2219 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2219 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This set of linked tablegen backends is responsible for emitting the bits
 | |
| // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
 | |
| // and provides a set of types and functions for (more or less) direct access
 | |
| // to the MVE instruction set, including the scalar shifts as well as the
 | |
| // vector instructions.
 | |
| //
 | |
| // MVE's standard intrinsic functions are unusual in that they have a system of
 | |
| // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
 | |
| // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
 | |
| // arguments you give it.
 | |
| //
 | |
| // This constrains the implementation strategies. The usual approach to making
 | |
| // the user-facing functions polymorphic would be to either use
 | |
| // __attribute__((overloadable)) to make a set of vaddq() functions that are
 | |
| // all inline wrappers on the underlying clang builtins, or to define a single
 | |
| // vaddq() macro which expands to an instance of _Generic.
 | |
| //
 | |
| // The inline-wrappers approach would work fine for most intrinsics, except for
 | |
| // the ones that take an argument required to be a compile-time constant,
 | |
| // because if you wrap an inline function around a call to a builtin, the
 | |
| // constant nature of the argument is not passed through.
 | |
| //
 | |
| // The _Generic approach can be made to work with enough effort, but it takes a
 | |
| // lot of machinery, because of the design feature of _Generic that even the
 | |
| // untaken branches are required to pass all front-end validity checks such as
 | |
| // type-correctness. You can work around that by nesting further _Generics all
 | |
| // over the place to coerce things to the right type in untaken branches, but
 | |
| // what you get out is complicated, hard to guarantee its correctness, and
 | |
| // worst of all, gives _completely unreadable_ error messages if the user gets
 | |
| // the types wrong for an intrinsic call.
 | |
| //
 | |
| // Therefore, my strategy is to introduce a new __attribute__ that allows a
 | |
| // function to be mapped to a clang builtin even though it doesn't have the
 | |
| // same name, and then declare all the user-facing MVE function names with that
 | |
| // attribute, mapping each one directly to the clang builtin. And the
 | |
| // polymorphic ones have __attribute__((overloadable)) as well. So once the
 | |
| // compiler has resolved the overload, it knows the internal builtin ID of the
 | |
| // selected function, and can check the immediate arguments against that; and
 | |
| // if the user gets the types wrong in a call to a polymorphic intrinsic, they
 | |
| // get a completely clear error message showing all the declarations of that
 | |
| // function in the header file and explaining why each one doesn't fit their
 | |
| // call.
 | |
| //
 | |
| // The downside of this is that if every clang builtin has to correspond
 | |
| // exactly to a user-facing ACLE intrinsic, then you can't save work in the
 | |
| // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
 | |
| // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
 | |
| // description for an MVE intrinsic has to contain a full description of the
 | |
| // sequence of IRBuilder calls that clang will need to make.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include "llvm/TableGen/StringToOffsetTable.h"
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class EmitterBase;
 | |
| class Result;
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // A system of classes to represent all the types we'll need to deal with in
 | |
| // the prototypes of intrinsics.
 | |
| //
 | |
| // Query methods include finding out the C name of a type; the "LLVM name" in
 | |
| // the sense of a C++ code snippet that can be used in the codegen function;
 | |
| // the suffix that represents the type in the ACLE intrinsic naming scheme
 | |
| // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
 | |
| // type is floating-point related (hence should be under #ifdef in the MVE
 | |
| // header so that it isn't included in integer-only MVE mode); and the type's
 | |
| // size in bits. Not all subtypes support all these queries.
 | |
| 
 | |
| class Type {
 | |
| public:
 | |
|   enum class TypeKind {
 | |
|     // Void appears as a return type (for store intrinsics, which are pure
 | |
|     // side-effect). It's also used as the parameter type in the Tablegen
 | |
|     // when an intrinsic doesn't need to come in various suffixed forms like
 | |
|     // vfooq_s8,vfooq_u16,vfooq_f32.
 | |
|     Void,
 | |
| 
 | |
|     // Scalar is used for ordinary int and float types of all sizes.
 | |
|     Scalar,
 | |
| 
 | |
|     // Vector is used for anything that occupies exactly one MVE vector
 | |
|     // register, i.e. {uint,int,float}NxM_t.
 | |
|     Vector,
 | |
| 
 | |
|     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
 | |
|     // interleaving load/store intrinsics v{ld,st}{2,4}q.
 | |
|     MultiVector,
 | |
| 
 | |
|     // Predicate is used by all the predicated intrinsics. Its C
 | |
|     // representation is mve_pred16_t (which is just an alias for uint16_t).
 | |
|     // But we give more detail here, by indicating that a given predicate
 | |
|     // instruction is logically regarded as a vector of i1 containing the
 | |
|     // same number of lanes as the input vector type. So our Predicate type
 | |
|     // comes with a lane count, which we use to decide which kind of <n x i1>
 | |
|     // we'll invoke the pred_i2v IR intrinsic to translate it into.
 | |
|     Predicate,
 | |
| 
 | |
|     // Pointer is used for pointer types (obviously), and comes with a flag
 | |
|     // indicating whether it's a pointer to a const or mutable instance of
 | |
|     // the pointee type.
 | |
|     Pointer,
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   const TypeKind TKind;
 | |
| 
 | |
| protected:
 | |
|   Type(TypeKind K) : TKind(K) {}
 | |
| 
 | |
| public:
 | |
|   TypeKind typeKind() const { return TKind; }
 | |
|   virtual ~Type() = default;
 | |
|   virtual bool requiresFloat() const = 0;
 | |
|   virtual bool requiresMVE() const = 0;
 | |
|   virtual unsigned sizeInBits() const = 0;
 | |
|   virtual std::string cName() const = 0;
 | |
|   virtual std::string llvmName() const {
 | |
|     PrintFatalError("no LLVM type name available for type " + cName());
 | |
|   }
 | |
|   virtual std::string acleSuffix(std::string) const {
 | |
|     PrintFatalError("no ACLE suffix available for this type");
 | |
|   }
 | |
| };
 | |
| 
 | |
| enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
 | |
| inline std::string toLetter(ScalarTypeKind kind) {
 | |
|   switch (kind) {
 | |
|   case ScalarTypeKind::SignedInt:
 | |
|     return "s";
 | |
|   case ScalarTypeKind::UnsignedInt:
 | |
|     return "u";
 | |
|   case ScalarTypeKind::Float:
 | |
|     return "f";
 | |
|   }
 | |
|   llvm_unreachable("Unhandled ScalarTypeKind enum");
 | |
| }
 | |
| inline std::string toCPrefix(ScalarTypeKind kind) {
 | |
|   switch (kind) {
 | |
|   case ScalarTypeKind::SignedInt:
 | |
|     return "int";
 | |
|   case ScalarTypeKind::UnsignedInt:
 | |
|     return "uint";
 | |
|   case ScalarTypeKind::Float:
 | |
|     return "float";
 | |
|   }
 | |
|   llvm_unreachable("Unhandled ScalarTypeKind enum");
 | |
| }
 | |
| 
 | |
| class VoidType : public Type {
 | |
| public:
 | |
|   VoidType() : Type(TypeKind::Void) {}
 | |
|   unsigned sizeInBits() const override { return 0; }
 | |
|   bool requiresFloat() const override { return false; }
 | |
|   bool requiresMVE() const override { return false; }
 | |
|   std::string cName() const override { return "void"; }
 | |
| 
 | |
|   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
 | |
|   std::string acleSuffix(std::string) const override { return ""; }
 | |
| };
 | |
| 
 | |
| class PointerType : public Type {
 | |
|   const Type *Pointee;
 | |
|   bool Const;
 | |
| 
 | |
| public:
 | |
|   PointerType(const Type *Pointee, bool Const)
 | |
|       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
 | |
|   unsigned sizeInBits() const override { return 32; }
 | |
|   bool requiresFloat() const override { return Pointee->requiresFloat(); }
 | |
|   bool requiresMVE() const override { return Pointee->requiresMVE(); }
 | |
|   std::string cName() const override {
 | |
|     std::string Name = Pointee->cName();
 | |
| 
 | |
|     // The syntax for a pointer in C is different when the pointee is
 | |
|     // itself a pointer. The MVE intrinsics don't contain any double
 | |
|     // pointers, so we don't need to worry about that wrinkle.
 | |
|     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
 | |
| 
 | |
|     if (Const)
 | |
|       Name = "const " + Name;
 | |
|     return Name + " *";
 | |
|   }
 | |
|   std::string llvmName() const override {
 | |
|     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
 | |
|   }
 | |
| 
 | |
|   static bool classof(const Type *T) {
 | |
|     return T->typeKind() == TypeKind::Pointer;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Base class for all the types that have a name of the form
 | |
| // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
 | |
| //
 | |
| // For this sub-hierarchy we invent a cNameBase() method which returns the
 | |
| // whole name except for the trailing "_t", so that Vector and MultiVector can
 | |
| // append an extra "x2" or whatever to their element type's cNameBase(). Then
 | |
| // the main cName() query method puts "_t" on the end for the final type name.
 | |
| 
 | |
| class CRegularNamedType : public Type {
 | |
|   using Type::Type;
 | |
|   virtual std::string cNameBase() const = 0;
 | |
| 
 | |
| public:
 | |
|   std::string cName() const override { return cNameBase() + "_t"; }
 | |
| };
 | |
| 
 | |
| class ScalarType : public CRegularNamedType {
 | |
|   ScalarTypeKind Kind;
 | |
|   unsigned Bits;
 | |
|   std::string NameOverride;
 | |
| 
 | |
| public:
 | |
|   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
 | |
|     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
 | |
|                .Case("s", ScalarTypeKind::SignedInt)
 | |
|                .Case("u", ScalarTypeKind::UnsignedInt)
 | |
|                .Case("f", ScalarTypeKind::Float);
 | |
|     Bits = Record->getValueAsInt("size");
 | |
|     NameOverride = std::string(Record->getValueAsString("nameOverride"));
 | |
|   }
 | |
|   unsigned sizeInBits() const override { return Bits; }
 | |
|   ScalarTypeKind kind() const { return Kind; }
 | |
|   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
 | |
|   std::string cNameBase() const override {
 | |
|     return toCPrefix(Kind) + utostr(Bits);
 | |
|   }
 | |
|   std::string cName() const override {
 | |
|     if (NameOverride.empty())
 | |
|       return CRegularNamedType::cName();
 | |
|     return NameOverride;
 | |
|   }
 | |
|   std::string llvmName() const override {
 | |
|     if (Kind == ScalarTypeKind::Float) {
 | |
|       if (Bits == 16)
 | |
|         return "HalfTy";
 | |
|       if (Bits == 32)
 | |
|         return "FloatTy";
 | |
|       if (Bits == 64)
 | |
|         return "DoubleTy";
 | |
|       PrintFatalError("bad size for floating type");
 | |
|     }
 | |
|     return "Int" + utostr(Bits) + "Ty";
 | |
|   }
 | |
|   std::string acleSuffix(std::string overrideLetter) const override {
 | |
|     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
 | |
|                + utostr(Bits);
 | |
|   }
 | |
|   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
 | |
|   bool requiresFloat() const override { return !isInteger(); }
 | |
|   bool requiresMVE() const override { return false; }
 | |
|   bool hasNonstandardName() const { return !NameOverride.empty(); }
 | |
| 
 | |
|   static bool classof(const Type *T) {
 | |
|     return T->typeKind() == TypeKind::Scalar;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class VectorType : public CRegularNamedType {
 | |
|   const ScalarType *Element;
 | |
|   unsigned Lanes;
 | |
| 
 | |
| public:
 | |
|   VectorType(const ScalarType *Element, unsigned Lanes)
 | |
|       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
 | |
|   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
 | |
|   unsigned lanes() const { return Lanes; }
 | |
|   bool requiresFloat() const override { return Element->requiresFloat(); }
 | |
|   bool requiresMVE() const override { return true; }
 | |
|   std::string cNameBase() const override {
 | |
|     return Element->cNameBase() + "x" + utostr(Lanes);
 | |
|   }
 | |
|   std::string llvmName() const override {
 | |
|     return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
 | |
|            utostr(Lanes) + ")";
 | |
|   }
 | |
| 
 | |
|   static bool classof(const Type *T) {
 | |
|     return T->typeKind() == TypeKind::Vector;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MultiVectorType : public CRegularNamedType {
 | |
|   const VectorType *Element;
 | |
|   unsigned Registers;
 | |
| 
 | |
| public:
 | |
|   MultiVectorType(unsigned Registers, const VectorType *Element)
 | |
|       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
 | |
|         Registers(Registers) {}
 | |
|   unsigned sizeInBits() const override {
 | |
|     return Registers * Element->sizeInBits();
 | |
|   }
 | |
|   unsigned registers() const { return Registers; }
 | |
|   bool requiresFloat() const override { return Element->requiresFloat(); }
 | |
|   bool requiresMVE() const override { return true; }
 | |
|   std::string cNameBase() const override {
 | |
|     return Element->cNameBase() + "x" + utostr(Registers);
 | |
|   }
 | |
| 
 | |
|   // MultiVectorType doesn't override llvmName, because we don't expect to do
 | |
|   // automatic code generation for the MVE intrinsics that use it: the {vld2,
 | |
|   // vld4, vst2, vst4} family are the only ones that use these types, so it was
 | |
|   // easier to hand-write the codegen for dealing with these structs than to
 | |
|   // build in lots of extra automatic machinery that would only be used once.
 | |
| 
 | |
|   static bool classof(const Type *T) {
 | |
|     return T->typeKind() == TypeKind::MultiVector;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PredicateType : public CRegularNamedType {
 | |
|   unsigned Lanes;
 | |
| 
 | |
| public:
 | |
|   PredicateType(unsigned Lanes)
 | |
|       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
 | |
|   unsigned sizeInBits() const override { return 16; }
 | |
|   std::string cNameBase() const override { return "mve_pred16"; }
 | |
|   bool requiresFloat() const override { return false; };
 | |
|   bool requiresMVE() const override { return true; }
 | |
|   std::string llvmName() const override {
 | |
|     // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
 | |
|     // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
 | |
|     // explanation.
 | |
|     unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);
 | |
| 
 | |
|     return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " +
 | |
|            utostr(ModifiedLanes) + ")";
 | |
|   }
 | |
| 
 | |
|   static bool classof(const Type *T) {
 | |
|     return T->typeKind() == TypeKind::Predicate;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Class to facilitate merging together the code generation for many intrinsics
 | |
| // by means of varying a few constant or type parameters.
 | |
| //
 | |
| // Most obviously, the intrinsics in a single parametrised family will have
 | |
| // code generation sequences that only differ in a type or two, e.g. vaddq_s8
 | |
| // and vaddq_u16 will look the same apart from putting a different vector type
 | |
| // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
 | |
| // will often code-generate in the same way, with only a different choice of
 | |
| // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
 | |
| // marshalling the arguments and return values of the IR intrinsic in exactly
 | |
| // the same way. And others might differ only in some other kind of constant,
 | |
| // such as a lane index.
 | |
| //
 | |
| // So, when we generate the IR-building code for all these intrinsics, we keep
 | |
| // track of every value that could possibly be pulled out of the code and
 | |
| // stored ahead of time in a local variable. Then we group together intrinsics
 | |
| // by textual equivalence of the code that would result if _all_ those
 | |
| // parameters were stored in local variables. That gives us maximal sets that
 | |
| // can be implemented by a single piece of IR-building code by changing
 | |
| // parameter values ahead of time.
 | |
| //
 | |
| // After we've done that, we do a second pass in which we only allocate _some_
 | |
| // of the parameters into local variables, by tracking which ones have the same
 | |
| // values as each other (so that a single variable can be reused) and which
 | |
| // ones are the same across the whole set (so that no variable is needed at
 | |
| // all).
 | |
| //
 | |
| // Hence the class below. Its allocParam method is invoked during code
 | |
| // generation by every method of a Result subclass (see below) that wants to
 | |
| // give it the opportunity to pull something out into a switchable parameter.
 | |
| // It returns a variable name for the parameter, or (if it's being used in the
 | |
| // second pass once we've decided that some parameters don't need to be stored
 | |
| // in variables after all) it might just return the input expression unchanged.
 | |
| 
 | |
| struct CodeGenParamAllocator {
 | |
|   // Accumulated during code generation
 | |
|   std::vector<std::string> *ParamTypes = nullptr;
 | |
|   std::vector<std::string> *ParamValues = nullptr;
 | |
| 
 | |
|   // Provided ahead of time in pass 2, to indicate which parameters are being
 | |
|   // assigned to what. This vector contains an entry for each call to
 | |
|   // allocParam expected during code gen (which we counted up in pass 1), and
 | |
|   // indicates the number of the parameter variable that should be returned, or
 | |
|   // -1 if this call shouldn't allocate a parameter variable at all.
 | |
|   //
 | |
|   // We rely on the recursive code generation working identically in passes 1
 | |
|   // and 2, so that the same list of calls to allocParam happen in the same
 | |
|   // order. That guarantees that the parameter numbers recorded in pass 1 will
 | |
|   // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
 | |
|   // decided to do about each one in pass 2.
 | |
|   std::vector<int> *ParamNumberMap = nullptr;
 | |
| 
 | |
|   // Internally track how many things we've allocated
 | |
|   unsigned nparams = 0;
 | |
| 
 | |
|   std::string allocParam(StringRef Type, StringRef Value) {
 | |
|     unsigned ParamNumber;
 | |
| 
 | |
|     if (!ParamNumberMap) {
 | |
|       // In pass 1, unconditionally assign a new parameter variable to every
 | |
|       // value we're asked to process.
 | |
|       ParamNumber = nparams++;
 | |
|     } else {
 | |
|       // In pass 2, consult the map provided by the caller to find out which
 | |
|       // variable we should be keeping things in.
 | |
|       int MapValue = (*ParamNumberMap)[nparams++];
 | |
|       if (MapValue < 0)
 | |
|         return std::string(Value);
 | |
|       ParamNumber = MapValue;
 | |
|     }
 | |
| 
 | |
|     // If we've allocated a new parameter variable for the first time, store
 | |
|     // its type and value to be retrieved after codegen.
 | |
|     if (ParamTypes && ParamTypes->size() == ParamNumber)
 | |
|       ParamTypes->push_back(std::string(Type));
 | |
|     if (ParamValues && ParamValues->size() == ParamNumber)
 | |
|       ParamValues->push_back(std::string(Value));
 | |
| 
 | |
|     // Unimaginative naming scheme for parameter variables.
 | |
|     return "Param" + utostr(ParamNumber);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // System of classes that represent all the intermediate values used during
 | |
| // code-generation for an intrinsic.
 | |
| //
 | |
| // The base class 'Result' can represent a value of the LLVM type 'Value', or
 | |
| // sometimes 'Address' (for loads/stores, including an alignment requirement).
 | |
| //
 | |
| // In the case where the Tablegen provides a value in the codegen dag as a
 | |
| // plain integer literal, the Result object we construct here will be one that
 | |
| // returns true from hasIntegerConstantValue(). This allows the generated C++
 | |
| // code to use the constant directly in contexts which can take a literal
 | |
| // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
 | |
| // effort of calling llvm::ConstantInt::get() and then pulling the constant
 | |
| // back out of the resulting llvm:Value later.
 | |
| 
 | |
| class Result {
 | |
| public:
 | |
|   // Convenient shorthand for the pointer type we'll be using everywhere.
 | |
|   using Ptr = std::shared_ptr<Result>;
 | |
| 
 | |
| private:
 | |
|   Ptr Predecessor;
 | |
|   std::string VarName;
 | |
|   bool VarNameUsed = false;
 | |
|   unsigned Visited = 0;
 | |
| 
 | |
| public:
 | |
|   virtual ~Result() = default;
 | |
|   using Scope = std::map<std::string, Ptr>;
 | |
|   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
 | |
|   virtual bool hasIntegerConstantValue() const { return false; }
 | |
|   virtual uint32_t integerConstantValue() const { return 0; }
 | |
|   virtual bool hasIntegerValue() const { return false; }
 | |
|   virtual std::string getIntegerValue(const std::string &) {
 | |
|     llvm_unreachable("non-working Result::getIntegerValue called");
 | |
|   }
 | |
|   virtual std::string typeName() const { return "Value *"; }
 | |
| 
 | |
|   // Mostly, when a code-generation operation has a dependency on prior
 | |
|   // operations, it's because it uses the output values of those operations as
 | |
|   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
 | |
|   // to indicate that operations have to be performed in sequence regardless of
 | |
|   // whether they use each others' output values.
 | |
|   //
 | |
|   // So, the actual generation of code is done by depth-first search, using the
 | |
|   // prerequisites() method to get a list of all the other Results that have to
 | |
|   // be computed before this one. That method divides into the 'predecessor',
 | |
|   // set by setPredecessor() while processing a 'seq' dag node, and the list
 | |
|   // returned by 'morePrerequisites', which each subclass implements to return
 | |
|   // a list of the Results it uses as input to whatever its own computation is
 | |
|   // doing.
 | |
| 
 | |
|   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
 | |
|   std::vector<Ptr> prerequisites() const {
 | |
|     std::vector<Ptr> ToRet;
 | |
|     if (Predecessor)
 | |
|       ToRet.push_back(Predecessor);
 | |
|     morePrerequisites(ToRet);
 | |
|     return ToRet;
 | |
|   }
 | |
| 
 | |
|   void setPredecessor(Ptr p) {
 | |
|     // If the user has nested one 'seq' node inside another, and this
 | |
|     // method is called on the return value of the inner 'seq' (i.e.
 | |
|     // the final item inside it), then we can't link _this_ node to p,
 | |
|     // because it already has a predecessor. Instead, walk the chain
 | |
|     // until we find the first item in the inner seq, and link that to
 | |
|     // p, so that nesting seqs has the obvious effect of linking
 | |
|     // everything together into one long sequential chain.
 | |
|     Result *r = this;
 | |
|     while (r->Predecessor)
 | |
|       r = r->Predecessor.get();
 | |
|     r->Predecessor = p;
 | |
|   }
 | |
| 
 | |
|   // Each Result will be assigned a variable name in the output code, but not
 | |
|   // all those variable names will actually be used (e.g. the return value of
 | |
|   // Builder.CreateStore has void type, so nobody will want to refer to it). To
 | |
|   // prevent annoying compiler warnings, we track whether each Result's
 | |
|   // variable name was ever actually mentioned in subsequent statements, so
 | |
|   // that it can be left out of the final generated code.
 | |
|   std::string varname() {
 | |
|     VarNameUsed = true;
 | |
|     return VarName;
 | |
|   }
 | |
|   void setVarname(const StringRef s) { VarName = std::string(s); }
 | |
|   bool varnameUsed() const { return VarNameUsed; }
 | |
| 
 | |
|   // Emit code to generate this result as a Value *.
 | |
|   virtual std::string asValue() {
 | |
|     return varname();
 | |
|   }
 | |
| 
 | |
|   // Code generation happens in multiple passes. This method tracks whether a
 | |
|   // Result has yet been visited in a given pass, without the need for a
 | |
|   // tedious loop in between passes that goes through and resets a 'visited'
 | |
|   // flag back to false: you just set Pass=1 the first time round, and Pass=2
 | |
|   // the second time.
 | |
|   bool needsVisiting(unsigned Pass) {
 | |
|     bool ToRet = Visited < Pass;
 | |
|     Visited = Pass;
 | |
|     return ToRet;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass that retrieves one of the arguments to the clang builtin
 | |
| // function. In cases where the argument has pointer type, we call
 | |
| // EmitPointerWithAlignment and store the result in a variable of type Address,
 | |
| // so that load and store IR nodes can know the right alignment. Otherwise, we
 | |
| // call EmitScalarExpr.
 | |
| //
 | |
| // There are aggregate parameters in the MVE intrinsics API, but we don't deal
 | |
| // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
 | |
| // vst2q/vst4q family, which is few enough that we just write the code by hand
 | |
| // for those in CGBuiltin.cpp.
 | |
| class BuiltinArgResult : public Result {
 | |
| public:
 | |
|   unsigned ArgNum;
 | |
|   bool AddressType;
 | |
|   bool Immediate;
 | |
|   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
 | |
|       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
 | |
|   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
 | |
|     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
 | |
|        << "(E->getArg(" << ArgNum << "))";
 | |
|   }
 | |
|   std::string typeName() const override {
 | |
|     return AddressType ? "Address" : Result::typeName();
 | |
|   }
 | |
|   // Emit code to generate this result as a Value *.
 | |
|   std::string asValue() override {
 | |
|     if (AddressType)
 | |
|       return "(" + varname() + ".getPointer())";
 | |
|     return Result::asValue();
 | |
|   }
 | |
|   bool hasIntegerValue() const override { return Immediate; }
 | |
|   std::string getIntegerValue(const std::string &IntType) override {
 | |
|     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
 | |
|            utostr(ArgNum) + "), getContext())";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass for an integer literal appearing in Tablegen. This may need
 | |
| // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
 | |
| // it may be used directly as an integer, depending on which IRBuilder method
 | |
| // it's being passed to.
 | |
| class IntLiteralResult : public Result {
 | |
| public:
 | |
|   const ScalarType *IntegerType;
 | |
|   uint32_t IntegerValue;
 | |
|   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
 | |
|       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     OS << "llvm::ConstantInt::get("
 | |
|        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
 | |
|        << ", ";
 | |
|     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
 | |
|        << ")";
 | |
|   }
 | |
|   bool hasIntegerConstantValue() const override { return true; }
 | |
|   uint32_t integerConstantValue() const override { return IntegerValue; }
 | |
| };
 | |
| 
 | |
| // Result subclass representing a cast between different integer types. We use
 | |
| // our own ScalarType abstraction as the representation of the target type,
 | |
| // which gives both size and signedness.
 | |
| class IntCastResult : public Result {
 | |
| public:
 | |
|   const ScalarType *IntegerType;
 | |
|   Ptr V;
 | |
|   IntCastResult(const ScalarType *IntegerType, Ptr V)
 | |
|       : IntegerType(IntegerType), V(V) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     OS << "Builder.CreateIntCast(" << V->varname() << ", "
 | |
|        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
 | |
|        << ParamAlloc.allocParam("bool",
 | |
|                                 IntegerType->kind() == ScalarTypeKind::SignedInt
 | |
|                                     ? "true"
 | |
|                                     : "false")
 | |
|        << ")";
 | |
|   }
 | |
|   void morePrerequisites(std::vector<Ptr> &output) const override {
 | |
|     output.push_back(V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass representing a cast between different pointer types.
 | |
| class PointerCastResult : public Result {
 | |
| public:
 | |
|   const PointerType *PtrType;
 | |
|   Ptr V;
 | |
|   PointerCastResult(const PointerType *PtrType, Ptr V)
 | |
|       : PtrType(PtrType), V(V) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
 | |
|        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
 | |
|   }
 | |
|   void morePrerequisites(std::vector<Ptr> &output) const override {
 | |
|     output.push_back(V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass representing a call to an IRBuilder method. Each IRBuilder
 | |
| // method we want to use will have a Tablegen record giving the method name and
 | |
| // describing any important details of how to call it, such as whether a
 | |
| // particular argument should be an integer constant instead of an llvm::Value.
 | |
| class IRBuilderResult : public Result {
 | |
| public:
 | |
|   StringRef CallPrefix;
 | |
|   std::vector<Ptr> Args;
 | |
|   std::set<unsigned> AddressArgs;
 | |
|   std::map<unsigned, std::string> IntegerArgs;
 | |
|   IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
 | |
|                   std::set<unsigned> AddressArgs,
 | |
|                   std::map<unsigned, std::string> IntegerArgs)
 | |
|       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
 | |
|         IntegerArgs(IntegerArgs) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     OS << CallPrefix;
 | |
|     const char *Sep = "";
 | |
|     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
 | |
|       Ptr Arg = Args[i];
 | |
|       auto it = IntegerArgs.find(i);
 | |
| 
 | |
|       OS << Sep;
 | |
|       Sep = ", ";
 | |
| 
 | |
|       if (it != IntegerArgs.end()) {
 | |
|         if (Arg->hasIntegerConstantValue())
 | |
|           OS << "static_cast<" << it->second << ">("
 | |
|              << ParamAlloc.allocParam(it->second,
 | |
|                                       utostr(Arg->integerConstantValue()))
 | |
|              << ")";
 | |
|         else if (Arg->hasIntegerValue())
 | |
|           OS << ParamAlloc.allocParam(it->second,
 | |
|                                       Arg->getIntegerValue(it->second));
 | |
|       } else {
 | |
|         OS << Arg->varname();
 | |
|       }
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
|   void morePrerequisites(std::vector<Ptr> &output) const override {
 | |
|     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
 | |
|       Ptr Arg = Args[i];
 | |
|       if (IntegerArgs.find(i) != IntegerArgs.end())
 | |
|         continue;
 | |
|       output.push_back(Arg);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass representing making an Address out of a Value.
 | |
| class AddressResult : public Result {
 | |
| public:
 | |
|   Ptr Arg;
 | |
|   unsigned Align;
 | |
|   AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
 | |
|        << Align << "))";
 | |
|   }
 | |
|   std::string typeName() const override {
 | |
|     return "Address";
 | |
|   }
 | |
|   void morePrerequisites(std::vector<Ptr> &output) const override {
 | |
|     output.push_back(Arg);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass representing a call to an IR intrinsic, which we first have
 | |
| // to look up using an Intrinsic::ID constant and an array of types.
 | |
| class IRIntrinsicResult : public Result {
 | |
| public:
 | |
|   std::string IntrinsicID;
 | |
|   std::vector<const Type *> ParamTypes;
 | |
|   std::vector<Ptr> Args;
 | |
|   IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
 | |
|                     std::vector<Ptr> Args)
 | |
|       : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
 | |
|         Args(Args) {}
 | |
|   void genCode(raw_ostream &OS,
 | |
|                CodeGenParamAllocator &ParamAlloc) const override {
 | |
|     std::string IntNo = ParamAlloc.allocParam(
 | |
|         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
 | |
|     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
 | |
|     if (!ParamTypes.empty()) {
 | |
|       OS << ", {";
 | |
|       const char *Sep = "";
 | |
|       for (auto T : ParamTypes) {
 | |
|         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
 | |
|         Sep = ", ";
 | |
|       }
 | |
|       OS << "}";
 | |
|     }
 | |
|     OS << "), {";
 | |
|     const char *Sep = "";
 | |
|     for (auto Arg : Args) {
 | |
|       OS << Sep << Arg->asValue();
 | |
|       Sep = ", ";
 | |
|     }
 | |
|     OS << "})";
 | |
|   }
 | |
|   void morePrerequisites(std::vector<Ptr> &output) const override {
 | |
|     output.insert(output.end(), Args.begin(), Args.end());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Result subclass that specifies a type, for use in IRBuilder operations such
 | |
| // as CreateBitCast that take a type argument.
 | |
| class TypeResult : public Result {
 | |
| public:
 | |
|   const Type *T;
 | |
|   TypeResult(const Type *T) : T(T) {}
 | |
|   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
 | |
|     OS << T->llvmName();
 | |
|   }
 | |
|   std::string typeName() const override {
 | |
|     return "llvm::Type *";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Class that describes a single ACLE intrinsic.
 | |
| //
 | |
| // A Tablegen record will typically describe more than one ACLE intrinsic, by
 | |
| // means of setting the 'list<Type> Params' field to a list of multiple
 | |
| // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
 | |
| // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
 | |
| // rather than a single one for all of them. Hence, the constructor takes both
 | |
| // a Tablegen record and the current value of the parameter type.
 | |
| 
 | |
| class ACLEIntrinsic {
 | |
|   // Structure documenting that one of the intrinsic's arguments is required to
 | |
|   // be a compile-time constant integer, and what constraints there are on its
 | |
|   // value. Used when generating Sema checking code.
 | |
|   struct ImmediateArg {
 | |
|     enum class BoundsType { ExplicitRange, UInt };
 | |
|     BoundsType boundsType;
 | |
|     int64_t i1, i2;
 | |
|     StringRef ExtraCheckType, ExtraCheckArgs;
 | |
|     const Type *ArgType;
 | |
|   };
 | |
| 
 | |
|   // For polymorphic intrinsics, FullName is the explicit name that uniquely
 | |
|   // identifies this variant of the intrinsic, and ShortName is the name it
 | |
|   // shares with at least one other intrinsic.
 | |
|   std::string ShortName, FullName;
 | |
| 
 | |
|   // Name of the architecture extension, used in the Clang builtin name
 | |
|   StringRef BuiltinExtension;
 | |
| 
 | |
|   // A very small number of intrinsics _only_ have a polymorphic
 | |
|   // variant (vuninitializedq taking an unevaluated argument).
 | |
|   bool PolymorphicOnly;
 | |
| 
 | |
|   // Another rarely-used flag indicating that the builtin doesn't
 | |
|   // evaluate its argument(s) at all.
 | |
|   bool NonEvaluating;
 | |
| 
 | |
|   // True if the intrinsic needs only the C header part (no codegen, semantic
 | |
|   // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
 | |
|   bool HeaderOnly;
 | |
| 
 | |
|   const Type *ReturnType;
 | |
|   std::vector<const Type *> ArgTypes;
 | |
|   std::map<unsigned, ImmediateArg> ImmediateArgs;
 | |
|   Result::Ptr Code;
 | |
| 
 | |
|   std::map<std::string, std::string> CustomCodeGenArgs;
 | |
| 
 | |
|   // Recursive function that does the internals of code generation.
 | |
|   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
 | |
|                   unsigned Pass) const {
 | |
|     if (!V->needsVisiting(Pass))
 | |
|       return;
 | |
| 
 | |
|     for (Result::Ptr W : V->prerequisites())
 | |
|       genCodeDfs(W, Used, Pass);
 | |
| 
 | |
|     Used.push_back(V);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   const std::string &shortName() const { return ShortName; }
 | |
|   const std::string &fullName() const { return FullName; }
 | |
|   StringRef builtinExtension() const { return BuiltinExtension; }
 | |
|   const Type *returnType() const { return ReturnType; }
 | |
|   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
 | |
|   bool requiresFloat() const {
 | |
|     if (ReturnType->requiresFloat())
 | |
|       return true;
 | |
|     for (const Type *T : ArgTypes)
 | |
|       if (T->requiresFloat())
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   bool requiresMVE() const {
 | |
|     return ReturnType->requiresMVE() ||
 | |
|            any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
 | |
|   }
 | |
|   bool polymorphic() const { return ShortName != FullName; }
 | |
|   bool polymorphicOnly() const { return PolymorphicOnly; }
 | |
|   bool nonEvaluating() const { return NonEvaluating; }
 | |
|   bool headerOnly() const { return HeaderOnly; }
 | |
| 
 | |
|   // External entry point for code generation, called from EmitterBase.
 | |
|   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
 | |
|                unsigned Pass) const {
 | |
|     assert(!headerOnly() && "Called genCode for header-only intrinsic");
 | |
|     if (!hasCode()) {
 | |
|       for (auto kv : CustomCodeGenArgs)
 | |
|         OS << "  " << kv.first << " = " << kv.second << ";\n";
 | |
|       OS << "  break; // custom code gen\n";
 | |
|       return;
 | |
|     }
 | |
|     std::list<Result::Ptr> Used;
 | |
|     genCodeDfs(Code, Used, Pass);
 | |
| 
 | |
|     unsigned varindex = 0;
 | |
|     for (Result::Ptr V : Used)
 | |
|       if (V->varnameUsed())
 | |
|         V->setVarname("Val" + utostr(varindex++));
 | |
| 
 | |
|     for (Result::Ptr V : Used) {
 | |
|       OS << "  ";
 | |
|       if (V == Used.back()) {
 | |
|         assert(!V->varnameUsed());
 | |
|         OS << "return "; // FIXME: what if the top-level thing is void?
 | |
|       } else if (V->varnameUsed()) {
 | |
|         std::string Type = V->typeName();
 | |
|         OS << V->typeName();
 | |
|         if (!StringRef(Type).endswith("*"))
 | |
|           OS << " ";
 | |
|         OS << V->varname() << " = ";
 | |
|       }
 | |
|       V->genCode(OS, ParamAlloc);
 | |
|       OS << ";\n";
 | |
|     }
 | |
|   }
 | |
|   bool hasCode() const { return Code != nullptr; }
 | |
| 
 | |
|   static std::string signedHexLiteral(const llvm::APInt &iOrig) {
 | |
|     llvm::APInt i = iOrig.trunc(64);
 | |
|     SmallString<40> s;
 | |
|     i.toString(s, 16, true, true);
 | |
|     return std::string(s.str());
 | |
|   }
 | |
| 
 | |
|   std::string genSema() const {
 | |
|     assert(!headerOnly() && "Called genSema for header-only intrinsic");
 | |
|     std::vector<std::string> SemaChecks;
 | |
| 
 | |
|     for (const auto &kv : ImmediateArgs) {
 | |
|       const ImmediateArg &IA = kv.second;
 | |
| 
 | |
|       llvm::APInt lo(128, 0), hi(128, 0);
 | |
|       switch (IA.boundsType) {
 | |
|       case ImmediateArg::BoundsType::ExplicitRange:
 | |
|         lo = IA.i1;
 | |
|         hi = IA.i2;
 | |
|         break;
 | |
|       case ImmediateArg::BoundsType::UInt:
 | |
|         lo = 0;
 | |
|         hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       std::string Index = utostr(kv.first);
 | |
| 
 | |
|       // Emit a range check if the legal range of values for the
 | |
|       // immediate is smaller than the _possible_ range of values for
 | |
|       // its type.
 | |
|       unsigned ArgTypeBits = IA.ArgType->sizeInBits();
 | |
|       llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
 | |
|       llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
 | |
|       if (ActualRange.ult(ArgTypeRange))
 | |
|         SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
 | |
|                              ", " + signedHexLiteral(lo) + ", " +
 | |
|                              signedHexLiteral(hi) + ")");
 | |
| 
 | |
|       if (!IA.ExtraCheckType.empty()) {
 | |
|         std::string Suffix;
 | |
|         if (!IA.ExtraCheckArgs.empty()) {
 | |
|           std::string tmp;
 | |
|           StringRef Arg = IA.ExtraCheckArgs;
 | |
|           if (Arg == "!lanesize") {
 | |
|             tmp = utostr(IA.ArgType->sizeInBits());
 | |
|             Arg = tmp;
 | |
|           }
 | |
|           Suffix = (Twine(", ") + Arg).str();
 | |
|         }
 | |
|         SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
 | |
|                               IA.ExtraCheckType + "(TheCall, " + Index +
 | |
|                               Suffix + ")")
 | |
|                                  .str());
 | |
|       }
 | |
| 
 | |
|       assert(!SemaChecks.empty());
 | |
|     }
 | |
|     if (SemaChecks.empty())
 | |
|       return "";
 | |
|     return join(std::begin(SemaChecks), std::end(SemaChecks),
 | |
|                 " ||\n         ") +
 | |
|            ";\n";
 | |
|   }
 | |
| 
 | |
|   ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // The top-level class that holds all the state from analyzing the entire
 | |
| // Tablegen input.
 | |
| 
 | |
| class EmitterBase {
 | |
| protected:
 | |
|   // EmitterBase holds a collection of all the types we've instantiated.
 | |
|   VoidType Void;
 | |
|   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
 | |
|   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
 | |
|            std::unique_ptr<VectorType>>
 | |
|       VectorTypes;
 | |
|   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
 | |
|       MultiVectorTypes;
 | |
|   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
 | |
|   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
 | |
| 
 | |
|   // And all the ACLEIntrinsic instances we've created.
 | |
|   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
 | |
| 
 | |
| public:
 | |
|   // Methods to create a Type object, or return the right existing one from the
 | |
|   // maps stored in this object.
 | |
|   const VoidType *getVoidType() { return &Void; }
 | |
|   const ScalarType *getScalarType(StringRef Name) {
 | |
|     return ScalarTypes[std::string(Name)].get();
 | |
|   }
 | |
|   const ScalarType *getScalarType(Record *R) {
 | |
|     return getScalarType(R->getName());
 | |
|   }
 | |
|   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
 | |
|     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
 | |
|                                                        ST->sizeInBits(), Lanes);
 | |
|     if (VectorTypes.find(key) == VectorTypes.end())
 | |
|       VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
 | |
|     return VectorTypes[key].get();
 | |
|   }
 | |
|   const VectorType *getVectorType(const ScalarType *ST) {
 | |
|     return getVectorType(ST, 128 / ST->sizeInBits());
 | |
|   }
 | |
|   const MultiVectorType *getMultiVectorType(unsigned Registers,
 | |
|                                             const VectorType *VT) {
 | |
|     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
 | |
|     if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
 | |
|       MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
 | |
|     return MultiVectorTypes[key].get();
 | |
|   }
 | |
|   const PredicateType *getPredicateType(unsigned Lanes) {
 | |
|     unsigned key = Lanes;
 | |
|     if (PredicateTypes.find(key) == PredicateTypes.end())
 | |
|       PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
 | |
|     return PredicateTypes[key].get();
 | |
|   }
 | |
|   const PointerType *getPointerType(const Type *T, bool Const) {
 | |
|     PointerType PT(T, Const);
 | |
|     std::string key = PT.cName();
 | |
|     if (PointerTypes.find(key) == PointerTypes.end())
 | |
|       PointerTypes[key] = std::make_unique<PointerType>(PT);
 | |
|     return PointerTypes[key].get();
 | |
|   }
 | |
| 
 | |
|   // Methods to construct a type from various pieces of Tablegen. These are
 | |
|   // always called in the context of setting up a particular ACLEIntrinsic, so
 | |
|   // there's always an ambient parameter type (because we're iterating through
 | |
|   // the Params list in the Tablegen record for the intrinsic), which is used
 | |
|   // to expand Tablegen classes like 'Vector' which mean something different in
 | |
|   // each member of a parametric family.
 | |
|   const Type *getType(Record *R, const Type *Param);
 | |
|   const Type *getType(DagInit *D, const Type *Param);
 | |
|   const Type *getType(Init *I, const Type *Param);
 | |
| 
 | |
|   // Functions that translate the Tablegen representation of an intrinsic's
 | |
|   // code generation into a collection of Value objects (which will then be
 | |
|   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
 | |
|   Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
 | |
|                             const Type *Param);
 | |
|   Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
 | |
|                                const Result::Scope &Scope, const Type *Param);
 | |
|   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
 | |
|                             bool Immediate);
 | |
| 
 | |
|   void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
 | |
| 
 | |
|   // Constructor and top-level functions.
 | |
| 
 | |
|   EmitterBase(RecordKeeper &Records);
 | |
|   virtual ~EmitterBase() = default;
 | |
| 
 | |
|   virtual void EmitHeader(raw_ostream &OS) = 0;
 | |
|   virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
 | |
|   virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
 | |
|   void EmitBuiltinCG(raw_ostream &OS);
 | |
|   void EmitBuiltinAliases(raw_ostream &OS);
 | |
| };
 | |
| 
 | |
| const Type *EmitterBase::getType(Init *I, const Type *Param) {
 | |
|   if (auto Dag = dyn_cast<DagInit>(I))
 | |
|     return getType(Dag, Param);
 | |
|   if (auto Def = dyn_cast<DefInit>(I))
 | |
|     return getType(Def->getDef(), Param);
 | |
| 
 | |
|   PrintFatalError("Could not convert this value into a type");
 | |
| }
 | |
| 
 | |
| const Type *EmitterBase::getType(Record *R, const Type *Param) {
 | |
|   // Pass to a subfield of any wrapper records. We don't expect more than one
 | |
|   // of these: immediate operands are used as plain numbers rather than as
 | |
|   // llvm::Value, so it's meaningless to promote their type anyway.
 | |
|   if (R->isSubClassOf("Immediate"))
 | |
|     R = R->getValueAsDef("type");
 | |
|   else if (R->isSubClassOf("unpromoted"))
 | |
|     R = R->getValueAsDef("underlying_type");
 | |
| 
 | |
|   if (R->getName() == "Void")
 | |
|     return getVoidType();
 | |
|   if (R->isSubClassOf("PrimitiveType"))
 | |
|     return getScalarType(R);
 | |
|   if (R->isSubClassOf("ComplexType"))
 | |
|     return getType(R->getValueAsDag("spec"), Param);
 | |
| 
 | |
|   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
 | |
| }
 | |
| 
 | |
| const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
 | |
|   // The meat of the getType system: types in the Tablegen are represented by a
 | |
|   // dag whose operators select sub-cases of this function.
 | |
| 
 | |
|   Record *Op = cast<DefInit>(D->getOperator())->getDef();
 | |
|   if (!Op->isSubClassOf("ComplexTypeOp"))
 | |
|     PrintFatalError(
 | |
|         "Expected ComplexTypeOp as dag operator in type expression");
 | |
| 
 | |
|   if (Op->getName() == "CTO_Parameter") {
 | |
|     if (isa<VoidType>(Param))
 | |
|       PrintFatalError("Parametric type in unparametrised context");
 | |
|     return Param;
 | |
|   }
 | |
| 
 | |
|   if (Op->getName() == "CTO_Vec") {
 | |
|     const Type *Element = getType(D->getArg(0), Param);
 | |
|     if (D->getNumArgs() == 1) {
 | |
|       return getVectorType(cast<ScalarType>(Element));
 | |
|     } else {
 | |
|       const Type *ExistingVector = getType(D->getArg(1), Param);
 | |
|       return getVectorType(cast<ScalarType>(Element),
 | |
|                            cast<VectorType>(ExistingVector)->lanes());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op->getName() == "CTO_Pred") {
 | |
|     const Type *Element = getType(D->getArg(0), Param);
 | |
|     return getPredicateType(128 / Element->sizeInBits());
 | |
|   }
 | |
| 
 | |
|   if (Op->isSubClassOf("CTO_Tuple")) {
 | |
|     unsigned Registers = Op->getValueAsInt("n");
 | |
|     const Type *Element = getType(D->getArg(0), Param);
 | |
|     return getMultiVectorType(Registers, cast<VectorType>(Element));
 | |
|   }
 | |
| 
 | |
|   if (Op->isSubClassOf("CTO_Pointer")) {
 | |
|     const Type *Pointee = getType(D->getArg(0), Param);
 | |
|     return getPointerType(Pointee, Op->getValueAsBit("const"));
 | |
|   }
 | |
| 
 | |
|   if (Op->getName() == "CTO_CopyKind") {
 | |
|     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
 | |
|     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
 | |
|     for (const auto &kv : ScalarTypes) {
 | |
|       const ScalarType *RT = kv.second.get();
 | |
|       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
 | |
|         return RT;
 | |
|     }
 | |
|     PrintFatalError("Cannot find a type to satisfy CopyKind");
 | |
|   }
 | |
| 
 | |
|   if (Op->isSubClassOf("CTO_ScaleSize")) {
 | |
|     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
 | |
|     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
 | |
|     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
 | |
|     for (const auto &kv : ScalarTypes) {
 | |
|       const ScalarType *RT = kv.second.get();
 | |
|       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
 | |
|         return RT;
 | |
|     }
 | |
|     PrintFatalError("Cannot find a type to satisfy ScaleSize");
 | |
|   }
 | |
| 
 | |
|   PrintFatalError("Bad operator in type dag expression");
 | |
| }
 | |
| 
 | |
| Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
 | |
|                                        const Type *Param) {
 | |
|   Record *Op = cast<DefInit>(D->getOperator())->getDef();
 | |
| 
 | |
|   if (Op->getName() == "seq") {
 | |
|     Result::Scope SubScope = Scope;
 | |
|     Result::Ptr PrevV = nullptr;
 | |
|     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
 | |
|       // We don't use getCodeForDagArg here, because the argument name
 | |
|       // has different semantics in a seq
 | |
|       Result::Ptr V =
 | |
|           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
 | |
|       StringRef ArgName = D->getArgNameStr(i);
 | |
|       if (!ArgName.empty())
 | |
|         SubScope[std::string(ArgName)] = V;
 | |
|       if (PrevV)
 | |
|         V->setPredecessor(PrevV);
 | |
|       PrevV = V;
 | |
|     }
 | |
|     return PrevV;
 | |
|   } else if (Op->isSubClassOf("Type")) {
 | |
|     if (D->getNumArgs() != 1)
 | |
|       PrintFatalError("Type casts should have exactly one argument");
 | |
|     const Type *CastType = getType(Op, Param);
 | |
|     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
 | |
|     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
 | |
|       if (!ST->requiresFloat()) {
 | |
|         if (Arg->hasIntegerConstantValue())
 | |
|           return std::make_shared<IntLiteralResult>(
 | |
|               ST, Arg->integerConstantValue());
 | |
|         else
 | |
|           return std::make_shared<IntCastResult>(ST, Arg);
 | |
|       }
 | |
|     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
 | |
|       return std::make_shared<PointerCastResult>(PT, Arg);
 | |
|     }
 | |
|     PrintFatalError("Unsupported type cast");
 | |
|   } else if (Op->getName() == "address") {
 | |
|     if (D->getNumArgs() != 2)
 | |
|       PrintFatalError("'address' should have two arguments");
 | |
|     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
 | |
|     unsigned Alignment;
 | |
|     if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
 | |
|       Alignment = II->getValue();
 | |
|     } else {
 | |
|       PrintFatalError("'address' alignment argument should be an integer");
 | |
|     }
 | |
|     return std::make_shared<AddressResult>(Arg, Alignment);
 | |
|   } else if (Op->getName() == "unsignedflag") {
 | |
|     if (D->getNumArgs() != 1)
 | |
|       PrintFatalError("unsignedflag should have exactly one argument");
 | |
|     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
 | |
|     if (!TypeRec->isSubClassOf("Type"))
 | |
|       PrintFatalError("unsignedflag's argument should be a type");
 | |
|     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
 | |
|       return std::make_shared<IntLiteralResult>(
 | |
|         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
 | |
|     } else {
 | |
|       PrintFatalError("unsignedflag's argument should be a scalar type");
 | |
|     }
 | |
|   } else if (Op->getName() == "bitsize") {
 | |
|     if (D->getNumArgs() != 1)
 | |
|       PrintFatalError("bitsize should have exactly one argument");
 | |
|     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
 | |
|     if (!TypeRec->isSubClassOf("Type"))
 | |
|       PrintFatalError("bitsize's argument should be a type");
 | |
|     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
 | |
|       return std::make_shared<IntLiteralResult>(getScalarType("u32"),
 | |
|                                                 ST->sizeInBits());
 | |
|     } else {
 | |
|       PrintFatalError("bitsize's argument should be a scalar type");
 | |
|     }
 | |
|   } else {
 | |
|     std::vector<Result::Ptr> Args;
 | |
|     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
 | |
|       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
 | |
|     if (Op->isSubClassOf("IRBuilderBase")) {
 | |
|       std::set<unsigned> AddressArgs;
 | |
|       std::map<unsigned, std::string> IntegerArgs;
 | |
|       for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
 | |
|         unsigned Index = sp->getValueAsInt("index");
 | |
|         if (sp->isSubClassOf("IRBuilderAddrParam")) {
 | |
|           AddressArgs.insert(Index);
 | |
|         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
 | |
|           IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
 | |
|         }
 | |
|       }
 | |
|       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
 | |
|                                                Args, AddressArgs, IntegerArgs);
 | |
|     } else if (Op->isSubClassOf("IRIntBase")) {
 | |
|       std::vector<const Type *> ParamTypes;
 | |
|       for (Record *RParam : Op->getValueAsListOfDefs("params"))
 | |
|         ParamTypes.push_back(getType(RParam, Param));
 | |
|       std::string IntName = std::string(Op->getValueAsString("intname"));
 | |
|       if (Op->getValueAsBit("appendKind"))
 | |
|         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
 | |
|       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
 | |
|     } else {
 | |
|       PrintFatalError("Unsupported dag node " + Op->getName());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
 | |
|                                           const Result::Scope &Scope,
 | |
|                                           const Type *Param) {
 | |
|   Init *Arg = D->getArg(ArgNum);
 | |
|   StringRef Name = D->getArgNameStr(ArgNum);
 | |
| 
 | |
|   if (!Name.empty()) {
 | |
|     if (!isa<UnsetInit>(Arg))
 | |
|       PrintFatalError(
 | |
|           "dag operator argument should not have both a value and a name");
 | |
|     auto it = Scope.find(std::string(Name));
 | |
|     if (it == Scope.end())
 | |
|       PrintFatalError("unrecognized variable name '" + Name + "'");
 | |
|     return it->second;
 | |
|   }
 | |
| 
 | |
|   // Sometimes the Arg is a bit. Prior to multiclass template argument
 | |
|   // checking, integers would sneak through the bit declaration,
 | |
|   // but now they really are bits.
 | |
|   if (auto *BI = dyn_cast<BitInit>(Arg))
 | |
|     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
 | |
|                                               BI->getValue());
 | |
| 
 | |
|   if (auto *II = dyn_cast<IntInit>(Arg))
 | |
|     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
 | |
|                                               II->getValue());
 | |
| 
 | |
|   if (auto *DI = dyn_cast<DagInit>(Arg))
 | |
|     return getCodeForDag(DI, Scope, Param);
 | |
| 
 | |
|   if (auto *DI = dyn_cast<DefInit>(Arg)) {
 | |
|     Record *Rec = DI->getDef();
 | |
|     if (Rec->isSubClassOf("Type")) {
 | |
|       const Type *T = getType(Rec, Param);
 | |
|       return std::make_shared<TypeResult>(T);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PrintError("bad DAG argument type for code generation");
 | |
|   PrintNote("DAG: " + D->getAsString());
 | |
|   if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
 | |
|     PrintNote("argument type: " + Typed->getType()->getAsString());
 | |
|   PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
 | |
| }
 | |
| 
 | |
| Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
 | |
|                                        bool Promote, bool Immediate) {
 | |
|   Result::Ptr V = std::make_shared<BuiltinArgResult>(
 | |
|       ArgNum, isa<PointerType>(ArgType), Immediate);
 | |
| 
 | |
|   if (Promote) {
 | |
|     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
 | |
|       if (ST->isInteger() && ST->sizeInBits() < 32)
 | |
|         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
 | |
|     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
 | |
|       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
 | |
|       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
 | |
|                                               std::vector<const Type *>{PT},
 | |
|                                               std::vector<Result::Ptr>{V});
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
 | |
|     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
 | |
|   // Derive the intrinsic's full name, by taking the name of the
 | |
|   // Tablegen record (or override) and appending the suffix from its
 | |
|   // parameter type. (If the intrinsic is unparametrised, its
 | |
|   // parameter type will be given as Void, which returns the empty
 | |
|   // string for acleSuffix.)
 | |
|   StringRef BaseName =
 | |
|       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
 | |
|                                        : R->getName());
 | |
|   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
 | |
|   FullName =
 | |
|       (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
 | |
| 
 | |
|   // Derive the intrinsic's polymorphic name, by removing components from the
 | |
|   // full name as specified by its 'pnt' member ('polymorphic name type'),
 | |
|   // which indicates how many type suffixes to remove, and any other piece of
 | |
|   // the name that should be removed.
 | |
|   Record *PolymorphicNameType = R->getValueAsDef("pnt");
 | |
|   SmallVector<StringRef, 8> NameParts;
 | |
|   StringRef(FullName).split(NameParts, '_');
 | |
|   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
 | |
|                            "NumTypeSuffixesToDiscard");
 | |
|        i < e; ++i)
 | |
|     NameParts.pop_back();
 | |
|   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
 | |
|     StringRef ExtraSuffix =
 | |
|         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
 | |
|     auto it = NameParts.end();
 | |
|     while (it != NameParts.begin()) {
 | |
|       --it;
 | |
|       if (*it == ExtraSuffix) {
 | |
|         NameParts.erase(it);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
 | |
| 
 | |
|   BuiltinExtension = R->getValueAsString("builtinExtension");
 | |
| 
 | |
|   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
 | |
|   NonEvaluating = R->getValueAsBit("nonEvaluating");
 | |
|   HeaderOnly = R->getValueAsBit("headerOnly");
 | |
| 
 | |
|   // Process the intrinsic's argument list.
 | |
|   DagInit *ArgsDag = R->getValueAsDag("args");
 | |
|   Result::Scope Scope;
 | |
|   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
 | |
|     Init *TypeInit = ArgsDag->getArg(i);
 | |
| 
 | |
|     bool Promote = true;
 | |
|     if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
 | |
|       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
 | |
|         Promote = false;
 | |
| 
 | |
|     // Work out the type of the argument, for use in the function prototype in
 | |
|     // the header file.
 | |
|     const Type *ArgType = ME.getType(TypeInit, Param);
 | |
|     ArgTypes.push_back(ArgType);
 | |
| 
 | |
|     // If the argument is a subclass of Immediate, record the details about
 | |
|     // what values it can take, for Sema checking.
 | |
|     bool Immediate = false;
 | |
|     if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
 | |
|       Record *TypeRec = TypeDI->getDef();
 | |
|       if (TypeRec->isSubClassOf("Immediate")) {
 | |
|         Immediate = true;
 | |
| 
 | |
|         Record *Bounds = TypeRec->getValueAsDef("bounds");
 | |
|         ImmediateArg &IA = ImmediateArgs[i];
 | |
|         if (Bounds->isSubClassOf("IB_ConstRange")) {
 | |
|           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
 | |
|           IA.i1 = Bounds->getValueAsInt("lo");
 | |
|           IA.i2 = Bounds->getValueAsInt("hi");
 | |
|         } else if (Bounds->getName() == "IB_UEltValue") {
 | |
|           IA.boundsType = ImmediateArg::BoundsType::UInt;
 | |
|           IA.i1 = Param->sizeInBits();
 | |
|         } else if (Bounds->getName() == "IB_LaneIndex") {
 | |
|           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
 | |
|           IA.i1 = 0;
 | |
|           IA.i2 = 128 / Param->sizeInBits() - 1;
 | |
|         } else if (Bounds->isSubClassOf("IB_EltBit")) {
 | |
|           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
 | |
|           IA.i1 = Bounds->getValueAsInt("base");
 | |
|           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
 | |
|           IA.i2 = IA.i1 + T->sizeInBits() - 1;
 | |
|         } else {
 | |
|           PrintFatalError("unrecognised ImmediateBounds subclass");
 | |
|         }
 | |
| 
 | |
|         IA.ArgType = ArgType;
 | |
| 
 | |
|         if (!TypeRec->isValueUnset("extra")) {
 | |
|           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
 | |
|           if (!TypeRec->isValueUnset("extraarg"))
 | |
|             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The argument will usually have a name in the arguments dag, which goes
 | |
|     // into the variable-name scope that the code gen will refer to.
 | |
|     StringRef ArgName = ArgsDag->getArgNameStr(i);
 | |
|     if (!ArgName.empty())
 | |
|       Scope[std::string(ArgName)] =
 | |
|           ME.getCodeForArg(i, ArgType, Promote, Immediate);
 | |
|   }
 | |
| 
 | |
|   // Finally, go through the codegen dag and translate it into a Result object
 | |
|   // (with an arbitrary DAG of depended-on Results hanging off it).
 | |
|   DagInit *CodeDag = R->getValueAsDag("codegen");
 | |
|   Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
 | |
|   if (MainOp->isSubClassOf("CustomCodegen")) {
 | |
|     // Or, if it's the special case of CustomCodegen, just accumulate
 | |
|     // a list of parameters we're going to assign to variables before
 | |
|     // breaking from the loop.
 | |
|     CustomCodeGenArgs["CustomCodeGenType"] =
 | |
|         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
 | |
|     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
 | |
|       StringRef Name = CodeDag->getArgNameStr(i);
 | |
|       if (Name.empty()) {
 | |
|         PrintFatalError("Operands to CustomCodegen should have names");
 | |
|       } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
 | |
|         CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
 | |
|       } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
 | |
|         CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
 | |
|       } else {
 | |
|         PrintFatalError("Operands to CustomCodegen should be integers");
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     Code = ME.getCodeForDag(CodeDag, Scope, Param);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EmitterBase::EmitterBase(RecordKeeper &Records) {
 | |
|   // Construct the whole EmitterBase.
 | |
| 
 | |
|   // First, look up all the instances of PrimitiveType. This gives us the list
 | |
|   // of vector typedefs we have to put in arm_mve.h, and also allows us to
 | |
|   // collect all the useful ScalarType instances into a big list so that we can
 | |
|   // use it for operations such as 'find the unsigned version of this signed
 | |
|   // integer type'.
 | |
|   for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
 | |
|     ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
 | |
| 
 | |
|   // Now go through the instances of Intrinsic, and for each one, iterate
 | |
|   // through its list of type parameters making an ACLEIntrinsic for each one.
 | |
|   for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
 | |
|     for (Record *RParam : R->getValueAsListOfDefs("params")) {
 | |
|       const Type *Param = getType(RParam, getVoidType());
 | |
|       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
 | |
|       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// A wrapper on raw_string_ostream that contains its own buffer rather than
 | |
| /// having to point it at one elsewhere. (In other words, it works just like
 | |
| /// std::ostringstream; also, this makes it convenient to declare a whole array
 | |
| /// of them at once.)
 | |
| ///
 | |
| /// We have to set this up using multiple inheritance, to ensure that the
 | |
| /// string member has been constructed before raw_string_ostream's constructor
 | |
| /// is given a pointer to it.
 | |
| class string_holder {
 | |
| protected:
 | |
|   std::string S;
 | |
| };
 | |
| class raw_self_contained_string_ostream : private string_holder,
 | |
|                                           public raw_string_ostream {
 | |
| public:
 | |
|   raw_self_contained_string_ostream()
 | |
|       : string_holder(), raw_string_ostream(S) {}
 | |
| };
 | |
| 
 | |
| const char LLVMLicenseHeader[] =
 | |
|     " *\n"
 | |
|     " *\n"
 | |
|     " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
 | |
|     " Exceptions.\n"
 | |
|     " * See https://llvm.org/LICENSE.txt for license information.\n"
 | |
|     " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
 | |
|     " *\n"
 | |
|     " *===-----------------------------------------------------------------"
 | |
|     "------===\n"
 | |
|     " */\n"
 | |
|     "\n";
 | |
| 
 | |
| // Machinery for the grouping of intrinsics by similar codegen.
 | |
| //
 | |
| // The general setup is that 'MergeableGroup' stores the things that a set of
 | |
| // similarly shaped intrinsics have in common: the text of their code
 | |
| // generation, and the number and type of their parameter variables.
 | |
| // MergeableGroup is the key in a std::map whose value is a set of
 | |
| // OutputIntrinsic, which stores the ways in which a particular intrinsic
 | |
| // specializes the MergeableGroup's generic description: the function name and
 | |
| // the _values_ of the parameter variables.
 | |
| 
 | |
| struct ComparableStringVector : std::vector<std::string> {
 | |
|   // Infrastructure: a derived class of vector<string> which comes with an
 | |
|   // ordering, so that it can be used as a key in maps and an element in sets.
 | |
|   // There's no requirement on the ordering beyond being deterministic.
 | |
|   bool operator<(const ComparableStringVector &rhs) const {
 | |
|     if (size() != rhs.size())
 | |
|       return size() < rhs.size();
 | |
|     for (size_t i = 0, e = size(); i < e; ++i)
 | |
|       if ((*this)[i] != rhs[i])
 | |
|         return (*this)[i] < rhs[i];
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct OutputIntrinsic {
 | |
|   const ACLEIntrinsic *Int;
 | |
|   std::string Name;
 | |
|   ComparableStringVector ParamValues;
 | |
|   bool operator<(const OutputIntrinsic &rhs) const {
 | |
|     if (Name != rhs.Name)
 | |
|       return Name < rhs.Name;
 | |
|     return ParamValues < rhs.ParamValues;
 | |
|   }
 | |
| };
 | |
| struct MergeableGroup {
 | |
|   std::string Code;
 | |
|   ComparableStringVector ParamTypes;
 | |
|   bool operator<(const MergeableGroup &rhs) const {
 | |
|     if (Code != rhs.Code)
 | |
|       return Code < rhs.Code;
 | |
|     return ParamTypes < rhs.ParamTypes;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
 | |
|   // Pass 1: generate code for all the intrinsics as if every type or constant
 | |
|   // that can possibly be abstracted out into a parameter variable will be.
 | |
|   // This identifies the sets of intrinsics we'll group together into a single
 | |
|   // piece of code generation.
 | |
| 
 | |
|   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
 | |
| 
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     if (Int.headerOnly())
 | |
|       continue;
 | |
| 
 | |
|     MergeableGroup MG;
 | |
|     OutputIntrinsic OI;
 | |
| 
 | |
|     OI.Int = ∬
 | |
|     OI.Name = Int.fullName();
 | |
|     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
 | |
|     raw_string_ostream OS(MG.Code);
 | |
|     Int.genCode(OS, ParamAllocPrelim, 1);
 | |
|     OS.flush();
 | |
| 
 | |
|     MergeableGroupsPrelim[MG].insert(OI);
 | |
|   }
 | |
| 
 | |
|   // Pass 2: for each of those groups, optimize the parameter variable set by
 | |
|   // eliminating 'parameters' that are the same for all intrinsics in the
 | |
|   // group, and merging together pairs of parameter variables that take the
 | |
|   // same values as each other for all intrinsics in the group.
 | |
| 
 | |
|   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
 | |
| 
 | |
|   for (const auto &kv : MergeableGroupsPrelim) {
 | |
|     const MergeableGroup &MG = kv.first;
 | |
|     std::vector<int> ParamNumbers;
 | |
|     std::map<ComparableStringVector, int> ParamNumberMap;
 | |
| 
 | |
|     // Loop over the parameters for this group.
 | |
|     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
 | |
|       // Is this parameter the same for all intrinsics in the group?
 | |
|       const OutputIntrinsic &OI_first = *kv.second.begin();
 | |
|       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
 | |
|         return OI.ParamValues[i] == OI_first.ParamValues[i];
 | |
|       });
 | |
| 
 | |
|       // If so, record it as -1, meaning 'no parameter variable needed'. Then
 | |
|       // the corresponding call to allocParam in pass 2 will not generate a
 | |
|       // variable at all, and just use the value inline.
 | |
|       if (Constant) {
 | |
|         ParamNumbers.push_back(-1);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, make a list of the values this parameter takes for each
 | |
|       // intrinsic, and see if that value vector matches anything we already
 | |
|       // have. We also record the parameter type, so that we don't accidentally
 | |
|       // match up two parameter variables with different types. (Not that
 | |
|       // there's much chance of them having textually equivalent values, but in
 | |
|       // _principle_ it could happen.)
 | |
|       ComparableStringVector key;
 | |
|       key.push_back(MG.ParamTypes[i]);
 | |
|       for (const auto &OI : kv.second)
 | |
|         key.push_back(OI.ParamValues[i]);
 | |
| 
 | |
|       auto Found = ParamNumberMap.find(key);
 | |
|       if (Found != ParamNumberMap.end()) {
 | |
|         // Yes, an existing parameter variable can be reused for this.
 | |
|         ParamNumbers.push_back(Found->second);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // No, we need a new parameter variable.
 | |
|       int ExistingIndex = ParamNumberMap.size();
 | |
|       ParamNumberMap[key] = ExistingIndex;
 | |
|       ParamNumbers.push_back(ExistingIndex);
 | |
|     }
 | |
| 
 | |
|     // Now we're ready to do the pass 2 code generation, which will emit the
 | |
|     // reduced set of parameter variables we've just worked out.
 | |
| 
 | |
|     for (const auto &OI_prelim : kv.second) {
 | |
|       const ACLEIntrinsic *Int = OI_prelim.Int;
 | |
| 
 | |
|       MergeableGroup MG;
 | |
|       OutputIntrinsic OI;
 | |
| 
 | |
|       OI.Int = OI_prelim.Int;
 | |
|       OI.Name = OI_prelim.Name;
 | |
|       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
 | |
|                                        &ParamNumbers};
 | |
|       raw_string_ostream OS(MG.Code);
 | |
|       Int->genCode(OS, ParamAlloc, 2);
 | |
|       OS.flush();
 | |
| 
 | |
|       MergeableGroups[MG].insert(OI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Output the actual C++ code.
 | |
| 
 | |
|   for (const auto &kv : MergeableGroups) {
 | |
|     const MergeableGroup &MG = kv.first;
 | |
| 
 | |
|     // List of case statements in the main switch on BuiltinID, and an open
 | |
|     // brace.
 | |
|     const char *prefix = "";
 | |
|     for (const auto &OI : kv.second) {
 | |
|       OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
 | |
|          << "_" << OI.Name << ":";
 | |
| 
 | |
|       prefix = "\n";
 | |
|     }
 | |
|     OS << " {\n";
 | |
| 
 | |
|     if (!MG.ParamTypes.empty()) {
 | |
|       // If we've got some parameter variables, then emit their declarations...
 | |
|       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
 | |
|         StringRef Type = MG.ParamTypes[i];
 | |
|         OS << "  " << Type;
 | |
|         if (!Type.endswith("*"))
 | |
|           OS << " ";
 | |
|         OS << " Param" << utostr(i) << ";\n";
 | |
|       }
 | |
| 
 | |
|       // ... and an inner switch on BuiltinID that will fill them in with each
 | |
|       // individual intrinsic's values.
 | |
|       OS << "  switch (BuiltinID) {\n";
 | |
|       for (const auto &OI : kv.second) {
 | |
|         OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
 | |
|            << "_" << OI.Name << ":\n";
 | |
|         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
 | |
|           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
 | |
|         OS << "    break;\n";
 | |
|       }
 | |
|       OS << "  }\n";
 | |
|     }
 | |
| 
 | |
|     // And finally, output the code, and close the outer pair of braces. (The
 | |
|     // code will always end with a 'return' statement, so we need not insert a
 | |
|     // 'break' here.)
 | |
|     OS << MG.Code << "}\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
 | |
|   // Build a sorted table of:
 | |
|   // - intrinsic id number
 | |
|   // - full name
 | |
|   // - polymorphic name or -1
 | |
|   StringToOffsetTable StringTable;
 | |
|   OS << "static const IntrinToName MapData[] = {\n";
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     if (Int.headerOnly())
 | |
|       continue;
 | |
|     int32_t ShortNameOffset =
 | |
|         Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
 | |
|                           : -1;
 | |
|     OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
 | |
|        << Int.fullName() << ", "
 | |
|        << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
 | |
|        << ShortNameOffset << "},\n";
 | |
|   }
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
 | |
| 
 | |
|   OS << "static const char IntrinNames[] = {\n";
 | |
|   StringTable.EmitString(OS);
 | |
|   OS << "};\n\n";
 | |
| }
 | |
| 
 | |
| void EmitterBase::GroupSemaChecks(
 | |
|     std::map<std::string, std::set<std::string>> &Checks) {
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     if (Int.headerOnly())
 | |
|       continue;
 | |
|     std::string Check = Int.genSema();
 | |
|     if (!Check.empty())
 | |
|       Checks[Check].insert(Int.fullName());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // The class used for generating arm_mve.h and related Clang bits
 | |
| //
 | |
| 
 | |
| class MveEmitter : public EmitterBase {
 | |
| public:
 | |
|   MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
 | |
|   void EmitHeader(raw_ostream &OS) override;
 | |
|   void EmitBuiltinDef(raw_ostream &OS) override;
 | |
|   void EmitBuiltinSema(raw_ostream &OS) override;
 | |
| };
 | |
| 
 | |
| void MveEmitter::EmitHeader(raw_ostream &OS) {
 | |
|   // Accumulate pieces of the header file that will be enabled under various
 | |
|   // different combinations of #ifdef. The index into parts[] is made up of
 | |
|   // the following bit flags.
 | |
|   constexpr unsigned Float = 1;
 | |
|   constexpr unsigned UseUserNamespace = 2;
 | |
| 
 | |
|   constexpr unsigned NumParts = 4;
 | |
|   raw_self_contained_string_ostream parts[NumParts];
 | |
| 
 | |
|   // Write typedefs for all the required vector types, and a few scalar
 | |
|   // types that don't already have the name we want them to have.
 | |
| 
 | |
|   parts[0] << "typedef uint16_t mve_pred16_t;\n";
 | |
|   parts[Float] << "typedef __fp16 float16_t;\n"
 | |
|                   "typedef float float32_t;\n";
 | |
|   for (const auto &kv : ScalarTypes) {
 | |
|     const ScalarType *ST = kv.second.get();
 | |
|     if (ST->hasNonstandardName())
 | |
|       continue;
 | |
|     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
 | |
|     const VectorType *VT = getVectorType(ST);
 | |
| 
 | |
|     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
 | |
|        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
 | |
|        << VT->cName() << ";\n";
 | |
| 
 | |
|     // Every vector type also comes with a pair of multi-vector types for
 | |
|     // the VLD2 and VLD4 instructions.
 | |
|     for (unsigned n = 2; n <= 4; n += 2) {
 | |
|       const MultiVectorType *MT = getMultiVectorType(n, VT);
 | |
|       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
 | |
|          << MT->cName() << ";\n";
 | |
|     }
 | |
|   }
 | |
|   parts[0] << "\n";
 | |
|   parts[Float] << "\n";
 | |
| 
 | |
|   // Write declarations for all the intrinsics.
 | |
| 
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
| 
 | |
|     // We generate each intrinsic twice, under its full unambiguous
 | |
|     // name and its shorter polymorphic name (if the latter exists).
 | |
|     for (bool Polymorphic : {false, true}) {
 | |
|       if (Polymorphic && !Int.polymorphic())
 | |
|         continue;
 | |
|       if (!Polymorphic && Int.polymorphicOnly())
 | |
|         continue;
 | |
| 
 | |
|       // We also generate each intrinsic under a name like __arm_vfooq
 | |
|       // (which is in C language implementation namespace, so it's
 | |
|       // safe to define in any conforming user program) and a shorter
 | |
|       // one like vfooq (which is in user namespace, so a user might
 | |
|       // reasonably have used it for something already). If so, they
 | |
|       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
 | |
|       // including the header, which will suppress the shorter names
 | |
|       // and leave only the implementation-namespace ones. Then they
 | |
|       // have to write __arm_vfooq everywhere, of course.
 | |
| 
 | |
|       for (bool UserNamespace : {false, true}) {
 | |
|         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
 | |
|                                 (UserNamespace ? UseUserNamespace : 0)];
 | |
| 
 | |
|         // Make the name of the function in this declaration.
 | |
| 
 | |
|         std::string FunctionName =
 | |
|             Polymorphic ? Int.shortName() : Int.fullName();
 | |
|         if (!UserNamespace)
 | |
|           FunctionName = "__arm_" + FunctionName;
 | |
| 
 | |
|         // Make strings for the types involved in the function's
 | |
|         // prototype.
 | |
| 
 | |
|         std::string RetTypeName = Int.returnType()->cName();
 | |
|         if (!StringRef(RetTypeName).endswith("*"))
 | |
|           RetTypeName += " ";
 | |
| 
 | |
|         std::vector<std::string> ArgTypeNames;
 | |
|         for (const Type *ArgTypePtr : Int.argTypes())
 | |
|           ArgTypeNames.push_back(ArgTypePtr->cName());
 | |
|         std::string ArgTypesString =
 | |
|             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
 | |
| 
 | |
|         // Emit the actual declaration. All these functions are
 | |
|         // declared 'static inline' without a body, which is fine
 | |
|         // provided clang recognizes them as builtins, and has the
 | |
|         // effect that this type signature is used in place of the one
 | |
|         // that Builtins.def didn't provide. That's how we can get
 | |
|         // structure types that weren't defined until this header was
 | |
|         // included to be part of the type signature of a builtin that
 | |
|         // was known to clang already.
 | |
|         //
 | |
|         // The declarations use __attribute__(__clang_arm_builtin_alias),
 | |
|         // so that each function declared will be recognized as the
 | |
|         // appropriate MVE builtin in spite of its user-facing name.
 | |
|         //
 | |
|         // (That's better than making them all wrapper functions,
 | |
|         // partly because it avoids any compiler error message citing
 | |
|         // the wrapper function definition instead of the user's code,
 | |
|         // and mostly because some MVE intrinsics have arguments
 | |
|         // required to be compile-time constants, and that property
 | |
|         // can't be propagated through a wrapper function. It can be
 | |
|         // propagated through a macro, but macros can't be overloaded
 | |
|         // on argument types very easily - you have to use _Generic,
 | |
|         // which makes error messages very confusing when the user
 | |
|         // gets it wrong.)
 | |
|         //
 | |
|         // Finally, the polymorphic versions of the intrinsics are
 | |
|         // also defined with __attribute__(overloadable), so that when
 | |
|         // the same name is defined with several type signatures, the
 | |
|         // right thing happens. Each one of the overloaded
 | |
|         // declarations is given a different builtin id, which
 | |
|         // has exactly the effect we want: first clang resolves the
 | |
|         // overload to the right function, then it knows which builtin
 | |
|         // it's referring to, and then the Sema checking for that
 | |
|         // builtin can check further things like the constant
 | |
|         // arguments.
 | |
|         //
 | |
|         // One more subtlety is the newline just before the return
 | |
|         // type name. That's a cosmetic tweak to make the error
 | |
|         // messages legible if the user gets the types wrong in a call
 | |
|         // to a polymorphic function: this way, clang will print just
 | |
|         // the _final_ line of each declaration in the header, to show
 | |
|         // the type signatures that would have been legal. So all the
 | |
|         // confusing machinery with __attribute__ is left out of the
 | |
|         // error message, and the user sees something that's more or
 | |
|         // less self-documenting: "here's a list of actually readable
 | |
|         // type signatures for vfooq(), and here's why each one didn't
 | |
|         // match your call".
 | |
| 
 | |
|         OS << "static __inline__ __attribute__(("
 | |
|            << (Polymorphic ? "__overloadable__, " : "")
 | |
|            << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
 | |
|            << ")))\n"
 | |
|            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   for (auto &part : parts)
 | |
|     part << "\n";
 | |
| 
 | |
|   // Now we've finished accumulating bits and pieces into the parts[] array.
 | |
|   // Put it all together to write the final output file.
 | |
| 
 | |
|   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
 | |
|         "-----------------------------------===\n"
 | |
|      << LLVMLicenseHeader
 | |
|      << "#ifndef __ARM_MVE_H\n"
 | |
|         "#define __ARM_MVE_H\n"
 | |
|         "\n"
 | |
|         "#if !__ARM_FEATURE_MVE\n"
 | |
|         "#error \"MVE support not enabled\"\n"
 | |
|         "#endif\n"
 | |
|         "\n"
 | |
|         "#include <stdint.h>\n"
 | |
|         "\n"
 | |
|         "#ifdef __cplusplus\n"
 | |
|         "extern \"C\" {\n"
 | |
|         "#endif\n"
 | |
|         "\n";
 | |
| 
 | |
|   for (size_t i = 0; i < NumParts; ++i) {
 | |
|     std::vector<std::string> conditions;
 | |
|     if (i & Float)
 | |
|       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
 | |
|     if (i & UseUserNamespace)
 | |
|       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
 | |
| 
 | |
|     std::string condition =
 | |
|         join(std::begin(conditions), std::end(conditions), " && ");
 | |
|     if (!condition.empty())
 | |
|       OS << "#if " << condition << "\n\n";
 | |
|     OS << parts[i].str();
 | |
|     if (!condition.empty())
 | |
|       OS << "#endif /* " << condition << " */\n\n";
 | |
|   }
 | |
| 
 | |
|   OS << "#ifdef __cplusplus\n"
 | |
|         "} /* extern \"C\" */\n"
 | |
|         "#endif\n"
 | |
|         "\n"
 | |
|         "#endif /* __ARM_MVE_H */\n";
 | |
| }
 | |
| 
 | |
| void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
 | |
|        << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
 | |
|   }
 | |
| 
 | |
|   std::set<std::string> ShortNamesSeen;
 | |
| 
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     if (Int.polymorphic()) {
 | |
|       StringRef Name = Int.shortName();
 | |
|       if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
 | |
|         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
 | |
|         if (Int.nonEvaluating())
 | |
|           OS << "u"; // indicate that this builtin doesn't evaluate its args
 | |
|         OS << "\")\n";
 | |
|         ShortNamesSeen.insert(std::string(Name));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
 | |
|   std::map<std::string, std::set<std::string>> Checks;
 | |
|   GroupSemaChecks(Checks);
 | |
| 
 | |
|   for (const auto &kv : Checks) {
 | |
|     for (StringRef Name : kv.second)
 | |
|       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
 | |
|     OS << "  return " << kv.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Class that describes an ACLE intrinsic implemented as a macro.
 | |
| //
 | |
| // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
 | |
| // want to avoid a combinatorial explosion by reinterpreting the arguments to
 | |
| // fixed types.
 | |
| 
 | |
| class FunctionMacro {
 | |
|   std::vector<StringRef> Params;
 | |
|   StringRef Definition;
 | |
| 
 | |
| public:
 | |
|   FunctionMacro(const Record &R);
 | |
| 
 | |
|   const std::vector<StringRef> &getParams() const { return Params; }
 | |
|   StringRef getDefinition() const { return Definition; }
 | |
| };
 | |
| 
 | |
| FunctionMacro::FunctionMacro(const Record &R) {
 | |
|   Params = R.getValueAsListOfStrings("params");
 | |
|   Definition = R.getValueAsString("definition");
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // The class used for generating arm_cde.h and related Clang bits
 | |
| //
 | |
| 
 | |
| class CdeEmitter : public EmitterBase {
 | |
|   std::map<StringRef, FunctionMacro> FunctionMacros;
 | |
| 
 | |
| public:
 | |
|   CdeEmitter(RecordKeeper &Records);
 | |
|   void EmitHeader(raw_ostream &OS) override;
 | |
|   void EmitBuiltinDef(raw_ostream &OS) override;
 | |
|   void EmitBuiltinSema(raw_ostream &OS) override;
 | |
| };
 | |
| 
 | |
| CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
 | |
|   for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
 | |
|     FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
 | |
| }
 | |
| 
 | |
| void CdeEmitter::EmitHeader(raw_ostream &OS) {
 | |
|   // Accumulate pieces of the header file that will be enabled under various
 | |
|   // different combinations of #ifdef. The index into parts[] is one of the
 | |
|   // following:
 | |
|   constexpr unsigned None = 0;
 | |
|   constexpr unsigned MVE = 1;
 | |
|   constexpr unsigned MVEFloat = 2;
 | |
| 
 | |
|   constexpr unsigned NumParts = 3;
 | |
|   raw_self_contained_string_ostream parts[NumParts];
 | |
| 
 | |
|   // Write typedefs for all the required vector types, and a few scalar
 | |
|   // types that don't already have the name we want them to have.
 | |
| 
 | |
|   parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
 | |
|   parts[MVEFloat] << "typedef __fp16 float16_t;\n"
 | |
|                      "typedef float float32_t;\n";
 | |
|   for (const auto &kv : ScalarTypes) {
 | |
|     const ScalarType *ST = kv.second.get();
 | |
|     if (ST->hasNonstandardName())
 | |
|       continue;
 | |
|     // We don't have float64x2_t
 | |
|     if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
 | |
|       continue;
 | |
|     raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
 | |
|     const VectorType *VT = getVectorType(ST);
 | |
| 
 | |
|     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
 | |
|        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
 | |
|        << VT->cName() << ";\n";
 | |
|   }
 | |
|   parts[MVE] << "\n";
 | |
|   parts[MVEFloat] << "\n";
 | |
| 
 | |
|   // Write declarations for all the intrinsics.
 | |
| 
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
| 
 | |
|     // We generate each intrinsic twice, under its full unambiguous
 | |
|     // name and its shorter polymorphic name (if the latter exists).
 | |
|     for (bool Polymorphic : {false, true}) {
 | |
|       if (Polymorphic && !Int.polymorphic())
 | |
|         continue;
 | |
|       if (!Polymorphic && Int.polymorphicOnly())
 | |
|         continue;
 | |
| 
 | |
|       raw_ostream &OS =
 | |
|           parts[Int.requiresFloat() ? MVEFloat
 | |
|                                     : Int.requiresMVE() ? MVE : None];
 | |
| 
 | |
|       // Make the name of the function in this declaration.
 | |
|       std::string FunctionName =
 | |
|           "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
 | |
| 
 | |
|       // Make strings for the types involved in the function's
 | |
|       // prototype.
 | |
|       std::string RetTypeName = Int.returnType()->cName();
 | |
|       if (!StringRef(RetTypeName).endswith("*"))
 | |
|         RetTypeName += " ";
 | |
| 
 | |
|       std::vector<std::string> ArgTypeNames;
 | |
|       for (const Type *ArgTypePtr : Int.argTypes())
 | |
|         ArgTypeNames.push_back(ArgTypePtr->cName());
 | |
|       std::string ArgTypesString =
 | |
|           join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
 | |
| 
 | |
|       // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
 | |
|       // comments
 | |
|       OS << "static __inline__ __attribute__(("
 | |
|          << (Polymorphic ? "__overloadable__, " : "")
 | |
|          << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
 | |
|          << "_" << Int.fullName() << ")))\n"
 | |
|          << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto &kv : FunctionMacros) {
 | |
|     StringRef Name = kv.first;
 | |
|     const FunctionMacro &FM = kv.second;
 | |
| 
 | |
|     raw_ostream &OS = parts[MVE];
 | |
|     OS << "#define "
 | |
|        << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
 | |
|        << FM.getDefinition() << "\n";
 | |
|   }
 | |
| 
 | |
|   for (auto &part : parts)
 | |
|     part << "\n";
 | |
| 
 | |
|   // Now we've finished accumulating bits and pieces into the parts[] array.
 | |
|   // Put it all together to write the final output file.
 | |
| 
 | |
|   OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
 | |
|         "-----------------------------------===\n"
 | |
|      << LLVMLicenseHeader
 | |
|      << "#ifndef __ARM_CDE_H\n"
 | |
|         "#define __ARM_CDE_H\n"
 | |
|         "\n"
 | |
|         "#if !__ARM_FEATURE_CDE\n"
 | |
|         "#error \"CDE support not enabled\"\n"
 | |
|         "#endif\n"
 | |
|         "\n"
 | |
|         "#include <stdint.h>\n"
 | |
|         "\n"
 | |
|         "#ifdef __cplusplus\n"
 | |
|         "extern \"C\" {\n"
 | |
|         "#endif\n"
 | |
|         "\n";
 | |
| 
 | |
|   for (size_t i = 0; i < NumParts; ++i) {
 | |
|     std::string condition;
 | |
|     if (i == MVEFloat)
 | |
|       condition = "__ARM_FEATURE_MVE & 2";
 | |
|     else if (i == MVE)
 | |
|       condition = "__ARM_FEATURE_MVE";
 | |
| 
 | |
|     if (!condition.empty())
 | |
|       OS << "#if " << condition << "\n\n";
 | |
|     OS << parts[i].str();
 | |
|     if (!condition.empty())
 | |
|       OS << "#endif /* " << condition << " */\n\n";
 | |
|   }
 | |
| 
 | |
|   OS << "#ifdef __cplusplus\n"
 | |
|         "} /* extern \"C\" */\n"
 | |
|         "#endif\n"
 | |
|         "\n"
 | |
|         "#endif /* __ARM_CDE_H */\n";
 | |
| }
 | |
| 
 | |
| void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
 | |
|   for (const auto &kv : ACLEIntrinsics) {
 | |
|     if (kv.second->headerOnly())
 | |
|       continue;
 | |
|     const ACLEIntrinsic &Int = *kv.second;
 | |
|     OS << "TARGET_HEADER_BUILTIN(__builtin_arm_cde_" << Int.fullName()
 | |
|        << ", \"\", \"ncU\", \"arm_cde.h\", ALL_LANGUAGES, \"\")\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
 | |
|   std::map<std::string, std::set<std::string>> Checks;
 | |
|   GroupSemaChecks(Checks);
 | |
| 
 | |
|   for (const auto &kv : Checks) {
 | |
|     for (StringRef Name : kv.second)
 | |
|       OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
 | |
|     OS << "  Err = " << kv.first << "  break;\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| namespace clang {
 | |
| 
 | |
| // MVE
 | |
| 
 | |
| void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   MveEmitter(Records).EmitHeader(OS);
 | |
| }
 | |
| 
 | |
| void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   MveEmitter(Records).EmitBuiltinDef(OS);
 | |
| }
 | |
| 
 | |
| void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   MveEmitter(Records).EmitBuiltinSema(OS);
 | |
| }
 | |
| 
 | |
| void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   MveEmitter(Records).EmitBuiltinCG(OS);
 | |
| }
 | |
| 
 | |
| void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   MveEmitter(Records).EmitBuiltinAliases(OS);
 | |
| }
 | |
| 
 | |
| // CDE
 | |
| 
 | |
| void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   CdeEmitter(Records).EmitHeader(OS);
 | |
| }
 | |
| 
 | |
| void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   CdeEmitter(Records).EmitBuiltinDef(OS);
 | |
| }
 | |
| 
 | |
| void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   CdeEmitter(Records).EmitBuiltinSema(OS);
 | |
| }
 | |
| 
 | |
| void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   CdeEmitter(Records).EmitBuiltinCG(OS);
 | |
| }
 | |
| 
 | |
| void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
 | |
|   CdeEmitter(Records).EmitBuiltinAliases(OS);
 | |
| }
 | |
| 
 | |
| } // end namespace clang
 |