811 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			811 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineShifts.cpp ----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visitShl, visitLShr, and visitAShr functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
 | 
						|
  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // See if we can fold away this shift.
 | 
						|
  if (SimplifyDemandedInstructionBits(I))
 | 
						|
    return &I;
 | 
						|
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (isa<Constant>(Op0))
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI))
 | 
						|
        return R;
 | 
						|
 | 
						|
  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
 | 
						|
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
 | 
						|
  // Because shifts by negative values (which could occur if A were negative)
 | 
						|
  // are undefined.
 | 
						|
  Value *A; const APInt *B;
 | 
						|
  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
 | 
						|
    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
 | 
						|
    // demand the sign bit (and many others) here??
 | 
						|
    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
 | 
						|
                                    Op1->getName());
 | 
						|
    I.setOperand(1, Rem);
 | 
						|
    return &I;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CanEvaluateShifted - See if we can compute the specified value, but shifted
 | 
						|
/// logically to the left or right by some number of bits.  This should return
 | 
						|
/// true if the expression can be computed for the same cost as the current
 | 
						|
/// expression tree.  This is used to eliminate extraneous shifting from things
 | 
						|
/// like:
 | 
						|
///      %C = shl i128 %A, 64
 | 
						|
///      %D = shl i128 %B, 96
 | 
						|
///      %E = or i128 %C, %D
 | 
						|
///      %F = lshr i128 %E, 64
 | 
						|
/// where the client will ask if E can be computed shifted right by 64-bits.  If
 | 
						|
/// this succeeds, the GetShiftedValue function will be called to produce the
 | 
						|
/// value.
 | 
						|
static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
 | 
						|
                               InstCombiner &IC) {
 | 
						|
  // We can always evaluate constants shifted.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // If this is the opposite shift, we can directly reuse the input of the shift
 | 
						|
  // if the needed bits are already zero in the input.  This allows us to reuse
 | 
						|
  // the value which means that we don't care if the shift has multiple uses.
 | 
						|
  //  TODO:  Handle opposite shift by exact value.
 | 
						|
  ConstantInt *CI = 0;
 | 
						|
  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
 | 
						|
      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
 | 
						|
    if (CI->getZExtValue() == NumBits) {
 | 
						|
      // TODO: Check that the input bits are already zero with MaskedValueIsZero
 | 
						|
#if 0
 | 
						|
      // If this is a truncate of a logical shr, we can truncate it to a smaller
 | 
						|
      // lshr iff we know that the bits we would otherwise be shifting in are
 | 
						|
      // already zeros.
 | 
						|
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
      uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
      if (MaskedValueIsZero(I->getOperand(0),
 | 
						|
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
 | 
						|
          CI->getLimitedValue(BitWidth) < BitWidth) {
 | 
						|
        return CanEvaluateTruncated(I->getOperand(0), Ty);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We can't mutate something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: return false;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
 | 
						|
    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
 | 
						|
           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // We can often fold the shift into shifts-by-a-constant.
 | 
						|
    CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    if (CI == 0) return false;
 | 
						|
 | 
						|
    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
 | 
						|
    if (isLeftShift) return true;
 | 
						|
 | 
						|
    // We can always turn shl(c)+shr(c) -> and(c2).
 | 
						|
    if (CI->getValue() == NumBits) return true;
 | 
						|
 | 
						|
    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
 | 
						|
    // profitable unless we know the and'd out bits are already zero.
 | 
						|
    if (CI->getZExtValue() > NumBits) {
 | 
						|
      unsigned LowBits = TypeWidth - CI->getZExtValue();
 | 
						|
      if (MaskedValueIsZero(I->getOperand(0),
 | 
						|
                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::LShr: {
 | 
						|
    // We can often fold the shift into shifts-by-a-constant.
 | 
						|
    CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    if (CI == 0) return false;
 | 
						|
 | 
						|
    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
 | 
						|
    if (!isLeftShift) return true;
 | 
						|
 | 
						|
    // We can always turn lshr(c)+shl(c) -> and(c2).
 | 
						|
    if (CI->getValue() == NumBits) return true;
 | 
						|
 | 
						|
    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
 | 
						|
    // profitable unless we know the and'd out bits are already zero.
 | 
						|
    if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
 | 
						|
      unsigned LowBits = CI->getZExtValue() - NumBits;
 | 
						|
      if (MaskedValueIsZero(I->getOperand(0),
 | 
						|
                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
 | 
						|
           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
 | 
						|
/// this value inserts the new computation that produces the shifted value.
 | 
						|
static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
 | 
						|
                              InstCombiner &IC) {
 | 
						|
  // We can always evaluate constants shifted.
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isLeftShift)
 | 
						|
      V = IC.Builder->CreateShl(C, NumBits);
 | 
						|
    else
 | 
						|
      V = IC.Builder->CreateLShr(C, NumBits);
 | 
						|
    // If we got a constantexpr back, try to simplify it with TD info.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
      V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
 | 
						|
                                         IC.getTargetLibraryInfo());
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  IC.Worklist.Add(I);
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
 | 
						|
    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
 | 
						|
    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
 | 
						|
    return I;
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    // We only accept shifts-by-a-constant in CanEvaluateShifted.
 | 
						|
    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
 | 
						|
 | 
						|
    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
 | 
						|
    if (isLeftShift) {
 | 
						|
      // If this is oversized composite shift, then unsigned shifts get 0.
 | 
						|
      unsigned NewShAmt = NumBits+CI->getZExtValue();
 | 
						|
      if (NewShAmt >= TypeWidth)
 | 
						|
        return Constant::getNullValue(I->getType());
 | 
						|
 | 
						|
      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
 | 
						|
      BO->setHasNoUnsignedWrap(false);
 | 
						|
      BO->setHasNoSignedWrap(false);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
 | 
						|
    // zeros.
 | 
						|
    if (CI->getValue() == NumBits) {
 | 
						|
      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
 | 
						|
      V = IC.Builder->CreateAnd(BO->getOperand(0),
 | 
						|
                                ConstantInt::get(BO->getContext(), Mask));
 | 
						|
      if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | 
						|
        VI->moveBefore(BO);
 | 
						|
        VI->takeName(BO);
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
 | 
						|
    // the and won't be needed.
 | 
						|
    assert(CI->getZExtValue() > NumBits);
 | 
						|
    BO->setOperand(1, ConstantInt::get(BO->getType(),
 | 
						|
                                       CI->getZExtValue() - NumBits));
 | 
						|
    BO->setHasNoUnsignedWrap(false);
 | 
						|
    BO->setHasNoSignedWrap(false);
 | 
						|
    return BO;
 | 
						|
  }
 | 
						|
  case Instruction::LShr: {
 | 
						|
    BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
 | 
						|
    // We only accept shifts-by-a-constant in CanEvaluateShifted.
 | 
						|
    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
 | 
						|
 | 
						|
    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
 | 
						|
    if (!isLeftShift) {
 | 
						|
      // If this is oversized composite shift, then unsigned shifts get 0.
 | 
						|
      unsigned NewShAmt = NumBits+CI->getZExtValue();
 | 
						|
      if (NewShAmt >= TypeWidth)
 | 
						|
        return Constant::getNullValue(BO->getType());
 | 
						|
 | 
						|
      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
 | 
						|
      BO->setIsExact(false);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
 | 
						|
    // zeros.
 | 
						|
    if (CI->getValue() == NumBits) {
 | 
						|
      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
 | 
						|
      V = IC.Builder->CreateAnd(I->getOperand(0),
 | 
						|
                                ConstantInt::get(BO->getContext(), Mask));
 | 
						|
      if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | 
						|
        VI->moveBefore(I);
 | 
						|
        VI->takeName(I);
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
 | 
						|
    // the and won't be needed.
 | 
						|
    assert(CI->getZExtValue() > NumBits);
 | 
						|
    BO->setOperand(1, ConstantInt::get(BO->getType(),
 | 
						|
                                       CI->getZExtValue() - NumBits));
 | 
						|
    BO->setIsExact(false);
 | 
						|
    return BO;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
 | 
						|
    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
 | 
						|
    return I;
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
 | 
						|
                                              NumBits, isLeftShift, IC));
 | 
						|
    return PN;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
 | 
						|
                                               BinaryOperator &I) {
 | 
						|
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | 
						|
 | 
						|
 | 
						|
  // See if we can propagate this shift into the input, this covers the trivial
 | 
						|
  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
 | 
						|
  if (I.getOpcode() != Instruction::AShr &&
 | 
						|
      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
 | 
						|
    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
 | 
						|
              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
 | 
						|
 | 
						|
    return ReplaceInstUsesWith(I,
 | 
						|
                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the instruction whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
 | 
						|
  // a signed shift.
 | 
						|
  //
 | 
						|
  if (Op1->uge(TypeBits)) {
 | 
						|
    if (I.getOpcode() != Instruction::AShr)
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | 
						|
    // ashr i32 X, 32 --> ashr i32 X, 31
 | 
						|
    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
 | 
						|
    return &I;
 | 
						|
  }
 | 
						|
 | 
						|
  // ((X*C1) << C2) == (X * (C1 << C2))
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | 
						|
      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
        return BinaryOperator::CreateMul(BO->getOperand(0),
 | 
						|
                                        ConstantExpr::getShl(BOOp, Op1));
 | 
						|
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
    if (Instruction *R = FoldOpIntoSelect(I, SI))
 | 
						|
      return R;
 | 
						|
  if (isa<PHINode>(Op0))
 | 
						|
    if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
      return NV;
 | 
						|
 | 
						|
  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
 | 
						|
  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
 | 
						|
    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
 | 
						|
    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
 | 
						|
    // place.  Don't try to do this transformation in this case.  Also, we
 | 
						|
    // require that the input operand is a shift-by-constant so that we have
 | 
						|
    // confidence that the shifts will get folded together.  We could do this
 | 
						|
    // xform in more cases, but it is unlikely to be profitable.
 | 
						|
    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
 | 
						|
        isa<ConstantInt>(TrOp->getOperand(1))) {
 | 
						|
      // Okay, we'll do this xform.  Make the shift of shift.
 | 
						|
      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
 | 
						|
      // (shift2 (shift1 & 0x00FF), c2)
 | 
						|
      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
 | 
						|
 | 
						|
      // For logical shifts, the truncation has the effect of making the high
 | 
						|
      // part of the register be zeros.  Emulate this by inserting an AND to
 | 
						|
      // clear the top bits as needed.  This 'and' will usually be zapped by
 | 
						|
      // other xforms later if dead.
 | 
						|
      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
 | 
						|
      unsigned DstSize = TI->getType()->getScalarSizeInBits();
 | 
						|
      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
 | 
						|
 | 
						|
      // The mask we constructed says what the trunc would do if occurring
 | 
						|
      // between the shifts.  We want to know the effect *after* the second
 | 
						|
      // shift.  We know that it is a logical shift by a constant, so adjust the
 | 
						|
      // mask as appropriate.
 | 
						|
      if (I.getOpcode() == Instruction::Shl)
 | 
						|
        MaskV <<= Op1->getZExtValue();
 | 
						|
      else {
 | 
						|
        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
 | 
						|
        MaskV = MaskV.lshr(Op1->getZExtValue());
 | 
						|
      }
 | 
						|
 | 
						|
      // shift1 & 0x00FF
 | 
						|
      Value *And = Builder->CreateAnd(NSh,
 | 
						|
                                      ConstantInt::get(I.getContext(), MaskV),
 | 
						|
                                      TI->getName());
 | 
						|
 | 
						|
      // Return the value truncated to the interesting size.
 | 
						|
      return new TruncInst(And, I.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op0->hasOneUse()) {
 | 
						|
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
      Value *V1, *V2;
 | 
						|
      ConstantInt *CC;
 | 
						|
      switch (Op0BO->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::And:
 | 
						|
      case Instruction::Or:
 | 
						|
      case Instruction::Xor: {
 | 
						|
        // These operators commute.
 | 
						|
        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | 
						|
            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
 | 
						|
                  m_Specific(Op1)))) {
 | 
						|
          Value *YS =         // (Y << C)
 | 
						|
            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
 | 
						|
          // (X + (Y << C))
 | 
						|
          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
 | 
						|
                                          Op0BO->getOperand(1)->getName());
 | 
						|
          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
 | 
						|
          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
 | 
						|
                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
 | 
						|
        }
 | 
						|
 | 
						|
        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
 | 
						|
        Value *Op0BOOp1 = Op0BO->getOperand(1);
 | 
						|
        if (isLeftShift && Op0BOOp1->hasOneUse() &&
 | 
						|
            match(Op0BOOp1,
 | 
						|
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
 | 
						|
                        m_ConstantInt(CC)))) {
 | 
						|
          Value *YS =   // (Y << C)
 | 
						|
            Builder->CreateShl(Op0BO->getOperand(0), Op1,
 | 
						|
                                         Op0BO->getName());
 | 
						|
          // X & (CC << C)
 | 
						|
          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | 
						|
                                         V1->getName()+".mask");
 | 
						|
          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // FALL THROUGH.
 | 
						|
      case Instruction::Sub: {
 | 
						|
        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | 
						|
            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
 | 
						|
                  m_Specific(Op1)))) {
 | 
						|
          Value *YS =  // (Y << C)
 | 
						|
            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | 
						|
          // (X + (Y << C))
 | 
						|
          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
 | 
						|
                                          Op0BO->getOperand(0)->getName());
 | 
						|
          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
 | 
						|
          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
 | 
						|
                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
 | 
						|
        }
 | 
						|
 | 
						|
        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
 | 
						|
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | 
						|
            match(Op0BO->getOperand(0),
 | 
						|
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
 | 
						|
                        m_ConstantInt(CC))) && V2 == Op1) {
 | 
						|
          Value *YS = // (Y << C)
 | 
						|
            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | 
						|
          // X & (CC << C)
 | 
						|
          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | 
						|
                                         V1->getName()+".mask");
 | 
						|
 | 
						|
          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      // If the operand is an bitwise operator with a constant RHS, and the
 | 
						|
      // shift is the only use, we can pull it out of the shift.
 | 
						|
      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | 
						|
        bool isValid = true;     // Valid only for And, Or, Xor
 | 
						|
        bool highBitSet = false; // Transform if high bit of constant set?
 | 
						|
 | 
						|
        switch (Op0BO->getOpcode()) {
 | 
						|
        default: isValid = false; break;   // Do not perform transform!
 | 
						|
        case Instruction::Add:
 | 
						|
          isValid = isLeftShift;
 | 
						|
          break;
 | 
						|
        case Instruction::Or:
 | 
						|
        case Instruction::Xor:
 | 
						|
          highBitSet = false;
 | 
						|
          break;
 | 
						|
        case Instruction::And:
 | 
						|
          highBitSet = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a signed shift right, and the high bit is modified
 | 
						|
        // by the logical operation, do not perform the transformation.
 | 
						|
        // The highBitSet boolean indicates the value of the high bit of
 | 
						|
        // the constant which would cause it to be modified for this
 | 
						|
        // operation.
 | 
						|
        //
 | 
						|
        if (isValid && I.getOpcode() == Instruction::AShr)
 | 
						|
          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
 | 
						|
 | 
						|
        if (isValid) {
 | 
						|
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
 | 
						|
 | 
						|
          Value *NewShift =
 | 
						|
            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
 | 
						|
          NewShift->takeName(Op0BO);
 | 
						|
 | 
						|
          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
 | 
						|
                                        NewRHS);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find out if this is a shift of a shift by a constant.
 | 
						|
  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
 | 
						|
  if (ShiftOp && !ShiftOp->isShift())
 | 
						|
    ShiftOp = 0;
 | 
						|
 | 
						|
  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
 | 
						|
 | 
						|
    // This is a constant shift of a constant shift. Be careful about hiding
 | 
						|
    // shl instructions behind bit masks. They are used to represent multiplies
 | 
						|
    // by a constant, and it is important that simple arithmetic expressions
 | 
						|
    // are still recognizable by scalar evolution.
 | 
						|
    //
 | 
						|
    // The transforms applied to shl are very similar to the transforms applied
 | 
						|
    // to mul by constant. We can be more aggressive about optimizing right
 | 
						|
    // shifts.
 | 
						|
    //
 | 
						|
    // Combinations of right and left shifts will still be optimized in
 | 
						|
    // DAGCombine where scalar evolution no longer applies.
 | 
						|
 | 
						|
    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
 | 
						|
    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
 | 
						|
    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
 | 
						|
    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
 | 
						|
    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
 | 
						|
    Value *X = ShiftOp->getOperand(0);
 | 
						|
 | 
						|
    IntegerType *Ty = cast<IntegerType>(I.getType());
 | 
						|
 | 
						|
    // Check for (X << c1) << c2  and  (X >> c1) >> c2
 | 
						|
    if (I.getOpcode() == ShiftOp->getOpcode()) {
 | 
						|
      uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
 | 
						|
      // If this is oversized composite shift, then unsigned shifts get 0, ashr
 | 
						|
      // saturates.
 | 
						|
      if (AmtSum >= TypeBits) {
 | 
						|
        if (I.getOpcode() != Instruction::AShr)
 | 
						|
          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
 | 
						|
      }
 | 
						|
 | 
						|
      return BinaryOperator::Create(I.getOpcode(), X,
 | 
						|
                                    ConstantInt::get(Ty, AmtSum));
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShiftAmt1 == ShiftAmt2) {
 | 
						|
      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
 | 
						|
      if (I.getOpcode() == Instruction::LShr &&
 | 
						|
          ShiftOp->getOpcode() == Instruction::Shl) {
 | 
						|
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
 | 
						|
        return BinaryOperator::CreateAnd(X,
 | 
						|
                                        ConstantInt::get(I.getContext(), Mask));
 | 
						|
      }
 | 
						|
    } else if (ShiftAmt1 < ShiftAmt2) {
 | 
						|
      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
 | 
						|
 | 
						|
      // (X >>?,exact C1) << C2 --> X << (C2-C1)
 | 
						|
      // The inexact version is deferred to DAGCombine so we don't hide shl
 | 
						|
      // behind a bit mask.
 | 
						|
      if (I.getOpcode() == Instruction::Shl &&
 | 
						|
          ShiftOp->getOpcode() != Instruction::Shl &&
 | 
						|
          ShiftOp->isExact()) {
 | 
						|
        assert(ShiftOp->getOpcode() == Instruction::LShr ||
 | 
						|
               ShiftOp->getOpcode() == Instruction::AShr);
 | 
						|
        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
        BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
 | 
						|
                                                        X, ShiftDiffCst);
 | 
						|
        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | 
						|
        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
 | 
						|
        return NewShl;
 | 
						|
      }
 | 
						|
 | 
						|
      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
 | 
						|
      if (I.getOpcode() == Instruction::LShr &&
 | 
						|
          ShiftOp->getOpcode() == Instruction::Shl) {
 | 
						|
        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
        // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
 | 
						|
        if (ShiftOp->hasNoUnsignedWrap()) {
 | 
						|
          BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
 | 
						|
                                                           X, ShiftDiffCst);
 | 
						|
          NewLShr->setIsExact(I.isExact());
 | 
						|
          return NewLShr;
 | 
						|
        }
 | 
						|
        Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
 | 
						|
 | 
						|
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | 
						|
        return BinaryOperator::CreateAnd(Shift,
 | 
						|
                                         ConstantInt::get(I.getContext(),Mask));
 | 
						|
      }
 | 
						|
 | 
						|
      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
 | 
						|
      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
 | 
						|
      if (I.getOpcode() == Instruction::AShr &&
 | 
						|
          ShiftOp->getOpcode() == Instruction::Shl) {
 | 
						|
        if (ShiftOp->hasNoSignedWrap()) {
 | 
						|
          // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
 | 
						|
          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
          BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
 | 
						|
                                                           X, ShiftDiffCst);
 | 
						|
          NewAShr->setIsExact(I.isExact());
 | 
						|
          return NewAShr;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(ShiftAmt2 < ShiftAmt1);
 | 
						|
      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
 | 
						|
 | 
						|
      // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
 | 
						|
      // The inexact version is deferred to DAGCombine so we don't hide shl
 | 
						|
      // behind a bit mask.
 | 
						|
      if (I.getOpcode() == Instruction::Shl &&
 | 
						|
          ShiftOp->getOpcode() != Instruction::Shl &&
 | 
						|
          ShiftOp->isExact()) {
 | 
						|
        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
        BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
 | 
						|
                                                        X, ShiftDiffCst);
 | 
						|
        NewShr->setIsExact(true);
 | 
						|
        return NewShr;
 | 
						|
      }
 | 
						|
 | 
						|
      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
 | 
						|
      if (I.getOpcode() == Instruction::LShr &&
 | 
						|
          ShiftOp->getOpcode() == Instruction::Shl) {
 | 
						|
        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
        if (ShiftOp->hasNoUnsignedWrap()) {
 | 
						|
          // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
 | 
						|
          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
 | 
						|
                                                          X, ShiftDiffCst);
 | 
						|
          NewShl->setHasNoUnsignedWrap(true);
 | 
						|
          return NewShl;
 | 
						|
        }
 | 
						|
        Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
 | 
						|
 | 
						|
        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | 
						|
        return BinaryOperator::CreateAnd(Shift,
 | 
						|
                                         ConstantInt::get(I.getContext(),Mask));
 | 
						|
      }
 | 
						|
 | 
						|
      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
 | 
						|
      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
 | 
						|
      if (I.getOpcode() == Instruction::AShr &&
 | 
						|
          ShiftOp->getOpcode() == Instruction::Shl) {
 | 
						|
        if (ShiftOp->hasNoSignedWrap()) {
 | 
						|
          // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
 | 
						|
          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
 | 
						|
          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
 | 
						|
                                                          X, ShiftDiffCst);
 | 
						|
          NewShl->setHasNoSignedWrap(true);
 | 
						|
          return NewShl;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShl(BinaryOperator &I) {
 | 
						|
  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
 | 
						|
                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
 | 
						|
                                 TD))
 | 
						|
    return ReplaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Instruction *V = commonShiftTransforms(I))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | 
						|
    unsigned ShAmt = Op1C->getZExtValue();
 | 
						|
 | 
						|
    // If the shifted-out value is known-zero, then this is a NUW shift.
 | 
						|
    if (!I.hasNoUnsignedWrap() &&
 | 
						|
        MaskedValueIsZero(I.getOperand(0),
 | 
						|
                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
 | 
						|
          I.setHasNoUnsignedWrap();
 | 
						|
          return &I;
 | 
						|
        }
 | 
						|
 | 
						|
    // If the shifted out value is all signbits, this is a NSW shift.
 | 
						|
    if (!I.hasNoSignedWrap() &&
 | 
						|
        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
 | 
						|
      I.setHasNoSignedWrap();
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (C1 << A) << C2 -> (C1 << C2) << A
 | 
						|
  Constant *C1, *C2;
 | 
						|
  Value *A;
 | 
						|
  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
 | 
						|
      match(I.getOperand(1), m_Constant(C2)))
 | 
						|
    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
 | 
						|
  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
 | 
						|
                                  I.isExact(), TD))
 | 
						|
    return ReplaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Instruction *R = commonShiftTransforms(I))
 | 
						|
    return R;
 | 
						|
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    unsigned ShAmt = Op1C->getZExtValue();
 | 
						|
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
 | 
						|
      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
 | 
						|
      // ctlz.i32(x)>>5  --> zext(x == 0)
 | 
						|
      // cttz.i32(x)>>5  --> zext(x == 0)
 | 
						|
      // ctpop.i32(x)>>5 --> zext(x == -1)
 | 
						|
      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
 | 
						|
           II->getIntrinsicID() == Intrinsic::cttz ||
 | 
						|
           II->getIntrinsicID() == Intrinsic::ctpop) &&
 | 
						|
          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
 | 
						|
        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
 | 
						|
        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
 | 
						|
        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
 | 
						|
        return new ZExtInst(Cmp, II->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the shifted-out value is known-zero, then this is an exact shift.
 | 
						|
    if (!I.isExact() &&
 | 
						|
        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
 | 
						|
      I.setIsExact();
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
 | 
						|
  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
 | 
						|
                                  I.isExact(), TD))
 | 
						|
    return ReplaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Instruction *R = commonShiftTransforms(I))
 | 
						|
    return R;
 | 
						|
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    unsigned ShAmt = Op1C->getZExtValue();
 | 
						|
 | 
						|
    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
 | 
						|
    // have a sign-extend idiom.
 | 
						|
    Value *X;
 | 
						|
    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
 | 
						|
      // If the left shift is just shifting out partial signbits, delete the
 | 
						|
      // extension.
 | 
						|
      if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
 | 
						|
        return ReplaceInstUsesWith(I, X);
 | 
						|
 | 
						|
      // If the input is an extension from the shifted amount value, e.g.
 | 
						|
      //   %x = zext i8 %A to i32
 | 
						|
      //   %y = shl i32 %x, 24
 | 
						|
      //   %z = ashr %y, 24
 | 
						|
      // then turn this into "z = sext i8 A to i32".
 | 
						|
      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
 | 
						|
        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
 | 
						|
        if (Op1C->getZExtValue() == DestBits-SrcBits)
 | 
						|
          return new SExtInst(ZI->getOperand(0), ZI->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the shifted-out value is known-zero, then this is an exact shift.
 | 
						|
    if (!I.isExact() &&
 | 
						|
        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
 | 
						|
      I.setIsExact();
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can turn a signed shr into an unsigned shr.
 | 
						|
  if (MaskedValueIsZero(Op0,
 | 
						|
                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
 | 
						|
    return BinaryOperator::CreateLShr(Op0, Op1);
 | 
						|
 | 
						|
  // Arithmetic shifting an all-sign-bit value is a no-op.
 | 
						|
  unsigned NumSignBits = ComputeNumSignBits(Op0);
 | 
						|
  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 |