     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
 | |
| 
 | |
|     if (ValWidth < TypeWidth) {
 | |
|       // If the value is too small, extend it.
 | |
|       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
 | |
|     } else if (ValWidth == TypeWidth) {
 | |
|       // If the value is signed but the symbol is unsigned, do the comparison
 | |
|       // in unsigned space. [C99 6.3.1.8]
 | |
|       // (For the opposite case, the value is already unsigned.)
 | |
|       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
 | |
|         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
 | |
|     }
 | |
|   } else
 | |
|     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
 | |
| 
 | |
|   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
 | |
| }
 | |
| 
 | |
| // See if Sym is known to be a relation Rel with Bound.
 | |
| static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
 | |
|                          llvm::APSInt Bound, ProgramStateRef State) {
 | |
|   SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | |
|   SVal Result =
 | |
|       SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
 | |
|                       nonloc::ConcreteInt(Bound), SVB.getConditionType());
 | |
|   if (auto DV = Result.getAs<DefinedSVal>()) {
 | |
|     return !State->assume(*DV, false);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // See if Sym is known to be within [min/4, max/4], where min and max
 | |
| // are the bounds of the symbol's integral type. With such symbols,
 | |
| // some manipulations can be performed without the risk of overflow.
 | |
| // assume() doesn't cause infinite recursion because we should be dealing
 | |
| // with simpler symbols on every recursive call.
 | |
| static bool isWithinConstantOverflowBounds(SymbolRef Sym,
 | |
|                                            ProgramStateRef State) {
 | |
|   SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | |
|   BasicValueFactory &BV = SVB.getBasicValueFactory();
 | |
| 
 | |
|   QualType T = Sym->getType();
 | |
|   assert(T->isSignedIntegerOrEnumerationType() &&
 | |
|          "This only works with signed integers!");
 | |
|   APSIntType AT = BV.getAPSIntType(T);
 | |
| 
 | |
|   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
 | |
|   return isInRelation(BO_LE, Sym, Max, State) &&
 | |
|          isInRelation(BO_GE, Sym, Min, State);
 | |
| }
 | |
| 
 | |
| // Same for the concrete integers: see if I is within [min/4, max/4].
 | |
| static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
 | |
|   APSIntType AT(I);
 | |
|   assert(!AT.isUnsigned() &&
 | |
|          "This only works with signed integers!");
 | |
| 
 | |
|   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
 | |
|   return (I <= Max) && (I >= -Max);
 | |
| }
 | |
| 
 | |
| static std::pair<SymbolRef, llvm::APSInt>
 | |
| decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
 | |
|   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
 | |
|     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
 | |
|       return std::make_pair(SymInt->getLHS(),
 | |
|                             (SymInt->getOpcode() == BO_Add) ?
 | |
|                             (SymInt->getRHS()) :
 | |
|                             (-SymInt->getRHS()));
 | |
| 
 | |
|   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
 | |
|   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
 | |
| }
 | |
| 
 | |
| // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
 | |
| // same signed integral type and no overflows occur (which should be checked
 | |
| // by the caller).
 | |
| static NonLoc doRearrangeUnchecked(ProgramStateRef State,
 | |
|                                    BinaryOperator::Opcode Op,
 | |
|                                    SymbolRef LSym, llvm::APSInt LInt,
 | |
|                                    SymbolRef RSym, llvm::APSInt RInt) {
 | |
|   SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | |
|   BasicValueFactory &BV = SVB.getBasicValueFactory();
 | |
|   SymbolManager &SymMgr = SVB.getSymbolManager();
 | |
| 
 | |
|   QualType SymTy = LSym->getType();
 | |
|   assert(SymTy == RSym->getType() &&
 | |
|          "Symbols are not of the same type!");
 | |
|   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
 | |
|          "Integers are not of the same type as symbols!");
 | |
|   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
 | |
|          "Integers are not of the same type as symbols!");
 | |
| 
 | |
|   QualType ResultTy;
 | |
|   if (BinaryOperator::isComparisonOp(Op))
 | |
|     ResultTy = SVB.getConditionType();
 | |
|   else if (BinaryOperator::isAdditiveOp(Op))
 | |
|     ResultTy = SymTy;
 | |
|   else
 | |
|     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
 | |
| 
 | |
|   // FIXME: Can we use assume() without getting into an infinite recursion?
 | |
|   if (LSym == RSym)
 | |
|     return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
 | |
|                            nonloc::ConcreteInt(RInt), ResultTy)
 | |
|         .castAs<NonLoc>();
 | |
| 
 | |
|   SymbolRef ResultSym = nullptr;
 | |
|   BinaryOperator::Opcode ResultOp;
 | |
|   llvm::APSInt ResultInt;
 | |
|   if (BinaryOperator::isComparisonOp(Op)) {
 | |
|     // Prefer comparing to a non-negative number.
 | |
|     // FIXME: Maybe it'd be better to have consistency in
 | |
|     // "$x - $y" vs. "$y - $x" because those are solver's keys.
 | |
|     if (LInt > RInt) {
 | |
|       ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
 | |
|       ResultOp = BinaryOperator::reverseComparisonOp(Op);
 | |
|       ResultInt = LInt - RInt; // Opposite order!
 | |
|     } else {
 | |
|       ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
 | |
|       ResultOp = Op;
 | |
|       ResultInt = RInt - LInt; // Opposite order!
 | |
|     }
 | |
|   } else {
 | |
|     ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
 | |
|     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
 | |
|     ResultOp = BO_Add;
 | |
|     // Bring back the cosmetic difference.
 | |
|     if (ResultInt < 0) {
 | |
|       ResultInt = -ResultInt;
 | |
|       ResultOp = BO_Sub;
 | |
|     } else if (ResultInt == 0) {
 | |
|       // Shortcut: Simplify "$x + 0" to "$x".
 | |
|       return nonloc::SymbolVal(ResultSym);
 | |
|     }
 | |
|   }
 | |
|   const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
 | |
|   return nonloc::SymbolVal(
 | |
|       SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
 | |
| }
 | |
| 
 | |
| // Rearrange if symbol type matches the result type and if the operator is a
 | |
| // comparison operator, both symbol and constant must be within constant
 | |
| // overflow bounds.
 | |
| static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
 | |
|                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
 | |
|   return Sym->getType() == Ty &&
 | |
|     (!BinaryOperator::isComparisonOp(Op) ||
 | |
|      (isWithinConstantOverflowBounds(Sym, State) &&
 | |
|       isWithinConstantOverflowBounds(Int)));
 | |
| }
 | |
| 
 | |
| static Optional<NonLoc> tryRearrange(ProgramStateRef State,
 | |
|                                      BinaryOperator::Opcode Op, NonLoc Lhs,
 | |
|                                      NonLoc Rhs, QualType ResultTy) {
 | |
|   ProgramStateManager &StateMgr = State->getStateManager();
 | |
|   SValBuilder &SVB = StateMgr.getSValBuilder();
 | |
| 
 | |
|   // We expect everything to be of the same type - this type.
 | |
|   QualType SingleTy;
 | |
| 
 | |
|   auto &Opts =
 | |
|     StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions();
 | |
| 
 | |
|   // FIXME: After putting complexity threshold to the symbols we can always
 | |
|   //        rearrange additive operations but rearrange comparisons only if
 | |
|   //        option is set.
 | |
|   if(!Opts.ShouldAggressivelySimplifyBinaryOperation)
 | |
|     return None;
 | |
| 
 | |
|   SymbolRef LSym = Lhs.getAsSymbol();
 | |
|   if (!LSym)
 | |
|     return None;
 | |
| 
 | |
|   if (BinaryOperator::isComparisonOp(Op)) {
 | |
|     SingleTy = LSym->getType();
 | |
|     if (ResultTy != SVB.getConditionType())
 | |
|       return None;
 | |
|     // Initialize SingleTy later with a symbol's type.
 | |
|   } else if (BinaryOperator::isAdditiveOp(Op)) {
 | |
|     SingleTy = ResultTy;
 | |
|     if (LSym->getType() != SingleTy)
 | |
|       return None;
 | |
|   } else {
 | |
|     // Don't rearrange other operations.
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
 | |
| 
 | |
|   // Rearrange signed symbolic expressions only
 | |
|   if (!SingleTy->isSignedIntegerOrEnumerationType())
 | |
|     return None;
 | |
| 
 | |
|   SymbolRef RSym = Rhs.getAsSymbol();
 | |
|   if (!RSym || RSym->getType() != SingleTy)
 | |
|     return None;
 | |
| 
 | |
|   BasicValueFactory &BV = State->getBasicVals();
 | |
|   llvm::APSInt LInt, RInt;
 | |
|   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
 | |
|   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
 | |
|   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
 | |
|       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
 | |
|     return None;
 | |
| 
 | |
|   // We know that no overflows can occur anymore.
 | |
|   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
 | |
|                                   BinaryOperator::Opcode op,
 | |
|                                   NonLoc lhs, NonLoc rhs,
 | |
|                                   QualType resultTy)  {
 | |
|   NonLoc InputLHS = lhs;
 | |
|   NonLoc InputRHS = rhs;
 | |
| 
 | |
|   // Handle trivial case where left-side and right-side are the same.
 | |
|   if (lhs == rhs)
 | |
|     switch (op) {
 | |
|       default:
 | |
|         break;
 | |
|       case BO_EQ:
 | |
|       case BO_LE:
 | |
|       case BO_GE:
 | |
|         return makeTruthVal(true, resultTy);
 | |
|       case BO_LT:
 | |
|       case BO_GT:
 | |
|       case BO_NE:
 | |
|         return makeTruthVal(false, resultTy);
 | |
|       case BO_Xor:
 | |
|       case BO_Sub:
 | |
|         if (resultTy->isIntegralOrEnumerationType())
 | |
|           return makeIntVal(0, resultTy);
 | |
|         return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy);
 | |
|       case BO_Or:
 | |
|       case BO_And:
 | |
|         return evalCastFromNonLoc(lhs, resultTy);
 | |
|     }
 | |
| 
 | |
|   while (1) {
 | |
|     switch (lhs.getSubKind()) {
 | |
|     default:
 | |
|       return makeSymExprValNN(op, lhs, rhs, resultTy);
 | |
|     case nonloc::PointerToMemberKind: {
 | |
|       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
 | |
|              "Both SVals should have pointer-to-member-type");
 | |
|       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
 | |
|            RPTM = rhs.castAs<nonloc::PointerToMember>();
 | |
|       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
 | |
|       switch (op) {
 | |
|         case BO_EQ:
 | |
|           return makeTruthVal(LPTMD == RPTMD, resultTy);
 | |
|         case BO_NE:
 | |
|           return makeTruthVal(LPTMD != RPTMD, resultTy);
 | |
|         default:
 | |
|           return UnknownVal();
 | |
|       }
 | |
|     }
 | |
|     case nonloc::LocAsIntegerKind: {
 | |
|       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
 | |
|       switch (rhs.getSubKind()) {
 | |
|         case nonloc::LocAsIntegerKind:
 | |
|           // FIXME: at the moment the implementation
 | |
|           // of modeling "pointers as integers" is not complete.
 | |
|           if (!BinaryOperator::isComparisonOp(op))
 | |
|             return UnknownVal();
 | |
|           return evalBinOpLL(state, op, lhsL,
 | |
|                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
 | |
|                              resultTy);
 | |
|         case nonloc::ConcreteIntKind: {
 | |
|           // FIXME: at the moment the implementation
 | |
|           // of modeling "pointers as integers" is not complete.
 | |
|           if (!BinaryOperator::isComparisonOp(op))
 | |
|             return UnknownVal();
 | |
|           // Transform the integer into a location and compare.
 | |
|           // FIXME: This only makes sense for comparisons. If we want to, say,
 | |
|           // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
 | |
|           // then pack it back into a LocAsInteger.
 | |
|           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
 | |
|           // If the region has a symbolic base, pay attention to the type; it
 | |
|           // might be coming from a non-default address space. For non-symbolic
 | |
|           // regions it doesn't matter that much because such comparisons would
 | |
|           // most likely evaluate to concrete false anyway. FIXME: We might
 | |
|           // still need to handle the non-comparison case.
 | |
|           if (SymbolRef lSym = lhs.getAsLocSymbol(true))
 | |
|             BasicVals.getAPSIntType(lSym->getType()).apply(i);
 | |
|           else
 | |
|             BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
 | |
|           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
 | |
|         }
 | |
|         default:
 | |
|           switch (op) {
 | |
|             case BO_EQ:
 | |
|               return makeTruthVal(false, resultTy);
 | |
|             case BO_NE:
 | |
|               return makeTruthVal(true, resultTy);
 | |
|             default:
 | |
|               // This case also handles pointer arithmetic.
 | |
|               return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|     case nonloc::ConcreteIntKind: {
 | |
|       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
 | |
| 
 | |
|       // If we're dealing with two known constants, just perform the operation.
 | |
|       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
 | |
|         llvm::APSInt RHSValue = *KnownRHSValue;
 | |
|         if (BinaryOperator::isComparisonOp(op)) {
 | |
|           // We're looking for a type big enough to compare the two values.
 | |
|           // FIXME: This is not correct. char + short will result in a promotion
 | |
|           // to int. Unfortunately we have lost types by this point.
 | |
|           APSIntType CompareType = std::max(APSIntType(LHSValue),
 | |
|                                             APSIntType(RHSValue));
 | |
|           CompareType.apply(LHSValue);
 | |
|           CompareType.apply(RHSValue);
 | |
|         } else if (!BinaryOperator::isShiftOp(op)) {
 | |
|           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
 | |
|           IntType.apply(LHSValue);
 | |
|           IntType.apply(RHSValue);
 | |
|         }
 | |
| 
 | |
|         const llvm::APSInt *Result =
 | |
|           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
 | |
|         if (!Result)
 | |
|           return UndefinedVal();
 | |
| 
 | |
|         return nonloc::ConcreteInt(*Result);
 | |
|       }
 | |
| 
 | |
|       // Swap the left and right sides and flip the operator if doing so
 | |
|       // allows us to better reason about the expression (this is a form
 | |
|       // of expression canonicalization).
 | |
|       // While we're at it, catch some special cases for non-commutative ops.
 | |
|       switch (op) {
 | |
|       case BO_LT:
 | |
|       case BO_GT:
 | |
|       case BO_LE:
 | |
|       case BO_GE:
 | |
|         op = BinaryOperator::reverseComparisonOp(op);
 | |
|         LLVM_FALLTHROUGH;
 | |
|       case BO_EQ:
 | |
|       case BO_NE:
 | |
|       case BO_Add:
 | |
|       case BO_Mul:
 | |
|       case BO_And:
 | |
|       case BO_Xor:
 | |
|       case BO_Or:
 | |
|         std::swap(lhs, rhs);
 | |
|         continue;
 | |
|       case BO_Shr:
 | |
|         // (~0)>>a
 | |
|         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
 | |
|           return evalCastFromNonLoc(lhs, resultTy);
 | |
|         LLVM_FALLTHROUGH;
 | |
|       case BO_Shl:
 | |
|         // 0<<a and 0>>a
 | |
|         if (LHSValue == 0)
 | |
|           return evalCastFromNonLoc(lhs, resultTy);
 | |
|         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
 | |
|       case BO_Rem:
 | |
|         // 0 % x == 0
 | |
|         if (LHSValue == 0)
 | |
|           return makeZeroVal(resultTy);
 | |
|         LLVM_FALLTHROUGH;
 | |
|       default:
 | |
|         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
 | |
|       }
 | |
|     }
 | |
|     case nonloc::SymbolValKind: {
 | |
|       // We only handle LHS as simple symbols or SymIntExprs.
 | |
|       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
 | |
| 
 | |
|       // LHS is a symbolic expression.
 | |
|       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
 | |
| 
 | |
|         // Is this a logical not? (!x is represented as x == 0.)
 | |
|         if (op == BO_EQ && rhs.isZeroConstant()) {
 | |
|           // We know how to negate certain expressions. Simplify them here.
 | |
| 
 | |
|           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
 | |
|           switch (opc) {
 | |
|           default:
 | |
|             // We don't know how to negate this operation.
 | |
|             // Just handle it as if it were a normal comparison to 0.
 | |
|             break;
 | |
|           case BO_LAnd:
 | |
|           case BO_LOr:
 | |
|             llvm_unreachable("Logical operators handled by branching logic.");
 | |
|           case BO_Assign:
 | |
|           case BO_MulAssign:
 | |
|           case BO_DivAssign:
 | |
|           case BO_RemAssign:
 | |
|           case BO_AddAssign:
 | |
|           case BO_SubAssign:
 | |
|           case BO_ShlAssign:
 | |
|           case BO_ShrAssign:
 | |
|           case BO_AndAssign:
 | |
|           case BO_XorAssign:
 | |
|           case BO_OrAssign:
 | |
|           case BO_Comma:
 | |
|             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
 | |
|           case BO_PtrMemD:
 | |
|           case BO_PtrMemI:
 | |
|             llvm_unreachable("Pointer arithmetic not handled here.");
 | |
|           case BO_LT:
 | |
|           case BO_GT:
 | |
|           case BO_LE:
 | |
|           case BO_GE:
 | |
|           case BO_EQ:
 | |
|           case BO_NE:
 | |
|             assert(resultTy->isBooleanType() ||
 | |
|                    resultTy == getConditionType());
 | |
|             assert(symIntExpr->getType()->isBooleanType() ||
 | |
|                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
 | |
|                                                        getConditionType()));
 | |
|             // Negate the comparison and make a value.
 | |
|             opc = BinaryOperator::negateComparisonOp(opc);
 | |
|             return makeNonLoc(symIntExpr->getLHS(), opc,
 | |
|                 symIntExpr->getRHS(), resultTy);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // For now, only handle expressions whose RHS is a constant.
 | |
|         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
 | |
|           // If both the LHS and the current expression are additive,
 | |
|           // fold their constants and try again.
 | |
|           if (BinaryOperator::isAdditiveOp(op)) {
 | |
|             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
 | |
|             if (BinaryOperator::isAdditiveOp(lop)) {
 | |
|               // Convert the two constants to a common type, then combine them.
 | |
| 
 | |
|               // resultTy may not be the best type to convert to, but it's
 | |
|               // probably the best choice in expressions with mixed type
 | |
|               // (such as x+1U+2LL). The rules for implicit conversions should
 | |
|               // choose a reasonable type to preserve the expression, and will
 | |
|               // at least match how the value is going to be used.
 | |
|               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
 | |
|               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
 | |
|               const llvm::APSInt &second = IntType.convert(*RHSValue);
 | |
| 
 | |
|               const llvm::APSInt *newRHS;
 | |
|               if (lop == op)
 | |
|                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
 | |
|               else
 | |
|                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
 | |
| 
 | |
|               assert(newRHS && "Invalid operation despite common type!");
 | |
|               rhs = nonloc::ConcreteInt(*newRHS);
 | |
|               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
 | |
|               op = lop;
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Otherwise, make a SymIntExpr out of the expression.
 | |
|           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Does the symbolic expression simplify to a constant?
 | |
|       // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
 | |
|       // and try again.
 | |
|       SVal simplifiedLhs = simplifySVal(state, lhs);
 | |
|       if (simplifiedLhs != lhs)
 | |
|         if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
 | |
|           lhs = *simplifiedLhsAsNonLoc;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       // Is the RHS a constant?
 | |
|       if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
 | |
|         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
 | |
| 
 | |
|       if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
 | |
|         return *V;
 | |
| 
 | |
|       // Give up -- this is not a symbolic expression we can handle.
 | |
|       return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
 | |
|                                             const FieldRegion *RightFR,
 | |
|                                             BinaryOperator::Opcode op,
 | |
|                                             QualType resultTy,
 | |
|                                             SimpleSValBuilder &SVB) {
 | |
|   // Only comparisons are meaningful here!
 | |
|   if (!BinaryOperator::isComparisonOp(op))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Next, see if the two FRs have the same super-region.
 | |
|   // FIXME: This doesn't handle casts yet, and simply stripping the casts
 | |
|   // doesn't help.
 | |
|   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const FieldDecl *LeftFD = LeftFR->getDecl();
 | |
|   const FieldDecl *RightFD = RightFR->getDecl();
 | |
|   const RecordDecl *RD = LeftFD->getParent();
 | |
| 
 | |
|   // Make sure the two FRs are from the same kind of record. Just in case!
 | |
|   // FIXME: This is probably where inheritance would be a problem.
 | |
|   if (RD != RightFD->getParent())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // We know for sure that the two fields are not the same, since that
 | |
|   // would have given us the same SVal.
 | |
|   if (op == BO_EQ)
 | |
|     return SVB.makeTruthVal(false, resultTy);
 | |
|   if (op == BO_NE)
 | |
|     return SVB.makeTruthVal(true, resultTy);
 | |
| 
 | |
|   // Iterate through the fields and see which one comes first.
 | |
|   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
 | |
|   // members and the units in which bit-fields reside have addresses that
 | |
|   // increase in the order in which they are declared."
 | |
|   bool leftFirst = (op == BO_LT || op == BO_LE);
 | |
|   for (const auto *I : RD->fields()) {
 | |
|     if (I == LeftFD)
 | |
|       return SVB.makeTruthVal(leftFirst, resultTy);
 | |
|     if (I == RightFD)
 | |
|       return SVB.makeTruthVal(!leftFirst, resultTy);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Fields not found in parent record's definition");
 | |
| }
 | |
| 
 | |
| // FIXME: all this logic will change if/when we have MemRegion::getLocation().
 | |
| SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
 | |
|                                   BinaryOperator::Opcode op,
 | |
|                                   Loc lhs, Loc rhs,
 | |
|                                   QualType resultTy) {
 | |
|   // Only comparisons and subtractions are valid operations on two pointers.
 | |
|   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
 | |
|   // However, if a pointer is casted to an integer, evalBinOpNN may end up
 | |
|   // calling this function with another operation (PR7527). We don't attempt to
 | |
|   // model this for now, but it could be useful, particularly when the
 | |
|   // "location" is actually an integer value that's been passed through a void*.
 | |
|   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Special cases for when both sides are identical.
 | |
|   if (lhs == rhs) {
 | |
|     switch (op) {
 | |
|     default:
 | |
|       llvm_unreachable("Unimplemented operation for two identical values");
 | |
|     case BO_Sub:
 | |
|       return makeZeroVal(resultTy);
 | |
|     case BO_EQ:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|       return makeTruthVal(true, resultTy);
 | |
|     case BO_NE:
 | |
|     case BO_LT:
 | |
|     case BO_GT:
 | |
|       return makeTruthVal(false, resultTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (lhs.getSubKind()) {
 | |
|   default:
 | |
|     llvm_unreachable("Ordering not implemented for this Loc.");
 | |
| 
 | |
|   case loc::GotoLabelKind:
 | |
|     // The only thing we know about labels is that they're non-null.
 | |
|     if (rhs.isZeroConstant()) {
 | |
|       switch (op) {
 | |
|       default:
 | |
|         break;
 | |
|       case BO_Sub:
 | |
|         return evalCastFromLoc(lhs, resultTy);
 | |
|       case BO_EQ:
 | |
|       case BO_LE:
 | |
|       case BO_LT:
 | |
|         return makeTruthVal(false, resultTy);
 | |
|       case BO_NE:
 | |
|       case BO_GT:
 | |
|       case BO_GE:
 | |
|         return makeTruthVal(true, resultTy);
 | |
|       }
 | |
|     }
 | |
|     // There may be two labels for the same location, and a function region may
 | |
|     // have the same address as a label at the start of the function (depending
 | |
|     // on the ABI).
 | |
|     // FIXME: we can probably do a comparison against other MemRegions, though.
 | |
|     // FIXME: is there a way to tell if two labels refer to the same location?
 | |
|     return UnknownVal();
 | |
| 
 | |
|   case loc::ConcreteIntKind: {
 | |
|     // If one of the operands is a symbol and the other is a constant,
 | |
|     // build an expression for use by the constraint manager.
 | |
|     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
 | |
|       // We can only build expressions with symbols on the left,
 | |
|       // so we need a reversible operator.
 | |
|       if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
 | |
|         return UnknownVal();
 | |
| 
 | |
|       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
 | |
|       op = BinaryOperator::reverseComparisonOp(op);
 | |
|       return makeNonLoc(rSym, op, lVal, resultTy);
 | |
|     }
 | |
| 
 | |
|     // If both operands are constants, just perform the operation.
 | |
|     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
 | |
|       SVal ResultVal =
 | |
|           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
 | |
|       if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
 | |
|         return evalCastFromNonLoc(*Result, resultTy);
 | |
| 
 | |
|       assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
 | |
|       return UnknownVal();
 | |
|     }
 | |
| 
 | |
|     // Special case comparisons against NULL.
 | |
|     // This must come after the test if the RHS is a symbol, which is used to
 | |
|     // build constraints. The address of any non-symbolic region is guaranteed
 | |
|     // to be non-NULL, as is any label.
 | |
|     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
 | |
|     if (lhs.isZeroConstant()) {
 | |
|       switch (op) {
 | |
|       default:
 | |
|         break;
 | |
|       case BO_EQ:
 | |
|       case BO_GT:
 | |
|       case BO_GE:
 | |
|         return makeTruthVal(false, resultTy);
 | |
|       case BO_NE:
 | |
|       case BO_LT:
 | |
|       case BO_LE:
 | |
|         return makeTruthVal(true, resultTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Comparing an arbitrary integer to a region or label address is
 | |
|     // completely unknowable.
 | |
|     return UnknownVal();
 | |
|   }
 | |
|   case loc::MemRegionValKind: {
 | |
|     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
 | |
|       // If one of the operands is a symbol and the other is a constant,
 | |
|       // build an expression for use by the constraint manager.
 | |
|       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
 | |
|         if (BinaryOperator::isComparisonOp(op))
 | |
|           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
 | |
|         return UnknownVal();
 | |
|       }
 | |
|       // Special case comparisons to NULL.
 | |
|       // This must come after the test if the LHS is a symbol, which is used to
 | |
|       // build constraints. The address of any non-symbolic region is guaranteed
 | |
|       // to be non-NULL.
 | |
|       if (rInt->isZeroConstant()) {
 | |
|         if (op == BO_Sub)
 | |
|           return evalCastFromLoc(lhs, resultTy);
 | |
| 
 | |
|         if (BinaryOperator::isComparisonOp(op)) {
 | |
|           QualType boolType = getContext().BoolTy;
 | |
|           NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
 | |
|           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
 | |
|           return evalBinOpNN(state, op, l, r, resultTy);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Comparing a region to an arbitrary integer is completely unknowable.
 | |
|       return UnknownVal();
 | |
|     }
 | |
| 
 | |
|     // Get both values as regions, if possible.
 | |
|     const MemRegion *LeftMR = lhs.getAsRegion();
 | |
|     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
 | |
| 
 | |
|     const MemRegion *RightMR = rhs.getAsRegion();
 | |
|     if (!RightMR)
 | |
|       // The RHS is probably a label, which in theory could address a region.
 | |
|       // FIXME: we can probably make a more useful statement about non-code
 | |
|       // regions, though.
 | |
|       return UnknownVal();
 | |
| 
 | |
|     const MemRegion *LeftBase = LeftMR->getBaseRegion();
 | |
|     const MemRegion *RightBase = RightMR->getBaseRegion();
 | |
|     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
 | |
|     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
 | |
|     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
 | |
| 
 | |
|     // If the two regions are from different known memory spaces they cannot be
 | |
|     // equal. Also, assume that no symbolic region (whose memory space is
 | |
|     // unknown) is on the stack.
 | |
|     if (LeftMS != RightMS &&
 | |
|         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
 | |
|          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
 | |
|       switch (op) {
 | |
|       default:
 | |
|         return UnknownVal();
 | |
|       case BO_EQ:
 | |
|         return makeTruthVal(false, resultTy);
 | |
|       case BO_NE:
 | |
|         return makeTruthVal(true, resultTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If both values wrap regions, see if they're from different base regions.
 | |
|     // Note, heap base symbolic regions are assumed to not alias with
 | |
|     // each other; for example, we assume that malloc returns different address
 | |
|     // on each invocation.
 | |
|     // FIXME: ObjC object pointers always reside on the heap, but currently
 | |
|     // we treat their memory space as unknown, because symbolic pointers
 | |
|     // to ObjC objects may alias. There should be a way to construct
 | |
|     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
 | |
|     // guesses memory space for ObjC object pointers manually instead of
 | |
|     // relying on us.
 | |
|     if (LeftBase != RightBase &&
 | |
|         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
 | |
|          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
 | |
|       switch (op) {
 | |
|       default:
 | |
|         return UnknownVal();
 | |
|       case BO_EQ:
 | |
|         return makeTruthVal(false, resultTy);
 | |
|       case BO_NE:
 | |
|         return makeTruthVal(true, resultTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Handle special cases for when both regions are element regions.
 | |
|     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
 | |
|     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
 | |
|     if (RightER && LeftER) {
 | |
|       // Next, see if the two ERs have the same super-region and matching types.
 | |
|       // FIXME: This should do something useful even if the types don't match,
 | |
|       // though if both indexes are constant the RegionRawOffset path will
 | |
|       // give the correct answer.
 | |
|       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
 | |
|           LeftER->getElementType() == RightER->getElementType()) {
 | |
|         // Get the left index and cast it to the correct type.
 | |
|         // If the index is unknown or undefined, bail out here.
 | |
|         SVal LeftIndexVal = LeftER->getIndex();
 | |
|         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
 | |
|         if (!LeftIndex)
 | |
|           return UnknownVal();
 | |
|         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
 | |
|         LeftIndex = LeftIndexVal.getAs<NonLoc>();
 | |
|         if (!LeftIndex)
 | |
|           return UnknownVal();
 | |
| 
 | |
|         // Do the same for the right index.
 | |
|         SVal RightIndexVal = RightER->getIndex();
 | |
|         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
 | |
|         if (!RightIndex)
 | |
|           return UnknownVal();
 | |
|         RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
 | |
|         RightIndex = RightIndexVal.getAs<NonLoc>();
 | |
|         if (!RightIndex)
 | |
|           return UnknownVal();
 | |
| 
 | |
|         // Actually perform the operation.
 | |
|         // evalBinOpNN expects the two indexes to already be the right type.
 | |
|         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Special handling of the FieldRegions, even with symbolic offsets.
 | |
|     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
 | |
|     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
 | |
|     if (RightFR && LeftFR) {
 | |
|       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
 | |
|                                                *this);
 | |
|       if (!R.isUnknown())
 | |
|         return R;
 | |
|     }
 | |
| 
 | |
|     // Compare the regions using the raw offsets.
 | |
|     RegionOffset LeftOffset = LeftMR->getAsOffset();
 | |
|     RegionOffset RightOffset = RightMR->getAsOffset();
 | |
| 
 | |
|     if (LeftOffset.getRegion() != nullptr &&
 | |
|         LeftOffset.getRegion() == RightOffset.getRegion() &&
 | |
|         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
 | |
|       int64_t left = LeftOffset.getOffset();
 | |
|       int64_t right = RightOffset.getOffset();
 | |
| 
 | |
|       switch (op) {
 | |
|         default:
 | |
|           return UnknownVal();
 | |
|         case BO_LT:
 | |
|           return makeTruthVal(left < right, resultTy);
 | |
|         case BO_GT:
 | |
|           return makeTruthVal(left > right, resultTy);
 | |
|         case BO_LE:
 | |
|           return makeTruthVal(left <= right, resultTy);
 | |
|         case BO_GE:
 | |
|           return makeTruthVal(left >= right, resultTy);
 | |
|         case BO_EQ:
 | |
|           return makeTruthVal(left == right, resultTy);
 | |
|         case BO_NE:
 | |
|           return makeTruthVal(left != right, resultTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // At this point we're not going to get a good answer, but we can try
 | |
|     // conjuring an expression instead.
 | |
|     SymbolRef LHSSym = lhs.getAsLocSymbol();
 | |
|     SymbolRef RHSSym = rhs.getAsLocSymbol();
 | |
|     if (LHSSym && RHSSym)
 | |
|       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
 | |
| 
 | |
|     // If we get here, we have no way of comparing the regions.
 | |
|     return UnknownVal();
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
 | |
|                                     BinaryOperator::Opcode op, Loc lhs,
 | |
|                                     NonLoc rhs, QualType resultTy) {
 | |
|   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
 | |
|     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
 | |
|       if (PTMSV->isNullMemberPointer())
 | |
|         return UndefinedVal();
 | |
| 
 | |
|       auto getFieldLValue = [&](const auto *FD) -> SVal {
 | |
|         SVal Result = lhs;
 | |
| 
 | |
|         for (const auto &I : *PTMSV)
 | |
|           Result = StateMgr.getStoreManager().evalDerivedToBase(
 | |
|               Result, I->getType(), I->isVirtual());
 | |
| 
 | |
|         return state->getLValue(FD, Result);
 | |
|       };
 | |
| 
 | |
|       if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
 | |
|         return getFieldLValue(FD);
 | |
|       }
 | |
|       if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
 | |
|         return getFieldLValue(FD);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return rhs;
 | |
|   }
 | |
| 
 | |
|   assert(!BinaryOperator::isComparisonOp(op) &&
 | |
|          "arguments to comparison ops must be of the same type");
 | |
| 
 | |
|   // Special case: rhs is a zero constant.
 | |
|   if (rhs.isZeroConstant())
 | |
|     return lhs;
 | |
| 
 | |
|   // Perserve the null pointer so that it can be found by the DerefChecker.
 | |
|   if (lhs.isZeroConstant())
 | |
|     return lhs;
 | |
| 
 | |
|   // We are dealing with pointer arithmetic.
 | |
| 
 | |
|   // Handle pointer arithmetic on constant values.
 | |
|   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
 | |
|     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
 | |
|       const llvm::APSInt &leftI = lhsInt->getValue();
 | |
|       assert(leftI.isUnsigned());
 | |
|       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
 | |
| 
 | |
|       // Convert the bitwidth of rightI.  This should deal with overflow
 | |
|       // since we are dealing with concrete values.
 | |
|       rightI = rightI.extOrTrunc(leftI.getBitWidth());
 | |
| 
 | |
|       // Offset the increment by the pointer size.
 | |
|       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
 | |
|       QualType pointeeType = resultTy->getPointeeType();
 | |
|       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
 | |
|       rightI *= Multiplicand;
 | |
| 
 | |
|       // Compute the adjusted pointer.
 | |
|       switch (op) {
 | |
|         case BO_Add:
 | |
|           rightI = leftI + rightI;
 | |
|           break;
 | |
|         case BO_Sub:
 | |
|           rightI = leftI - rightI;
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("Invalid pointer arithmetic operation");
 | |
|       }
 | |
|       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle cases where 'lhs' is a region.
 | |
|   if (const MemRegion *region = lhs.getAsRegion()) {
 | |
|     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
 | |
|     SVal index = UnknownVal();
 | |
|     const SubRegion *superR = nullptr;
 | |
|     // We need to know the type of the pointer in order to add an integer to it.
 | |
|     // Depending on the type, different amount of bytes is added.
 | |
|     QualType elementType;
 | |
| 
 | |
|     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
 | |
|       assert(op == BO_Add || op == BO_Sub);
 | |
|       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
 | |
|                           getArrayIndexType());
 | |
|       superR = cast<SubRegion>(elemReg->getSuperRegion());
 | |
|       elementType = elemReg->getElementType();
 | |
|     }
 | |
|     else if (isa<SubRegion>(region)) {
 | |
|       assert(op == BO_Add || op == BO_Sub);
 | |
|       index = (op == BO_Add) ? rhs : evalMinus(rhs);
 | |
|       superR = cast<SubRegion>(region);
 | |
|       // TODO: Is this actually reliable? Maybe improving our MemRegion
 | |
|       // hierarchy to provide typed regions for all non-void pointers would be
 | |
|       // better. For instance, we cannot extend this towards LocAsInteger
 | |
|       // operations, where result type of the expression is integer.
 | |
|       if (resultTy->isAnyPointerType())
 | |
|         elementType = resultTy->getPointeeType();
 | |
|     }
 | |
| 
 | |
|     // Represent arithmetic on void pointers as arithmetic on char pointers.
 | |
|     // It is fine when a TypedValueRegion of char value type represents
 | |
|     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
 | |
|     if (elementType->isVoidType())
 | |
|       elementType = getContext().CharTy;
 | |
| 
 | |
|     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
 | |
|       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
 | |
|                                                        superR, getContext()));
 | |
|     }
 | |
|   }
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
 | |
|                                                    SVal V) {
 | |
|   V = simplifySVal(state, V);
 | |
|   if (V.isUnknownOrUndef())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
 | |
|     return &X->getValue();
 | |
| 
 | |
|   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
 | |
|     return &X->getValue();
 | |
| 
 | |
|   if (SymbolRef Sym = V.getAsSymbol())
 | |
|     return state->getConstraintManager().getSymVal(state, Sym);
 | |
| 
 | |
|   // FIXME: Add support for SymExprs.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
 | |
|   // For now, this function tries to constant-fold symbols inside a
 | |
|   // nonloc::SymbolVal, and does nothing else. More simplifications should
 | |
|   // be possible, such as constant-folding an index in an ElementRegion.
 | |
| 
 | |
|   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
 | |
|     ProgramStateRef State;
 | |
|     SValBuilder &SVB;
 | |
| 
 | |
|     // Cache results for the lifetime of the Simplifier. Results change every
 | |
|     // time new constraints are added to the program state, which is the whole
 | |
|     // point of simplifying, and for that very reason it's pointless to maintain
 | |
|     // the same cache for the duration of the whole analysis.
 | |
|     llvm::DenseMap<SymbolRef, SVal> Cached;
 | |
| 
 | |
|     static bool isUnchanged(SymbolRef Sym, SVal Val) {
 | |
|       return Sym == Val.getAsSymbol();
 | |
|     }
 | |
| 
 | |
|     SVal cache(SymbolRef Sym, SVal V) {
 | |
|       Cached[Sym] = V;
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     SVal skip(SymbolRef Sym) {
 | |
|       return cache(Sym, SVB.makeSymbolVal(Sym));
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     Simplifier(ProgramStateRef State)
 | |
|         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
 | |
| 
 | |
|     SVal VisitSymbolData(const SymbolData *S) {
 | |
|       // No cache here.
 | |
|       if (const llvm::APSInt *I =
 | |
|               SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
 | |
|         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
 | |
|                                             : (SVal)SVB.makeIntVal(*I);
 | |
|       return SVB.makeSymbolVal(S);
 | |
|     }
 | |
| 
 | |
|     // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
 | |
|     // start producing them.
 | |
| 
 | |
|     SVal VisitSymIntExpr(const SymIntExpr *S) {
 | |
|       auto I = Cached.find(S);
 | |
|       if (I != Cached.end())
 | |
|         return I->second;
 | |
| 
 | |
|       SVal LHS = Visit(S->getLHS());
 | |
|       if (isUnchanged(S->getLHS(), LHS))
 | |
|         return skip(S);
 | |
| 
 | |
|       SVal RHS;
 | |
|       // By looking at the APSInt in the right-hand side of S, we cannot
 | |
|       // figure out if it should be treated as a Loc or as a NonLoc.
 | |
|       // So make our guess by recalling that we cannot multiply pointers
 | |
|       // or compare a pointer to an integer.
 | |
|       if (Loc::isLocType(S->getLHS()->getType()) &&
 | |
|           BinaryOperator::isComparisonOp(S->getOpcode())) {
 | |
|         // The usual conversion of $sym to &SymRegion{$sym}, as they have
 | |
|         // the same meaning for Loc-type symbols, but the latter form
 | |
|         // is preferred in SVal computations for being Loc itself.
 | |
|         if (SymbolRef Sym = LHS.getAsSymbol()) {
 | |
|           assert(Loc::isLocType(Sym->getType()));
 | |
|           LHS = SVB.makeLoc(Sym);
 | |
|         }
 | |
|         RHS = SVB.makeIntLocVal(S->getRHS());
 | |
|       } else {
 | |
|         RHS = SVB.makeIntVal(S->getRHS());
 | |
|       }
 | |
| 
 | |
|       return cache(
 | |
|           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
 | |
|     }
 | |
| 
 | |
|     SVal VisitSymSymExpr(const SymSymExpr *S) {
 | |
|       auto I = Cached.find(S);
 | |
|       if (I != Cached.end())
 | |
|         return I->second;
 | |
| 
 | |
|       // For now don't try to simplify mixed Loc/NonLoc expressions
 | |
|       // because they often appear from LocAsInteger operations
 | |
|       // and we don't know how to combine a LocAsInteger
 | |
|       // with a concrete value.
 | |
|       if (Loc::isLocType(S->getLHS()->getType()) !=
 | |
|           Loc::isLocType(S->getRHS()->getType()))
 | |
|         return skip(S);
 | |
| 
 | |
|       SVal LHS = Visit(S->getLHS());
 | |
|       SVal RHS = Visit(S->getRHS());
 | |
|       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
 | |
|         return skip(S);
 | |
| 
 | |
|       return cache(
 | |
|           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
 | |
|     }
 | |
| 
 | |
|     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
 | |
| 
 | |
|     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
 | |
| 
 | |
|     SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
 | |
|       // Simplification is much more costly than computing complexity.
 | |
|       // For high complexity, it may be not worth it.
 | |
|       return Visit(V.getSymbol());
 | |
|     }
 | |
| 
 | |
|     SVal VisitSVal(SVal V) { return V; }
 | |
|   };
 | |
| 
 | |
|   // A crude way of preventing this function from calling itself from evalBinOp.
 | |
|   static bool isReentering = false;
 | |
|   if (isReentering)
 | |
|     return V;
 | |
| 
 | |
|   isReentering = true;
 | |
|   SVal SimplifiedV = Simplifier(State).Visit(V);
 | |
|   isReentering = false;
 | |
| 
 | |
|   return SimplifiedV;
 | |
| }
 |