294 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops by placing phi nodes at the end of the loops for
 | 
						|
// all values that are live across the loop boundary.  For example, it turns
 | 
						|
// the left into the right code:
 | 
						|
// 
 | 
						|
// for (...)                for (...)
 | 
						|
//   if (c)                   if (c)
 | 
						|
//     X1 = ...                 X1 = ...
 | 
						|
//   else                     else
 | 
						|
//     X2 = ...                 X2 = ...
 | 
						|
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | 
						|
// ... = X3 + 4             X4 = phi(X3)
 | 
						|
//                          ... = X4 + 4
 | 
						|
//
 | 
						|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | 
						|
// be trivially eliminated by InstCombine.  The major benefit of this 
 | 
						|
// transformation is that it makes many other loop optimizations, such as 
 | 
						|
// LoopUnswitching, simpler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "lcssa"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    LCSSA() : LoopPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
    // Cached analysis information for the current function.
 | 
						|
    LoopInfo *LI;
 | 
						|
    DominatorTree *DT;
 | 
						|
    std::vector<BasicBlock*> LoopBlocks;
 | 
						|
    
 | 
						|
    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
 | 
						|
    void ProcessInstruction(Instruction* Instr,
 | 
						|
                            const SmallVector<BasicBlock*, 8>& exitBlocks);
 | 
						|
    
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | 
						|
    /// as well as the CFG.  It also requires dominator information.
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
 | 
						|
      // Request DominanceFrontier now, even though LCSSA does
 | 
						|
      // not use it. This allows Pass Manager to schedule Dominance
 | 
						|
      // Frontier early enough such that one LPPassManager can handle
 | 
						|
      // multiple loop transformation passes.
 | 
						|
      AU.addRequired<DominanceFrontier>(); 
 | 
						|
      AU.addPreserved<DominanceFrontier>();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void getLoopValuesUsedOutsideLoop(Loop *L,
 | 
						|
                                      SetVector<Instruction*> &AffectedValues);
 | 
						|
 | 
						|
    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
 | 
						|
                            DenseMap<DomTreeNode*, Value*> &Phis);
 | 
						|
 | 
						|
    /// inLoop - returns true if the given block is within the current loop
 | 
						|
    bool inLoop(BasicBlock* B) {
 | 
						|
      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
  
 | 
						|
char LCSSA::ID = 0;
 | 
						|
static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
 | 
						|
 | 
						|
LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
 | 
						|
const PassInfo *const llvm::LCSSAID = &X;
 | 
						|
 | 
						|
/// runOnFunction - Process all loops in the function, inner-most out.
 | 
						|
bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  
 | 
						|
  LI = &LPM.getAnalysis<LoopInfo>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
 | 
						|
  // Speed up queries by creating a sorted list of blocks
 | 
						|
  LoopBlocks.clear();
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | 
						|
  std::sort(LoopBlocks.begin(), LoopBlocks.end());
 | 
						|
  
 | 
						|
  SetVector<Instruction*> AffectedValues;
 | 
						|
  getLoopValuesUsedOutsideLoop(L, AffectedValues);
 | 
						|
  
 | 
						|
  // If no values are affected, we can save a lot of work, since we know that
 | 
						|
  // nothing will be changed.
 | 
						|
  if (AffectedValues.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  SmallVector<BasicBlock*, 8> exitBlocks;
 | 
						|
  L->getExitBlocks(exitBlocks);  
 | 
						|
  
 | 
						|
  // Iterate over all affected values for this loop and insert Phi nodes
 | 
						|
  // for them in the appropriate exit blocks
 | 
						|
  
 | 
						|
  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
 | 
						|
       E = AffectedValues.end(); I != E; ++I)
 | 
						|
    ProcessInstruction(*I, exitBlocks);
 | 
						|
  
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
 | 
						|
/// eliminate all out-of-loop uses.
 | 
						|
void LCSSA::ProcessInstruction(Instruction *Instr,
 | 
						|
                               const SmallVector<BasicBlock*, 8>& exitBlocks) {
 | 
						|
  ++NumLCSSA; // We are applying the transformation
 | 
						|
 | 
						|
  // Keep track of the blocks that have the value available already.
 | 
						|
  DenseMap<DomTreeNode*, Value*> Phis;
 | 
						|
 | 
						|
  DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
 | 
						|
 | 
						|
  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
 | 
						|
  // add them to the Phi's map.
 | 
						|
  for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
 | 
						|
      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = *BBI;
 | 
						|
    DomTreeNode *ExitBBNode = DT->getNode(BB);
 | 
						|
    Value *&Phi = Phis[ExitBBNode];
 | 
						|
    if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
 | 
						|
      PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
 | 
						|
                                    BB->begin());
 | 
						|
      PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
 | 
						|
 | 
						|
      // Remember that this phi makes the value alive in this block.
 | 
						|
      Phi = PN;
 | 
						|
 | 
						|
      // Add inputs from inside the loop for this PHI.
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
        PN->addIncoming(Instr, *PI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
 | 
						|
  // LCSSA phis won't be included because they use the value in the loop.
 | 
						|
  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
 | 
						|
       UI != E;) {
 | 
						|
    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
 | 
						|
      unsigned OperandNo = UI.getOperandNo();
 | 
						|
      UserBB = P->getIncomingBlock(OperandNo/2);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the user is in the loop, don't rewrite it!
 | 
						|
    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
 | 
						|
      ++UI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
 | 
						|
    // inserting PHI nodes into join points where needed.
 | 
						|
    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
 | 
						|
    
 | 
						|
    // Preincrement the iterator to avoid invalidating it when we change the
 | 
						|
    // value.
 | 
						|
    Use &U = UI.getUse();
 | 
						|
    ++UI;
 | 
						|
    U.set(Val);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
 | 
						|
/// are used by instructions outside of it.
 | 
						|
void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
 | 
						|
                                      SetVector<Instruction*> &AffectedValues) {
 | 
						|
  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
 | 
						|
  // by using dominance information.  In particular, if a block does not
 | 
						|
  // dominate any of the loop exits, then none of the values defined in the
 | 
						|
  // block could be used outside the loop.
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
 | 
						|
          unsigned OperandNo = UI.getOperandNo();
 | 
						|
          UserBB = p->getIncomingBlock(OperandNo/2);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (*BB != UserBB && !inLoop(UserBB)) {
 | 
						|
          const StructType *STy = dyn_cast<StructType>(I->getType());
 | 
						|
          if (STy) {
 | 
						|
            // I is a call or an invoke that returns multiple values.
 | 
						|
            // These values are accessible through getresult only.
 | 
						|
            // If the getresult value is not in the BB then move it
 | 
						|
            // immediately here. It will be processed in next iteration.
 | 
						|
            BasicBlock::iterator InsertPoint;
 | 
						|
            if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
 | 
						|
              InsertPoint = II->getNormalDest()->getFirstNonPHI();
 | 
						|
            } else {
 | 
						|
              InsertPoint = I;
 | 
						|
              InsertPoint++;
 | 
						|
            }
 | 
						|
            for (Value::use_iterator TmpI = I->use_begin(), 
 | 
						|
                   TmpE = I->use_end(); TmpI != TmpE; ++TmpI) {
 | 
						|
              GetResultInst *GR = cast<GetResultInst>(TmpI);
 | 
						|
              if (GR->getParent() != *BB)
 | 
						|
                GR->moveBefore(InsertPoint);
 | 
						|
            }
 | 
						|
          } else
 | 
						|
            AffectedValues.insert(I);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueForBlock - Get the value to use within the specified basic block.
 | 
						|
/// available values are in Phis.
 | 
						|
Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
 | 
						|
                               DenseMap<DomTreeNode*, Value*> &Phis) {
 | 
						|
  // If there is no dominator info for this BB, it is unreachable.
 | 
						|
  if (BB == 0)
 | 
						|
    return UndefValue::get(OrigInst->getType());
 | 
						|
                                 
 | 
						|
  // If we have already computed this value, return the previously computed val.
 | 
						|
  if (Phis.count(BB)) return Phis[BB];
 | 
						|
 | 
						|
  DomTreeNode *IDom = BB->getIDom();
 | 
						|
 | 
						|
  // Otherwise, there are two cases: we either have to insert a PHI node or we
 | 
						|
  // don't.  We need to insert a PHI node if this block is not dominated by one
 | 
						|
  // of the exit nodes from the loop (the loop could have multiple exits, and
 | 
						|
  // though the value defined *inside* the loop dominated all its uses, each
 | 
						|
  // exit by itself may not dominate all the uses).
 | 
						|
  //
 | 
						|
  // The simplest way to check for this condition is by checking to see if the
 | 
						|
  // idom is in the loop.  If so, we *know* that none of the exit blocks
 | 
						|
  // dominate this block.  Note that we *know* that the block defining the
 | 
						|
  // original instruction is in the idom chain, because if it weren't, then the
 | 
						|
  // original value didn't dominate this use.
 | 
						|
  if (!inLoop(IDom->getBlock())) {
 | 
						|
    // Idom is not in the loop, we must still be "below" the exit block and must
 | 
						|
    // be fully dominated by the value live in the idom.
 | 
						|
    Value* val = GetValueForBlock(IDom, OrigInst, Phis);
 | 
						|
    Phis.insert(std::make_pair(BB, val));
 | 
						|
    return val;
 | 
						|
  }
 | 
						|
  
 | 
						|
  BasicBlock *BBN = BB->getBlock();
 | 
						|
  
 | 
						|
  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
 | 
						|
  // now, then get values to fill in the incoming values for the PHI.
 | 
						|
  PHINode *PN = PHINode::Create(OrigInst->getType(),
 | 
						|
                                OrigInst->getName() + ".lcssa", BBN->begin());
 | 
						|
  PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
 | 
						|
  Phis.insert(std::make_pair(BB, PN));
 | 
						|
                                 
 | 
						|
  // Fill in the incoming values for the block.
 | 
						|
  for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
 | 
						|
    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
 |