1054 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1054 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=-- lsan_common.cpp -----------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of LeakSanitizer.
 | |
| // Implementation of common leak checking functionality.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "lsan_common.h"
 | |
| 
 | |
| #include "sanitizer_common/sanitizer_common.h"
 | |
| #include "sanitizer_common/sanitizer_flag_parser.h"
 | |
| #include "sanitizer_common/sanitizer_flags.h"
 | |
| #include "sanitizer_common/sanitizer_placement_new.h"
 | |
| #include "sanitizer_common/sanitizer_procmaps.h"
 | |
| #include "sanitizer_common/sanitizer_report_decorator.h"
 | |
| #include "sanitizer_common/sanitizer_stackdepot.h"
 | |
| #include "sanitizer_common/sanitizer_stacktrace.h"
 | |
| #include "sanitizer_common/sanitizer_suppressions.h"
 | |
| #include "sanitizer_common/sanitizer_thread_registry.h"
 | |
| #include "sanitizer_common/sanitizer_tls_get_addr.h"
 | |
| 
 | |
| #if CAN_SANITIZE_LEAKS
 | |
| namespace __lsan {
 | |
| 
 | |
| // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
 | |
| // also to protect the global list of root regions.
 | |
| BlockingMutex global_mutex(LINKER_INITIALIZED);
 | |
| 
 | |
| Flags lsan_flags;
 | |
| 
 | |
| 
 | |
| void DisableCounterUnderflow() {
 | |
|   if (common_flags()->detect_leaks) {
 | |
|     Report("Unmatched call to __lsan_enable().\n");
 | |
|     Die();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Flags::SetDefaults() {
 | |
| #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
 | |
| #include "lsan_flags.inc"
 | |
| #undef LSAN_FLAG
 | |
| }
 | |
| 
 | |
| void RegisterLsanFlags(FlagParser *parser, Flags *f) {
 | |
| #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
 | |
|   RegisterFlag(parser, #Name, Description, &f->Name);
 | |
| #include "lsan_flags.inc"
 | |
| #undef LSAN_FLAG
 | |
| }
 | |
| 
 | |
| #define LOG_POINTERS(...)                           \
 | |
|   do {                                              \
 | |
|     if (flags()->log_pointers) Report(__VA_ARGS__); \
 | |
|   } while (0)
 | |
| 
 | |
| #define LOG_THREADS(...)                           \
 | |
|   do {                                             \
 | |
|     if (flags()->log_threads) Report(__VA_ARGS__); \
 | |
|   } while (0)
 | |
| 
 | |
| class LeakSuppressionContext {
 | |
|   bool parsed = false;
 | |
|   SuppressionContext context;
 | |
|   bool suppressed_stacks_sorted = true;
 | |
|   InternalMmapVector<u32> suppressed_stacks;
 | |
| 
 | |
|   Suppression *GetSuppressionForAddr(uptr addr);
 | |
|   void LazyInit();
 | |
| 
 | |
|  public:
 | |
|   LeakSuppressionContext(const char *supprression_types[],
 | |
|                          int suppression_types_num)
 | |
|       : context(supprression_types, suppression_types_num) {}
 | |
| 
 | |
|   Suppression *GetSuppressionForStack(u32 stack_trace_id);
 | |
| 
 | |
|   const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
 | |
|     if (!suppressed_stacks_sorted) {
 | |
|       suppressed_stacks_sorted = true;
 | |
|       SortAndDedup(suppressed_stacks);
 | |
|     }
 | |
|     return suppressed_stacks;
 | |
|   }
 | |
|   void PrintMatchedSuppressions();
 | |
| };
 | |
| 
 | |
| ALIGNED(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
 | |
| static LeakSuppressionContext *suppression_ctx = nullptr;
 | |
| static const char kSuppressionLeak[] = "leak";
 | |
| static const char *kSuppressionTypes[] = { kSuppressionLeak };
 | |
| static const char kStdSuppressions[] =
 | |
| #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
 | |
|     // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
 | |
|     // definition.
 | |
|     "leak:*pthread_exit*\n"
 | |
| #endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
 | |
| #if SANITIZER_MAC
 | |
|     // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
 | |
|     "leak:*_os_trace*\n"
 | |
| #endif
 | |
|     // TLS leak in some glibc versions, described in
 | |
|     // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
 | |
|     "leak:*tls_get_addr*\n";
 | |
| 
 | |
| void InitializeSuppressions() {
 | |
|   CHECK_EQ(nullptr, suppression_ctx);
 | |
|   suppression_ctx = new (suppression_placeholder)
 | |
|       LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
 | |
| }
 | |
| 
 | |
| void LeakSuppressionContext::LazyInit() {
 | |
|   if (!parsed) {
 | |
|     parsed = true;
 | |
|     context.ParseFromFile(flags()->suppressions);
 | |
|     if (&__lsan_default_suppressions)
 | |
|       context.Parse(__lsan_default_suppressions());
 | |
|     context.Parse(kStdSuppressions);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static LeakSuppressionContext *GetSuppressionContext() {
 | |
|   CHECK(suppression_ctx);
 | |
|   return suppression_ctx;
 | |
| }
 | |
| 
 | |
| static InternalMmapVector<RootRegion> *root_regions;
 | |
| 
 | |
| InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
 | |
| 
 | |
| void InitializeRootRegions() {
 | |
|   CHECK(!root_regions);
 | |
|   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
 | |
|   root_regions = new (placeholder) InternalMmapVector<RootRegion>();
 | |
| }
 | |
| 
 | |
| void InitCommonLsan() {
 | |
|   InitializeRootRegions();
 | |
|   if (common_flags()->detect_leaks) {
 | |
|     // Initialization which can fail or print warnings should only be done if
 | |
|     // LSan is actually enabled.
 | |
|     InitializeSuppressions();
 | |
|     InitializePlatformSpecificModules();
 | |
|   }
 | |
| }
 | |
| 
 | |
| class Decorator: public __sanitizer::SanitizerCommonDecorator {
 | |
|  public:
 | |
|   Decorator() : SanitizerCommonDecorator() { }
 | |
|   const char *Error() { return Red(); }
 | |
|   const char *Leak() { return Blue(); }
 | |
| };
 | |
| 
 | |
| static inline bool CanBeAHeapPointer(uptr p) {
 | |
|   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
 | |
|   // bound on heap addresses.
 | |
|   const uptr kMinAddress = 4 * 4096;
 | |
|   if (p < kMinAddress) return false;
 | |
| #if defined(__x86_64__)
 | |
|   // Accept only canonical form user-space addresses.
 | |
|   return ((p >> 47) == 0);
 | |
| #elif defined(__mips64)
 | |
|   return ((p >> 40) == 0);
 | |
| #elif defined(__aarch64__)
 | |
|   unsigned runtimeVMA =
 | |
|     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
 | |
|   return ((p >> runtimeVMA) == 0);
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Scans the memory range, looking for byte patterns that point into allocator
 | |
| // chunks. Marks those chunks with |tag| and adds them to |frontier|.
 | |
| // There are two usage modes for this function: finding reachable chunks
 | |
| // (|tag| = kReachable) and finding indirectly leaked chunks
 | |
| // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
 | |
| // so |frontier| = 0.
 | |
| void ScanRangeForPointers(uptr begin, uptr end,
 | |
|                           Frontier *frontier,
 | |
|                           const char *region_type, ChunkTag tag) {
 | |
|   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
 | |
|   const uptr alignment = flags()->pointer_alignment();
 | |
|   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
 | |
|   uptr pp = begin;
 | |
|   if (pp % alignment)
 | |
|     pp = pp + alignment - pp % alignment;
 | |
|   for (; pp + sizeof(void *) <= end; pp += alignment) {
 | |
|     void *p = *reinterpret_cast<void **>(pp);
 | |
|     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
 | |
|     uptr chunk = PointsIntoChunk(p);
 | |
|     if (!chunk) continue;
 | |
|     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
 | |
|     if (chunk == begin) continue;
 | |
|     LsanMetadata m(chunk);
 | |
|     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
 | |
| 
 | |
|     // Do this check relatively late so we can log only the interesting cases.
 | |
|     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
 | |
|       LOG_POINTERS(
 | |
|           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
 | |
|           "%zu.\n",
 | |
|           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     m.set_tag(tag);
 | |
|     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
 | |
|                  chunk, chunk + m.requested_size(), m.requested_size());
 | |
|     if (frontier)
 | |
|       frontier->push_back(chunk);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Scans a global range for pointers
 | |
| void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
 | |
|   uptr allocator_begin = 0, allocator_end = 0;
 | |
|   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
 | |
|   if (begin <= allocator_begin && allocator_begin < end) {
 | |
|     CHECK_LE(allocator_begin, allocator_end);
 | |
|     CHECK_LE(allocator_end, end);
 | |
|     if (begin < allocator_begin)
 | |
|       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
 | |
|                            kReachable);
 | |
|     if (allocator_end < end)
 | |
|       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
 | |
|   } else {
 | |
|     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
 | |
|   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
 | |
|   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
 | |
| }
 | |
| 
 | |
| #if SANITIZER_FUCHSIA
 | |
| 
 | |
| // Fuchsia handles all threads together with its own callback.
 | |
| static void ProcessThreads(SuspendedThreadsList const &, Frontier *) {}
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if SANITIZER_ANDROID
 | |
| // FIXME: Move this out into *libcdep.cpp
 | |
| extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
 | |
|     pid_t, void (*cb)(void *, void *, uptr, void *), void *);
 | |
| #endif
 | |
| 
 | |
| static void ProcessThreadRegistry(Frontier *frontier) {
 | |
|   InternalMmapVector<uptr> ptrs;
 | |
|   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
 | |
|       GetAdditionalThreadContextPtrs, &ptrs);
 | |
| 
 | |
|   for (uptr i = 0; i < ptrs.size(); ++i) {
 | |
|     void *ptr = reinterpret_cast<void *>(ptrs[i]);
 | |
|     uptr chunk = PointsIntoChunk(ptr);
 | |
|     if (!chunk)
 | |
|       continue;
 | |
|     LsanMetadata m(chunk);
 | |
|     if (!m.allocated())
 | |
|       continue;
 | |
| 
 | |
|     // Mark as reachable and add to frontier.
 | |
|     LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
 | |
|     m.set_tag(kReachable);
 | |
|     frontier->push_back(chunk);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Scans thread data (stacks and TLS) for heap pointers.
 | |
| static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
 | |
|                            Frontier *frontier) {
 | |
|   InternalMmapVector<uptr> registers;
 | |
|   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
 | |
|     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
 | |
|     LOG_THREADS("Processing thread %d.\n", os_id);
 | |
|     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
 | |
|     DTLS *dtls;
 | |
|     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
 | |
|                                               &tls_begin, &tls_end,
 | |
|                                               &cache_begin, &cache_end, &dtls);
 | |
|     if (!thread_found) {
 | |
|       // If a thread can't be found in the thread registry, it's probably in the
 | |
|       // process of destruction. Log this event and move on.
 | |
|       LOG_THREADS("Thread %d not found in registry.\n", os_id);
 | |
|       continue;
 | |
|     }
 | |
|     uptr sp;
 | |
|     PtraceRegistersStatus have_registers =
 | |
|         suspended_threads.GetRegistersAndSP(i, ®isters, &sp);
 | |
|     if (have_registers != REGISTERS_AVAILABLE) {
 | |
|       Report("Unable to get registers from thread %d.\n", os_id);
 | |
|       // If unable to get SP, consider the entire stack to be reachable unless
 | |
|       // GetRegistersAndSP failed with ESRCH.
 | |
|       if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
 | |
|       sp = stack_begin;
 | |
|     }
 | |
| 
 | |
|     if (flags()->use_registers && have_registers) {
 | |
|       uptr registers_begin = reinterpret_cast<uptr>(registers.data());
 | |
|       uptr registers_end =
 | |
|           reinterpret_cast<uptr>(registers.data() + registers.size());
 | |
|       ScanRangeForPointers(registers_begin, registers_end, frontier,
 | |
|                            "REGISTERS", kReachable);
 | |
|     }
 | |
| 
 | |
|     if (flags()->use_stacks) {
 | |
|       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
 | |
|       if (sp < stack_begin || sp >= stack_end) {
 | |
|         // SP is outside the recorded stack range (e.g. the thread is running a
 | |
|         // signal handler on alternate stack, or swapcontext was used).
 | |
|         // Again, consider the entire stack range to be reachable.
 | |
|         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
 | |
|         uptr page_size = GetPageSizeCached();
 | |
|         int skipped = 0;
 | |
|         while (stack_begin < stack_end &&
 | |
|                !IsAccessibleMemoryRange(stack_begin, 1)) {
 | |
|           skipped++;
 | |
|           stack_begin += page_size;
 | |
|         }
 | |
|         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
 | |
|                     skipped, stack_begin, stack_end);
 | |
|       } else {
 | |
|         // Shrink the stack range to ignore out-of-scope values.
 | |
|         stack_begin = sp;
 | |
|       }
 | |
|       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
 | |
|                            kReachable);
 | |
|       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
 | |
|     }
 | |
| 
 | |
|     if (flags()->use_tls) {
 | |
|       if (tls_begin) {
 | |
|         LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
 | |
|         // If the tls and cache ranges don't overlap, scan full tls range,
 | |
|         // otherwise, only scan the non-overlapping portions
 | |
|         if (cache_begin == cache_end || tls_end < cache_begin ||
 | |
|             tls_begin > cache_end) {
 | |
|           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
 | |
|         } else {
 | |
|           if (tls_begin < cache_begin)
 | |
|             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
 | |
|                                  kReachable);
 | |
|           if (tls_end > cache_end)
 | |
|             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
 | |
|                                  kReachable);
 | |
|         }
 | |
|       }
 | |
| #if SANITIZER_ANDROID
 | |
|       auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
 | |
|                      void *arg) -> void {
 | |
|         ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
 | |
|                              reinterpret_cast<uptr>(dtls_end),
 | |
|                              reinterpret_cast<Frontier *>(arg), "DTLS",
 | |
|                              kReachable);
 | |
|       };
 | |
| 
 | |
|       // FIXME: There might be a race-condition here (and in Bionic) if the
 | |
|       // thread is suspended in the middle of updating its DTLS. IOWs, we
 | |
|       // could scan already freed memory. (probably fine for now)
 | |
|       __libc_iterate_dynamic_tls(os_id, cb, frontier);
 | |
| #else
 | |
|       if (dtls && !DTLSInDestruction(dtls)) {
 | |
|         ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
 | |
|           uptr dtls_beg = dtv.beg;
 | |
|           uptr dtls_end = dtls_beg + dtv.size;
 | |
|           if (dtls_beg < dtls_end) {
 | |
|             LOG_THREADS("DTLS %zu at %p-%p.\n", id, dtls_beg, dtls_end);
 | |
|             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
 | |
|                                  kReachable);
 | |
|           }
 | |
|         });
 | |
|       } else {
 | |
|         // We are handling a thread with DTLS under destruction. Log about
 | |
|         // this and continue.
 | |
|         LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add pointers reachable from ThreadContexts
 | |
|   ProcessThreadRegistry(frontier);
 | |
| }
 | |
| 
 | |
| #endif  // SANITIZER_FUCHSIA
 | |
| 
 | |
| void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
 | |
|                     uptr region_begin, uptr region_end, bool is_readable) {
 | |
|   uptr intersection_begin = Max(root_region.begin, region_begin);
 | |
|   uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
 | |
|   if (intersection_begin >= intersection_end) return;
 | |
|   LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
 | |
|                root_region.begin, root_region.begin + root_region.size,
 | |
|                region_begin, region_end,
 | |
|                is_readable ? "readable" : "unreadable");
 | |
|   if (is_readable)
 | |
|     ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
 | |
|                          kReachable);
 | |
| }
 | |
| 
 | |
| static void ProcessRootRegion(Frontier *frontier,
 | |
|                               const RootRegion &root_region) {
 | |
|   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
 | |
|   MemoryMappedSegment segment;
 | |
|   while (proc_maps.Next(&segment)) {
 | |
|     ScanRootRegion(frontier, root_region, segment.start, segment.end,
 | |
|                    segment.IsReadable());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Scans root regions for heap pointers.
 | |
| static void ProcessRootRegions(Frontier *frontier) {
 | |
|   if (!flags()->use_root_regions) return;
 | |
|   CHECK(root_regions);
 | |
|   for (uptr i = 0; i < root_regions->size(); i++) {
 | |
|     ProcessRootRegion(frontier, (*root_regions)[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
 | |
|   while (frontier->size()) {
 | |
|     uptr next_chunk = frontier->back();
 | |
|     frontier->pop_back();
 | |
|     LsanMetadata m(next_chunk);
 | |
|     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
 | |
|                          "HEAP", tag);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
 | |
| // which are reachable from it as indirectly leaked.
 | |
| static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (m.allocated() && m.tag() != kReachable) {
 | |
|     ScanRangeForPointers(chunk, chunk + m.requested_size(),
 | |
|                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void IgnoredSuppressedCb(uptr chunk, void *arg) {
 | |
|   CHECK(arg);
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (!m.allocated() || m.tag() == kIgnored)
 | |
|     return;
 | |
| 
 | |
|   const InternalMmapVector<u32> &suppressed =
 | |
|       *static_cast<const InternalMmapVector<u32> *>(arg);
 | |
|   uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
 | |
|   if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
 | |
|     return;
 | |
| 
 | |
|   LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", chunk,
 | |
|                chunk + m.requested_size(), m.requested_size());
 | |
|   m.set_tag(kIgnored);
 | |
| }
 | |
| 
 | |
| // ForEachChunk callback. If chunk is marked as ignored, adds its address to
 | |
| // frontier.
 | |
| static void CollectIgnoredCb(uptr chunk, void *arg) {
 | |
|   CHECK(arg);
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (m.allocated() && m.tag() == kIgnored) {
 | |
|     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
 | |
|                  chunk, chunk + m.requested_size(), m.requested_size());
 | |
|     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
 | |
|   CHECK(stack_id);
 | |
|   StackTrace stack = map->Get(stack_id);
 | |
|   // The top frame is our malloc/calloc/etc. The next frame is the caller.
 | |
|   if (stack.size >= 2)
 | |
|     return stack.trace[1];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| struct InvalidPCParam {
 | |
|   Frontier *frontier;
 | |
|   StackDepotReverseMap *stack_depot_reverse_map;
 | |
|   bool skip_linker_allocations;
 | |
| };
 | |
| 
 | |
| // ForEachChunk callback. If the caller pc is invalid or is within the linker,
 | |
| // mark as reachable. Called by ProcessPlatformSpecificAllocations.
 | |
| static void MarkInvalidPCCb(uptr chunk, void *arg) {
 | |
|   CHECK(arg);
 | |
|   InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
 | |
|     u32 stack_id = m.stack_trace_id();
 | |
|     uptr caller_pc = 0;
 | |
|     if (stack_id > 0)
 | |
|       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
 | |
|     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
 | |
|     // it as reachable, as we can't properly report its allocation stack anyway.
 | |
|     if (caller_pc == 0 || (param->skip_linker_allocations &&
 | |
|                            GetLinker()->containsAddress(caller_pc))) {
 | |
|       m.set_tag(kReachable);
 | |
|       param->frontier->push_back(chunk);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
 | |
| // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
 | |
| // modules accounting etc.
 | |
| // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
 | |
| // They are allocated with a __libc_memalign() call in allocate_and_init()
 | |
| // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
 | |
| // blocks, but we can make sure they come from our own allocator by intercepting
 | |
| // __libc_memalign(). On top of that, there is no easy way to reach them. Their
 | |
| // addresses are stored in a dynamically allocated array (the DTV) which is
 | |
| // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
 | |
| // being reachable from the static TLS, and the dynamic TLS being reachable from
 | |
| // the DTV. This is because the initial DTV is allocated before our interception
 | |
| // mechanism kicks in, and thus we don't recognize it as allocated memory. We
 | |
| // can't special-case it either, since we don't know its size.
 | |
| // Our solution is to include in the root set all allocations made from
 | |
| // ld-linux.so (which is where allocate_and_init() is implemented). This is
 | |
| // guaranteed to include all dynamic TLS blocks (and possibly other allocations
 | |
| // which we don't care about).
 | |
| // On all other platforms, this simply checks to ensure that the caller pc is
 | |
| // valid before reporting chunks as leaked.
 | |
| void ProcessPC(Frontier *frontier) {
 | |
|   StackDepotReverseMap stack_depot_reverse_map;
 | |
|   InvalidPCParam arg;
 | |
|   arg.frontier = frontier;
 | |
|   arg.stack_depot_reverse_map = &stack_depot_reverse_map;
 | |
|   arg.skip_linker_allocations =
 | |
|       flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
 | |
|   ForEachChunk(MarkInvalidPCCb, &arg);
 | |
| }
 | |
| 
 | |
| // Sets the appropriate tag on each chunk.
 | |
| static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
 | |
|                               Frontier *frontier) {
 | |
|   const InternalMmapVector<u32> &suppressed_stacks =
 | |
|       GetSuppressionContext()->GetSortedSuppressedStacks();
 | |
|   if (!suppressed_stacks.empty()) {
 | |
|     ForEachChunk(IgnoredSuppressedCb,
 | |
|                  const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
 | |
|   }
 | |
|   ForEachChunk(CollectIgnoredCb, frontier);
 | |
|   ProcessGlobalRegions(frontier);
 | |
|   ProcessThreads(suspended_threads, frontier);
 | |
|   ProcessRootRegions(frontier);
 | |
|   FloodFillTag(frontier, kReachable);
 | |
| 
 | |
|   CHECK_EQ(0, frontier->size());
 | |
|   ProcessPC(frontier);
 | |
| 
 | |
|   // The check here is relatively expensive, so we do this in a separate flood
 | |
|   // fill. That way we can skip the check for chunks that are reachable
 | |
|   // otherwise.
 | |
|   LOG_POINTERS("Processing platform-specific allocations.\n");
 | |
|   ProcessPlatformSpecificAllocations(frontier);
 | |
|   FloodFillTag(frontier, kReachable);
 | |
| 
 | |
|   // Iterate over leaked chunks and mark those that are reachable from other
 | |
|   // leaked chunks.
 | |
|   LOG_POINTERS("Scanning leaked chunks.\n");
 | |
|   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
 | |
| }
 | |
| 
 | |
| // ForEachChunk callback. Resets the tags to pre-leak-check state.
 | |
| static void ResetTagsCb(uptr chunk, void *arg) {
 | |
|   (void)arg;
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (m.allocated() && m.tag() != kIgnored)
 | |
|     m.set_tag(kDirectlyLeaked);
 | |
| }
 | |
| 
 | |
| static void PrintStackTraceById(u32 stack_trace_id) {
 | |
|   CHECK(stack_trace_id);
 | |
|   StackDepotGet(stack_trace_id).Print();
 | |
| }
 | |
| 
 | |
| // ForEachChunk callback. Aggregates information about unreachable chunks into
 | |
| // a LeakReport.
 | |
| static void CollectLeaksCb(uptr chunk, void *arg) {
 | |
|   CHECK(arg);
 | |
|   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
 | |
|   chunk = GetUserBegin(chunk);
 | |
|   LsanMetadata m(chunk);
 | |
|   if (!m.allocated()) return;
 | |
|   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
 | |
|     u32 resolution = flags()->resolution;
 | |
|     u32 stack_trace_id = 0;
 | |
|     if (resolution > 0) {
 | |
|       StackTrace stack = StackDepotGet(m.stack_trace_id());
 | |
|       stack.size = Min(stack.size, resolution);
 | |
|       stack_trace_id = StackDepotPut(stack);
 | |
|     } else {
 | |
|       stack_trace_id = m.stack_trace_id();
 | |
|     }
 | |
|     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
 | |
|                                 m.tag());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LeakSuppressionContext::PrintMatchedSuppressions() {
 | |
|   InternalMmapVector<Suppression *> matched;
 | |
|   context.GetMatched(&matched);
 | |
|   if (!matched.size())
 | |
|     return;
 | |
|   const char *line = "-----------------------------------------------------";
 | |
|   Printf("%s\n", line);
 | |
|   Printf("Suppressions used:\n");
 | |
|   Printf("  count      bytes template\n");
 | |
|   for (uptr i = 0; i < matched.size(); i++) {
 | |
|     Printf("%7zu %10zu %s\n",
 | |
|            static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
 | |
|            matched[i]->weight, matched[i]->templ);
 | |
|   }
 | |
|   Printf("%s\n\n", line);
 | |
| }
 | |
| 
 | |
| static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
 | |
|   const InternalMmapVector<tid_t> &suspended_threads =
 | |
|       *(const InternalMmapVector<tid_t> *)arg;
 | |
|   if (tctx->status == ThreadStatusRunning) {
 | |
|     uptr i = InternalLowerBound(suspended_threads, tctx->os_id);
 | |
|     if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
 | |
|       Report("Running thread %d was not suspended. False leaks are possible.\n",
 | |
|              tctx->os_id);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if SANITIZER_FUCHSIA
 | |
| 
 | |
| // Fuchsia provides a libc interface that guarantees all threads are
 | |
| // covered, and SuspendedThreadList is never really used.
 | |
| static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
 | |
| 
 | |
| #else  // !SANITIZER_FUCHSIA
 | |
| 
 | |
| static void ReportUnsuspendedThreads(
 | |
|     const SuspendedThreadsList &suspended_threads) {
 | |
|   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
 | |
|   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
 | |
|     threads[i] = suspended_threads.GetThreadID(i);
 | |
| 
 | |
|   Sort(threads.data(), threads.size());
 | |
| 
 | |
|   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
 | |
|       &ReportIfNotSuspended, &threads);
 | |
| }
 | |
| 
 | |
| #endif  // !SANITIZER_FUCHSIA
 | |
| 
 | |
| static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
 | |
|                                   void *arg) {
 | |
|   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
 | |
|   CHECK(param);
 | |
|   CHECK(!param->success);
 | |
|   ReportUnsuspendedThreads(suspended_threads);
 | |
|   ClassifyAllChunks(suspended_threads, ¶m->frontier);
 | |
|   ForEachChunk(CollectLeaksCb, ¶m->leak_report);
 | |
|   // Clean up for subsequent leak checks. This assumes we did not overwrite any
 | |
|   // kIgnored tags.
 | |
|   ForEachChunk(ResetTagsCb, nullptr);
 | |
|   param->success = true;
 | |
| }
 | |
| 
 | |
| static bool PrintResults(LeakReport &report) {
 | |
|   uptr unsuppressed_count = report.UnsuppressedLeakCount();
 | |
|   if (unsuppressed_count) {
 | |
|     Decorator d;
 | |
|     Printf(
 | |
|         "\n"
 | |
|         "================================================================="
 | |
|         "\n");
 | |
|     Printf("%s", d.Error());
 | |
|     Report("ERROR: LeakSanitizer: detected memory leaks\n");
 | |
|     Printf("%s", d.Default());
 | |
|     report.ReportTopLeaks(flags()->max_leaks);
 | |
|   }
 | |
|   if (common_flags()->print_suppressions)
 | |
|     GetSuppressionContext()->PrintMatchedSuppressions();
 | |
|   if (unsuppressed_count > 0) {
 | |
|     report.PrintSummary();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CheckForLeaks() {
 | |
|   if (&__lsan_is_turned_off && __lsan_is_turned_off())
 | |
|     return false;
 | |
|   // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
 | |
|   // suppressions. However if a stack id was previously suppressed, it should be
 | |
|   // suppressed in future checks as well.
 | |
|   for (int i = 0;; ++i) {
 | |
|     EnsureMainThreadIDIsCorrect();
 | |
|     CheckForLeaksParam param;
 | |
|     LockStuffAndStopTheWorld(CheckForLeaksCallback, ¶m);
 | |
|     if (!param.success) {
 | |
|       Report("LeakSanitizer has encountered a fatal error.\n");
 | |
|       Report(
 | |
|           "HINT: For debugging, try setting environment variable "
 | |
|           "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
 | |
|       Report(
 | |
|           "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
 | |
|           "etc)\n");
 | |
|       Die();
 | |
|     }
 | |
|     // No new suppressions stacks, so rerun will not help and we can report.
 | |
|     if (!param.leak_report.ApplySuppressions())
 | |
|       return PrintResults(param.leak_report);
 | |
| 
 | |
|     // No indirect leaks to report, so we are done here.
 | |
|     if (!param.leak_report.IndirectUnsuppressedLeakCount())
 | |
|       return PrintResults(param.leak_report);
 | |
| 
 | |
|     if (i >= 8) {
 | |
|       Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
 | |
|       return PrintResults(param.leak_report);
 | |
|     }
 | |
| 
 | |
|     // We found a new previously unseen suppressed call stack. Rerun to make
 | |
|     // sure it does not hold indirect leaks.
 | |
|     VReport(1, "Rerun with %zu suppressed stacks.",
 | |
|             GetSuppressionContext()->GetSortedSuppressedStacks().size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool has_reported_leaks = false;
 | |
| bool HasReportedLeaks() { return has_reported_leaks; }
 | |
| 
 | |
| void DoLeakCheck() {
 | |
|   BlockingMutexLock l(&global_mutex);
 | |
|   static bool already_done;
 | |
|   if (already_done) return;
 | |
|   already_done = true;
 | |
|   has_reported_leaks = CheckForLeaks();
 | |
|   if (has_reported_leaks) HandleLeaks();
 | |
| }
 | |
| 
 | |
| static int DoRecoverableLeakCheck() {
 | |
|   BlockingMutexLock l(&global_mutex);
 | |
|   bool have_leaks = CheckForLeaks();
 | |
|   return have_leaks ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
 | |
| 
 | |
| Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
 | |
|   Suppression *s = nullptr;
 | |
| 
 | |
|   // Suppress by module name.
 | |
|   if (const char *module_name =
 | |
|           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
 | |
|     if (context.Match(module_name, kSuppressionLeak, &s))
 | |
|       return s;
 | |
| 
 | |
|   // Suppress by file or function name.
 | |
|   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
 | |
|   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
 | |
|     if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
 | |
|         context.Match(cur->info.file, kSuppressionLeak, &s)) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   frames->ClearAll();
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| Suppression *LeakSuppressionContext::GetSuppressionForStack(
 | |
|     u32 stack_trace_id) {
 | |
|   LazyInit();
 | |
|   StackTrace stack = StackDepotGet(stack_trace_id);
 | |
|   for (uptr i = 0; i < stack.size; i++) {
 | |
|     Suppression *s = GetSuppressionForAddr(
 | |
|         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
 | |
|     if (s) {
 | |
|       suppressed_stacks_sorted = false;
 | |
|       suppressed_stacks.push_back(stack_trace_id);
 | |
|       return s;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| ///// LeakReport implementation. /////
 | |
| 
 | |
| // A hard limit on the number of distinct leaks, to avoid quadratic complexity
 | |
| // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
 | |
| // in real-world applications.
 | |
| // FIXME: Get rid of this limit by changing the implementation of LeakReport to
 | |
| // use a hash table.
 | |
| const uptr kMaxLeaksConsidered = 5000;
 | |
| 
 | |
| void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
 | |
|                                 uptr leaked_size, ChunkTag tag) {
 | |
|   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
 | |
|   bool is_directly_leaked = (tag == kDirectlyLeaked);
 | |
|   uptr i;
 | |
|   for (i = 0; i < leaks_.size(); i++) {
 | |
|     if (leaks_[i].stack_trace_id == stack_trace_id &&
 | |
|         leaks_[i].is_directly_leaked == is_directly_leaked) {
 | |
|       leaks_[i].hit_count++;
 | |
|       leaks_[i].total_size += leaked_size;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (i == leaks_.size()) {
 | |
|     if (leaks_.size() == kMaxLeaksConsidered) return;
 | |
|     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
 | |
|                   is_directly_leaked, /* is_suppressed */ false };
 | |
|     leaks_.push_back(leak);
 | |
|   }
 | |
|   if (flags()->report_objects) {
 | |
|     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
 | |
|     leaked_objects_.push_back(obj);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
 | |
|   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
 | |
|     return leak1.total_size > leak2.total_size;
 | |
|   else
 | |
|     return leak1.is_directly_leaked;
 | |
| }
 | |
| 
 | |
| void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
 | |
|   CHECK(leaks_.size() <= kMaxLeaksConsidered);
 | |
|   Printf("\n");
 | |
|   if (leaks_.size() == kMaxLeaksConsidered)
 | |
|     Printf("Too many leaks! Only the first %zu leaks encountered will be "
 | |
|            "reported.\n",
 | |
|            kMaxLeaksConsidered);
 | |
| 
 | |
|   uptr unsuppressed_count = UnsuppressedLeakCount();
 | |
|   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
 | |
|     Printf("The %zu top leak(s):\n", num_leaks_to_report);
 | |
|   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
 | |
|   uptr leaks_reported = 0;
 | |
|   for (uptr i = 0; i < leaks_.size(); i++) {
 | |
|     if (leaks_[i].is_suppressed) continue;
 | |
|     PrintReportForLeak(i);
 | |
|     leaks_reported++;
 | |
|     if (leaks_reported == num_leaks_to_report) break;
 | |
|   }
 | |
|   if (leaks_reported < unsuppressed_count) {
 | |
|     uptr remaining = unsuppressed_count - leaks_reported;
 | |
|     Printf("Omitting %zu more leak(s).\n", remaining);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LeakReport::PrintReportForLeak(uptr index) {
 | |
|   Decorator d;
 | |
|   Printf("%s", d.Leak());
 | |
|   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
 | |
|          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
 | |
|          leaks_[index].total_size, leaks_[index].hit_count);
 | |
|   Printf("%s", d.Default());
 | |
| 
 | |
|   PrintStackTraceById(leaks_[index].stack_trace_id);
 | |
| 
 | |
|   if (flags()->report_objects) {
 | |
|     Printf("Objects leaked above:\n");
 | |
|     PrintLeakedObjectsForLeak(index);
 | |
|     Printf("\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
 | |
|   u32 leak_id = leaks_[index].id;
 | |
|   for (uptr j = 0; j < leaked_objects_.size(); j++) {
 | |
|     if (leaked_objects_[j].leak_id == leak_id)
 | |
|       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
 | |
|              leaked_objects_[j].size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LeakReport::PrintSummary() {
 | |
|   CHECK(leaks_.size() <= kMaxLeaksConsidered);
 | |
|   uptr bytes = 0, allocations = 0;
 | |
|   for (uptr i = 0; i < leaks_.size(); i++) {
 | |
|       if (leaks_[i].is_suppressed) continue;
 | |
|       bytes += leaks_[i].total_size;
 | |
|       allocations += leaks_[i].hit_count;
 | |
|   }
 | |
|   InternalScopedString summary;
 | |
|   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
 | |
|                  allocations);
 | |
|   ReportErrorSummary(summary.data());
 | |
| }
 | |
| 
 | |
| uptr LeakReport::ApplySuppressions() {
 | |
|   LeakSuppressionContext *suppressions = GetSuppressionContext();
 | |
|   uptr new_suppressions = false;
 | |
|   for (uptr i = 0; i < leaks_.size(); i++) {
 | |
|     Suppression *s =
 | |
|         suppressions->GetSuppressionForStack(leaks_[i].stack_trace_id);
 | |
|     if (s) {
 | |
|       s->weight += leaks_[i].total_size;
 | |
|       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
 | |
|           leaks_[i].hit_count);
 | |
|       leaks_[i].is_suppressed = true;
 | |
|       ++new_suppressions;
 | |
|     }
 | |
|   }
 | |
|   return new_suppressions;
 | |
| }
 | |
| 
 | |
| uptr LeakReport::UnsuppressedLeakCount() {
 | |
|   uptr result = 0;
 | |
|   for (uptr i = 0; i < leaks_.size(); i++)
 | |
|     if (!leaks_[i].is_suppressed) result++;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| uptr LeakReport::IndirectUnsuppressedLeakCount() {
 | |
|   uptr result = 0;
 | |
|   for (uptr i = 0; i < leaks_.size(); i++)
 | |
|     if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
 | |
|       result++;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| } // namespace __lsan
 | |
| #else // CAN_SANITIZE_LEAKS
 | |
| namespace __lsan {
 | |
| void InitCommonLsan() { }
 | |
| void DoLeakCheck() { }
 | |
| void DoRecoverableLeakCheckVoid() { }
 | |
| void DisableInThisThread() { }
 | |
| void EnableInThisThread() { }
 | |
| }
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
| 
 | |
| using namespace __lsan;
 | |
| 
 | |
| extern "C" {
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_ignore_object(const void *p) {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   if (!common_flags()->detect_leaks)
 | |
|     return;
 | |
|   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
 | |
|   // locked.
 | |
|   BlockingMutexLock l(&global_mutex);
 | |
|   IgnoreObjectResult res = IgnoreObjectLocked(p);
 | |
|   if (res == kIgnoreObjectInvalid)
 | |
|     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
 | |
|   if (res == kIgnoreObjectAlreadyIgnored)
 | |
|     VReport(1, "__lsan_ignore_object(): "
 | |
|            "heap object at %p is already being ignored\n", p);
 | |
|   if (res == kIgnoreObjectSuccess)
 | |
|     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_register_root_region(const void *begin, uptr size) {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   BlockingMutexLock l(&global_mutex);
 | |
|   CHECK(root_regions);
 | |
|   RootRegion region = {reinterpret_cast<uptr>(begin), size};
 | |
|   root_regions->push_back(region);
 | |
|   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_unregister_root_region(const void *begin, uptr size) {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   BlockingMutexLock l(&global_mutex);
 | |
|   CHECK(root_regions);
 | |
|   bool removed = false;
 | |
|   for (uptr i = 0; i < root_regions->size(); i++) {
 | |
|     RootRegion region = (*root_regions)[i];
 | |
|     if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
 | |
|       removed = true;
 | |
|       uptr last_index = root_regions->size() - 1;
 | |
|       (*root_regions)[i] = (*root_regions)[last_index];
 | |
|       root_regions->pop_back();
 | |
|       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!removed) {
 | |
|     Report(
 | |
|         "__lsan_unregister_root_region(): region at %p of size %llu has not "
 | |
|         "been registered.\n",
 | |
|         begin, size);
 | |
|     Die();
 | |
|   }
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_disable() {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   __lsan::DisableInThisThread();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_enable() {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   __lsan::EnableInThisThread();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| void __lsan_do_leak_check() {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   if (common_flags()->detect_leaks)
 | |
|     __lsan::DoLeakCheck();
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE
 | |
| int __lsan_do_recoverable_leak_check() {
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|   if (common_flags()->detect_leaks)
 | |
|     return __lsan::DoRecoverableLeakCheck();
 | |
| #endif // CAN_SANITIZE_LEAKS
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_SUPPORTS_WEAK_HOOKS
 | |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
 | |
| int __lsan_is_turned_off() {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
 | |
| const char *__lsan_default_suppressions() {
 | |
|   return "";
 | |
| }
 | |
| #endif
 | |
| } // extern "C"
 |