894 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			894 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of ThreadSanitizer (TSan), a race detector.
 | |
| //
 | |
| // Main internal TSan header file.
 | |
| //
 | |
| // Ground rules:
 | |
| //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
 | |
| //     function-scope locals)
 | |
| //   - All functions/classes/etc reside in namespace __tsan, except for those
 | |
| //     declared in tsan_interface.h.
 | |
| //   - Platform-specific files should be used instead of ifdefs (*).
 | |
| //   - No system headers included in header files (*).
 | |
| //   - Platform specific headres included only into platform-specific files (*).
 | |
| //
 | |
| //  (*) Except when inlining is critical for performance.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef TSAN_RTL_H
 | |
| #define TSAN_RTL_H
 | |
| 
 | |
| #include "sanitizer_common/sanitizer_allocator.h"
 | |
| #include "sanitizer_common/sanitizer_allocator_internal.h"
 | |
| #include "sanitizer_common/sanitizer_asm.h"
 | |
| #include "sanitizer_common/sanitizer_common.h"
 | |
| #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
 | |
| #include "sanitizer_common/sanitizer_libignore.h"
 | |
| #include "sanitizer_common/sanitizer_suppressions.h"
 | |
| #include "sanitizer_common/sanitizer_thread_registry.h"
 | |
| #include "sanitizer_common/sanitizer_vector.h"
 | |
| #include "tsan_clock.h"
 | |
| #include "tsan_defs.h"
 | |
| #include "tsan_flags.h"
 | |
| #include "tsan_mman.h"
 | |
| #include "tsan_sync.h"
 | |
| #include "tsan_trace.h"
 | |
| #include "tsan_report.h"
 | |
| #include "tsan_platform.h"
 | |
| #include "tsan_mutexset.h"
 | |
| #include "tsan_ignoreset.h"
 | |
| #include "tsan_stack_trace.h"
 | |
| 
 | |
| #if SANITIZER_WORDSIZE != 64
 | |
| # error "ThreadSanitizer is supported only on 64-bit platforms"
 | |
| #endif
 | |
| 
 | |
| namespace __tsan {
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| struct MapUnmapCallback;
 | |
| #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
 | |
| 
 | |
| struct AP32 {
 | |
|   static const uptr kSpaceBeg = 0;
 | |
|   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
 | |
|   static const uptr kMetadataSize = 0;
 | |
|   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
 | |
|   static const uptr kRegionSizeLog = 20;
 | |
|   using AddressSpaceView = LocalAddressSpaceView;
 | |
|   typedef __tsan::MapUnmapCallback MapUnmapCallback;
 | |
|   static const uptr kFlags = 0;
 | |
| };
 | |
| typedef SizeClassAllocator32<AP32> PrimaryAllocator;
 | |
| #else
 | |
| struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
 | |
|   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
 | |
|   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
 | |
|   static const uptr kMetadataSize = 0;
 | |
|   typedef DefaultSizeClassMap SizeClassMap;
 | |
|   typedef __tsan::MapUnmapCallback MapUnmapCallback;
 | |
|   static const uptr kFlags = 0;
 | |
|   using AddressSpaceView = LocalAddressSpaceView;
 | |
| };
 | |
| typedef SizeClassAllocator64<AP64> PrimaryAllocator;
 | |
| #endif
 | |
| typedef CombinedAllocator<PrimaryAllocator> Allocator;
 | |
| typedef Allocator::AllocatorCache AllocatorCache;
 | |
| Allocator *allocator();
 | |
| #endif
 | |
| 
 | |
| void TsanCheckFailed(const char *file, int line, const char *cond,
 | |
|                      u64 v1, u64 v2);
 | |
| 
 | |
| const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
 | |
| 
 | |
| // FastState (from most significant bit):
 | |
| //   ignore          : 1
 | |
| //   tid             : kTidBits
 | |
| //   unused          : -
 | |
| //   history_size    : 3
 | |
| //   epoch           : kClkBits
 | |
| class FastState {
 | |
|  public:
 | |
|   FastState(u64 tid, u64 epoch) {
 | |
|     x_ = tid << kTidShift;
 | |
|     x_ |= epoch;
 | |
|     DCHECK_EQ(tid, this->tid());
 | |
|     DCHECK_EQ(epoch, this->epoch());
 | |
|     DCHECK_EQ(GetIgnoreBit(), false);
 | |
|   }
 | |
| 
 | |
|   explicit FastState(u64 x)
 | |
|       : x_(x) {
 | |
|   }
 | |
| 
 | |
|   u64 raw() const {
 | |
|     return x_;
 | |
|   }
 | |
| 
 | |
|   u64 tid() const {
 | |
|     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   u64 TidWithIgnore() const {
 | |
|     u64 res = x_ >> kTidShift;
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   u64 epoch() const {
 | |
|     u64 res = x_ & ((1ull << kClkBits) - 1);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   void IncrementEpoch() {
 | |
|     u64 old_epoch = epoch();
 | |
|     x_ += 1;
 | |
|     DCHECK_EQ(old_epoch + 1, epoch());
 | |
|     (void)old_epoch;
 | |
|   }
 | |
| 
 | |
|   void SetIgnoreBit() { x_ |= kIgnoreBit; }
 | |
|   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
 | |
|   bool GetIgnoreBit() const { return (s64)x_ < 0; }
 | |
| 
 | |
|   void SetHistorySize(int hs) {
 | |
|     CHECK_GE(hs, 0);
 | |
|     CHECK_LE(hs, 7);
 | |
|     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
 | |
|   }
 | |
| 
 | |
|   ALWAYS_INLINE
 | |
|   int GetHistorySize() const {
 | |
|     return (int)((x_ >> kHistoryShift) & kHistoryMask);
 | |
|   }
 | |
| 
 | |
|   void ClearHistorySize() {
 | |
|     SetHistorySize(0);
 | |
|   }
 | |
| 
 | |
|   ALWAYS_INLINE
 | |
|   u64 GetTracePos() const {
 | |
|     const int hs = GetHistorySize();
 | |
|     // When hs == 0, the trace consists of 2 parts.
 | |
|     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
 | |
|     return epoch() & mask;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   friend class Shadow;
 | |
|   static const int kTidShift = 64 - kTidBits - 1;
 | |
|   static const u64 kIgnoreBit = 1ull << 63;
 | |
|   static const u64 kFreedBit = 1ull << 63;
 | |
|   static const u64 kHistoryShift = kClkBits;
 | |
|   static const u64 kHistoryMask = 7;
 | |
|   u64 x_;
 | |
| };
 | |
| 
 | |
| // Shadow (from most significant bit):
 | |
| //   freed           : 1
 | |
| //   tid             : kTidBits
 | |
| //   is_atomic       : 1
 | |
| //   is_read         : 1
 | |
| //   size_log        : 2
 | |
| //   addr0           : 3
 | |
| //   epoch           : kClkBits
 | |
| class Shadow : public FastState {
 | |
|  public:
 | |
|   explicit Shadow(u64 x)
 | |
|       : FastState(x) {
 | |
|   }
 | |
| 
 | |
|   explicit Shadow(const FastState &s)
 | |
|       : FastState(s.x_) {
 | |
|     ClearHistorySize();
 | |
|   }
 | |
| 
 | |
|   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
 | |
|     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
 | |
|     DCHECK_LE(addr0, 7);
 | |
|     DCHECK_LE(kAccessSizeLog, 3);
 | |
|     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
 | |
|     DCHECK_EQ(kAccessSizeLog, size_log());
 | |
|     DCHECK_EQ(addr0, this->addr0());
 | |
|   }
 | |
| 
 | |
|   void SetWrite(unsigned kAccessIsWrite) {
 | |
|     DCHECK_EQ(x_ & kReadBit, 0);
 | |
|     if (!kAccessIsWrite)
 | |
|       x_ |= kReadBit;
 | |
|     DCHECK_EQ(kAccessIsWrite, IsWrite());
 | |
|   }
 | |
| 
 | |
|   void SetAtomic(bool kIsAtomic) {
 | |
|     DCHECK(!IsAtomic());
 | |
|     if (kIsAtomic)
 | |
|       x_ |= kAtomicBit;
 | |
|     DCHECK_EQ(IsAtomic(), kIsAtomic);
 | |
|   }
 | |
| 
 | |
|   bool IsAtomic() const {
 | |
|     return x_ & kAtomicBit;
 | |
|   }
 | |
| 
 | |
|   bool IsZero() const {
 | |
|     return x_ == 0;
 | |
|   }
 | |
| 
 | |
|   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
 | |
|     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
 | |
|     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
 | |
|     return shifted_xor == 0;
 | |
|   }
 | |
| 
 | |
|   static ALWAYS_INLINE
 | |
|   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
 | |
|     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
 | |
|     return masked_xor == 0;
 | |
|   }
 | |
| 
 | |
|   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
 | |
|       unsigned kS2AccessSize) {
 | |
|     bool res = false;
 | |
|     u64 diff = s1.addr0() - s2.addr0();
 | |
|     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0
 | |
|       // if (s1.addr0() + size1) > s2.addr0()) return true;
 | |
|       if (s1.size() > -diff)
 | |
|         res = true;
 | |
|     } else {
 | |
|       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
 | |
|       if (kS2AccessSize > diff)
 | |
|         res = true;
 | |
|     }
 | |
|     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
 | |
|     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
 | |
|   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
 | |
|   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
 | |
|   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
 | |
| 
 | |
|   // The idea behind the freed bit is as follows.
 | |
|   // When the memory is freed (or otherwise unaccessible) we write to the shadow
 | |
|   // values with tid/epoch related to the free and the freed bit set.
 | |
|   // During memory accesses processing the freed bit is considered
 | |
|   // as msb of tid. So any access races with shadow with freed bit set
 | |
|   // (it is as if write from a thread with which we never synchronized before).
 | |
|   // This allows us to detect accesses to freed memory w/o additional
 | |
|   // overheads in memory access processing and at the same time restore
 | |
|   // tid/epoch of free.
 | |
|   void MarkAsFreed() {
 | |
|      x_ |= kFreedBit;
 | |
|   }
 | |
| 
 | |
|   bool IsFreed() const {
 | |
|     return x_ & kFreedBit;
 | |
|   }
 | |
| 
 | |
|   bool GetFreedAndReset() {
 | |
|     bool res = x_ & kFreedBit;
 | |
|     x_ &= ~kFreedBit;
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
 | |
|     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
 | |
|         | (u64(kIsAtomic) << kAtomicShift));
 | |
|     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
 | |
|     return v;
 | |
|   }
 | |
| 
 | |
|   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
 | |
|     bool v = ((x_ >> kReadShift) & 3)
 | |
|         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
 | |
|     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
 | |
|         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
 | |
|     return v;
 | |
|   }
 | |
| 
 | |
|   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
 | |
|     bool v = ((x_ >> kReadShift) & 3)
 | |
|         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
 | |
|     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
 | |
|         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
 | |
|     return v;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static const u64 kReadShift   = 5 + kClkBits;
 | |
|   static const u64 kReadBit     = 1ull << kReadShift;
 | |
|   static const u64 kAtomicShift = 6 + kClkBits;
 | |
|   static const u64 kAtomicBit   = 1ull << kAtomicShift;
 | |
| 
 | |
|   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
 | |
| 
 | |
|   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
 | |
|     if (s1.addr0() == s2.addr0()) return true;
 | |
|     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
 | |
|       return true;
 | |
|     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct ThreadSignalContext;
 | |
| 
 | |
| struct JmpBuf {
 | |
|   uptr sp;
 | |
|   int int_signal_send;
 | |
|   bool in_blocking_func;
 | |
|   uptr in_signal_handler;
 | |
|   uptr *shadow_stack_pos;
 | |
| };
 | |
| 
 | |
| // A Processor represents a physical thread, or a P for Go.
 | |
| // It is used to store internal resources like allocate cache, and does not
 | |
| // participate in race-detection logic (invisible to end user).
 | |
| // In C++ it is tied to an OS thread just like ThreadState, however ideally
 | |
| // it should be tied to a CPU (this way we will have fewer allocator caches).
 | |
| // In Go it is tied to a P, so there are significantly fewer Processor's than
 | |
| // ThreadState's (which are tied to Gs).
 | |
| // A ThreadState must be wired with a Processor to handle events.
 | |
| struct Processor {
 | |
|   ThreadState *thr; // currently wired thread, or nullptr
 | |
| #if !SANITIZER_GO
 | |
|   AllocatorCache alloc_cache;
 | |
|   InternalAllocatorCache internal_alloc_cache;
 | |
| #endif
 | |
|   DenseSlabAllocCache block_cache;
 | |
|   DenseSlabAllocCache sync_cache;
 | |
|   DenseSlabAllocCache clock_cache;
 | |
|   DDPhysicalThread *dd_pt;
 | |
| };
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| // ScopedGlobalProcessor temporary setups a global processor for the current
 | |
| // thread, if it does not have one. Intended for interceptors that can run
 | |
| // at the very thread end, when we already destroyed the thread processor.
 | |
| struct ScopedGlobalProcessor {
 | |
|   ScopedGlobalProcessor();
 | |
|   ~ScopedGlobalProcessor();
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // This struct is stored in TLS.
 | |
| struct ThreadState {
 | |
|   FastState fast_state;
 | |
|   // Synch epoch represents the threads's epoch before the last synchronization
 | |
|   // action. It allows to reduce number of shadow state updates.
 | |
|   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
 | |
|   // if we are processing write to X from the same thread at epoch=200,
 | |
|   // we do nothing, because both writes happen in the same 'synch epoch'.
 | |
|   // That is, if another memory access does not race with the former write,
 | |
|   // it does not race with the latter as well.
 | |
|   // QUESTION: can we can squeeze this into ThreadState::Fast?
 | |
|   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
 | |
|   // taken by epoch between synchs.
 | |
|   // This way we can save one load from tls.
 | |
|   u64 fast_synch_epoch;
 | |
|   // Technically `current` should be a separate THREADLOCAL variable;
 | |
|   // but it is placed here in order to share cache line with previous fields.
 | |
|   ThreadState* current;
 | |
|   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
 | |
|   // We do not distinguish beteween ignoring reads and writes
 | |
|   // for better performance.
 | |
|   int ignore_reads_and_writes;
 | |
|   int ignore_sync;
 | |
|   int suppress_reports;
 | |
|   // Go does not support ignores.
 | |
| #if !SANITIZER_GO
 | |
|   IgnoreSet mop_ignore_set;
 | |
|   IgnoreSet sync_ignore_set;
 | |
| #endif
 | |
|   // C/C++ uses fixed size shadow stack embed into Trace.
 | |
|   // Go uses malloc-allocated shadow stack with dynamic size.
 | |
|   uptr *shadow_stack;
 | |
|   uptr *shadow_stack_end;
 | |
|   uptr *shadow_stack_pos;
 | |
|   u64 *racy_shadow_addr;
 | |
|   u64 racy_state[2];
 | |
|   MutexSet mset;
 | |
|   ThreadClock clock;
 | |
| #if !SANITIZER_GO
 | |
|   Vector<JmpBuf> jmp_bufs;
 | |
|   int ignore_interceptors;
 | |
| #endif
 | |
| #if TSAN_COLLECT_STATS
 | |
|   u64 stat[StatCnt];
 | |
| #endif
 | |
|   const int tid;
 | |
|   const int unique_id;
 | |
|   bool in_symbolizer;
 | |
|   bool in_ignored_lib;
 | |
|   bool is_inited;
 | |
|   bool is_dead;
 | |
|   bool is_freeing;
 | |
|   bool is_vptr_access;
 | |
|   const uptr stk_addr;
 | |
|   const uptr stk_size;
 | |
|   const uptr tls_addr;
 | |
|   const uptr tls_size;
 | |
|   ThreadContext *tctx;
 | |
| 
 | |
| #if SANITIZER_DEBUG && !SANITIZER_GO
 | |
|   InternalDeadlockDetector internal_deadlock_detector;
 | |
| #endif
 | |
|   DDLogicalThread *dd_lt;
 | |
| 
 | |
|   // Current wired Processor, or nullptr. Required to handle any events.
 | |
|   Processor *proc1;
 | |
| #if !SANITIZER_GO
 | |
|   Processor *proc() { return proc1; }
 | |
| #else
 | |
|   Processor *proc();
 | |
| #endif
 | |
| 
 | |
|   atomic_uintptr_t in_signal_handler;
 | |
|   ThreadSignalContext *signal_ctx;
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
|   u32 last_sleep_stack_id;
 | |
|   ThreadClock last_sleep_clock;
 | |
| #endif
 | |
| 
 | |
|   // Set in regions of runtime that must be signal-safe and fork-safe.
 | |
|   // If set, malloc must not be called.
 | |
|   int nomalloc;
 | |
| 
 | |
|   const ReportDesc *current_report;
 | |
| 
 | |
|   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
 | |
|                        unsigned reuse_count,
 | |
|                        uptr stk_addr, uptr stk_size,
 | |
|                        uptr tls_addr, uptr tls_size);
 | |
| };
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| #if SANITIZER_MAC || SANITIZER_ANDROID
 | |
| ThreadState *cur_thread();
 | |
| void set_cur_thread(ThreadState *thr);
 | |
| void cur_thread_finalize();
 | |
| inline void cur_thread_init() { }
 | |
| #else
 | |
| __attribute__((tls_model("initial-exec")))
 | |
| extern THREADLOCAL char cur_thread_placeholder[];
 | |
| inline ThreadState *cur_thread() {
 | |
|   return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
 | |
| }
 | |
| inline void cur_thread_init() {
 | |
|   ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
 | |
|   if (UNLIKELY(!thr->current))
 | |
|     thr->current = thr;
 | |
| }
 | |
| inline void set_cur_thread(ThreadState *thr) {
 | |
|   reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
 | |
| }
 | |
| inline void cur_thread_finalize() { }
 | |
| #endif  // SANITIZER_MAC || SANITIZER_ANDROID
 | |
| #endif  // SANITIZER_GO
 | |
| 
 | |
| class ThreadContext final : public ThreadContextBase {
 | |
|  public:
 | |
|   explicit ThreadContext(int tid);
 | |
|   ~ThreadContext();
 | |
|   ThreadState *thr;
 | |
|   u32 creation_stack_id;
 | |
|   SyncClock sync;
 | |
|   // Epoch at which the thread had started.
 | |
|   // If we see an event from the thread stamped by an older epoch,
 | |
|   // the event is from a dead thread that shared tid with this thread.
 | |
|   u64 epoch0;
 | |
|   u64 epoch1;
 | |
| 
 | |
|   // Override superclass callbacks.
 | |
|   void OnDead() override;
 | |
|   void OnJoined(void *arg) override;
 | |
|   void OnFinished() override;
 | |
|   void OnStarted(void *arg) override;
 | |
|   void OnCreated(void *arg) override;
 | |
|   void OnReset() override;
 | |
|   void OnDetached(void *arg) override;
 | |
| };
 | |
| 
 | |
| struct RacyStacks {
 | |
|   MD5Hash hash[2];
 | |
|   bool operator==(const RacyStacks &other) const {
 | |
|     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
 | |
|       return true;
 | |
|     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct RacyAddress {
 | |
|   uptr addr_min;
 | |
|   uptr addr_max;
 | |
| };
 | |
| 
 | |
| struct FiredSuppression {
 | |
|   ReportType type;
 | |
|   uptr pc_or_addr;
 | |
|   Suppression *supp;
 | |
| };
 | |
| 
 | |
| struct Context {
 | |
|   Context();
 | |
| 
 | |
|   bool initialized;
 | |
| #if !SANITIZER_GO
 | |
|   bool after_multithreaded_fork;
 | |
| #endif
 | |
| 
 | |
|   MetaMap metamap;
 | |
| 
 | |
|   Mutex report_mtx;
 | |
|   int nreported;
 | |
|   int nmissed_expected;
 | |
|   atomic_uint64_t last_symbolize_time_ns;
 | |
| 
 | |
|   void *background_thread;
 | |
|   atomic_uint32_t stop_background_thread;
 | |
| 
 | |
|   ThreadRegistry *thread_registry;
 | |
| 
 | |
|   Mutex racy_mtx;
 | |
|   Vector<RacyStacks> racy_stacks;
 | |
|   Vector<RacyAddress> racy_addresses;
 | |
|   // Number of fired suppressions may be large enough.
 | |
|   Mutex fired_suppressions_mtx;
 | |
|   InternalMmapVector<FiredSuppression> fired_suppressions;
 | |
|   DDetector *dd;
 | |
| 
 | |
|   ClockAlloc clock_alloc;
 | |
| 
 | |
|   Flags flags;
 | |
| 
 | |
|   u64 stat[StatCnt];
 | |
|   u64 int_alloc_cnt[MBlockTypeCount];
 | |
|   u64 int_alloc_siz[MBlockTypeCount];
 | |
| };
 | |
| 
 | |
| extern Context *ctx;  // The one and the only global runtime context.
 | |
| 
 | |
| ALWAYS_INLINE Flags *flags() {
 | |
|   return &ctx->flags;
 | |
| }
 | |
| 
 | |
| struct ScopedIgnoreInterceptors {
 | |
|   ScopedIgnoreInterceptors() {
 | |
| #if !SANITIZER_GO
 | |
|     cur_thread()->ignore_interceptors++;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   ~ScopedIgnoreInterceptors() {
 | |
| #if !SANITIZER_GO
 | |
|     cur_thread()->ignore_interceptors--;
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| const char *GetObjectTypeFromTag(uptr tag);
 | |
| const char *GetReportHeaderFromTag(uptr tag);
 | |
| uptr TagFromShadowStackFrame(uptr pc);
 | |
| 
 | |
| class ScopedReportBase {
 | |
|  public:
 | |
|   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
 | |
|                        const MutexSet *mset);
 | |
|   void AddStack(StackTrace stack, bool suppressable = false);
 | |
|   void AddThread(const ThreadContext *tctx, bool suppressable = false);
 | |
|   void AddThread(int unique_tid, bool suppressable = false);
 | |
|   void AddUniqueTid(int unique_tid);
 | |
|   void AddMutex(const SyncVar *s);
 | |
|   u64 AddMutex(u64 id);
 | |
|   void AddLocation(uptr addr, uptr size);
 | |
|   void AddSleep(u32 stack_id);
 | |
|   void SetCount(int count);
 | |
| 
 | |
|   const ReportDesc *GetReport() const;
 | |
| 
 | |
|  protected:
 | |
|   ScopedReportBase(ReportType typ, uptr tag);
 | |
|   ~ScopedReportBase();
 | |
| 
 | |
|  private:
 | |
|   ReportDesc *rep_;
 | |
|   // Symbolizer makes lots of intercepted calls. If we try to process them,
 | |
|   // at best it will cause deadlocks on internal mutexes.
 | |
|   ScopedIgnoreInterceptors ignore_interceptors_;
 | |
| 
 | |
|   void AddDeadMutex(u64 id);
 | |
| 
 | |
|   ScopedReportBase(const ScopedReportBase &) = delete;
 | |
|   void operator=(const ScopedReportBase &) = delete;
 | |
| };
 | |
| 
 | |
| class ScopedReport : public ScopedReportBase {
 | |
|  public:
 | |
|   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
 | |
|   ~ScopedReport();
 | |
| 
 | |
|  private:
 | |
|   ScopedErrorReportLock lock_;
 | |
| };
 | |
| 
 | |
| ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
 | |
| void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
 | |
|                   MutexSet *mset, uptr *tag = nullptr);
 | |
| 
 | |
| // The stack could look like:
 | |
| //   <start> | <main> | <foo> | tag | <bar>
 | |
| // This will extract the tag and keep:
 | |
| //   <start> | <main> | <foo> | <bar>
 | |
| template<typename StackTraceTy>
 | |
| void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
 | |
|   if (stack->size < 2) return;
 | |
|   uptr possible_tag_pc = stack->trace[stack->size - 2];
 | |
|   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
 | |
|   if (possible_tag == kExternalTagNone) return;
 | |
|   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
 | |
|   stack->size -= 1;
 | |
|   if (tag) *tag = possible_tag;
 | |
| }
 | |
| 
 | |
| template<typename StackTraceTy>
 | |
| void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
 | |
|                         uptr *tag = nullptr) {
 | |
|   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
 | |
|   uptr start = 0;
 | |
|   if (size + !!toppc > kStackTraceMax) {
 | |
|     start = size + !!toppc - kStackTraceMax;
 | |
|     size = kStackTraceMax - !!toppc;
 | |
|   }
 | |
|   stack->Init(&thr->shadow_stack[start], size, toppc);
 | |
|   ExtractTagFromStack(stack, tag);
 | |
| }
 | |
| 
 | |
| #define GET_STACK_TRACE_FATAL(thr, pc) \
 | |
|   VarSizeStackTrace stack; \
 | |
|   ObtainCurrentStack(thr, pc, &stack); \
 | |
|   stack.ReverseOrder();
 | |
| 
 | |
| #if TSAN_COLLECT_STATS
 | |
| void StatAggregate(u64 *dst, u64 *src);
 | |
| void StatOutput(u64 *stat);
 | |
| #endif
 | |
| 
 | |
| void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
 | |
| #if TSAN_COLLECT_STATS
 | |
|   thr->stat[typ] += n;
 | |
| #endif
 | |
| }
 | |
| void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
 | |
| #if TSAN_COLLECT_STATS
 | |
|   thr->stat[typ] = n;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void MapShadow(uptr addr, uptr size);
 | |
| void MapThreadTrace(uptr addr, uptr size, const char *name);
 | |
| void DontNeedShadowFor(uptr addr, uptr size);
 | |
| void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
 | |
| void InitializeShadowMemory();
 | |
| void InitializeInterceptors();
 | |
| void InitializeLibIgnore();
 | |
| void InitializeDynamicAnnotations();
 | |
| 
 | |
| void ForkBefore(ThreadState *thr, uptr pc);
 | |
| void ForkParentAfter(ThreadState *thr, uptr pc);
 | |
| void ForkChildAfter(ThreadState *thr, uptr pc);
 | |
| 
 | |
| void ReportRace(ThreadState *thr);
 | |
| bool OutputReport(ThreadState *thr, const ScopedReport &srep);
 | |
| bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
 | |
| bool IsExpectedReport(uptr addr, uptr size);
 | |
| void PrintMatchedBenignRaces();
 | |
| 
 | |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
 | |
| # define DPrintf Printf
 | |
| #else
 | |
| # define DPrintf(...)
 | |
| #endif
 | |
| 
 | |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
 | |
| # define DPrintf2 Printf
 | |
| #else
 | |
| # define DPrintf2(...)
 | |
| #endif
 | |
| 
 | |
| u32 CurrentStackId(ThreadState *thr, uptr pc);
 | |
| ReportStack *SymbolizeStackId(u32 stack_id);
 | |
| void PrintCurrentStack(ThreadState *thr, uptr pc);
 | |
| void PrintCurrentStackSlow(uptr pc);  // uses libunwind
 | |
| 
 | |
| void Initialize(ThreadState *thr);
 | |
| void MaybeSpawnBackgroundThread();
 | |
| int Finalize(ThreadState *thr);
 | |
| 
 | |
| void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
 | |
| void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
 | |
| 
 | |
| void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
 | |
|     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
 | |
| void MemoryAccessImpl(ThreadState *thr, uptr addr,
 | |
|     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
 | |
|     u64 *shadow_mem, Shadow cur);
 | |
| void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
 | |
|     uptr size, bool is_write);
 | |
| void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
 | |
|     uptr size, uptr step, bool is_write);
 | |
| void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
 | |
|     int size, bool kAccessIsWrite, bool kIsAtomic);
 | |
| 
 | |
| const int kSizeLog1 = 0;
 | |
| const int kSizeLog2 = 1;
 | |
| const int kSizeLog4 = 2;
 | |
| const int kSizeLog8 = 3;
 | |
| 
 | |
| void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
 | |
|                                      uptr addr, int kAccessSizeLog) {
 | |
|   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
 | |
| }
 | |
| 
 | |
| void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
 | |
|                                       uptr addr, int kAccessSizeLog) {
 | |
|   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
 | |
| }
 | |
| 
 | |
| void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
 | |
|                                            uptr addr, int kAccessSizeLog) {
 | |
|   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
 | |
| }
 | |
| 
 | |
| void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
 | |
|                                             uptr addr, int kAccessSizeLog) {
 | |
|   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
 | |
| }
 | |
| 
 | |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
 | |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
 | |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
 | |
| void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
 | |
|                                          uptr size);
 | |
| 
 | |
| void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
 | |
| void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
 | |
| void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
 | |
| void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
 | |
| 
 | |
| void FuncEntry(ThreadState *thr, uptr pc);
 | |
| void FuncExit(ThreadState *thr);
 | |
| 
 | |
| int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
 | |
| void ThreadStart(ThreadState *thr, int tid, tid_t os_id,
 | |
|                  ThreadType thread_type);
 | |
| void ThreadFinish(ThreadState *thr);
 | |
| int ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
 | |
| void ThreadJoin(ThreadState *thr, uptr pc, int tid);
 | |
| void ThreadDetach(ThreadState *thr, uptr pc, int tid);
 | |
| void ThreadFinalize(ThreadState *thr);
 | |
| void ThreadSetName(ThreadState *thr, const char *name);
 | |
| int ThreadCount(ThreadState *thr);
 | |
| void ProcessPendingSignals(ThreadState *thr);
 | |
| void ThreadNotJoined(ThreadState *thr, uptr pc, int tid, uptr uid);
 | |
| 
 | |
| Processor *ProcCreate();
 | |
| void ProcDestroy(Processor *proc);
 | |
| void ProcWire(Processor *proc, ThreadState *thr);
 | |
| void ProcUnwire(Processor *proc, ThreadState *thr);
 | |
| 
 | |
| // Note: the parameter is called flagz, because flags is already taken
 | |
| // by the global function that returns flags.
 | |
| void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
 | |
|     int rec = 1);
 | |
| int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
 | |
| void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
 | |
| void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
 | |
| void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
 | |
| void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
 | |
| 
 | |
| void Acquire(ThreadState *thr, uptr pc, uptr addr);
 | |
| // AcquireGlobal synchronizes the current thread with all other threads.
 | |
| // In terms of happens-before relation, it draws a HB edge from all threads
 | |
| // (where they happen to execute right now) to the current thread. We use it to
 | |
| // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
 | |
| // right before executing finalizers. This provides a coarse, but simple
 | |
| // approximation of the actual required synchronization.
 | |
| void AcquireGlobal(ThreadState *thr, uptr pc);
 | |
| void Release(ThreadState *thr, uptr pc, uptr addr);
 | |
| void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
 | |
| void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
 | |
| void AfterSleep(ThreadState *thr, uptr pc);
 | |
| void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
 | |
| void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
 | |
| void ReleaseStoreAcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
 | |
| void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
 | |
| void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
 | |
| 
 | |
| // The hacky call uses custom calling convention and an assembly thunk.
 | |
| // It is considerably faster that a normal call for the caller
 | |
| // if it is not executed (it is intended for slow paths from hot functions).
 | |
| // The trick is that the call preserves all registers and the compiler
 | |
| // does not treat it as a call.
 | |
| // If it does not work for you, use normal call.
 | |
| #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
 | |
| // The caller may not create the stack frame for itself at all,
 | |
| // so we create a reserve stack frame for it (1024b must be enough).
 | |
| #define HACKY_CALL(f) \
 | |
|   __asm__ __volatile__("sub $1024, %%rsp;" \
 | |
|                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
 | |
|                        ".hidden " #f "_thunk;" \
 | |
|                        "call " #f "_thunk;" \
 | |
|                        "add $1024, %%rsp;" \
 | |
|                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
 | |
|                        ::: "memory", "cc");
 | |
| #else
 | |
| #define HACKY_CALL(f) f()
 | |
| #endif
 | |
| 
 | |
| void TraceSwitch(ThreadState *thr);
 | |
| uptr TraceTopPC(ThreadState *thr);
 | |
| uptr TraceSize();
 | |
| uptr TraceParts();
 | |
| Trace *ThreadTrace(int tid);
 | |
| 
 | |
| extern "C" void __tsan_trace_switch();
 | |
| void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
 | |
|                                         EventType typ, u64 addr) {
 | |
|   if (!kCollectHistory)
 | |
|     return;
 | |
|   DCHECK_GE((int)typ, 0);
 | |
|   DCHECK_LE((int)typ, 7);
 | |
|   DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
 | |
|   StatInc(thr, StatEvents);
 | |
|   u64 pos = fs.GetTracePos();
 | |
|   if (UNLIKELY((pos % kTracePartSize) == 0)) {
 | |
| #if !SANITIZER_GO
 | |
|     HACKY_CALL(__tsan_trace_switch);
 | |
| #else
 | |
|     TraceSwitch(thr);
 | |
| #endif
 | |
|   }
 | |
|   Event *trace = (Event*)GetThreadTrace(fs.tid());
 | |
|   Event *evp = &trace[pos];
 | |
|   Event ev = (u64)addr | ((u64)typ << kEventPCBits);
 | |
|   *evp = ev;
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| uptr ALWAYS_INLINE HeapEnd() {
 | |
|   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
 | |
| void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
 | |
| void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
 | |
| 
 | |
| // These need to match __tsan_switch_to_fiber_* flags defined in
 | |
| // tsan_interface.h. See documentation there as well.
 | |
| enum FiberSwitchFlags {
 | |
|   FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
 | |
| };
 | |
| 
 | |
| }  // namespace __tsan
 | |
| 
 | |
| #endif  // TSAN_RTL_H
 |