1834 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1834 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the VirtRegMap class.
 | 
						|
//
 | 
						|
// It also contains implementations of the the Spiller interface, which, given a
 | 
						|
// virtual register map and a machine function, eliminates all virtual
 | 
						|
// references by replacing them with physical register references - adding spill
 | 
						|
// code as necessary.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "spiller"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumSpills  , "Number of register spills");
 | 
						|
STATISTIC(NumPSpills , "Number of physical register spills");
 | 
						|
STATISTIC(NumReMats  , "Number of re-materialization");
 | 
						|
STATISTIC(NumDRM     , "Number of re-materializable defs elided");
 | 
						|
STATISTIC(NumStores  , "Number of stores added");
 | 
						|
STATISTIC(NumLoads   , "Number of loads added");
 | 
						|
STATISTIC(NumReused  , "Number of values reused");
 | 
						|
STATISTIC(NumDSE     , "Number of dead stores elided");
 | 
						|
STATISTIC(NumDCE     , "Number of copies elided");
 | 
						|
STATISTIC(NumDSS     , "Number of dead spill slots removed");
 | 
						|
STATISTIC(NumCommutes, "Number of instructions commuted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  enum SpillerName { simple, local };
 | 
						|
}
 | 
						|
 | 
						|
static cl::opt<SpillerName>
 | 
						|
SpillerOpt("spiller",
 | 
						|
           cl::desc("Spiller to use: (default: local)"),
 | 
						|
           cl::Prefix,
 | 
						|
           cl::values(clEnumVal(simple, "  simple spiller"),
 | 
						|
                      clEnumVal(local,  "  local spiller"),
 | 
						|
                      clEnumValEnd),
 | 
						|
           cl::init(local));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  VirtRegMap implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
VirtRegMap::VirtRegMap(MachineFunction &mf)
 | 
						|
  : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
 | 
						|
    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
 | 
						|
    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
 | 
						|
    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
 | 
						|
    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
 | 
						|
  SpillSlotToUsesMap.resize(8);
 | 
						|
  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
 | 
						|
                       TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
  grow();
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::grow() {
 | 
						|
  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
 | 
						|
  Virt2PhysMap.grow(LastVirtReg);
 | 
						|
  Virt2StackSlotMap.grow(LastVirtReg);
 | 
						|
  Virt2ReMatIdMap.grow(LastVirtReg);
 | 
						|
  Virt2SplitMap.grow(LastVirtReg);
 | 
						|
  Virt2SplitKillMap.grow(LastVirtReg);
 | 
						|
  ReMatMap.grow(LastVirtReg);
 | 
						|
  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
 | 
						|
}
 | 
						|
 | 
						|
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | 
						|
         "attempt to assign stack slot to already spilled register");
 | 
						|
  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
 | 
						|
  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
 | 
						|
                                                RC->getAlignment());
 | 
						|
  if (LowSpillSlot == NO_STACK_SLOT)
 | 
						|
    LowSpillSlot = SS;
 | 
						|
  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
 | 
						|
    HighSpillSlot = SS;
 | 
						|
  unsigned Idx = SS-LowSpillSlot;
 | 
						|
  while (Idx >= SpillSlotToUsesMap.size())
 | 
						|
    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
 | 
						|
  Virt2StackSlotMap[virtReg] = SS;
 | 
						|
  ++NumSpills;
 | 
						|
  return SS;
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | 
						|
         "attempt to assign stack slot to already spilled register");
 | 
						|
  assert((SS >= 0 ||
 | 
						|
          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
 | 
						|
         "illegal fixed frame index");
 | 
						|
  Virt2StackSlotMap[virtReg] = SS;
 | 
						|
}
 | 
						|
 | 
						|
int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | 
						|
         "attempt to assign re-mat id to already spilled register");
 | 
						|
  Virt2ReMatIdMap[virtReg] = ReMatId;
 | 
						|
  return ReMatId++;
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | 
						|
         "attempt to assign re-mat id to already spilled register");
 | 
						|
  Virt2ReMatIdMap[virtReg] = id;
 | 
						|
}
 | 
						|
 | 
						|
int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
 | 
						|
  std::map<const TargetRegisterClass*, int>::iterator I =
 | 
						|
    EmergencySpillSlots.find(RC);
 | 
						|
  if (I != EmergencySpillSlots.end())
 | 
						|
    return I->second;
 | 
						|
  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
 | 
						|
                                                RC->getAlignment());
 | 
						|
  if (LowSpillSlot == NO_STACK_SLOT)
 | 
						|
    LowSpillSlot = SS;
 | 
						|
  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
 | 
						|
    HighSpillSlot = SS;
 | 
						|
  I->second = SS;
 | 
						|
  return SS;
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
 | 
						|
  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
 | 
						|
    // If FI < LowSpillSlot, this stack reference was produced by
 | 
						|
    // instruction selection and is not a spill
 | 
						|
    if (FI >= LowSpillSlot) {
 | 
						|
      assert(FI >= 0 && "Spill slot index should not be negative!");
 | 
						|
      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
 | 
						|
             && "Invalid spill slot");
 | 
						|
      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
 | 
						|
                            MachineInstr *NewMI, ModRef MRInfo) {
 | 
						|
  // Move previous memory references folded to new instruction.
 | 
						|
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
 | 
						|
  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
 | 
						|
         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
 | 
						|
    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
 | 
						|
    MI2VirtMap.erase(I++);
 | 
						|
  }
 | 
						|
 | 
						|
  // add new memory reference
 | 
						|
  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
 | 
						|
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
 | 
						|
  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isFrameIndex())
 | 
						|
      continue;
 | 
						|
    int FI = MO.getIndex();
 | 
						|
    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
 | 
						|
      continue;
 | 
						|
    // This stack reference was produced by instruction selection and
 | 
						|
    // is not a spill
 | 
						|
    if (FI < LowSpillSlot)
 | 
						|
      continue;
 | 
						|
    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
 | 
						|
           && "Invalid spill slot");
 | 
						|
    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
 | 
						|
  }
 | 
						|
  MI2VirtMap.erase(MI);
 | 
						|
  SpillPt2VirtMap.erase(MI);
 | 
						|
  RestorePt2VirtMap.erase(MI);
 | 
						|
  EmergencySpillMap.erase(MI);
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::print(std::ostream &OS) const {
 | 
						|
  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
 | 
						|
 | 
						|
  OS << "********** REGISTER MAP **********\n";
 | 
						|
  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | 
						|
         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
 | 
						|
    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
 | 
						|
      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
 | 
						|
         << "]\n";
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | 
						|
         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
 | 
						|
    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
 | 
						|
      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
 | 
						|
  OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void VirtRegMap::dump() const {
 | 
						|
  print(cerr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Simple Spiller Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Spiller::~Spiller() {}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
 | 
						|
    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | 
						|
  DOUT << "********** REWRITE MACHINE CODE **********\n";
 | 
						|
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  
 | 
						|
 | 
						|
  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
 | 
						|
  // each vreg once (in the case where a spilled vreg is used by multiple
 | 
						|
  // operands).  This is always smaller than the number of operands to the
 | 
						|
  // current machine instr, so it should be small.
 | 
						|
  std::vector<unsigned> LoadedRegs;
 | 
						|
 | 
						|
  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | 
						|
       MBBI != E; ++MBBI) {
 | 
						|
    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
 | 
						|
    MachineBasicBlock &MBB = *MBBI;
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB.begin(),
 | 
						|
           E = MBB.end(); MII != E; ++MII) {
 | 
						|
      MachineInstr &MI = *MII;
 | 
						|
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO = MI.getOperand(i);
 | 
						|
        if (MO.isRegister() && MO.getReg()) {
 | 
						|
          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
            unsigned VirtReg = MO.getReg();
 | 
						|
            unsigned PhysReg = VRM.getPhys(VirtReg);
 | 
						|
            if (!VRM.isAssignedReg(VirtReg)) {
 | 
						|
              int StackSlot = VRM.getStackSlot(VirtReg);
 | 
						|
              const TargetRegisterClass* RC =
 | 
						|
                MF.getRegInfo().getRegClass(VirtReg);
 | 
						|
 | 
						|
              if (MO.isUse() &&
 | 
						|
                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
 | 
						|
                  == LoadedRegs.end()) {
 | 
						|
                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
 | 
						|
                MachineInstr *LoadMI = prior(MII);
 | 
						|
                VRM.addSpillSlotUse(StackSlot, LoadMI);
 | 
						|
                LoadedRegs.push_back(VirtReg);
 | 
						|
                ++NumLoads;
 | 
						|
                DOUT << '\t' << *LoadMI;
 | 
						|
              }
 | 
						|
 | 
						|
              if (MO.isDef()) {
 | 
						|
                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
 | 
						|
                                        StackSlot, RC);
 | 
						|
                MachineInstr *StoreMI = next(MII);
 | 
						|
                VRM.addSpillSlotUse(StackSlot, StoreMI);
 | 
						|
                ++NumStores;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            MF.getRegInfo().setPhysRegUsed(PhysReg);
 | 
						|
            MI.getOperand(i).setReg(PhysReg);
 | 
						|
          } else {
 | 
						|
            MF.getRegInfo().setPhysRegUsed(MO.getReg());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      DOUT << '\t' << MI;
 | 
						|
      LoadedRegs.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local Spiller Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class AvailableSpills;
 | 
						|
 | 
						|
  /// LocalSpiller - This spiller does a simple pass over the machine basic
 | 
						|
  /// block to attempt to keep spills in registers as much as possible for
 | 
						|
  /// blocks that have low register pressure (the vreg may be spilled due to
 | 
						|
  /// register pressure in other blocks).
 | 
						|
  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
 | 
						|
    MachineRegisterInfo *RegInfo;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    DenseMap<MachineInstr*, unsigned> DistanceMap;
 | 
						|
  public:
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | 
						|
      RegInfo = &MF.getRegInfo(); 
 | 
						|
      TRI = MF.getTarget().getRegisterInfo();
 | 
						|
      TII = MF.getTarget().getInstrInfo();
 | 
						|
      DOUT << "\n**** Local spiller rewriting function '"
 | 
						|
           << MF.getFunction()->getName() << "':\n";
 | 
						|
      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
 | 
						|
              " ****\n";
 | 
						|
      DEBUG(MF.dump());
 | 
						|
 | 
						|
      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
 | 
						|
           MBB != E; ++MBB)
 | 
						|
        RewriteMBB(*MBB, VRM);
 | 
						|
 | 
						|
      // Mark unused spill slots.
 | 
						|
      MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
      int SS = VRM.getLowSpillSlot();
 | 
						|
      if (SS != VirtRegMap::NO_STACK_SLOT)
 | 
						|
        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
 | 
						|
          if (!VRM.isSpillSlotUsed(SS)) {
 | 
						|
            MFI->RemoveStackObject(SS);
 | 
						|
            ++NumDSS;
 | 
						|
          }
 | 
						|
 | 
						|
      DOUT << "**** Post Machine Instrs ****\n";
 | 
						|
      DEBUG(MF.dump());
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
 | 
						|
                          unsigned Reg, BitVector &RegKills,
 | 
						|
                          std::vector<MachineOperand*> &KillOps);
 | 
						|
    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
 | 
						|
                           MachineBasicBlock::iterator &MII,
 | 
						|
                           std::vector<MachineInstr*> &MaybeDeadStores,
 | 
						|
                           AvailableSpills &Spills, BitVector &RegKills,
 | 
						|
                           std::vector<MachineOperand*> &KillOps,
 | 
						|
                           VirtRegMap &VRM);
 | 
						|
    bool CommuteToFoldReload(MachineBasicBlock &MBB,
 | 
						|
                             MachineBasicBlock::iterator &MII,
 | 
						|
                             unsigned VirtReg, unsigned SrcReg, int SS,
 | 
						|
                             BitVector &RegKills,
 | 
						|
                             std::vector<MachineOperand*> &KillOps,
 | 
						|
                             const TargetRegisterInfo *TRI,
 | 
						|
                             VirtRegMap &VRM);
 | 
						|
    void SpillRegToStackSlot(MachineBasicBlock &MBB,
 | 
						|
                             MachineBasicBlock::iterator &MII,
 | 
						|
                             int Idx, unsigned PhysReg, int StackSlot,
 | 
						|
                             const TargetRegisterClass *RC,
 | 
						|
                             bool isAvailable, MachineInstr *&LastStore,
 | 
						|
                             AvailableSpills &Spills,
 | 
						|
                             SmallSet<MachineInstr*, 4> &ReMatDefs,
 | 
						|
                             BitVector &RegKills,
 | 
						|
                             std::vector<MachineOperand*> &KillOps,
 | 
						|
                             VirtRegMap &VRM);
 | 
						|
    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
 | 
						|
/// top down, keep track of which spills slots or remat are available in each
 | 
						|
/// register.
 | 
						|
///
 | 
						|
/// Note that not all physregs are created equal here.  In particular, some
 | 
						|
/// physregs are reloads that we are allowed to clobber or ignore at any time.
 | 
						|
/// Other physregs are values that the register allocated program is using that
 | 
						|
/// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
 | 
						|
/// per-stack-slot / remat id basis as the low bit in the value of the
 | 
						|
/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
 | 
						|
/// this bit and addAvailable sets it if.
 | 
						|
namespace {
 | 
						|
class VISIBILITY_HIDDEN AvailableSpills {
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
 | 
						|
  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
 | 
						|
  // or remat'ed virtual register values that are still available, due to being
 | 
						|
  // loaded or stored to, but not invalidated yet.
 | 
						|
  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
 | 
						|
    
 | 
						|
  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
 | 
						|
  // indicating which stack slot values are currently held by a physreg.  This
 | 
						|
  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
 | 
						|
  // physreg is modified.
 | 
						|
  std::multimap<unsigned, int> PhysRegsAvailable;
 | 
						|
  
 | 
						|
  void disallowClobberPhysRegOnly(unsigned PhysReg);
 | 
						|
 | 
						|
  void ClobberPhysRegOnly(unsigned PhysReg);
 | 
						|
public:
 | 
						|
  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
 | 
						|
    : TRI(tri), TII(tii) {
 | 
						|
  }
 | 
						|
  
 | 
						|
  const TargetRegisterInfo *getRegInfo() const { return TRI; }
 | 
						|
 | 
						|
  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
 | 
						|
  /// available in a  physical register, return that PhysReg, otherwise
 | 
						|
  /// return 0.
 | 
						|
  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
 | 
						|
    std::map<int, unsigned>::const_iterator I =
 | 
						|
      SpillSlotsOrReMatsAvailable.find(Slot);
 | 
						|
    if (I != SpillSlotsOrReMatsAvailable.end()) {
 | 
						|
      return I->second >> 1;  // Remove the CanClobber bit.
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// addAvailable - Mark that the specified stack slot / remat is available in
 | 
						|
  /// the specified physreg.  If CanClobber is true, the physreg can be modified
 | 
						|
  /// at any time without changing the semantics of the program.
 | 
						|
  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
 | 
						|
                    bool CanClobber = true) {
 | 
						|
    // If this stack slot is thought to be available in some other physreg, 
 | 
						|
    // remove its record.
 | 
						|
    ModifyStackSlotOrReMat(SlotOrReMat);
 | 
						|
    
 | 
						|
    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
 | 
						|
    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
 | 
						|
  
 | 
						|
    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | 
						|
      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
 | 
						|
    else
 | 
						|
      DOUT << "Remembering SS#" << SlotOrReMat;
 | 
						|
    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  /// canClobberPhysReg - Return true if the spiller is allowed to change the 
 | 
						|
  /// value of the specified stackslot register if it desires.  The specified
 | 
						|
  /// stack slot must be available in a physreg for this query to make sense.
 | 
						|
  bool canClobberPhysReg(int SlotOrReMat) const {
 | 
						|
    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
 | 
						|
           "Value not available!");
 | 
						|
    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | 
						|
  /// stackslot register. The register is still available but is no longer
 | 
						|
  /// allowed to be modifed.
 | 
						|
  void disallowClobberPhysReg(unsigned PhysReg);
 | 
						|
  
 | 
						|
  /// ClobberPhysReg - This is called when the specified physreg changes
 | 
						|
  /// value.  We use this to invalidate any info about stuff that lives in
 | 
						|
  /// it and any of its aliases.
 | 
						|
  void ClobberPhysReg(unsigned PhysReg);
 | 
						|
 | 
						|
  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | 
						|
  /// slot changes.  This removes information about which register the previous
 | 
						|
  /// value for this slot lives in (as the previous value is dead now).
 | 
						|
  void ModifyStackSlotOrReMat(int SlotOrReMat);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
 | 
						|
/// stackslot register. The register is still available but is no longer
 | 
						|
/// allowed to be modifed.
 | 
						|
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
 | 
						|
  std::multimap<unsigned, int>::iterator I =
 | 
						|
    PhysRegsAvailable.lower_bound(PhysReg);
 | 
						|
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | 
						|
    int SlotOrReMat = I->second;
 | 
						|
    I++;
 | 
						|
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | 
						|
           "Bidirectional map mismatch!");
 | 
						|
    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
 | 
						|
    DOUT << "PhysReg " << TRI->getName(PhysReg)
 | 
						|
         << " copied, it is available for use but can no longer be modified\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | 
						|
/// stackslot register and its aliases. The register and its aliases may
 | 
						|
/// still available but is no longer allowed to be modifed.
 | 
						|
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
 | 
						|
  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | 
						|
    disallowClobberPhysRegOnly(*AS);
 | 
						|
  disallowClobberPhysRegOnly(PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
/// ClobberPhysRegOnly - This is called when the specified physreg changes
 | 
						|
/// value.  We use this to invalidate any info about stuff we thing lives in it.
 | 
						|
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
 | 
						|
  std::multimap<unsigned, int>::iterator I =
 | 
						|
    PhysRegsAvailable.lower_bound(PhysReg);
 | 
						|
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | 
						|
    int SlotOrReMat = I->second;
 | 
						|
    PhysRegsAvailable.erase(I++);
 | 
						|
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | 
						|
           "Bidirectional map mismatch!");
 | 
						|
    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
 | 
						|
    DOUT << "PhysReg " << TRI->getName(PhysReg)
 | 
						|
         << " clobbered, invalidating ";
 | 
						|
    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | 
						|
      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
 | 
						|
    else
 | 
						|
      DOUT << "SS#" << SlotOrReMat << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ClobberPhysReg - This is called when the specified physreg changes
 | 
						|
/// value.  We use this to invalidate any info about stuff we thing lives in
 | 
						|
/// it and any of its aliases.
 | 
						|
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
 | 
						|
  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | 
						|
    ClobberPhysRegOnly(*AS);
 | 
						|
  ClobberPhysRegOnly(PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | 
						|
/// slot changes.  This removes information about which register the previous
 | 
						|
/// value for this slot lives in (as the previous value is dead now).
 | 
						|
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
 | 
						|
  std::map<int, unsigned>::iterator It =
 | 
						|
    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
 | 
						|
  if (It == SpillSlotsOrReMatsAvailable.end()) return;
 | 
						|
  unsigned Reg = It->second >> 1;
 | 
						|
  SpillSlotsOrReMatsAvailable.erase(It);
 | 
						|
  
 | 
						|
  // This register may hold the value of multiple stack slots, only remove this
 | 
						|
  // stack slot from the set of values the register contains.
 | 
						|
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
 | 
						|
  for (; ; ++I) {
 | 
						|
    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
 | 
						|
           "Map inverse broken!");
 | 
						|
    if (I->second == SlotOrReMat) break;
 | 
						|
  }
 | 
						|
  PhysRegsAvailable.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// InvalidateKills - MI is going to be deleted. If any of its operands are
 | 
						|
/// marked kill, then invalidate the information.
 | 
						|
static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
 | 
						|
                            std::vector<MachineOperand*> &KillOps,
 | 
						|
                            SmallVector<unsigned, 2> *KillRegs = NULL) {
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (KillRegs)
 | 
						|
      KillRegs->push_back(Reg);
 | 
						|
    if (KillOps[Reg] == &MO) {
 | 
						|
      RegKills.reset(Reg);
 | 
						|
      KillOps[Reg] = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// InvalidateKill - A MI that defines the specified register is being deleted,
 | 
						|
/// invalidate the register kill information.
 | 
						|
static void InvalidateKill(unsigned Reg, BitVector &RegKills,
 | 
						|
                           std::vector<MachineOperand*> &KillOps) {
 | 
						|
  if (RegKills[Reg]) {
 | 
						|
    KillOps[Reg]->setIsKill(false);
 | 
						|
    KillOps[Reg] = NULL;
 | 
						|
    RegKills.reset(Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// InvalidateRegDef - If the def operand of the specified def MI is now dead
 | 
						|
/// (since it's spill instruction is removed), mark it isDead. Also checks if
 | 
						|
/// the def MI has other definition operands that are not dead. Returns it by
 | 
						|
/// reference.
 | 
						|
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
 | 
						|
                             MachineInstr &NewDef, unsigned Reg,
 | 
						|
                             bool &HasLiveDef) {
 | 
						|
  // Due to remat, it's possible this reg isn't being reused. That is,
 | 
						|
  // the def of this reg (by prev MI) is now dead.
 | 
						|
  MachineInstr *DefMI = I;
 | 
						|
  MachineOperand *DefOp = NULL;
 | 
						|
  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = DefMI->getOperand(i);
 | 
						|
    if (MO.isRegister() && MO.isDef()) {
 | 
						|
      if (MO.getReg() == Reg)
 | 
						|
        DefOp = &MO;
 | 
						|
      else if (!MO.isDead())
 | 
						|
        HasLiveDef = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!DefOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool FoundUse = false, Done = false;
 | 
						|
  MachineBasicBlock::iterator E = &NewDef;
 | 
						|
  ++I; ++E;
 | 
						|
  for (; !Done && I != E; ++I) {
 | 
						|
    MachineInstr *NMI = I;
 | 
						|
    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
 | 
						|
      MachineOperand &MO = NMI->getOperand(j);
 | 
						|
      if (!MO.isRegister() || MO.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      if (MO.isUse())
 | 
						|
        FoundUse = true;
 | 
						|
      Done = true; // Stop after scanning all the operands of this MI.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!FoundUse) {
 | 
						|
    // Def is dead!
 | 
						|
    DefOp->setIsDead();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateKills - Track and update kill info. If a MI reads a register that is
 | 
						|
/// marked kill, then it must be due to register reuse. Transfer the kill info
 | 
						|
/// over.
 | 
						|
static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
 | 
						|
                        std::vector<MachineOperand*> &KillOps) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isRegister() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
 | 
						|
      // That can't be right. Register is killed but not re-defined and it's
 | 
						|
      // being reused. Let's fix that.
 | 
						|
      KillOps[Reg]->setIsKill(false);
 | 
						|
      KillOps[Reg] = NULL;
 | 
						|
      RegKills.reset(Reg);
 | 
						|
      if (i < TID.getNumOperands() &&
 | 
						|
          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
 | 
						|
        // Unless it's a two-address operand, this is the new kill.
 | 
						|
        MO.setIsKill();
 | 
						|
    }
 | 
						|
    if (MO.isKill()) {
 | 
						|
      RegKills.set(Reg);
 | 
						|
      KillOps[Reg] = &MO;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isRegister() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    RegKills.reset(Reg);
 | 
						|
    KillOps[Reg] = NULL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
 | 
						|
///
 | 
						|
static void ReMaterialize(MachineBasicBlock &MBB,
 | 
						|
                          MachineBasicBlock::iterator &MII,
 | 
						|
                          unsigned DestReg, unsigned Reg,
 | 
						|
                          const TargetInstrInfo *TII,
 | 
						|
                          const TargetRegisterInfo *TRI,
 | 
						|
                          VirtRegMap &VRM) {
 | 
						|
  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
 | 
						|
  MachineInstr *NewMI = prior(MII);
 | 
						|
  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = NewMI->getOperand(i);
 | 
						|
    if (!MO.isRegister() || MO.getReg() == 0)
 | 
						|
      continue;
 | 
						|
    unsigned VirtReg = MO.getReg();
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
 | 
						|
      continue;
 | 
						|
    assert(MO.isUse());
 | 
						|
    unsigned SubIdx = MO.getSubReg();
 | 
						|
    unsigned Phys = VRM.getPhys(VirtReg);
 | 
						|
    assert(Phys);
 | 
						|
    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
 | 
						|
    MO.setReg(RReg);
 | 
						|
  }
 | 
						|
  ++NumReMats;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ReusedOp - For each reused operand, we keep track of a bit of information, in
 | 
						|
// case we need to rollback upon processing a new operand.  See comments below.
 | 
						|
namespace {
 | 
						|
  struct ReusedOp {
 | 
						|
    // The MachineInstr operand that reused an available value.
 | 
						|
    unsigned Operand;
 | 
						|
 | 
						|
    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
 | 
						|
    unsigned StackSlotOrReMat;
 | 
						|
 | 
						|
    // PhysRegReused - The physical register the value was available in.
 | 
						|
    unsigned PhysRegReused;
 | 
						|
 | 
						|
    // AssignedPhysReg - The physreg that was assigned for use by the reload.
 | 
						|
    unsigned AssignedPhysReg;
 | 
						|
    
 | 
						|
    // VirtReg - The virtual register itself.
 | 
						|
    unsigned VirtReg;
 | 
						|
 | 
						|
    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
 | 
						|
             unsigned vreg)
 | 
						|
      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
 | 
						|
        AssignedPhysReg(apr), VirtReg(vreg) {}
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
 | 
						|
  /// is reused instead of reloaded.
 | 
						|
  class VISIBILITY_HIDDEN ReuseInfo {
 | 
						|
    MachineInstr &MI;
 | 
						|
    std::vector<ReusedOp> Reuses;
 | 
						|
    BitVector PhysRegsClobbered;
 | 
						|
  public:
 | 
						|
    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
 | 
						|
      PhysRegsClobbered.resize(tri->getNumRegs());
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool hasReuses() const {
 | 
						|
      return !Reuses.empty();
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// addReuse - If we choose to reuse a virtual register that is already
 | 
						|
    /// available instead of reloading it, remember that we did so.
 | 
						|
    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
 | 
						|
                  unsigned PhysRegReused, unsigned AssignedPhysReg,
 | 
						|
                  unsigned VirtReg) {
 | 
						|
      // If the reload is to the assigned register anyway, no undo will be
 | 
						|
      // required.
 | 
						|
      if (PhysRegReused == AssignedPhysReg) return;
 | 
						|
      
 | 
						|
      // Otherwise, remember this.
 | 
						|
      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
 | 
						|
                                AssignedPhysReg, VirtReg));
 | 
						|
    }
 | 
						|
 | 
						|
    void markClobbered(unsigned PhysReg) {
 | 
						|
      PhysRegsClobbered.set(PhysReg);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isClobbered(unsigned PhysReg) const {
 | 
						|
      return PhysRegsClobbered.test(PhysReg);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
 | 
						|
    /// is some other operand that is using the specified register, either pick
 | 
						|
    /// a new register to use, or evict the previous reload and use this reg. 
 | 
						|
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | 
						|
                             AvailableSpills &Spills,
 | 
						|
                             std::vector<MachineInstr*> &MaybeDeadStores,
 | 
						|
                             SmallSet<unsigned, 8> &Rejected,
 | 
						|
                             BitVector &RegKills,
 | 
						|
                             std::vector<MachineOperand*> &KillOps,
 | 
						|
                             VirtRegMap &VRM) {
 | 
						|
      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
 | 
						|
                                   .getInstrInfo();
 | 
						|
      
 | 
						|
      if (Reuses.empty()) return PhysReg;  // This is most often empty.
 | 
						|
 | 
						|
      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
 | 
						|
        ReusedOp &Op = Reuses[ro];
 | 
						|
        // If we find some other reuse that was supposed to use this register
 | 
						|
        // exactly for its reload, we can change this reload to use ITS reload
 | 
						|
        // register. That is, unless its reload register has already been
 | 
						|
        // considered and subsequently rejected because it has also been reused
 | 
						|
        // by another operand.
 | 
						|
        if (Op.PhysRegReused == PhysReg &&
 | 
						|
            Rejected.count(Op.AssignedPhysReg) == 0) {
 | 
						|
          // Yup, use the reload register that we didn't use before.
 | 
						|
          unsigned NewReg = Op.AssignedPhysReg;
 | 
						|
          Rejected.insert(PhysReg);
 | 
						|
          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
 | 
						|
                                 RegKills, KillOps, VRM);
 | 
						|
        } else {
 | 
						|
          // Otherwise, we might also have a problem if a previously reused
 | 
						|
          // value aliases the new register.  If so, codegen the previous reload
 | 
						|
          // and use this one.          
 | 
						|
          unsigned PRRU = Op.PhysRegReused;
 | 
						|
          const TargetRegisterInfo *TRI = Spills.getRegInfo();
 | 
						|
          if (TRI->areAliases(PRRU, PhysReg)) {
 | 
						|
            // Okay, we found out that an alias of a reused register
 | 
						|
            // was used.  This isn't good because it means we have
 | 
						|
            // to undo a previous reuse.
 | 
						|
            MachineBasicBlock *MBB = MI->getParent();
 | 
						|
            const TargetRegisterClass *AliasRC =
 | 
						|
              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
 | 
						|
 | 
						|
            // Copy Op out of the vector and remove it, we're going to insert an
 | 
						|
            // explicit load for it.
 | 
						|
            ReusedOp NewOp = Op;
 | 
						|
            Reuses.erase(Reuses.begin()+ro);
 | 
						|
 | 
						|
            // Ok, we're going to try to reload the assigned physreg into the
 | 
						|
            // slot that we were supposed to in the first place.  However, that
 | 
						|
            // register could hold a reuse.  Check to see if it conflicts or
 | 
						|
            // would prefer us to use a different register.
 | 
						|
            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
 | 
						|
                                                  MI, Spills, MaybeDeadStores,
 | 
						|
                                              Rejected, RegKills, KillOps, VRM);
 | 
						|
            
 | 
						|
            MachineBasicBlock::iterator MII = MI;
 | 
						|
            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
 | 
						|
              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
 | 
						|
            } else {
 | 
						|
              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
 | 
						|
                                        NewOp.StackSlotOrReMat, AliasRC);
 | 
						|
              MachineInstr *LoadMI = prior(MII);
 | 
						|
              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
 | 
						|
              // Any stores to this stack slot are not dead anymore.
 | 
						|
              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
 | 
						|
              ++NumLoads;
 | 
						|
            }
 | 
						|
            Spills.ClobberPhysReg(NewPhysReg);
 | 
						|
            Spills.ClobberPhysReg(NewOp.PhysRegReused);
 | 
						|
            
 | 
						|
            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
 | 
						|
            
 | 
						|
            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
 | 
						|
            --MII;
 | 
						|
            UpdateKills(*MII, RegKills, KillOps);
 | 
						|
            DOUT << '\t' << *MII;
 | 
						|
            
 | 
						|
            DOUT << "Reuse undone!\n";
 | 
						|
            --NumReused;
 | 
						|
            
 | 
						|
            // Finally, PhysReg is now available, go ahead and use it.
 | 
						|
            return PhysReg;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return PhysReg;
 | 
						|
    }
 | 
						|
 | 
						|
    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
 | 
						|
    /// 'Rejected' set to remember which registers have been considered and
 | 
						|
    /// rejected for the reload. This avoids infinite looping in case like
 | 
						|
    /// this:
 | 
						|
    /// t1 := op t2, t3
 | 
						|
    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
 | 
						|
    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
 | 
						|
    /// t1 <- desires r1
 | 
						|
    ///       sees r1 is taken by t2, tries t2's reload register r0
 | 
						|
    ///       sees r0 is taken by t3, tries t3's reload register r1
 | 
						|
    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
 | 
						|
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | 
						|
                             AvailableSpills &Spills,
 | 
						|
                             std::vector<MachineInstr*> &MaybeDeadStores,
 | 
						|
                             BitVector &RegKills,
 | 
						|
                             std::vector<MachineOperand*> &KillOps,
 | 
						|
                             VirtRegMap &VRM) {
 | 
						|
      SmallSet<unsigned, 8> Rejected;
 | 
						|
      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
 | 
						|
                             RegKills, KillOps, VRM);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
 | 
						|
/// instruction. e.g.
 | 
						|
///     xorl  %edi, %eax
 | 
						|
///     movl  %eax, -32(%ebp)
 | 
						|
///     movl  -36(%ebp), %eax
 | 
						|
///     orl   %eax, -32(%ebp)
 | 
						|
/// ==>
 | 
						|
///     xorl  %edi, %eax
 | 
						|
///     orl   -36(%ebp), %eax
 | 
						|
///     mov   %eax, -32(%ebp)
 | 
						|
/// This enables unfolding optimization for a subsequent instruction which will
 | 
						|
/// also eliminate the newly introduced store instruction.
 | 
						|
bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
 | 
						|
                                    MachineBasicBlock::iterator &MII,
 | 
						|
                                    std::vector<MachineInstr*> &MaybeDeadStores,
 | 
						|
                                    AvailableSpills &Spills,
 | 
						|
                                    BitVector &RegKills,
 | 
						|
                                    std::vector<MachineOperand*> &KillOps,
 | 
						|
                                    VirtRegMap &VRM) {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  MachineInstr &MI = *MII;
 | 
						|
  unsigned UnfoldedOpc = 0;
 | 
						|
  unsigned UnfoldPR = 0;
 | 
						|
  unsigned UnfoldVR = 0;
 | 
						|
  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
 | 
						|
  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | 
						|
  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
 | 
						|
    // Only transform a MI that folds a single register.
 | 
						|
    if (UnfoldedOpc)
 | 
						|
      return false;
 | 
						|
    UnfoldVR = I->second.first;
 | 
						|
    VirtRegMap::ModRef MR = I->second.second;
 | 
						|
    // MI2VirtMap be can updated which invalidate the iterator.
 | 
						|
    // Increment the iterator first.
 | 
						|
    ++I; 
 | 
						|
    if (VRM.isAssignedReg(UnfoldVR))
 | 
						|
      continue;
 | 
						|
    // If this reference is not a use, any previous store is now dead.
 | 
						|
    // Otherwise, the store to this stack slot is not dead anymore.
 | 
						|
    FoldedSS = VRM.getStackSlot(UnfoldVR);
 | 
						|
    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
 | 
						|
    if (DeadStore && (MR & VirtRegMap::isModRef)) {
 | 
						|
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
 | 
						|
      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
 | 
						|
        continue;
 | 
						|
      UnfoldPR = PhysReg;
 | 
						|
      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
 | 
						|
                                                    false, true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!UnfoldedOpc)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned VirtReg = MO.getReg();
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
 | 
						|
      continue;
 | 
						|
    if (VRM.isAssignedReg(VirtReg)) {
 | 
						|
      unsigned PhysReg = VRM.getPhys(VirtReg);
 | 
						|
      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
 | 
						|
        return false;
 | 
						|
    } else if (VRM.isReMaterialized(VirtReg))
 | 
						|
      continue;
 | 
						|
    int SS = VRM.getStackSlot(VirtReg);
 | 
						|
    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | 
						|
    if (PhysReg) {
 | 
						|
      if (TRI->regsOverlap(PhysReg, UnfoldPR))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    PhysReg = VRM.getPhys(VirtReg);
 | 
						|
    if (!TRI->regsOverlap(PhysReg, UnfoldPR))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Ok, we'll need to reload the value into a register which makes
 | 
						|
    // it impossible to perform the store unfolding optimization later.
 | 
						|
    // Let's see if it is possible to fold the load if the store is
 | 
						|
    // unfolded. This allows us to perform the store unfolding
 | 
						|
    // optimization.
 | 
						|
    SmallVector<MachineInstr*, 4> NewMIs;
 | 
						|
    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
 | 
						|
      assert(NewMIs.size() == 1);
 | 
						|
      MachineInstr *NewMI = NewMIs.back();
 | 
						|
      NewMIs.clear();
 | 
						|
      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
 | 
						|
      assert(Idx != -1);
 | 
						|
      SmallVector<unsigned, 2> Ops;
 | 
						|
      Ops.push_back(Idx);
 | 
						|
      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
 | 
						|
      if (FoldedMI) {
 | 
						|
        VRM.addSpillSlotUse(SS, FoldedMI);
 | 
						|
        if (!VRM.hasPhys(UnfoldVR))
 | 
						|
          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
 | 
						|
        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | 
						|
        MII = MBB.insert(MII, FoldedMI);
 | 
						|
        InvalidateKills(MI, RegKills, KillOps);
 | 
						|
        VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
        MBB.erase(&MI);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      MF.DeleteMachineInstr(NewMI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CommuteToFoldReload -
 | 
						|
/// Look for
 | 
						|
/// r1 = load fi#1
 | 
						|
/// r1 = op r1, r2<kill>
 | 
						|
/// store r1, fi#1
 | 
						|
///
 | 
						|
/// If op is commutable and r2 is killed, then we can xform these to
 | 
						|
/// r2 = op r2, fi#1
 | 
						|
/// store r2, fi#1
 | 
						|
bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
 | 
						|
                                    MachineBasicBlock::iterator &MII,
 | 
						|
                                    unsigned VirtReg, unsigned SrcReg, int SS,
 | 
						|
                                    BitVector &RegKills,
 | 
						|
                                    std::vector<MachineOperand*> &KillOps,
 | 
						|
                                    const TargetRegisterInfo *TRI,
 | 
						|
                                    VirtRegMap &VRM) {
 | 
						|
  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  MachineInstr &MI = *MII;
 | 
						|
  MachineBasicBlock::iterator DefMII = prior(MII);
 | 
						|
  MachineInstr *DefMI = DefMII;
 | 
						|
  const TargetInstrDesc &TID = DefMI->getDesc();
 | 
						|
  unsigned NewDstIdx;
 | 
						|
  if (DefMII != MBB.begin() &&
 | 
						|
      TID.isCommutable() &&
 | 
						|
      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
 | 
						|
    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | 
						|
    unsigned NewReg = NewDstMO.getReg();
 | 
						|
    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
 | 
						|
      return false;
 | 
						|
    MachineInstr *ReloadMI = prior(DefMII);
 | 
						|
    int FrameIdx;
 | 
						|
    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
 | 
						|
    if (DestReg != SrcReg || FrameIdx != SS)
 | 
						|
      return false;
 | 
						|
    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
 | 
						|
    if (UseIdx == -1)
 | 
						|
      return false;
 | 
						|
    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
 | 
						|
    if (DefIdx == -1)
 | 
						|
      return false;
 | 
						|
    assert(DefMI->getOperand(DefIdx).isRegister() &&
 | 
						|
           DefMI->getOperand(DefIdx).getReg() == SrcReg);
 | 
						|
 | 
						|
    // Now commute def instruction.
 | 
						|
    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
 | 
						|
    if (!CommutedMI)
 | 
						|
      return false;
 | 
						|
    SmallVector<unsigned, 2> Ops;
 | 
						|
    Ops.push_back(NewDstIdx);
 | 
						|
    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
 | 
						|
    // Not needed since foldMemoryOperand returns new MI.
 | 
						|
    MF.DeleteMachineInstr(CommutedMI);
 | 
						|
    if (!FoldedMI)
 | 
						|
      return false;
 | 
						|
 | 
						|
    VRM.addSpillSlotUse(SS, FoldedMI);
 | 
						|
    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | 
						|
    // Insert new def MI and spill MI.
 | 
						|
    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
 | 
						|
    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
 | 
						|
    MII = prior(MII);
 | 
						|
    MachineInstr *StoreMI = MII;
 | 
						|
    VRM.addSpillSlotUse(SS, StoreMI);
 | 
						|
    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | 
						|
    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
 | 
						|
 | 
						|
    // Delete all 3 old instructions.
 | 
						|
    InvalidateKills(*ReloadMI, RegKills, KillOps);
 | 
						|
    VRM.RemoveMachineInstrFromMaps(ReloadMI);
 | 
						|
    MBB.erase(ReloadMI);
 | 
						|
    InvalidateKills(*DefMI, RegKills, KillOps);
 | 
						|
    VRM.RemoveMachineInstrFromMaps(DefMI);
 | 
						|
    MBB.erase(DefMI);
 | 
						|
    InvalidateKills(MI, RegKills, KillOps);
 | 
						|
    VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
    MBB.erase(&MI);
 | 
						|
 | 
						|
    ++NumCommutes;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// findSuperReg - Find the SubReg's super-register of given register class
 | 
						|
/// where its SubIdx sub-register is SubReg.
 | 
						|
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
 | 
						|
                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
 | 
						|
  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned Reg = *I;
 | 
						|
    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
 | 
						|
      return Reg;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
 | 
						|
/// the last store to the same slot is now dead. If so, remove the last store.
 | 
						|
void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
 | 
						|
                                  MachineBasicBlock::iterator &MII,
 | 
						|
                                  int Idx, unsigned PhysReg, int StackSlot,
 | 
						|
                                  const TargetRegisterClass *RC,
 | 
						|
                                  bool isAvailable, MachineInstr *&LastStore,
 | 
						|
                                  AvailableSpills &Spills,
 | 
						|
                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
 | 
						|
                                  BitVector &RegKills,
 | 
						|
                                  std::vector<MachineOperand*> &KillOps,
 | 
						|
                                  VirtRegMap &VRM) {
 | 
						|
  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
 | 
						|
  MachineInstr *StoreMI = next(MII);
 | 
						|
  VRM.addSpillSlotUse(StackSlot, StoreMI);
 | 
						|
  DOUT << "Store:\t" << *StoreMI;
 | 
						|
 | 
						|
  // If there is a dead store to this stack slot, nuke it now.
 | 
						|
  if (LastStore) {
 | 
						|
    DOUT << "Removed dead store:\t" << *LastStore;
 | 
						|
    ++NumDSE;
 | 
						|
    SmallVector<unsigned, 2> KillRegs;
 | 
						|
    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
 | 
						|
    MachineBasicBlock::iterator PrevMII = LastStore;
 | 
						|
    bool CheckDef = PrevMII != MBB.begin();
 | 
						|
    if (CheckDef)
 | 
						|
      --PrevMII;
 | 
						|
    VRM.RemoveMachineInstrFromMaps(LastStore);
 | 
						|
    MBB.erase(LastStore);
 | 
						|
    if (CheckDef) {
 | 
						|
      // Look at defs of killed registers on the store. Mark the defs
 | 
						|
      // as dead since the store has been deleted and they aren't
 | 
						|
      // being reused.
 | 
						|
      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
 | 
						|
        bool HasOtherDef = false;
 | 
						|
        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
 | 
						|
          MachineInstr *DeadDef = PrevMII;
 | 
						|
          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
 | 
						|
            // FIXME: This assumes a remat def does not have side
 | 
						|
            // effects.
 | 
						|
            VRM.RemoveMachineInstrFromMaps(DeadDef);
 | 
						|
            MBB.erase(DeadDef);
 | 
						|
            ++NumDRM;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LastStore = next(MII);
 | 
						|
 | 
						|
  // If the stack slot value was previously available in some other
 | 
						|
  // register, change it now.  Otherwise, make the register available,
 | 
						|
  // in PhysReg.
 | 
						|
  Spills.ModifyStackSlotOrReMat(StackSlot);
 | 
						|
  Spills.ClobberPhysReg(PhysReg);
 | 
						|
  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
 | 
						|
  ++NumStores;
 | 
						|
}
 | 
						|
 | 
						|
/// TransferDeadness - A identity copy definition is dead and it's being
 | 
						|
/// removed. Find the last def or use and mark it as dead / kill.
 | 
						|
void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
 | 
						|
                                    unsigned Reg, BitVector &RegKills,
 | 
						|
                                    std::vector<MachineOperand*> &KillOps) {
 | 
						|
  int LastUDDist = -1;
 | 
						|
  MachineInstr *LastUDMI = NULL;
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
 | 
						|
         RE = RegInfo->reg_end(); RI != RE; ++RI) {
 | 
						|
    MachineInstr *UDMI = &*RI;
 | 
						|
    if (UDMI->getParent() != MBB)
 | 
						|
      continue;
 | 
						|
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
 | 
						|
    if (DI == DistanceMap.end() || DI->second > CurDist)
 | 
						|
      continue;
 | 
						|
    if ((int)DI->second < LastUDDist)
 | 
						|
      continue;
 | 
						|
    LastUDDist = DI->second;
 | 
						|
    LastUDMI = UDMI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LastUDMI) {
 | 
						|
    const TargetInstrDesc &TID = LastUDMI->getDesc();
 | 
						|
    MachineOperand *LastUD = NULL;
 | 
						|
    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = LastUDMI->getOperand(i);
 | 
						|
      if (!MO.isRegister() || MO.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      if (!LastUD || (LastUD->isUse() && MO.isDef()))
 | 
						|
        LastUD = &MO;
 | 
						|
      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (LastUD->isDef())
 | 
						|
      LastUD->setIsDead();
 | 
						|
    else {
 | 
						|
      LastUD->setIsKill();
 | 
						|
      RegKills.set(Reg);
 | 
						|
      KillOps[Reg] = LastUD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// rewriteMBB - Keep track of which spills are available even after the
 | 
						|
/// register allocator is done with them.  If possible, avid reloading vregs.
 | 
						|
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
 | 
						|
  DOUT << MBB.getBasicBlock()->getName() << ":\n";
 | 
						|
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  
 | 
						|
  // Spills - Keep track of which spilled values are available in physregs so
 | 
						|
  // that we can choose to reuse the physregs instead of emitting reloads.
 | 
						|
  AvailableSpills Spills(TRI, TII);
 | 
						|
  
 | 
						|
  // MaybeDeadStores - When we need to write a value back into a stack slot,
 | 
						|
  // keep track of the inserted store.  If the stack slot value is never read
 | 
						|
  // (because the value was used from some available register, for example), and
 | 
						|
  // subsequently stored to, the original store is dead.  This map keeps track
 | 
						|
  // of inserted stores that are not used.  If we see a subsequent store to the
 | 
						|
  // same stack slot, the original store is deleted.
 | 
						|
  std::vector<MachineInstr*> MaybeDeadStores;
 | 
						|
  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
 | 
						|
 | 
						|
  // ReMatDefs - These are rematerializable def MIs which are not deleted.
 | 
						|
  SmallSet<MachineInstr*, 4> ReMatDefs;
 | 
						|
 | 
						|
  // Keep track of kill information.
 | 
						|
  BitVector RegKills(TRI->getNumRegs());
 | 
						|
  std::vector<MachineOperand*>  KillOps;
 | 
						|
  KillOps.resize(TRI->getNumRegs(), NULL);
 | 
						|
 | 
						|
  unsigned Dist = 0;
 | 
						|
  DistanceMap.clear();
 | 
						|
  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
 | 
						|
       MII != E; ) {
 | 
						|
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | 
						|
 | 
						|
    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | 
						|
    bool Erased = false;
 | 
						|
    bool BackTracked = false;
 | 
						|
    if (PrepForUnfoldOpti(MBB, MII,
 | 
						|
                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
 | 
						|
      NextMII = next(MII);
 | 
						|
 | 
						|
    MachineInstr &MI = *MII;
 | 
						|
    const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
    if (VRM.hasEmergencySpills(&MI)) {
 | 
						|
      // Spill physical register(s) in the rare case the allocator has run out
 | 
						|
      // of registers to allocate.
 | 
						|
      SmallSet<int, 4> UsedSS;
 | 
						|
      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
 | 
						|
      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
 | 
						|
        unsigned PhysReg = EmSpills[i];
 | 
						|
        const TargetRegisterClass *RC =
 | 
						|
          TRI->getPhysicalRegisterRegClass(PhysReg);
 | 
						|
        assert(RC && "Unable to determine register class!");
 | 
						|
        int SS = VRM.getEmergencySpillSlot(RC);
 | 
						|
        if (UsedSS.count(SS))
 | 
						|
          assert(0 && "Need to spill more than one physical registers!");
 | 
						|
        UsedSS.insert(SS);
 | 
						|
        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
 | 
						|
        MachineInstr *StoreMI = prior(MII);
 | 
						|
        VRM.addSpillSlotUse(SS, StoreMI);
 | 
						|
        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
 | 
						|
        MachineInstr *LoadMI = next(MII);
 | 
						|
        VRM.addSpillSlotUse(SS, LoadMI);
 | 
						|
        ++NumPSpills;
 | 
						|
      }
 | 
						|
      NextMII = next(MII);
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert restores here if asked to.
 | 
						|
    if (VRM.isRestorePt(&MI)) {
 | 
						|
      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
 | 
						|
      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
 | 
						|
        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
 | 
						|
        if (!VRM.getPreSplitReg(VirtReg))
 | 
						|
          continue; // Split interval spilled again.
 | 
						|
        unsigned Phys = VRM.getPhys(VirtReg);
 | 
						|
        RegInfo->setPhysRegUsed(Phys);
 | 
						|
        if (VRM.isReMaterialized(VirtReg)) {
 | 
						|
          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
 | 
						|
        } else {
 | 
						|
          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | 
						|
          int SS = VRM.getStackSlot(VirtReg);
 | 
						|
          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
 | 
						|
          MachineInstr *LoadMI = prior(MII);
 | 
						|
          VRM.addSpillSlotUse(SS, LoadMI);
 | 
						|
          ++NumLoads;
 | 
						|
        }
 | 
						|
        // This invalidates Phys.
 | 
						|
        Spills.ClobberPhysReg(Phys);
 | 
						|
        UpdateKills(*prior(MII), RegKills, KillOps);
 | 
						|
        DOUT << '\t' << *prior(MII);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert spills here if asked to.
 | 
						|
    if (VRM.isSpillPt(&MI)) {
 | 
						|
      std::vector<std::pair<unsigned,bool> > &SpillRegs =
 | 
						|
        VRM.getSpillPtSpills(&MI);
 | 
						|
      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
 | 
						|
        unsigned VirtReg = SpillRegs[i].first;
 | 
						|
        bool isKill = SpillRegs[i].second;
 | 
						|
        if (!VRM.getPreSplitReg(VirtReg))
 | 
						|
          continue; // Split interval spilled again.
 | 
						|
        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | 
						|
        unsigned Phys = VRM.getPhys(VirtReg);
 | 
						|
        int StackSlot = VRM.getStackSlot(VirtReg);
 | 
						|
        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
 | 
						|
        MachineInstr *StoreMI = next(MII);
 | 
						|
        VRM.addSpillSlotUse(StackSlot, StoreMI);
 | 
						|
        DOUT << "Store:\t" << *StoreMI;
 | 
						|
        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | 
						|
      }
 | 
						|
      NextMII = next(MII);
 | 
						|
    }
 | 
						|
 | 
						|
    /// ReusedOperands - Keep track of operand reuse in case we need to undo
 | 
						|
    /// reuse.
 | 
						|
    ReuseInfo ReusedOperands(MI, TRI);
 | 
						|
    SmallVector<unsigned, 4> VirtUseOps;
 | 
						|
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI.getOperand(i);
 | 
						|
      if (!MO.isRegister() || MO.getReg() == 0)
 | 
						|
        continue;   // Ignore non-register operands.
 | 
						|
      
 | 
						|
      unsigned VirtReg = MO.getReg();
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
 | 
						|
        // Ignore physregs for spilling, but remember that it is used by this
 | 
						|
        // function.
 | 
						|
        RegInfo->setPhysRegUsed(VirtReg);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We want to process implicit virtual register uses first.
 | 
						|
      if (MO.isImplicit())
 | 
						|
        // If the virtual register is implicitly defined, emit a implicit_def
 | 
						|
        // before so scavenger knows it's "defined".
 | 
						|
        VirtUseOps.insert(VirtUseOps.begin(), i);
 | 
						|
      else
 | 
						|
        VirtUseOps.push_back(i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Process all of the spilled uses and all non spilled reg references.
 | 
						|
    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
 | 
						|
      unsigned i = VirtUseOps[j];
 | 
						|
      MachineOperand &MO = MI.getOperand(i);
 | 
						|
      unsigned VirtReg = MO.getReg();
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
 | 
						|
             "Not a virtual register?");
 | 
						|
 | 
						|
      unsigned SubIdx = MO.getSubReg();
 | 
						|
      if (VRM.isAssignedReg(VirtReg)) {
 | 
						|
        // This virtual register was assigned a physreg!
 | 
						|
        unsigned Phys = VRM.getPhys(VirtReg);
 | 
						|
        RegInfo->setPhysRegUsed(Phys);
 | 
						|
        if (MO.isDef())
 | 
						|
          ReusedOperands.markClobbered(Phys);
 | 
						|
        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
 | 
						|
        MI.getOperand(i).setReg(RReg);
 | 
						|
        if (VRM.isImplicitlyDefined(VirtReg))
 | 
						|
          BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // This virtual register is now known to be a spilled value.
 | 
						|
      if (!MO.isUse())
 | 
						|
        continue;  // Handle defs in the loop below (handle use&def here though)
 | 
						|
 | 
						|
      bool DoReMat = VRM.isReMaterialized(VirtReg);
 | 
						|
      int SSorRMId = DoReMat
 | 
						|
        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
 | 
						|
      int ReuseSlot = SSorRMId;
 | 
						|
 | 
						|
      // Check to see if this stack slot is available.
 | 
						|
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
 | 
						|
 | 
						|
      // If this is a sub-register use, make sure the reuse register is in the
 | 
						|
      // right register class. For example, for x86 not all of the 32-bit
 | 
						|
      // registers have accessible sub-registers.
 | 
						|
      // Similarly so for EXTRACT_SUBREG. Consider this:
 | 
						|
      // EDI = op
 | 
						|
      // MOV32_mr fi#1, EDI
 | 
						|
      // ...
 | 
						|
      //       = EXTRACT_SUBREG fi#1
 | 
						|
      // fi#1 is available in EDI, but it cannot be reused because it's not in
 | 
						|
      // the right register file.
 | 
						|
      if (PhysReg &&
 | 
						|
          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
 | 
						|
        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | 
						|
        if (!RC->contains(PhysReg))
 | 
						|
          PhysReg = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        // This spilled operand might be part of a two-address operand.  If this
 | 
						|
        // is the case, then changing it will necessarily require changing the 
 | 
						|
        // def part of the instruction as well.  However, in some cases, we
 | 
						|
        // aren't allowed to modify the reused register.  If none of these cases
 | 
						|
        // apply, reuse it.
 | 
						|
        bool CanReuse = true;
 | 
						|
        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
 | 
						|
        if (ti != -1 &&
 | 
						|
            MI.getOperand(ti).isRegister() && 
 | 
						|
            MI.getOperand(ti).getReg() == VirtReg) {
 | 
						|
          // Okay, we have a two address operand.  We can reuse this physreg as
 | 
						|
          // long as we are allowed to clobber the value and there isn't an
 | 
						|
          // earlier def that has already clobbered the physreg.
 | 
						|
          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
 | 
						|
            !ReusedOperands.isClobbered(PhysReg);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (CanReuse) {
 | 
						|
          // If this stack slot value is already available, reuse it!
 | 
						|
          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | 
						|
            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | 
						|
          else
 | 
						|
            DOUT << "Reusing SS#" << ReuseSlot;
 | 
						|
          DOUT << " from physreg "
 | 
						|
               << TRI->getName(PhysReg) << " for vreg"
 | 
						|
               << VirtReg <<" instead of reloading into physreg "
 | 
						|
               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
 | 
						|
          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | 
						|
          MI.getOperand(i).setReg(RReg);
 | 
						|
 | 
						|
          // The only technical detail we have is that we don't know that
 | 
						|
          // PhysReg won't be clobbered by a reloaded stack slot that occurs
 | 
						|
          // later in the instruction.  In particular, consider 'op V1, V2'.
 | 
						|
          // If V1 is available in physreg R0, we would choose to reuse it
 | 
						|
          // here, instead of reloading it into the register the allocator
 | 
						|
          // indicated (say R1).  However, V2 might have to be reloaded
 | 
						|
          // later, and it might indicate that it needs to live in R0.  When
 | 
						|
          // this occurs, we need to have information available that
 | 
						|
          // indicates it is safe to use R1 for the reload instead of R0.
 | 
						|
          //
 | 
						|
          // To further complicate matters, we might conflict with an alias,
 | 
						|
          // or R0 and R1 might not be compatible with each other.  In this
 | 
						|
          // case, we actually insert a reload for V1 in R1, ensuring that
 | 
						|
          // we can get at R0 or its alias.
 | 
						|
          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
 | 
						|
                                  VRM.getPhys(VirtReg), VirtReg);
 | 
						|
          if (ti != -1)
 | 
						|
            // Only mark it clobbered if this is a use&def operand.
 | 
						|
            ReusedOperands.markClobbered(PhysReg);
 | 
						|
          ++NumReused;
 | 
						|
 | 
						|
          if (MI.getOperand(i).isKill() &&
 | 
						|
              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
 | 
						|
            // This was the last use and the spilled value is still available
 | 
						|
            // for reuse. That means the spill was unnecessary!
 | 
						|
            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
 | 
						|
            if (DeadStore) {
 | 
						|
              DOUT << "Removed dead store:\t" << *DeadStore;
 | 
						|
              InvalidateKills(*DeadStore, RegKills, KillOps);
 | 
						|
              VRM.RemoveMachineInstrFromMaps(DeadStore);
 | 
						|
              MBB.erase(DeadStore);
 | 
						|
              MaybeDeadStores[ReuseSlot] = NULL;
 | 
						|
              ++NumDSE;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }  // CanReuse
 | 
						|
        
 | 
						|
        // Otherwise we have a situation where we have a two-address instruction
 | 
						|
        // whose mod/ref operand needs to be reloaded.  This reload is already
 | 
						|
        // available in some register "PhysReg", but if we used PhysReg as the
 | 
						|
        // operand to our 2-addr instruction, the instruction would modify
 | 
						|
        // PhysReg.  This isn't cool if something later uses PhysReg and expects
 | 
						|
        // to get its initial value.
 | 
						|
        //
 | 
						|
        // To avoid this problem, and to avoid doing a load right after a store,
 | 
						|
        // we emit a copy from PhysReg into the designated register for this
 | 
						|
        // operand.
 | 
						|
        unsigned DesignatedReg = VRM.getPhys(VirtReg);
 | 
						|
        assert(DesignatedReg && "Must map virtreg to physreg!");
 | 
						|
 | 
						|
        // Note that, if we reused a register for a previous operand, the
 | 
						|
        // register we want to reload into might not actually be
 | 
						|
        // available.  If this occurs, use the register indicated by the
 | 
						|
        // reuser.
 | 
						|
        if (ReusedOperands.hasReuses())
 | 
						|
          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
 | 
						|
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | 
						|
        
 | 
						|
        // If the mapped designated register is actually the physreg we have
 | 
						|
        // incoming, we don't need to inserted a dead copy.
 | 
						|
        if (DesignatedReg == PhysReg) {
 | 
						|
          // If this stack slot value is already available, reuse it!
 | 
						|
          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | 
						|
            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | 
						|
          else
 | 
						|
            DOUT << "Reusing SS#" << ReuseSlot;
 | 
						|
          DOUT << " from physreg " << TRI->getName(PhysReg)
 | 
						|
               << " for vreg" << VirtReg
 | 
						|
               << " instead of reloading into same physreg.\n";
 | 
						|
          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | 
						|
          MI.getOperand(i).setReg(RReg);
 | 
						|
          ReusedOperands.markClobbered(RReg);
 | 
						|
          ++NumReused;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | 
						|
        RegInfo->setPhysRegUsed(DesignatedReg);
 | 
						|
        ReusedOperands.markClobbered(DesignatedReg);
 | 
						|
        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
 | 
						|
 | 
						|
        MachineInstr *CopyMI = prior(MII);
 | 
						|
        UpdateKills(*CopyMI, RegKills, KillOps);
 | 
						|
 | 
						|
        // This invalidates DesignatedReg.
 | 
						|
        Spills.ClobberPhysReg(DesignatedReg);
 | 
						|
        
 | 
						|
        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
 | 
						|
        unsigned RReg =
 | 
						|
          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
 | 
						|
        MI.getOperand(i).setReg(RReg);
 | 
						|
        DOUT << '\t' << *prior(MII);
 | 
						|
        ++NumReused;
 | 
						|
        continue;
 | 
						|
      } // if (PhysReg)
 | 
						|
      
 | 
						|
      // Otherwise, reload it and remember that we have it.
 | 
						|
      PhysReg = VRM.getPhys(VirtReg);
 | 
						|
      assert(PhysReg && "Must map virtreg to physreg!");
 | 
						|
 | 
						|
      // Note that, if we reused a register for a previous operand, the
 | 
						|
      // register we want to reload into might not actually be
 | 
						|
      // available.  If this occurs, use the register indicated by the
 | 
						|
      // reuser.
 | 
						|
      if (ReusedOperands.hasReuses())
 | 
						|
        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | 
						|
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | 
						|
      
 | 
						|
      RegInfo->setPhysRegUsed(PhysReg);
 | 
						|
      ReusedOperands.markClobbered(PhysReg);
 | 
						|
      if (DoReMat) {
 | 
						|
        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
 | 
						|
      } else {
 | 
						|
        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | 
						|
        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
 | 
						|
        MachineInstr *LoadMI = prior(MII);
 | 
						|
        VRM.addSpillSlotUse(SSorRMId, LoadMI);
 | 
						|
        ++NumLoads;
 | 
						|
      }
 | 
						|
      // This invalidates PhysReg.
 | 
						|
      Spills.ClobberPhysReg(PhysReg);
 | 
						|
 | 
						|
      // Any stores to this stack slot are not dead anymore.
 | 
						|
      if (!DoReMat)
 | 
						|
        MaybeDeadStores[SSorRMId] = NULL;
 | 
						|
      Spills.addAvailable(SSorRMId, &MI, PhysReg);
 | 
						|
      // Assumes this is the last use. IsKill will be unset if reg is reused
 | 
						|
      // unless it's a two-address operand.
 | 
						|
      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
 | 
						|
        MI.getOperand(i).setIsKill();
 | 
						|
      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | 
						|
      MI.getOperand(i).setReg(RReg);
 | 
						|
      UpdateKills(*prior(MII), RegKills, KillOps);
 | 
						|
      DOUT << '\t' << *prior(MII);
 | 
						|
    }
 | 
						|
 | 
						|
    DOUT << '\t' << MI;
 | 
						|
 | 
						|
 | 
						|
    // If we have folded references to memory operands, make sure we clear all
 | 
						|
    // physical registers that may contain the value of the spilled virtual
 | 
						|
    // register
 | 
						|
    SmallSet<int, 2> FoldedSS;
 | 
						|
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
 | 
						|
      unsigned VirtReg = I->second.first;
 | 
						|
      VirtRegMap::ModRef MR = I->second.second;
 | 
						|
      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
 | 
						|
 | 
						|
      // MI2VirtMap be can updated which invalidate the iterator.
 | 
						|
      // Increment the iterator first.
 | 
						|
      ++I;
 | 
						|
      int SS = VRM.getStackSlot(VirtReg);
 | 
						|
      if (SS == VirtRegMap::NO_STACK_SLOT)
 | 
						|
        continue;
 | 
						|
      FoldedSS.insert(SS);
 | 
						|
      DOUT << " - StackSlot: " << SS << "\n";
 | 
						|
      
 | 
						|
      // If this folded instruction is just a use, check to see if it's a
 | 
						|
      // straight load from the virt reg slot.
 | 
						|
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
 | 
						|
        int FrameIdx;
 | 
						|
        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
 | 
						|
        if (DestReg && FrameIdx == SS) {
 | 
						|
          // If this spill slot is available, turn it into a copy (or nothing)
 | 
						|
          // instead of leaving it as a load!
 | 
						|
          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
 | 
						|
            DOUT << "Promoted Load To Copy: " << MI;
 | 
						|
            if (DestReg != InReg) {
 | 
						|
              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | 
						|
              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
 | 
						|
              // Revisit the copy so we make sure to notice the effects of the
 | 
						|
              // operation on the destreg (either needing to RA it if it's 
 | 
						|
              // virtual or needing to clobber any values if it's physical).
 | 
						|
              NextMII = &MI;
 | 
						|
              --NextMII;  // backtrack to the copy.
 | 
						|
              BackTracked = true;
 | 
						|
            } else {
 | 
						|
              DOUT << "Removing now-noop copy: " << MI;
 | 
						|
              // Unset last kill since it's being reused.
 | 
						|
              InvalidateKill(InReg, RegKills, KillOps);
 | 
						|
            }
 | 
						|
 | 
						|
            InvalidateKills(MI, RegKills, KillOps);
 | 
						|
            VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
            MBB.erase(&MI);
 | 
						|
            Erased = true;
 | 
						|
            goto ProcessNextInst;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | 
						|
          SmallVector<MachineInstr*, 4> NewMIs;
 | 
						|
          if (PhysReg &&
 | 
						|
              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
 | 
						|
            MBB.insert(MII, NewMIs[0]);
 | 
						|
            InvalidateKills(MI, RegKills, KillOps);
 | 
						|
            VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
            MBB.erase(&MI);
 | 
						|
            Erased = true;
 | 
						|
            --NextMII;  // backtrack to the unfolded instruction.
 | 
						|
            BackTracked = true;
 | 
						|
            goto ProcessNextInst;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If this reference is not a use, any previous store is now dead.
 | 
						|
      // Otherwise, the store to this stack slot is not dead anymore.
 | 
						|
      MachineInstr* DeadStore = MaybeDeadStores[SS];
 | 
						|
      if (DeadStore) {
 | 
						|
        bool isDead = !(MR & VirtRegMap::isRef);
 | 
						|
        MachineInstr *NewStore = NULL;
 | 
						|
        if (MR & VirtRegMap::isModRef) {
 | 
						|
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | 
						|
          SmallVector<MachineInstr*, 4> NewMIs;
 | 
						|
          // We can reuse this physreg as long as we are allowed to clobber
 | 
						|
          // the value and there isn't an earlier def that has already clobbered
 | 
						|
          // the physreg.
 | 
						|
          if (PhysReg &&
 | 
						|
              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
 | 
						|
            MachineOperand *KillOpnd =
 | 
						|
              DeadStore->findRegisterUseOperand(PhysReg, true);
 | 
						|
            // Note, if the store is storing a sub-register, it's possible the
 | 
						|
            // super-register is needed below.
 | 
						|
            if (KillOpnd && !KillOpnd->getSubReg() &&
 | 
						|
                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
 | 
						|
              MBB.insert(MII, NewMIs[0]);
 | 
						|
              NewStore = NewMIs[1];
 | 
						|
              MBB.insert(MII, NewStore);
 | 
						|
              VRM.addSpillSlotUse(SS, NewStore);
 | 
						|
              InvalidateKills(MI, RegKills, KillOps);
 | 
						|
              VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
              MBB.erase(&MI);
 | 
						|
              Erased = true;
 | 
						|
              --NextMII;
 | 
						|
              --NextMII;  // backtrack to the unfolded instruction.
 | 
						|
              BackTracked = true;
 | 
						|
              isDead = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (isDead) {  // Previous store is dead.
 | 
						|
          // If we get here, the store is dead, nuke it now.
 | 
						|
          DOUT << "Removed dead store:\t" << *DeadStore;
 | 
						|
          InvalidateKills(*DeadStore, RegKills, KillOps);
 | 
						|
          VRM.RemoveMachineInstrFromMaps(DeadStore);
 | 
						|
          MBB.erase(DeadStore);
 | 
						|
          if (!NewStore)
 | 
						|
            ++NumDSE;
 | 
						|
        }
 | 
						|
 | 
						|
        MaybeDeadStores[SS] = NULL;
 | 
						|
        if (NewStore) {
 | 
						|
          // Treat this store as a spill merged into a copy. That makes the
 | 
						|
          // stack slot value available.
 | 
						|
          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
 | 
						|
          goto ProcessNextInst;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the spill slot value is available, and this is a new definition of
 | 
						|
      // the value, the value is not available anymore.
 | 
						|
      if (MR & VirtRegMap::isMod) {
 | 
						|
        // Notice that the value in this stack slot has been modified.
 | 
						|
        Spills.ModifyStackSlotOrReMat(SS);
 | 
						|
        
 | 
						|
        // If this is *just* a mod of the value, check to see if this is just a
 | 
						|
        // store to the spill slot (i.e. the spill got merged into the copy). If
 | 
						|
        // so, realize that the vreg is available now, and add the store to the
 | 
						|
        // MaybeDeadStore info.
 | 
						|
        int StackSlot;
 | 
						|
        if (!(MR & VirtRegMap::isRef)) {
 | 
						|
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
 | 
						|
            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
 | 
						|
                   "Src hasn't been allocated yet?");
 | 
						|
 | 
						|
            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
 | 
						|
                                    RegKills, KillOps, TRI, VRM)) {
 | 
						|
              NextMII = next(MII);
 | 
						|
              BackTracked = true;
 | 
						|
              goto ProcessNextInst;
 | 
						|
            }
 | 
						|
 | 
						|
            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
 | 
						|
            // this as a potentially dead store in case there is a subsequent
 | 
						|
            // store into the stack slot without a read from it.
 | 
						|
            MaybeDeadStores[StackSlot] = &MI;
 | 
						|
 | 
						|
            // If the stack slot value was previously available in some other
 | 
						|
            // register, change it now.  Otherwise, make the register
 | 
						|
            // available in PhysReg.
 | 
						|
            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Process all of the spilled defs.
 | 
						|
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI.getOperand(i);
 | 
						|
      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned VirtReg = MO.getReg();
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        // Check to see if this is a noop copy.  If so, eliminate the
 | 
						|
        // instruction before considering the dest reg to be changed.
 | 
						|
        unsigned Src, Dst;
 | 
						|
        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | 
						|
          ++NumDCE;
 | 
						|
          DOUT << "Removing now-noop copy: " << MI;
 | 
						|
          SmallVector<unsigned, 2> KillRegs;
 | 
						|
          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
 | 
						|
          if (MO.isDead() && !KillRegs.empty()) {
 | 
						|
            assert(KillRegs[0] == Dst);
 | 
						|
            // Last def is now dead.
 | 
						|
            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
 | 
						|
          }
 | 
						|
          VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
          MBB.erase(&MI);
 | 
						|
          Erased = true;
 | 
						|
          Spills.disallowClobberPhysReg(VirtReg);
 | 
						|
          goto ProcessNextInst;
 | 
						|
        }
 | 
						|
          
 | 
						|
        // If it's not a no-op copy, it clobbers the value in the destreg.
 | 
						|
        Spills.ClobberPhysReg(VirtReg);
 | 
						|
        ReusedOperands.markClobbered(VirtReg);
 | 
						|
 
 | 
						|
        // Check to see if this instruction is a load from a stack slot into
 | 
						|
        // a register.  If so, this provides the stack slot value in the reg.
 | 
						|
        int FrameIdx;
 | 
						|
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
 | 
						|
          assert(DestReg == VirtReg && "Unknown load situation!");
 | 
						|
 | 
						|
          // If it is a folded reference, then it's not safe to clobber.
 | 
						|
          bool Folded = FoldedSS.count(FrameIdx);
 | 
						|
          // Otherwise, if it wasn't available, remember that it is now!
 | 
						|
          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
 | 
						|
          goto ProcessNextInst;
 | 
						|
        }
 | 
						|
            
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned SubIdx = MO.getSubReg();
 | 
						|
      bool DoReMat = VRM.isReMaterialized(VirtReg);
 | 
						|
      if (DoReMat)
 | 
						|
        ReMatDefs.insert(&MI);
 | 
						|
 | 
						|
      // The only vregs left are stack slot definitions.
 | 
						|
      int StackSlot = VRM.getStackSlot(VirtReg);
 | 
						|
      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | 
						|
 | 
						|
      // If this def is part of a two-address operand, make sure to execute
 | 
						|
      // the store from the correct physical register.
 | 
						|
      unsigned PhysReg;
 | 
						|
      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
 | 
						|
      if (TiedOp != -1) {
 | 
						|
        PhysReg = MI.getOperand(TiedOp).getReg();
 | 
						|
        if (SubIdx) {
 | 
						|
          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
 | 
						|
          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
 | 
						|
                 "Can't find corresponding super-register!");
 | 
						|
          PhysReg = SuperReg;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        PhysReg = VRM.getPhys(VirtReg);
 | 
						|
        if (ReusedOperands.isClobbered(PhysReg)) {
 | 
						|
          // Another def has taken the assigned physreg. It must have been a
 | 
						|
          // use&def which got it due to reuse. Undo the reuse!
 | 
						|
          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | 
						|
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      assert(PhysReg && "VR not assigned a physical register?");
 | 
						|
      RegInfo->setPhysRegUsed(PhysReg);
 | 
						|
      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | 
						|
      ReusedOperands.markClobbered(RReg);
 | 
						|
      MI.getOperand(i).setReg(RReg);
 | 
						|
 | 
						|
      if (!MO.isDead()) {
 | 
						|
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
 | 
						|
        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
 | 
						|
                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
 | 
						|
        NextMII = next(MII);
 | 
						|
 | 
						|
        // Check to see if this is a noop copy.  If so, eliminate the
 | 
						|
        // instruction before considering the dest reg to be changed.
 | 
						|
        {
 | 
						|
          unsigned Src, Dst;
 | 
						|
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | 
						|
            ++NumDCE;
 | 
						|
            DOUT << "Removing now-noop copy: " << MI;
 | 
						|
            InvalidateKills(MI, RegKills, KillOps);
 | 
						|
            VRM.RemoveMachineInstrFromMaps(&MI);
 | 
						|
            MBB.erase(&MI);
 | 
						|
            Erased = true;
 | 
						|
            UpdateKills(*LastStore, RegKills, KillOps);
 | 
						|
            goto ProcessNextInst;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }    
 | 
						|
    }
 | 
						|
  ProcessNextInst:
 | 
						|
    DistanceMap.insert(std::make_pair(&MI, Dist++));
 | 
						|
    if (!Erased && !BackTracked) {
 | 
						|
      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
 | 
						|
        UpdateKills(*II, RegKills, KillOps);
 | 
						|
    }
 | 
						|
    MII = NextMII;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Spiller* llvm::createSpiller() {
 | 
						|
  switch (SpillerOpt) {
 | 
						|
  default: assert(0 && "Unreachable!");
 | 
						|
  case local:
 | 
						|
    return new LocalSpiller();
 | 
						|
  case simple:
 | 
						|
    return new SimpleSpiller();
 | 
						|
  }
 | 
						|
}
 |