568 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			568 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Store.cpp - Interface for maps from Locations to Values ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defined the types Store and StoreManager.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| StoreManager::StoreManager(ProgramStateManager &stateMgr)
 | |
|     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
 | |
|       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
 | |
| 
 | |
| StoreRef StoreManager::enterStackFrame(Store OldStore,
 | |
|                                        const CallEvent &Call,
 | |
|                                        const StackFrameContext *LCtx) {
 | |
|   StoreRef Store = StoreRef(OldStore, *this);
 | |
| 
 | |
|   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
 | |
|   Call.getInitialStackFrameContents(LCtx, InitialBindings);
 | |
| 
 | |
|   for (const auto &I : InitialBindings)
 | |
|     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
 | |
| 
 | |
|   return Store;
 | |
| }
 | |
| 
 | |
| const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
 | |
|                                                      QualType EleTy,
 | |
|                                                      uint64_t index) {
 | |
|   NonLoc idx = svalBuilder.makeArrayIndex(index);
 | |
|   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
 | |
| }
 | |
| 
 | |
| const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
 | |
|                                                         QualType T) {
 | |
|   NonLoc idx = svalBuilder.makeZeroArrayIndex();
 | |
|   assert(!T.isNull());
 | |
|   return MRMgr.getElementRegion(T, idx, R, Ctx);
 | |
| }
 | |
| 
 | |
| const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
 | |
|   ASTContext &Ctx = StateMgr.getContext();
 | |
| 
 | |
|   // Handle casts to Objective-C objects.
 | |
|   if (CastToTy->isObjCObjectPointerType())
 | |
|     return R->StripCasts();
 | |
| 
 | |
|   if (CastToTy->isBlockPointerType()) {
 | |
|     // FIXME: We may need different solutions, depending on the symbol
 | |
|     // involved.  Blocks can be casted to/from 'id', as they can be treated
 | |
|     // as Objective-C objects.  This could possibly be handled by enhancing
 | |
|     // our reasoning of downcasts of symbolic objects.
 | |
|     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
 | |
|       return R;
 | |
| 
 | |
|     // We don't know what to make of it.  Return a NULL region, which
 | |
|     // will be interpreted as UnknownVal.
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Now assume we are casting from pointer to pointer. Other cases should
 | |
|   // already be handled.
 | |
|   QualType PointeeTy = CastToTy->getPointeeType();
 | |
|   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | |
| 
 | |
|   // Handle casts to void*.  We just pass the region through.
 | |
|   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
 | |
|     return R;
 | |
| 
 | |
|   // Handle casts from compatible types.
 | |
|   if (R->isBoundable())
 | |
|     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
 | |
|       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | |
|       if (CanonPointeeTy == ObjTy)
 | |
|         return R;
 | |
|     }
 | |
| 
 | |
|   // Process region cast according to the kind of the region being cast.
 | |
|   switch (R->getKind()) {
 | |
|     case MemRegion::CXXThisRegionKind:
 | |
|     case MemRegion::CodeSpaceRegionKind:
 | |
|     case MemRegion::StackLocalsSpaceRegionKind:
 | |
|     case MemRegion::StackArgumentsSpaceRegionKind:
 | |
|     case MemRegion::HeapSpaceRegionKind:
 | |
|     case MemRegion::UnknownSpaceRegionKind:
 | |
|     case MemRegion::StaticGlobalSpaceRegionKind:
 | |
|     case MemRegion::GlobalInternalSpaceRegionKind:
 | |
|     case MemRegion::GlobalSystemSpaceRegionKind:
 | |
|     case MemRegion::GlobalImmutableSpaceRegionKind: {
 | |
|       llvm_unreachable("Invalid region cast");
 | |
|     }
 | |
| 
 | |
|     case MemRegion::FunctionCodeRegionKind:
 | |
|     case MemRegion::BlockCodeRegionKind:
 | |
|     case MemRegion::BlockDataRegionKind:
 | |
|     case MemRegion::StringRegionKind:
 | |
|       // FIXME: Need to handle arbitrary downcasts.
 | |
|     case MemRegion::SymbolicRegionKind:
 | |
|     case MemRegion::AllocaRegionKind:
 | |
|     case MemRegion::CompoundLiteralRegionKind:
 | |
|     case MemRegion::FieldRegionKind:
 | |
|     case MemRegion::ObjCIvarRegionKind:
 | |
|     case MemRegion::ObjCStringRegionKind:
 | |
|     case MemRegion::NonParamVarRegionKind:
 | |
|     case MemRegion::ParamVarRegionKind:
 | |
|     case MemRegion::CXXTempObjectRegionKind:
 | |
|     case MemRegion::CXXBaseObjectRegionKind:
 | |
|     case MemRegion::CXXDerivedObjectRegionKind:
 | |
|       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
 | |
| 
 | |
|     case MemRegion::ElementRegionKind: {
 | |
|       // If we are casting from an ElementRegion to another type, the
 | |
|       // algorithm is as follows:
 | |
|       //
 | |
|       // (1) Compute the "raw offset" of the ElementRegion from the
 | |
|       //     base region.  This is done by calling 'getAsRawOffset()'.
 | |
|       //
 | |
|       // (2a) If we get a 'RegionRawOffset' after calling
 | |
|       //      'getAsRawOffset()', determine if the absolute offset
 | |
|       //      can be exactly divided into chunks of the size of the
 | |
|       //      casted-pointee type.  If so, create a new ElementRegion with
 | |
|       //      the pointee-cast type as the new ElementType and the index
 | |
|       //      being the offset divded by the chunk size.  If not, create
 | |
|       //      a new ElementRegion at offset 0 off the raw offset region.
 | |
|       //
 | |
|       // (2b) If we don't a get a 'RegionRawOffset' after calling
 | |
|       //      'getAsRawOffset()', it means that we are at offset 0.
 | |
|       //
 | |
|       // FIXME: Handle symbolic raw offsets.
 | |
| 
 | |
|       const ElementRegion *elementR = cast<ElementRegion>(R);
 | |
|       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
 | |
|       const MemRegion *baseR = rawOff.getRegion();
 | |
| 
 | |
|       // If we cannot compute a raw offset, throw up our hands and return
 | |
|       // a NULL MemRegion*.
 | |
|       if (!baseR)
 | |
|         return nullptr;
 | |
| 
 | |
|       CharUnits off = rawOff.getOffset();
 | |
| 
 | |
|       if (off.isZero()) {
 | |
|         // Edge case: we are at 0 bytes off the beginning of baseR.  We
 | |
|         // check to see if type we are casting to is the same as the base
 | |
|         // region.  If so, just return the base region.
 | |
|         if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
 | |
|           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | |
|           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | |
|           if (CanonPointeeTy == ObjTy)
 | |
|             return baseR;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, create a new ElementRegion at offset 0.
 | |
|         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
 | |
|       }
 | |
| 
 | |
|       // We have a non-zero offset from the base region.  We want to determine
 | |
|       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
 | |
|       // we create an ElementRegion whose index is that value.  Otherwise, we
 | |
|       // create two ElementRegions, one that reflects a raw offset and the other
 | |
|       // that reflects the cast.
 | |
| 
 | |
|       // Compute the index for the new ElementRegion.
 | |
|       int64_t newIndex = 0;
 | |
|       const MemRegion *newSuperR = nullptr;
 | |
| 
 | |
|       // We can only compute sizeof(PointeeTy) if it is a complete type.
 | |
|       if (!PointeeTy->isIncompleteType()) {
 | |
|         // Compute the size in **bytes**.
 | |
|         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
 | |
|         if (!pointeeTySize.isZero()) {
 | |
|           // Is the offset a multiple of the size?  If so, we can layer the
 | |
|           // ElementRegion (with elementType == PointeeTy) directly on top of
 | |
|           // the base region.
 | |
|           if (off % pointeeTySize == 0) {
 | |
|             newIndex = off / pointeeTySize;
 | |
|             newSuperR = baseR;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!newSuperR) {
 | |
|         // Create an intermediate ElementRegion to represent the raw byte.
 | |
|         // This will be the super region of the final ElementRegion.
 | |
|         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
 | |
|                                       off.getQuantity());
 | |
|       }
 | |
| 
 | |
|       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unreachable");
 | |
| }
 | |
| 
 | |
| static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
 | |
|   const MemRegion *MR = V.getAsRegion();
 | |
|   if (!MR)
 | |
|     return true;
 | |
| 
 | |
|   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
 | |
|   if (!TVR)
 | |
|     return true;
 | |
| 
 | |
|   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return true;
 | |
| 
 | |
|   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
 | |
|   if (!Expected)
 | |
|     Expected = Ty->getAsCXXRecordDecl();
 | |
| 
 | |
|   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
 | |
|   // Sanity check to avoid doing the wrong thing in the face of
 | |
|   // reinterpret_cast.
 | |
|   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Walk through the cast path to create nested CXXBaseRegions.
 | |
|   SVal Result = Derived;
 | |
|   for (CastExpr::path_const_iterator I = Cast->path_begin(),
 | |
|                                      E = Cast->path_end();
 | |
|        I != E; ++I) {
 | |
|     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
 | |
|   // Walk through the path to create nested CXXBaseRegions.
 | |
|   SVal Result = Derived;
 | |
|   for (const auto &I : Path)
 | |
|     Result = evalDerivedToBase(Result, I.Base->getType(),
 | |
|                                I.Base->isVirtual());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
 | |
|                                      bool IsVirtual) {
 | |
|   const MemRegion *DerivedReg = Derived.getAsRegion();
 | |
|   if (!DerivedReg)
 | |
|     return Derived;
 | |
| 
 | |
|   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
 | |
|   if (!BaseDecl)
 | |
|     BaseDecl = BaseType->getAsCXXRecordDecl();
 | |
|   assert(BaseDecl && "not a C++ object?");
 | |
| 
 | |
|   if (const auto *AlreadyDerivedReg =
 | |
|           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
 | |
|     if (const auto *SR =
 | |
|             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
 | |
|       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
 | |
|         return loc::MemRegionVal(SR);
 | |
| 
 | |
|     DerivedReg = AlreadyDerivedReg->getSuperRegion();
 | |
|   }
 | |
| 
 | |
|   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
 | |
|       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
 | |
| 
 | |
|   return loc::MemRegionVal(BaseReg);
 | |
| }
 | |
| 
 | |
| /// Returns the static type of the given region, if it represents a C++ class
 | |
| /// object.
 | |
| ///
 | |
| /// This handles both fully-typed regions, where the dynamic type is known, and
 | |
| /// symbolic regions, where the dynamic type is merely bounded (and even then,
 | |
| /// only ostensibly!), but does not take advantage of any dynamic type info.
 | |
| static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
 | |
|   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
 | |
|     return TVR->getValueType()->getAsCXXRecordDecl();
 | |
|   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
 | |
|     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
 | |
|                                    bool &Failed) {
 | |
|   Failed = false;
 | |
| 
 | |
|   const MemRegion *MR = Base.getAsRegion();
 | |
|   if (!MR)
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Assume the derived class is a pointer or a reference to a CXX record.
 | |
|   TargetType = TargetType->getPointeeType();
 | |
|   assert(!TargetType.isNull());
 | |
|   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
 | |
|   if (!TargetClass && !TargetType->isVoidType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
 | |
|   // derived to base).
 | |
|   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
 | |
|     // If found the derived class, the cast succeeds.
 | |
|     if (MRClass == TargetClass)
 | |
|       return loc::MemRegionVal(MR);
 | |
| 
 | |
|     // We skip over incomplete types. They must be the result of an earlier
 | |
|     // reinterpret_cast, as one can only dynamic_cast between types in the same
 | |
|     // class hierarchy.
 | |
|     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
 | |
|       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
 | |
|       // only happen when multiple or virtual inheritance is involved.
 | |
|       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
 | |
|                          /*DetectVirtual=*/false);
 | |
|       if (MRClass->isDerivedFrom(TargetClass, Paths))
 | |
|         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
 | |
|     }
 | |
| 
 | |
|     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
 | |
|       // Drill down the chain to get the derived classes.
 | |
|       MR = BaseR->getSuperRegion();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a cast to void*, return the region.
 | |
|     if (TargetType->isVoidType())
 | |
|       return loc::MemRegionVal(MR);
 | |
| 
 | |
|     // Strange use of reinterpret_cast can give us paths we don't reason
 | |
|     // about well, by putting in ElementRegions where we'd expect
 | |
|     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
 | |
|     // derived class has a zero offset from the base class), then it's safe
 | |
|     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
 | |
|     // catch it. In the interest of performance, the analyzer will silently
 | |
|     // do the wrong thing in the invalid case (because offsets for subregions
 | |
|     // will be wrong).
 | |
|     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
 | |
|     if (Uncasted == MR) {
 | |
|       // We reached the bottom of the hierarchy and did not find the derived
 | |
|       // class. We must be casting the base to derived, so the cast should
 | |
|       // fail.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MR = Uncasted;
 | |
|   }
 | |
| 
 | |
|   // If we're casting a symbolic base pointer to a derived class, use
 | |
|   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
 | |
|   // unrelated type, it must be a weird reinterpret_cast and we have to
 | |
|   // be fine with ElementRegion. TODO: Should we instead make
 | |
|   // Derived{TargetClass, Element{SourceClass, SR}}?
 | |
|   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
 | |
|     QualType T = SR->getSymbol()->getType();
 | |
|     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
 | |
|     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
 | |
|       return loc::MemRegionVal(
 | |
|           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
 | |
|     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
 | |
|   }
 | |
| 
 | |
|   // We failed if the region we ended up with has perfect type info.
 | |
|   Failed = isa<TypedValueRegion>(MR);
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
 | |
|   return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
 | |
|          ty2->getPointeeType().getCanonicalType().getTypePtr();
 | |
| }
 | |
| 
 | |
| /// CastRetrievedVal - Used by subclasses of StoreManager to implement
 | |
| ///  implicit casts that arise from loads from regions that are reinterpreted
 | |
| ///  as another region.
 | |
| SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
 | |
|                                     QualType castTy) {
 | |
|   if (castTy.isNull() || V.isUnknownOrUndef())
 | |
|     return V;
 | |
| 
 | |
|   // The dispatchCast() call below would convert the int into a float.
 | |
|   // What we want, however, is a bit-by-bit reinterpretation of the int
 | |
|   // as a float, which usually yields nothing garbage. For now skip casts
 | |
|   // from ints to floats.
 | |
|   // TODO: What other combinations of types are affected?
 | |
|   if (castTy->isFloatingType()) {
 | |
|     SymbolRef Sym = V.getAsSymbol();
 | |
|     if (Sym && !Sym->getType()->isFloatingType())
 | |
|       return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   // When retrieving symbolic pointer and expecting a non-void pointer,
 | |
|   // wrap them into element regions of the expected type if necessary.
 | |
|   // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
 | |
|   // make sure that the retrieved value makes sense, because there's no other
 | |
|   // cast in the AST that would tell us to cast it to the correct pointer type.
 | |
|   // We might need to do that for non-void pointers as well.
 | |
|   // FIXME: We really need a single good function to perform casts for us
 | |
|   // correctly every time we need it.
 | |
|   if (castTy->isPointerType() && !castTy->isVoidPointerType())
 | |
|     if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion())) {
 | |
|       QualType sr = SR->getSymbol()->getType();
 | |
|       if (!hasSameUnqualifiedPointeeType(sr, castTy))
 | |
|           return loc::MemRegionVal(castRegion(SR, castTy));
 | |
|     }
 | |
| 
 | |
|   return svalBuilder.dispatchCast(V, castTy);
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
 | |
|   if (Base.isUnknownOrUndef())
 | |
|     return Base;
 | |
| 
 | |
|   Loc BaseL = Base.castAs<Loc>();
 | |
|   const SubRegion* BaseR = nullptr;
 | |
| 
 | |
|   switch (BaseL.getSubKind()) {
 | |
|   case loc::MemRegionValKind:
 | |
|     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
 | |
|     break;
 | |
| 
 | |
|   case loc::GotoLabelKind:
 | |
|     // These are anormal cases. Flag an undefined value.
 | |
|     return UndefinedVal();
 | |
| 
 | |
|   case loc::ConcreteIntKind:
 | |
|     // While these seem funny, this can happen through casts.
 | |
|     // FIXME: What we should return is the field offset, not base. For example,
 | |
|     //  add the field offset to the integer value.  That way things
 | |
|     //  like this work properly:  &(((struct foo *) 0xa)->f)
 | |
|     //  However, that's not easy to fix without reducing our abilities
 | |
|     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
 | |
|     //  is a null dereference even though we're dereferencing offset of f
 | |
|     //  rather than null. Coming up with an approach that computes offsets
 | |
|     //  over null pointers properly while still being able to catch null
 | |
|     //  dereferences might be worth it.
 | |
|     return Base;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled Base.");
 | |
|   }
 | |
| 
 | |
|   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
 | |
|   // of FieldDecl.
 | |
|   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
 | |
|     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
 | |
| 
 | |
|   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
 | |
|   return getLValueFieldOrIvar(decl, base);
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
 | |
|                                     SVal Base) {
 | |
|   // If the base is an unknown or undefined value, just return it back.
 | |
|   // FIXME: For absolute pointer addresses, we just return that value back as
 | |
|   //  well, although in reality we should return the offset added to that
 | |
|   //  value. See also the similar FIXME in getLValueFieldOrIvar().
 | |
|   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
 | |
|     return Base;
 | |
| 
 | |
|   if (Base.getAs<loc::GotoLabel>())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const SubRegion *BaseRegion =
 | |
|       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
 | |
| 
 | |
|   // Pointer of any type can be cast and used as array base.
 | |
|   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
 | |
| 
 | |
|   // Convert the offset to the appropriate size and signedness.
 | |
|   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
 | |
| 
 | |
|   if (!ElemR) {
 | |
|     // If the base region is not an ElementRegion, create one.
 | |
|     // This can happen in the following example:
 | |
|     //
 | |
|     //   char *p = __builtin_alloc(10);
 | |
|     //   p[1] = 8;
 | |
|     //
 | |
|     //  Observe that 'p' binds to an AllocaRegion.
 | |
|     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | |
|                                                     BaseRegion, Ctx));
 | |
|   }
 | |
| 
 | |
|   SVal BaseIdx = ElemR->getIndex();
 | |
| 
 | |
|   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const llvm::APSInt &BaseIdxI =
 | |
|       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
 | |
| 
 | |
|   // Only allow non-integer offsets if the base region has no offset itself.
 | |
|   // FIXME: This is a somewhat arbitrary restriction. We should be using
 | |
|   // SValBuilder here to add the two offsets without checking their types.
 | |
|   if (!Offset.getAs<nonloc::ConcreteInt>()) {
 | |
|     if (isa<ElementRegion>(BaseRegion->StripCasts()))
 | |
|       return UnknownVal();
 | |
| 
 | |
|     return loc::MemRegionVal(MRMgr.getElementRegion(
 | |
|         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
 | |
|   }
 | |
| 
 | |
|   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
 | |
|   assert(BaseIdxI.isSigned());
 | |
| 
 | |
|   // Compute the new index.
 | |
|   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
 | |
|                                                                     OffI));
 | |
| 
 | |
|   // Construct the new ElementRegion.
 | |
|   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
 | |
|   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
 | |
|                                                   Ctx));
 | |
| }
 | |
| 
 | |
| StoreManager::BindingsHandler::~BindingsHandler() = default;
 | |
| 
 | |
| bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
 | |
|                                                     Store store,
 | |
|                                                     const MemRegion* R,
 | |
|                                                     SVal val) {
 | |
|   SymbolRef SymV = val.getAsLocSymbol();
 | |
|   if (!SymV || SymV != Sym)
 | |
|     return true;
 | |
| 
 | |
|   if (Binding) {
 | |
|     First = false;
 | |
|     return false;
 | |
|   }
 | |
|   else
 | |
|     Binding = R;
 | |
| 
 | |
|   return true;
 | |
| }
 |