2630 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2630 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs global value numbering to eliminate fully redundant
 | 
						|
// instructions.  It also performs simple dead load elimination.
 | 
						|
//
 | 
						|
// Note that this pass does the value numbering itself; it does not use the
 | 
						|
// ValueNumbering analysis passes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "gvn"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/PHITransAddr.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
STATISTIC(NumGVNInstr,  "Number of instructions deleted");
 | 
						|
STATISTIC(NumGVNLoad,   "Number of loads deleted");
 | 
						|
STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
 | 
						|
STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | 
						|
STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
 | 
						|
STATISTIC(NumGVNEqProp, "Number of equalities propagated");
 | 
						|
STATISTIC(NumPRELoad,   "Number of loads PRE'd");
 | 
						|
 | 
						|
static cl::opt<bool> EnablePRE("enable-pre",
 | 
						|
                               cl::init(true), cl::Hidden);
 | 
						|
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
 | 
						|
 | 
						|
// Maximum allowed recursion depth.
 | 
						|
static cl::opt<uint32_t>
 | 
						|
MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
 | 
						|
                cl::desc("Max recurse depth (default = 1000)"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         ValueTable Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// This class holds the mapping between values and value numbers.  It is used
 | 
						|
/// as an efficient mechanism to determine the expression-wise equivalence of
 | 
						|
/// two values.
 | 
						|
namespace {
 | 
						|
  struct Expression {
 | 
						|
    uint32_t opcode;
 | 
						|
    Type *type;
 | 
						|
    SmallVector<uint32_t, 4> varargs;
 | 
						|
 | 
						|
    Expression(uint32_t o = ~2U) : opcode(o) { }
 | 
						|
 | 
						|
    bool operator==(const Expression &other) const {
 | 
						|
      if (opcode != other.opcode)
 | 
						|
        return false;
 | 
						|
      if (opcode == ~0U || opcode == ~1U)
 | 
						|
        return true;
 | 
						|
      if (type != other.type)
 | 
						|
        return false;
 | 
						|
      if (varargs != other.varargs)
 | 
						|
        return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    friend hash_code hash_value(const Expression &Value) {
 | 
						|
      return hash_combine(Value.opcode, Value.type,
 | 
						|
                          hash_combine_range(Value.varargs.begin(),
 | 
						|
                                             Value.varargs.end()));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  class ValueTable {
 | 
						|
    DenseMap<Value*, uint32_t> valueNumbering;
 | 
						|
    DenseMap<Expression, uint32_t> expressionNumbering;
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    MemoryDependenceAnalysis *MD;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    uint32_t nextValueNumber;
 | 
						|
 | 
						|
    Expression create_expression(Instruction* I);
 | 
						|
    Expression create_cmp_expression(unsigned Opcode,
 | 
						|
                                     CmpInst::Predicate Predicate,
 | 
						|
                                     Value *LHS, Value *RHS);
 | 
						|
    Expression create_extractvalue_expression(ExtractValueInst* EI);
 | 
						|
    uint32_t lookup_or_add_call(CallInst* C);
 | 
						|
  public:
 | 
						|
    ValueTable() : nextValueNumber(1) { }
 | 
						|
    uint32_t lookup_or_add(Value *V);
 | 
						|
    uint32_t lookup(Value *V) const;
 | 
						|
    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
 | 
						|
                               Value *LHS, Value *RHS);
 | 
						|
    void add(Value *V, uint32_t num);
 | 
						|
    void clear();
 | 
						|
    void erase(Value *v);
 | 
						|
    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | 
						|
    AliasAnalysis *getAliasAnalysis() const { return AA; }
 | 
						|
    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | 
						|
    void setDomTree(DominatorTree* D) { DT = D; }
 | 
						|
    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | 
						|
    void verifyRemoved(const Value *) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct DenseMapInfo<Expression> {
 | 
						|
  static inline Expression getEmptyKey() {
 | 
						|
    return ~0U;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Expression getTombstoneKey() {
 | 
						|
    return ~1U;
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const Expression e) {
 | 
						|
    using llvm::hash_value;
 | 
						|
    return static_cast<unsigned>(hash_value(e));
 | 
						|
  }
 | 
						|
  static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable Internal Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Expression ValueTable::create_expression(Instruction *I) {
 | 
						|
  Expression e;
 | 
						|
  e.type = I->getType();
 | 
						|
  e.opcode = I->getOpcode();
 | 
						|
  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
 | 
						|
       OI != OE; ++OI)
 | 
						|
    e.varargs.push_back(lookup_or_add(*OI));
 | 
						|
  if (I->isCommutative()) {
 | 
						|
    // Ensure that commutative instructions that only differ by a permutation
 | 
						|
    // of their operands get the same value number by sorting the operand value
 | 
						|
    // numbers.  Since all commutative instructions have two operands it is more
 | 
						|
    // efficient to sort by hand rather than using, say, std::sort.
 | 
						|
    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
 | 
						|
    if (e.varargs[0] > e.varargs[1])
 | 
						|
      std::swap(e.varargs[0], e.varargs[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
 | 
						|
    // Sort the operand value numbers so x<y and y>x get the same value number.
 | 
						|
    CmpInst::Predicate Predicate = C->getPredicate();
 | 
						|
    if (e.varargs[0] > e.varargs[1]) {
 | 
						|
      std::swap(e.varargs[0], e.varargs[1]);
 | 
						|
      Predicate = CmpInst::getSwappedPredicate(Predicate);
 | 
						|
    }
 | 
						|
    e.opcode = (C->getOpcode() << 8) | Predicate;
 | 
						|
  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
 | 
						|
    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | 
						|
         II != IE; ++II)
 | 
						|
      e.varargs.push_back(*II);
 | 
						|
  }
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_cmp_expression(unsigned Opcode,
 | 
						|
                                             CmpInst::Predicate Predicate,
 | 
						|
                                             Value *LHS, Value *RHS) {
 | 
						|
  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
 | 
						|
         "Not a comparison!");
 | 
						|
  Expression e;
 | 
						|
  e.type = CmpInst::makeCmpResultType(LHS->getType());
 | 
						|
  e.varargs.push_back(lookup_or_add(LHS));
 | 
						|
  e.varargs.push_back(lookup_or_add(RHS));
 | 
						|
 | 
						|
  // Sort the operand value numbers so x<y and y>x get the same value number.
 | 
						|
  if (e.varargs[0] > e.varargs[1]) {
 | 
						|
    std::swap(e.varargs[0], e.varargs[1]);
 | 
						|
    Predicate = CmpInst::getSwappedPredicate(Predicate);
 | 
						|
  }
 | 
						|
  e.opcode = (Opcode << 8) | Predicate;
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
 | 
						|
  assert(EI != 0 && "Not an ExtractValueInst?");
 | 
						|
  Expression e;
 | 
						|
  e.type = EI->getType();
 | 
						|
  e.opcode = 0;
 | 
						|
 | 
						|
  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
 | 
						|
  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
 | 
						|
    // EI might be an extract from one of our recognised intrinsics. If it
 | 
						|
    // is we'll synthesize a semantically equivalent expression instead on
 | 
						|
    // an extract value expression.
 | 
						|
    switch (I->getIntrinsicID()) {
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
        e.opcode = Instruction::Add;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
        e.opcode = Instruction::Sub;
 | 
						|
        break;
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
        e.opcode = Instruction::Mul;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (e.opcode != 0) {
 | 
						|
      // Intrinsic recognized. Grab its args to finish building the expression.
 | 
						|
      assert(I->getNumArgOperands() == 2 &&
 | 
						|
             "Expect two args for recognised intrinsics.");
 | 
						|
      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
 | 
						|
      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Not a recognised intrinsic. Fall back to producing an extract value
 | 
						|
  // expression.
 | 
						|
  e.opcode = EI->getOpcode();
 | 
						|
  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
 | 
						|
       OI != OE; ++OI)
 | 
						|
    e.varargs.push_back(lookup_or_add(*OI));
 | 
						|
 | 
						|
  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
 | 
						|
         II != IE; ++II)
 | 
						|
    e.varargs.push_back(*II);
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable External Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// add - Insert a value into the table with a specified value number.
 | 
						|
void ValueTable::add(Value *V, uint32_t num) {
 | 
						|
  valueNumbering.insert(std::make_pair(V, num));
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
 | 
						|
  if (AA->doesNotAccessMemory(C)) {
 | 
						|
    Expression exp = create_expression(C);
 | 
						|
    uint32_t &e = expressionNumbering[exp];
 | 
						|
    if (!e) e = nextValueNumber++;
 | 
						|
    valueNumbering[C] = e;
 | 
						|
    return e;
 | 
						|
  } else if (AA->onlyReadsMemory(C)) {
 | 
						|
    Expression exp = create_expression(C);
 | 
						|
    uint32_t &e = expressionNumbering[exp];
 | 
						|
    if (!e) {
 | 
						|
      e = nextValueNumber++;
 | 
						|
      valueNumbering[C] = e;
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
    if (!MD) {
 | 
						|
      e = nextValueNumber++;
 | 
						|
      valueNumbering[C] = e;
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
 | 
						|
    MemDepResult local_dep = MD->getDependency(C);
 | 
						|
 | 
						|
    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
 | 
						|
      valueNumbering[C] =  nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (local_dep.isDef()) {
 | 
						|
      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
 | 
						|
 | 
						|
      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
 | 
						|
        valueNumbering[C] = nextValueNumber;
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
 | 
						|
        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
 | 
						|
        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
 | 
						|
        if (c_vn != cd_vn) {
 | 
						|
          valueNumbering[C] = nextValueNumber;
 | 
						|
          return nextValueNumber++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      uint32_t v = lookup_or_add(local_cdep);
 | 
						|
      valueNumbering[C] = v;
 | 
						|
      return v;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-local case.
 | 
						|
    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
 | 
						|
      MD->getNonLocalCallDependency(CallSite(C));
 | 
						|
    // FIXME: Move the checking logic to MemDep!
 | 
						|
    CallInst* cdep = 0;
 | 
						|
 | 
						|
    // Check to see if we have a single dominating call instruction that is
 | 
						|
    // identical to C.
 | 
						|
    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
 | 
						|
      const NonLocalDepEntry *I = &deps[i];
 | 
						|
      if (I->getResult().isNonLocal())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We don't handle non-definitions.  If we already have a call, reject
 | 
						|
      // instruction dependencies.
 | 
						|
      if (!I->getResult().isDef() || cdep != 0) {
 | 
						|
        cdep = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
 | 
						|
      // FIXME: All duplicated with non-local case.
 | 
						|
      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
 | 
						|
        cdep = NonLocalDepCall;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      cdep = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!cdep) {
 | 
						|
      valueNumbering[C] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
 | 
						|
      valueNumbering[C] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
 | 
						|
      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
 | 
						|
      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
 | 
						|
      if (c_vn != cd_vn) {
 | 
						|
        valueNumbering[C] = nextValueNumber;
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t v = lookup_or_add(cdep);
 | 
						|
    valueNumbering[C] = v;
 | 
						|
    return v;
 | 
						|
 | 
						|
  } else {
 | 
						|
    valueNumbering[C] = nextValueNumber;
 | 
						|
    return nextValueNumber++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// lookup_or_add - Returns the value number for the specified value, assigning
 | 
						|
/// it a new number if it did not have one before.
 | 
						|
uint32_t ValueTable::lookup_or_add(Value *V) {
 | 
						|
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | 
						|
  if (VI != valueNumbering.end())
 | 
						|
    return VI->second;
 | 
						|
 | 
						|
  if (!isa<Instruction>(V)) {
 | 
						|
    valueNumbering[V] = nextValueNumber;
 | 
						|
    return nextValueNumber++;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction* I = cast<Instruction>(V);
 | 
						|
  Expression exp;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Call:
 | 
						|
      return lookup_or_add_call(cast<CallInst>(I));
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::ExtractElement:
 | 
						|
    case Instruction::InsertElement:
 | 
						|
    case Instruction::ShuffleVector:
 | 
						|
    case Instruction::InsertValue:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      exp = create_expression(I);
 | 
						|
      break;
 | 
						|
    case Instruction::ExtractValue:
 | 
						|
      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      valueNumbering[V] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t& e = expressionNumbering[exp];
 | 
						|
  if (!e) e = nextValueNumber++;
 | 
						|
  valueNumbering[V] = e;
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
/// lookup - Returns the value number of the specified value. Fails if
 | 
						|
/// the value has not yet been numbered.
 | 
						|
uint32_t ValueTable::lookup(Value *V) const {
 | 
						|
  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
 | 
						|
  assert(VI != valueNumbering.end() && "Value not numbered?");
 | 
						|
  return VI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// lookup_or_add_cmp - Returns the value number of the given comparison,
 | 
						|
/// assigning it a new number if it did not have one before.  Useful when
 | 
						|
/// we deduced the result of a comparison, but don't immediately have an
 | 
						|
/// instruction realizing that comparison to hand.
 | 
						|
uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
 | 
						|
                                       CmpInst::Predicate Predicate,
 | 
						|
                                       Value *LHS, Value *RHS) {
 | 
						|
  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
 | 
						|
  uint32_t& e = expressionNumbering[exp];
 | 
						|
  if (!e) e = nextValueNumber++;
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Remove all entries from the ValueTable.
 | 
						|
void ValueTable::clear() {
 | 
						|
  valueNumbering.clear();
 | 
						|
  expressionNumbering.clear();
 | 
						|
  nextValueNumber = 1;
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove a value from the value numbering.
 | 
						|
void ValueTable::erase(Value *V) {
 | 
						|
  valueNumbering.erase(V);
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the value is removed from all internal data
 | 
						|
/// structures.
 | 
						|
void ValueTable::verifyRemoved(const Value *V) const {
 | 
						|
  for (DenseMap<Value*, uint32_t>::const_iterator
 | 
						|
         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
 | 
						|
    assert(I->first != V && "Inst still occurs in value numbering map!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                GVN Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class GVN;
 | 
						|
  struct AvailableValueInBlock {
 | 
						|
    /// BB - The basic block in question.
 | 
						|
    BasicBlock *BB;
 | 
						|
    enum ValType {
 | 
						|
      SimpleVal,  // A simple offsetted value that is accessed.
 | 
						|
      LoadVal,    // A value produced by a load.
 | 
						|
      MemIntrin   // A memory intrinsic which is loaded from.
 | 
						|
    };
 | 
						|
  
 | 
						|
    /// V - The value that is live out of the block.
 | 
						|
    PointerIntPair<Value *, 2, ValType> Val;
 | 
						|
  
 | 
						|
    /// Offset - The byte offset in Val that is interesting for the load query.
 | 
						|
    unsigned Offset;
 | 
						|
  
 | 
						|
    static AvailableValueInBlock get(BasicBlock *BB, Value *V,
 | 
						|
                                     unsigned Offset = 0) {
 | 
						|
      AvailableValueInBlock Res;
 | 
						|
      Res.BB = BB;
 | 
						|
      Res.Val.setPointer(V);
 | 
						|
      Res.Val.setInt(SimpleVal);
 | 
						|
      Res.Offset = Offset;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  
 | 
						|
    static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
 | 
						|
                                       unsigned Offset = 0) {
 | 
						|
      AvailableValueInBlock Res;
 | 
						|
      Res.BB = BB;
 | 
						|
      Res.Val.setPointer(MI);
 | 
						|
      Res.Val.setInt(MemIntrin);
 | 
						|
      Res.Offset = Offset;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  
 | 
						|
    static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
 | 
						|
                                         unsigned Offset = 0) {
 | 
						|
      AvailableValueInBlock Res;
 | 
						|
      Res.BB = BB;
 | 
						|
      Res.Val.setPointer(LI);
 | 
						|
      Res.Val.setInt(LoadVal);
 | 
						|
      Res.Offset = Offset;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  
 | 
						|
    bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
 | 
						|
    bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
 | 
						|
    bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
 | 
						|
  
 | 
						|
    Value *getSimpleValue() const {
 | 
						|
      assert(isSimpleValue() && "Wrong accessor");
 | 
						|
      return Val.getPointer();
 | 
						|
    }
 | 
						|
  
 | 
						|
    LoadInst *getCoercedLoadValue() const {
 | 
						|
      assert(isCoercedLoadValue() && "Wrong accessor");
 | 
						|
      return cast<LoadInst>(Val.getPointer());
 | 
						|
    }
 | 
						|
  
 | 
						|
    MemIntrinsic *getMemIntrinValue() const {
 | 
						|
      assert(isMemIntrinValue() && "Wrong accessor");
 | 
						|
      return cast<MemIntrinsic>(Val.getPointer());
 | 
						|
    }
 | 
						|
  
 | 
						|
    /// MaterializeAdjustedValue - Emit code into this block to adjust the value
 | 
						|
    /// defined here to the specified type.  This handles various coercion cases.
 | 
						|
    Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
 | 
						|
  };
 | 
						|
 | 
						|
  class GVN : public FunctionPass {
 | 
						|
    bool NoLoads;
 | 
						|
    MemoryDependenceAnalysis *MD;
 | 
						|
    DominatorTree *DT;
 | 
						|
    const DataLayout *TD;
 | 
						|
    const TargetLibraryInfo *TLI;
 | 
						|
 | 
						|
    ValueTable VN;
 | 
						|
 | 
						|
    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
 | 
						|
    /// have that value number.  Use findLeader to query it.
 | 
						|
    struct LeaderTableEntry {
 | 
						|
      Value *Val;
 | 
						|
      const BasicBlock *BB;
 | 
						|
      LeaderTableEntry *Next;
 | 
						|
    };
 | 
						|
    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
 | 
						|
    BumpPtrAllocator TableAllocator;
 | 
						|
 | 
						|
    SmallVector<Instruction*, 8> InstrsToErase;
 | 
						|
 | 
						|
    typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
 | 
						|
    typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
 | 
						|
    typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit GVN(bool noloads = false)
 | 
						|
        : FunctionPass(ID), NoLoads(noloads), MD(0) {
 | 
						|
      initializeGVNPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    /// markInstructionForDeletion - This removes the specified instruction from
 | 
						|
    /// our various maps and marks it for deletion.
 | 
						|
    void markInstructionForDeletion(Instruction *I) {
 | 
						|
      VN.erase(I);
 | 
						|
      InstrsToErase.push_back(I);
 | 
						|
    }
 | 
						|
 | 
						|
    const DataLayout *getDataLayout() const { return TD; }
 | 
						|
    DominatorTree &getDominatorTree() const { return *DT; }
 | 
						|
    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
 | 
						|
    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
 | 
						|
  private:
 | 
						|
    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
 | 
						|
    /// its value number.
 | 
						|
    void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
 | 
						|
      LeaderTableEntry &Curr = LeaderTable[N];
 | 
						|
      if (!Curr.Val) {
 | 
						|
        Curr.Val = V;
 | 
						|
        Curr.BB = BB;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
 | 
						|
      Node->Val = V;
 | 
						|
      Node->BB = BB;
 | 
						|
      Node->Next = Curr.Next;
 | 
						|
      Curr.Next = Node;
 | 
						|
    }
 | 
						|
 | 
						|
    /// removeFromLeaderTable - Scan the list of values corresponding to a given
 | 
						|
    /// value number, and remove the given instruction if encountered.
 | 
						|
    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
 | 
						|
      LeaderTableEntry* Prev = 0;
 | 
						|
      LeaderTableEntry* Curr = &LeaderTable[N];
 | 
						|
 | 
						|
      while (Curr->Val != I || Curr->BB != BB) {
 | 
						|
        Prev = Curr;
 | 
						|
        Curr = Curr->Next;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Prev) {
 | 
						|
        Prev->Next = Curr->Next;
 | 
						|
      } else {
 | 
						|
        if (!Curr->Next) {
 | 
						|
          Curr->Val = 0;
 | 
						|
          Curr->BB = 0;
 | 
						|
        } else {
 | 
						|
          LeaderTableEntry* Next = Curr->Next;
 | 
						|
          Curr->Val = Next->Val;
 | 
						|
          Curr->BB = Next->BB;
 | 
						|
          Curr->Next = Next->Next;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // List of critical edges to be split between iterations.
 | 
						|
    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | 
						|
 | 
						|
    // This transformation requires dominator postdominator info
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<TargetLibraryInfo>();
 | 
						|
      if (!NoLoads)
 | 
						|
        AU.addRequired<MemoryDependenceAnalysis>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Helper fuctions of redundant load elimination 
 | 
						|
    bool processLoad(LoadInst *L);
 | 
						|
    bool processNonLocalLoad(LoadInst *L);
 | 
						|
    void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 
 | 
						|
                                 AvailValInBlkVect &ValuesPerBlock,
 | 
						|
                                 UnavailBlkVect &UnavailableBlocks);
 | 
						|
    bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 
 | 
						|
                        UnavailBlkVect &UnavailableBlocks);
 | 
						|
 | 
						|
    // Other helper routines
 | 
						|
    bool processInstruction(Instruction *I);
 | 
						|
    bool processBlock(BasicBlock *BB);
 | 
						|
    void dump(DenseMap<uint32_t, Value*> &d);
 | 
						|
    bool iterateOnFunction(Function &F);
 | 
						|
    bool performPRE(Function &F);
 | 
						|
    Value *findLeader(const BasicBlock *BB, uint32_t num);
 | 
						|
    void cleanupGlobalSets();
 | 
						|
    void verifyRemoved(const Instruction *I) const;
 | 
						|
    bool splitCriticalEdges();
 | 
						|
    BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
 | 
						|
    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                         const BasicBlockEdge &Root);
 | 
						|
    bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
 | 
						|
  };
 | 
						|
 | 
						|
  char GVN::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
// createGVNPass - The public interface to this file...
 | 
						|
FunctionPass *llvm::createGVNPass(bool NoLoads) {
 | 
						|
  return new GVN(NoLoads);
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | 
						|
  errs() << "{\n";
 | 
						|
  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | 
						|
       E = d.end(); I != E; ++I) {
 | 
						|
      errs() << I->first << "\n";
 | 
						|
      I->second->dump();
 | 
						|
  }
 | 
						|
  errs() << "}\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
 | 
						|
/// we're analyzing is fully available in the specified block.  As we go, keep
 | 
						|
/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
 | 
						|
/// map is actually a tri-state map with the following values:
 | 
						|
///   0) we know the block *is not* fully available.
 | 
						|
///   1) we know the block *is* fully available.
 | 
						|
///   2) we do not know whether the block is fully available or not, but we are
 | 
						|
///      currently speculating that it will be.
 | 
						|
///   3) we are speculating for this block and have used that to speculate for
 | 
						|
///      other blocks.
 | 
						|
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
 | 
						|
                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
 | 
						|
                            uint32_t RecurseDepth) {
 | 
						|
  if (RecurseDepth > MaxRecurseDepth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Optimistically assume that the block is fully available and check to see
 | 
						|
  // if we already know about this block in one lookup.
 | 
						|
  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
 | 
						|
    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
 | 
						|
 | 
						|
  // If the entry already existed for this block, return the precomputed value.
 | 
						|
  if (!IV.second) {
 | 
						|
    // If this is a speculative "available" value, mark it as being used for
 | 
						|
    // speculation of other blocks.
 | 
						|
    if (IV.first->second == 2)
 | 
						|
      IV.first->second = 3;
 | 
						|
    return IV.first->second != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, see if it is fully available in all predecessors.
 | 
						|
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
 | 
						|
  // If this block has no predecessors, it isn't live-in here.
 | 
						|
  if (PI == PE)
 | 
						|
    goto SpeculationFailure;
 | 
						|
 | 
						|
  for (; PI != PE; ++PI)
 | 
						|
    // If the value isn't fully available in one of our predecessors, then it
 | 
						|
    // isn't fully available in this block either.  Undo our previous
 | 
						|
    // optimistic assumption and bail out.
 | 
						|
    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
 | 
						|
      goto SpeculationFailure;
 | 
						|
 | 
						|
  return true;
 | 
						|
 | 
						|
// SpeculationFailure - If we get here, we found out that this is not, after
 | 
						|
// all, a fully-available block.  We have a problem if we speculated on this and
 | 
						|
// used the speculation to mark other blocks as available.
 | 
						|
SpeculationFailure:
 | 
						|
  char &BBVal = FullyAvailableBlocks[BB];
 | 
						|
 | 
						|
  // If we didn't speculate on this, just return with it set to false.
 | 
						|
  if (BBVal == 2) {
 | 
						|
    BBVal = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we did speculate on this value, we could have blocks set to 1 that are
 | 
						|
  // incorrect.  Walk the (transitive) successors of this block and mark them as
 | 
						|
  // 0 if set to one.
 | 
						|
  SmallVector<BasicBlock*, 32> BBWorklist;
 | 
						|
  BBWorklist.push_back(BB);
 | 
						|
 | 
						|
  do {
 | 
						|
    BasicBlock *Entry = BBWorklist.pop_back_val();
 | 
						|
    // Note that this sets blocks to 0 (unavailable) if they happen to not
 | 
						|
    // already be in FullyAvailableBlocks.  This is safe.
 | 
						|
    char &EntryVal = FullyAvailableBlocks[Entry];
 | 
						|
    if (EntryVal == 0) continue;  // Already unavailable.
 | 
						|
 | 
						|
    // Mark as unavailable.
 | 
						|
    EntryVal = 0;
 | 
						|
 | 
						|
    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
 | 
						|
      BBWorklist.push_back(*I);
 | 
						|
  } while (!BBWorklist.empty());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CanCoerceMustAliasedValueToLoad - Return true if
 | 
						|
/// CoerceAvailableValueToLoadType will succeed.
 | 
						|
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
 | 
						|
                                            Type *LoadTy,
 | 
						|
                                            const DataLayout &TD) {
 | 
						|
  // If the loaded or stored value is an first class array or struct, don't try
 | 
						|
  // to transform them.  We need to be able to bitcast to integer.
 | 
						|
  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
 | 
						|
      StoredVal->getType()->isStructTy() ||
 | 
						|
      StoredVal->getType()->isArrayTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The store has to be at least as big as the load.
 | 
						|
  if (TD.getTypeSizeInBits(StoredVal->getType()) <
 | 
						|
        TD.getTypeSizeInBits(LoadTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
 | 
						|
/// then a load from a must-aliased pointer of a different type, try to coerce
 | 
						|
/// the stored value.  LoadedTy is the type of the load we want to replace and
 | 
						|
/// InsertPt is the place to insert new instructions.
 | 
						|
///
 | 
						|
/// If we can't do it, return null.
 | 
						|
static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
 | 
						|
                                             Type *LoadedTy,
 | 
						|
                                             Instruction *InsertPt,
 | 
						|
                                             const DataLayout &TD) {
 | 
						|
  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If this is already the right type, just return it.
 | 
						|
  Type *StoredValTy = StoredVal->getType();
 | 
						|
 | 
						|
  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
 | 
						|
 | 
						|
  // If the store and reload are the same size, we can always reuse it.
 | 
						|
  if (StoreSize == LoadSize) {
 | 
						|
    // Pointer to Pointer -> use bitcast.
 | 
						|
    if (StoredValTy->getScalarType()->isPointerTy() &&
 | 
						|
        LoadedTy->getScalarType()->isPointerTy())
 | 
						|
      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
 | 
						|
 | 
						|
    // Convert source pointers to integers, which can be bitcast.
 | 
						|
    if (StoredValTy->getScalarType()->isPointerTy()) {
 | 
						|
      StoredValTy = TD.getIntPtrType(StoredValTy);
 | 
						|
      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    Type *TypeToCastTo = LoadedTy;
 | 
						|
    if (TypeToCastTo->getScalarType()->isPointerTy())
 | 
						|
      TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
 | 
						|
 | 
						|
    if (StoredValTy != TypeToCastTo)
 | 
						|
      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
 | 
						|
 | 
						|
    // Cast to pointer if the load needs a pointer type.
 | 
						|
    if (LoadedTy->getScalarType()->isPointerTy())
 | 
						|
      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
 | 
						|
 | 
						|
    return StoredVal;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the loaded value is smaller than the available value, then we can
 | 
						|
  // extract out a piece from it.  If the available value is too small, then we
 | 
						|
  // can't do anything.
 | 
						|
  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
 | 
						|
 | 
						|
  // Convert source pointers to integers, which can be manipulated.
 | 
						|
  if (StoredValTy->getScalarType()->isPointerTy()) {
 | 
						|
    StoredValTy = TD.getIntPtrType(StoredValTy);
 | 
						|
    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert vectors and fp to integer, which can be manipulated.
 | 
						|
  if (!StoredValTy->isIntegerTy()) {
 | 
						|
    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
 | 
						|
    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a big-endian system, we need to shift the value down to the low
 | 
						|
  // bits so that a truncate will work.
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
 | 
						|
    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Truncate the integer to the right size now.
 | 
						|
  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
 | 
						|
  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
 | 
						|
 | 
						|
  if (LoadedTy == NewIntTy)
 | 
						|
    return StoredVal;
 | 
						|
 | 
						|
  // If the result is a pointer, inttoptr.
 | 
						|
  if (LoadedTy->getScalarType()->isPointerTy())
 | 
						|
    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
 | 
						|
 | 
						|
  // Otherwise, bitcast.
 | 
						|
  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering memory write (store,
 | 
						|
/// memset, memcpy, memmove).  This means that the write *may* provide bits used
 | 
						|
/// by the load but we can't be sure because the pointers don't mustalias.
 | 
						|
///
 | 
						|
/// Check this case to see if there is anything more we can do before we give
 | 
						|
/// up.  This returns -1 if we have to give up, or a byte number in the stored
 | 
						|
/// value of the piece that feeds the load.
 | 
						|
static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
 | 
						|
                                          Value *WritePtr,
 | 
						|
                                          uint64_t WriteSizeInBits,
 | 
						|
                                          const DataLayout &TD) {
 | 
						|
  // If the loaded or stored value is a first class array or struct, don't try
 | 
						|
  // to transform them.  We need to be able to bitcast to integer.
 | 
						|
  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  int64_t StoreOffset = 0, LoadOffset = 0;
 | 
						|
  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
 | 
						|
  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
 | 
						|
  if (StoreBase != LoadBase)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // If the load and store are to the exact same address, they should have been
 | 
						|
  // a must alias.  AA must have gotten confused.
 | 
						|
  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
 | 
						|
  // to a load from the base of the memset.
 | 
						|
#if 0
 | 
						|
  if (LoadOffset == StoreOffset) {
 | 
						|
    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
 | 
						|
    << "Base       = " << *StoreBase << "\n"
 | 
						|
    << "Store Ptr  = " << *WritePtr << "\n"
 | 
						|
    << "Store Offs = " << StoreOffset << "\n"
 | 
						|
    << "Load Ptr   = " << *LoadPtr << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // If the load and store don't overlap at all, the store doesn't provide
 | 
						|
  // anything to the load.  In this case, they really don't alias at all, AA
 | 
						|
  // must have gotten confused.
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
 | 
						|
 | 
						|
  if ((WriteSizeInBits & 7) | (LoadSize & 7))
 | 
						|
    return -1;
 | 
						|
  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
 | 
						|
  LoadSize >>= 3;
 | 
						|
 | 
						|
 | 
						|
  bool isAAFailure = false;
 | 
						|
  if (StoreOffset < LoadOffset)
 | 
						|
    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
 | 
						|
  else
 | 
						|
    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
 | 
						|
 | 
						|
  if (isAAFailure) {
 | 
						|
#if 0
 | 
						|
    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
 | 
						|
    << "Base       = " << *StoreBase << "\n"
 | 
						|
    << "Store Ptr  = " << *WritePtr << "\n"
 | 
						|
    << "Store Offs = " << StoreOffset << "\n"
 | 
						|
    << "Load Ptr   = " << *LoadPtr << "\n";
 | 
						|
    abort();
 | 
						|
#endif
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the Load isn't completely contained within the stored bits, we don't
 | 
						|
  // have all the bits to feed it.  We could do something crazy in the future
 | 
						|
  // (issue a smaller load then merge the bits in) but this seems unlikely to be
 | 
						|
  // valuable.
 | 
						|
  if (StoreOffset > LoadOffset ||
 | 
						|
      StoreOffset+StoreSize < LoadOffset+LoadSize)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // Okay, we can do this transformation.  Return the number of bytes into the
 | 
						|
  // store that the load is.
 | 
						|
  return LoadOffset-StoreOffset;
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeLoadFromClobberingStore - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering store.
 | 
						|
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
 | 
						|
                                          StoreInst *DepSI,
 | 
						|
                                          const DataLayout &TD) {
 | 
						|
  // Cannot handle reading from store of first-class aggregate yet.
 | 
						|
  if (DepSI->getValueOperand()->getType()->isStructTy() ||
 | 
						|
      DepSI->getValueOperand()->getType()->isArrayTy())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  Value *StorePtr = DepSI->getPointerOperand();
 | 
						|
  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
 | 
						|
  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | 
						|
                                        StorePtr, StoreSize, TD);
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being clobbered by another load.  See if
 | 
						|
/// the other load can feed into the second load.
 | 
						|
static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
 | 
						|
                                         LoadInst *DepLI, const DataLayout &TD){
 | 
						|
  // Cannot handle reading from store of first-class aggregate yet.
 | 
						|
  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  Value *DepPtr = DepLI->getPointerOperand();
 | 
						|
  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
 | 
						|
  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
 | 
						|
  if (R != -1) return R;
 | 
						|
 | 
						|
  // If we have a load/load clobber an DepLI can be widened to cover this load,
 | 
						|
  // then we should widen it!
 | 
						|
  int64_t LoadOffs = 0;
 | 
						|
  const Value *LoadBase =
 | 
						|
    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
 | 
						|
  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
 | 
						|
 | 
						|
  unsigned Size = MemoryDependenceAnalysis::
 | 
						|
    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
 | 
						|
  if (Size == 0) return -1;
 | 
						|
 | 
						|
  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
 | 
						|
                                            MemIntrinsic *MI,
 | 
						|
                                            const DataLayout &TD) {
 | 
						|
  // If the mem operation is a non-constant size, we can't handle it.
 | 
						|
  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
  if (SizeCst == 0) return -1;
 | 
						|
  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
 | 
						|
 | 
						|
  // If this is memset, we just need to see if the offset is valid in the size
 | 
						|
  // of the memset..
 | 
						|
  if (MI->getIntrinsicID() == Intrinsic::memset)
 | 
						|
    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
 | 
						|
                                          MemSizeInBits, TD);
 | 
						|
 | 
						|
  // If we have a memcpy/memmove, the only case we can handle is if this is a
 | 
						|
  // copy from constant memory.  In that case, we can read directly from the
 | 
						|
  // constant memory.
 | 
						|
  MemTransferInst *MTI = cast<MemTransferInst>(MI);
 | 
						|
 | 
						|
  Constant *Src = dyn_cast<Constant>(MTI->getSource());
 | 
						|
  if (Src == 0) return -1;
 | 
						|
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
 | 
						|
  if (GV == 0 || !GV->isConstant()) return -1;
 | 
						|
 | 
						|
  // See if the access is within the bounds of the transfer.
 | 
						|
  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | 
						|
                                              MI->getDest(), MemSizeInBits, TD);
 | 
						|
  if (Offset == -1)
 | 
						|
    return Offset;
 | 
						|
 | 
						|
  // Otherwise, see if we can constant fold a load from the constant with the
 | 
						|
  // offset applied as appropriate.
 | 
						|
  Src = ConstantExpr::getBitCast(Src,
 | 
						|
                                 llvm::Type::getInt8PtrTy(Src->getContext()));
 | 
						|
  Constant *OffsetCst =
 | 
						|
    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | 
						|
  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
 | 
						|
  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | 
						|
  if (ConstantFoldLoadFromConstPtr(Src, &TD))
 | 
						|
    return Offset;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetStoreValueForLoad - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering store.  This means
 | 
						|
/// that the store provides bits used by the load but we the pointers don't
 | 
						|
/// mustalias.  Check this case to see if there is anything more we can do
 | 
						|
/// before we give up.
 | 
						|
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
 | 
						|
                                   Type *LoadTy,
 | 
						|
                                   Instruction *InsertPt, const DataLayout &TD){
 | 
						|
  LLVMContext &Ctx = SrcVal->getType()->getContext();
 | 
						|
 | 
						|
  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
 | 
						|
  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
 | 
						|
 | 
						|
  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | 
						|
 | 
						|
  // Compute which bits of the stored value are being used by the load.  Convert
 | 
						|
  // to an integer type to start with.
 | 
						|
  if (SrcVal->getType()->getScalarType()->isPointerTy())
 | 
						|
    SrcVal = Builder.CreatePtrToInt(SrcVal,
 | 
						|
        TD.getIntPtrType(SrcVal->getType()));
 | 
						|
  if (!SrcVal->getType()->isIntegerTy())
 | 
						|
    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
 | 
						|
 | 
						|
  // Shift the bits to the least significant depending on endianness.
 | 
						|
  unsigned ShiftAmt;
 | 
						|
  if (TD.isLittleEndian())
 | 
						|
    ShiftAmt = Offset*8;
 | 
						|
  else
 | 
						|
    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
 | 
						|
 | 
						|
  if (ShiftAmt)
 | 
						|
    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
 | 
						|
 | 
						|
  if (LoadSize != StoreSize)
 | 
						|
    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
 | 
						|
 | 
						|
  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
 | 
						|
}
 | 
						|
 | 
						|
/// GetLoadValueForLoad - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering load.  This means
 | 
						|
/// that the load *may* provide bits used by the load but we can't be sure
 | 
						|
/// because the pointers don't mustalias.  Check this case to see if there is
 | 
						|
/// anything more we can do before we give up.
 | 
						|
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
 | 
						|
                                  Type *LoadTy, Instruction *InsertPt,
 | 
						|
                                  GVN &gvn) {
 | 
						|
  const DataLayout &TD = *gvn.getDataLayout();
 | 
						|
  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
 | 
						|
  // widen SrcVal out to a larger load.
 | 
						|
  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
 | 
						|
  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
 | 
						|
  if (Offset+LoadSize > SrcValSize) {
 | 
						|
    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
 | 
						|
    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
 | 
						|
    // If we have a load/load clobber an DepLI can be widened to cover this
 | 
						|
    // load, then we should widen it to the next power of 2 size big enough!
 | 
						|
    unsigned NewLoadSize = Offset+LoadSize;
 | 
						|
    if (!isPowerOf2_32(NewLoadSize))
 | 
						|
      NewLoadSize = NextPowerOf2(NewLoadSize);
 | 
						|
 | 
						|
    Value *PtrVal = SrcVal->getPointerOperand();
 | 
						|
 | 
						|
    // Insert the new load after the old load.  This ensures that subsequent
 | 
						|
    // memdep queries will find the new load.  We can't easily remove the old
 | 
						|
    // load completely because it is already in the value numbering table.
 | 
						|
    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
 | 
						|
    Type *DestPTy =
 | 
						|
      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
 | 
						|
    DestPTy = PointerType::get(DestPTy,
 | 
						|
                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
 | 
						|
    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
 | 
						|
    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
 | 
						|
    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
 | 
						|
    NewLoad->takeName(SrcVal);
 | 
						|
    NewLoad->setAlignment(SrcVal->getAlignment());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
 | 
						|
    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
 | 
						|
 | 
						|
    // Replace uses of the original load with the wider load.  On a big endian
 | 
						|
    // system, we need to shift down to get the relevant bits.
 | 
						|
    Value *RV = NewLoad;
 | 
						|
    if (TD.isBigEndian())
 | 
						|
      RV = Builder.CreateLShr(RV,
 | 
						|
                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
 | 
						|
    RV = Builder.CreateTrunc(RV, SrcVal->getType());
 | 
						|
    SrcVal->replaceAllUsesWith(RV);
 | 
						|
 | 
						|
    // We would like to use gvn.markInstructionForDeletion here, but we can't
 | 
						|
    // because the load is already memoized into the leader map table that GVN
 | 
						|
    // tracks.  It is potentially possible to remove the load from the table,
 | 
						|
    // but then there all of the operations based on it would need to be
 | 
						|
    // rehashed.  Just leave the dead load around.
 | 
						|
    gvn.getMemDep().removeInstruction(SrcVal);
 | 
						|
    SrcVal = NewLoad;
 | 
						|
  }
 | 
						|
 | 
						|
  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetMemInstValueForLoad - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering mem intrinsic.
 | 
						|
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
 | 
						|
                                     Type *LoadTy, Instruction *InsertPt,
 | 
						|
                                     const DataLayout &TD){
 | 
						|
  LLVMContext &Ctx = LoadTy->getContext();
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
 | 
						|
 | 
						|
  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | 
						|
 | 
						|
  // We know that this method is only called when the mem transfer fully
 | 
						|
  // provides the bits for the load.
 | 
						|
  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
 | 
						|
    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
 | 
						|
    // independently of what the offset is.
 | 
						|
    Value *Val = MSI->getValue();
 | 
						|
    if (LoadSize != 1)
 | 
						|
      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
 | 
						|
 | 
						|
    Value *OneElt = Val;
 | 
						|
 | 
						|
    // Splat the value out to the right number of bits.
 | 
						|
    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
 | 
						|
      // If we can double the number of bytes set, do it.
 | 
						|
      if (NumBytesSet*2 <= LoadSize) {
 | 
						|
        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
 | 
						|
        Val = Builder.CreateOr(Val, ShVal);
 | 
						|
        NumBytesSet <<= 1;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise insert one byte at a time.
 | 
						|
      Value *ShVal = Builder.CreateShl(Val, 1*8);
 | 
						|
      Val = Builder.CreateOr(OneElt, ShVal);
 | 
						|
      ++NumBytesSet;
 | 
						|
    }
 | 
						|
 | 
						|
    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is a memcpy/memmove from a constant global.
 | 
						|
  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
 | 
						|
  Constant *Src = cast<Constant>(MTI->getSource());
 | 
						|
 | 
						|
  // Otherwise, see if we can constant fold a load from the constant with the
 | 
						|
  // offset applied as appropriate.
 | 
						|
  Src = ConstantExpr::getBitCast(Src,
 | 
						|
                                 llvm::Type::getInt8PtrTy(Src->getContext()));
 | 
						|
  Constant *OffsetCst =
 | 
						|
  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | 
						|
  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
 | 
						|
  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | 
						|
  return ConstantFoldLoadFromConstPtr(Src, &TD);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
 | 
						|
/// construct SSA form, allowing us to eliminate LI.  This returns the value
 | 
						|
/// that should be used at LI's definition site.
 | 
						|
static Value *ConstructSSAForLoadSet(LoadInst *LI,
 | 
						|
                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
 | 
						|
                                     GVN &gvn) {
 | 
						|
  // Check for the fully redundant, dominating load case.  In this case, we can
 | 
						|
  // just use the dominating value directly.
 | 
						|
  if (ValuesPerBlock.size() == 1 &&
 | 
						|
      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
 | 
						|
                                               LI->getParent()))
 | 
						|
    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
 | 
						|
 | 
						|
  // Otherwise, we have to construct SSA form.
 | 
						|
  SmallVector<PHINode*, 8> NewPHIs;
 | 
						|
  SSAUpdater SSAUpdate(&NewPHIs);
 | 
						|
  SSAUpdate.Initialize(LI->getType(), LI->getName());
 | 
						|
 | 
						|
  Type *LoadTy = LI->getType();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | 
						|
    const AvailableValueInBlock &AV = ValuesPerBlock[i];
 | 
						|
    BasicBlock *BB = AV.BB;
 | 
						|
 | 
						|
    if (SSAUpdate.HasValueForBlock(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform PHI construction.
 | 
						|
  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
 | 
						|
 | 
						|
  // If new PHI nodes were created, notify alias analysis.
 | 
						|
  if (V->getType()->getScalarType()->isPointerTy()) {
 | 
						|
    AliasAnalysis *AA = gvn.getAliasAnalysis();
 | 
						|
 | 
						|
    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | 
						|
      AA->copyValue(LI, NewPHIs[i]);
 | 
						|
 | 
						|
    // Now that we've copied information to the new PHIs, scan through
 | 
						|
    // them again and inform alias analysis that we've added potentially
 | 
						|
    // escaping uses to any values that are operands to these PHIs.
 | 
						|
    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
 | 
						|
      PHINode *P = NewPHIs[i];
 | 
						|
      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
 | 
						|
        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
 | 
						|
        AA->addEscapingUse(P->getOperandUse(jj));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
 | 
						|
  Value *Res;
 | 
						|
  if (isSimpleValue()) {
 | 
						|
    Res = getSimpleValue();
 | 
						|
    if (Res->getType() != LoadTy) {
 | 
						|
      const DataLayout *TD = gvn.getDataLayout();
 | 
						|
      assert(TD && "Need target data to handle type mismatch case");
 | 
						|
      Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
 | 
						|
                                 *TD);
 | 
						|
  
 | 
						|
      DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
 | 
						|
                   << *getSimpleValue() << '\n'
 | 
						|
                   << *Res << '\n' << "\n\n\n");
 | 
						|
    }
 | 
						|
  } else if (isCoercedLoadValue()) {
 | 
						|
    LoadInst *Load = getCoercedLoadValue();
 | 
						|
    if (Load->getType() == LoadTy && Offset == 0) {
 | 
						|
      Res = Load;
 | 
						|
    } else {
 | 
						|
      Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
 | 
						|
                                gvn);
 | 
						|
  
 | 
						|
      DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
 | 
						|
                   << *getCoercedLoadValue() << '\n'
 | 
						|
                   << *Res << '\n' << "\n\n\n");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const DataLayout *TD = gvn.getDataLayout();
 | 
						|
    assert(TD && "Need target data to handle type mismatch case");
 | 
						|
    Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
 | 
						|
                                 LoadTy, BB->getTerminator(), *TD);
 | 
						|
    DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
 | 
						|
                 << "  " << *getMemIntrinValue() << '\n'
 | 
						|
                 << *Res << '\n' << "\n\n\n");
 | 
						|
  }
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
static bool isLifetimeStart(const Instruction *Inst) {
 | 
						|
  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
 | 
						|
    return II->getIntrinsicID() == Intrinsic::lifetime_start;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 
 | 
						|
                                  AvailValInBlkVect &ValuesPerBlock,
 | 
						|
                                  UnavailBlkVect &UnavailableBlocks) {
 | 
						|
 | 
						|
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
 | 
						|
  // where we have a value available in repl, also keep track of whether we see
 | 
						|
  // dependencies that produce an unknown value for the load (such as a call
 | 
						|
  // that could potentially clobber the load).
 | 
						|
  unsigned NumDeps = Deps.size();
 | 
						|
  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
 | 
						|
    BasicBlock *DepBB = Deps[i].getBB();
 | 
						|
    MemDepResult DepInfo = Deps[i].getResult();
 | 
						|
 | 
						|
    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
 | 
						|
      UnavailableBlocks.push_back(DepBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DepInfo.isClobber()) {
 | 
						|
      // The address being loaded in this non-local block may not be the same as
 | 
						|
      // the pointer operand of the load if PHI translation occurs.  Make sure
 | 
						|
      // to consider the right address.
 | 
						|
      Value *Address = Deps[i].getAddress();
 | 
						|
 | 
						|
      // If the dependence is to a store that writes to a superset of the bits
 | 
						|
      // read by the load, we can extract the bits we need for the load from the
 | 
						|
      // stored value.
 | 
						|
      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
 | 
						|
        if (TD && Address) {
 | 
						|
          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
 | 
						|
                                                      DepSI, *TD);
 | 
						|
          if (Offset != -1) {
 | 
						|
            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                                       DepSI->getValueOperand(),
 | 
						|
                                                                Offset));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check to see if we have something like this:
 | 
						|
      //    load i32* P
 | 
						|
      //    load i8* (P+1)
 | 
						|
      // if we have this, replace the later with an extraction from the former.
 | 
						|
      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
 | 
						|
        // If this is a clobber and L is the first instruction in its block, then
 | 
						|
        // we have the first instruction in the entry block.
 | 
						|
        if (DepLI != LI && Address && TD) {
 | 
						|
          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
 | 
						|
                                                     LI->getPointerOperand(),
 | 
						|
                                                     DepLI, *TD);
 | 
						|
 | 
						|
          if (Offset != -1) {
 | 
						|
            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
 | 
						|
                                                                    Offset));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the clobbering value is a memset/memcpy/memmove, see if we can
 | 
						|
      // forward a value on from it.
 | 
						|
      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
 | 
						|
        if (TD && Address) {
 | 
						|
          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
 | 
						|
                                                        DepMI, *TD);
 | 
						|
          if (Offset != -1) {
 | 
						|
            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
 | 
						|
                                                                  Offset));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      UnavailableBlocks.push_back(DepBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // DepInfo.isDef() here
 | 
						|
 | 
						|
    Instruction *DepInst = DepInfo.getInst();
 | 
						|
 | 
						|
    // Loading the allocation -> undef.
 | 
						|
    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
 | 
						|
        // Loading immediately after lifetime begin -> undef.
 | 
						|
        isLifetimeStart(DepInst)) {
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                             UndefValue::get(LI->getType())));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
      // Reject loads and stores that are to the same address but are of
 | 
						|
      // different types if we have to.
 | 
						|
      if (S->getValueOperand()->getType() != LI->getType()) {
 | 
						|
        // If the stored value is larger or equal to the loaded value, we can
 | 
						|
        // reuse it.
 | 
						|
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
 | 
						|
                                                        LI->getType(), *TD)) {
 | 
						|
          UnavailableBlocks.push_back(DepBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                                         S->getValueOperand()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
      // If the types mismatch and we can't handle it, reject reuse of the load.
 | 
						|
      if (LD->getType() != LI->getType()) {
 | 
						|
        // If the stored value is larger or equal to the loaded value, we can
 | 
						|
        // reuse it.
 | 
						|
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
 | 
						|
          UnavailableBlocks.push_back(DepBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    UnavailableBlocks.push_back(DepBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 
 | 
						|
                         UnavailBlkVect &UnavailableBlocks) {
 | 
						|
  // Okay, we have *some* definitions of the value.  This means that the value
 | 
						|
  // is available in some of our (transitive) predecessors.  Lets think about
 | 
						|
  // doing PRE of this load.  This will involve inserting a new load into the
 | 
						|
  // predecessor when it's not available.  We could do this in general, but
 | 
						|
  // prefer to not increase code size.  As such, we only do this when we know
 | 
						|
  // that we only have to insert *one* load (which means we're basically moving
 | 
						|
  // the load, not inserting a new one).
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 4> Blockers;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    Blockers.insert(UnavailableBlocks[i]);
 | 
						|
 | 
						|
  // Let's find the first basic block with more than one predecessor.  Walk
 | 
						|
  // backwards through predecessors if needed.
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  BasicBlock *TmpBB = LoadBB;
 | 
						|
 | 
						|
  while (TmpBB->getSinglePredecessor()) {
 | 
						|
    TmpBB = TmpBB->getSinglePredecessor();
 | 
						|
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
 | 
						|
      return false;
 | 
						|
    if (Blockers.count(TmpBB))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If any of these blocks has more than one successor (i.e. if the edge we
 | 
						|
    // just traversed was critical), then there are other paths through this
 | 
						|
    // block along which the load may not be anticipated.  Hoisting the load
 | 
						|
    // above this block would be adding the load to execution paths along
 | 
						|
    // which it was not previously executed.
 | 
						|
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(TmpBB);
 | 
						|
  LoadBB = TmpBB;
 | 
						|
 | 
						|
  // Check to see how many predecessors have the loaded value fully
 | 
						|
  // available.
 | 
						|
  DenseMap<BasicBlock*, Value*> PredLoads;
 | 
						|
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> CriticalEdgePred;
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | 
						|
       PI != E; ++PI) {
 | 
						|
    BasicBlock *Pred = *PI;
 | 
						|
    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    PredLoads[Pred] = 0;
 | 
						|
 | 
						|
    if (Pred->getTerminator()->getNumSuccessors() != 1) {
 | 
						|
      if (isa<IndirectBrInst>(Pred->getTerminator())) {
 | 
						|
        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
 | 
						|
              << Pred->getName() << "': " << *LI << '\n');
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (LoadBB->isLandingPad()) {
 | 
						|
        DEBUG(dbgs()
 | 
						|
              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
 | 
						|
              << Pred->getName() << "': " << *LI << '\n');
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      CriticalEdgePred.push_back(Pred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Decide whether PRE is profitable for this load.
 | 
						|
  unsigned NumUnavailablePreds = PredLoads.size();
 | 
						|
  assert(NumUnavailablePreds != 0 &&
 | 
						|
         "Fully available value should already be eliminated!");
 | 
						|
 | 
						|
  // If this load is unavailable in multiple predecessors, reject it.
 | 
						|
  // FIXME: If we could restructure the CFG, we could make a common pred with
 | 
						|
  // all the preds that don't have an available LI and insert a new load into
 | 
						|
  // that one block.
 | 
						|
  if (NumUnavailablePreds != 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Split critical edges, and update the unavailable predecessors accordingly.
 | 
						|
  for (SmallVector<BasicBlock *, 4>::iterator I = CriticalEdgePred.begin(), 
 | 
						|
         E = CriticalEdgePred.end(); I != E; I++) {
 | 
						|
    BasicBlock *OrigPred = *I;
 | 
						|
    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
 | 
						|
    PredLoads.erase(OrigPred);
 | 
						|
    PredLoads[NewPred] = 0;
 | 
						|
    DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
 | 
						|
                 << LoadBB->getName() << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the load can safely be moved to all the unavailable predecessors.
 | 
						|
  bool CanDoPRE = true;
 | 
						|
  SmallVector<Instruction*, 8> NewInsts;
 | 
						|
  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
 | 
						|
         E = PredLoads.end(); I != E; ++I) {
 | 
						|
    BasicBlock *UnavailablePred = I->first;
 | 
						|
 | 
						|
    // Do PHI translation to get its value in the predecessor if necessary.  The
 | 
						|
    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
 | 
						|
 | 
						|
    // If all preds have a single successor, then we know it is safe to insert
 | 
						|
    // the load on the pred (?!?), so we can insert code to materialize the
 | 
						|
    // pointer if it is not available.
 | 
						|
    PHITransAddr Address(LI->getPointerOperand(), TD);
 | 
						|
    Value *LoadPtr = 0;
 | 
						|
    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
 | 
						|
                                                *DT, NewInsts);
 | 
						|
 | 
						|
    // If we couldn't find or insert a computation of this phi translated value,
 | 
						|
    // we fail PRE.
 | 
						|
    if (LoadPtr == 0) {
 | 
						|
      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
 | 
						|
            << *LI->getPointerOperand() << "\n");
 | 
						|
      CanDoPRE = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    I->second = LoadPtr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CanDoPRE) {
 | 
						|
    while (!NewInsts.empty()) {
 | 
						|
      Instruction *I = NewInsts.pop_back_val();
 | 
						|
      if (MD) MD->removeInstruction(I);
 | 
						|
      I->eraseFromParent();
 | 
						|
    }
 | 
						|
    // HINT:Don't revert the edge-splitting as following transformation may 
 | 
						|
    // also need to split these critial edges.
 | 
						|
    return !CriticalEdgePred.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can eliminate this load by inserting a reload in the predecessor
 | 
						|
  // and using PHI construction to get the value in the other predecessors, do
 | 
						|
  // it.
 | 
						|
  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
 | 
						|
  DEBUG(if (!NewInsts.empty())
 | 
						|
          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
 | 
						|
                 << *NewInsts.back() << '\n');
 | 
						|
 | 
						|
  // Assign value numbers to the new instructions.
 | 
						|
  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
 | 
						|
    // FIXME: We really _ought_ to insert these value numbers into their
 | 
						|
    // parent's availability map.  However, in doing so, we risk getting into
 | 
						|
    // ordering issues.  If a block hasn't been processed yet, we would be
 | 
						|
    // marking a value as AVAIL-IN, which isn't what we intend.
 | 
						|
    VN.lookup_or_add(NewInsts[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
 | 
						|
         E = PredLoads.end(); I != E; ++I) {
 | 
						|
    BasicBlock *UnavailablePred = I->first;
 | 
						|
    Value *LoadPtr = I->second;
 | 
						|
 | 
						|
    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
 | 
						|
                                        LI->getAlignment(),
 | 
						|
                                        UnavailablePred->getTerminator());
 | 
						|
 | 
						|
    // Transfer the old load's TBAA tag to the new load.
 | 
						|
    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
 | 
						|
      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | 
						|
 | 
						|
    // Transfer DebugLoc.
 | 
						|
    NewLoad->setDebugLoc(LI->getDebugLoc());
 | 
						|
 | 
						|
    // Add the newly created load.
 | 
						|
    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
 | 
						|
                                                        NewLoad));
 | 
						|
    MD->invalidateCachedPointerInfo(LoadPtr);
 | 
						|
    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform PHI construction.
 | 
						|
  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
 | 
						|
  LI->replaceAllUsesWith(V);
 | 
						|
  if (isa<PHINode>(V))
 | 
						|
    V->takeName(LI);
 | 
						|
  if (V->getType()->getScalarType()->isPointerTy())
 | 
						|
    MD->invalidateCachedPointerInfo(V);
 | 
						|
  markInstructionForDeletion(LI);
 | 
						|
  ++NumPRELoad;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | 
						|
/// non-local by performing PHI construction.
 | 
						|
bool GVN::processNonLocalLoad(LoadInst *LI) {
 | 
						|
  // Step 1: Find the non-local dependencies of the load.
 | 
						|
  LoadDepVect Deps;
 | 
						|
  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
 | 
						|
  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
 | 
						|
 | 
						|
  // If we had to process more than one hundred blocks to find the
 | 
						|
  // dependencies, this load isn't worth worrying about.  Optimizing
 | 
						|
  // it will be too expensive.
 | 
						|
  unsigned NumDeps = Deps.size();
 | 
						|
  if (NumDeps > 100)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we had a phi translation failure, we'll have a single entry which is a
 | 
						|
  // clobber in the current block.  Reject this early.
 | 
						|
  if (NumDeps == 1 &&
 | 
						|
      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
 | 
						|
    DEBUG(
 | 
						|
      dbgs() << "GVN: non-local load ";
 | 
						|
      WriteAsOperand(dbgs(), LI);
 | 
						|
      dbgs() << " has unknown dependencies\n";
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 2: Analyze the availability of the load
 | 
						|
  AvailValInBlkVect ValuesPerBlock;
 | 
						|
  UnavailBlkVect UnavailableBlocks;
 | 
						|
  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
 | 
						|
 | 
						|
  // If we have no predecessors that produce a known value for this load, exit
 | 
						|
  // early.
 | 
						|
  if (ValuesPerBlock.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Step 3: Eliminate fully redundancy.
 | 
						|
  //
 | 
						|
  // If all of the instructions we depend on produce a known value for this
 | 
						|
  // load, then it is fully redundant and we can use PHI insertion to compute
 | 
						|
  // its value.  Insert PHIs and remove the fully redundant value now.
 | 
						|
  if (UnavailableBlocks.empty()) {
 | 
						|
    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
 | 
						|
 | 
						|
    // Perform PHI construction.
 | 
						|
    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
 | 
						|
    LI->replaceAllUsesWith(V);
 | 
						|
 | 
						|
    if (isa<PHINode>(V))
 | 
						|
      V->takeName(LI);
 | 
						|
    if (V->getType()->getScalarType()->isPointerTy())
 | 
						|
      MD->invalidateCachedPointerInfo(V);
 | 
						|
    markInstructionForDeletion(LI);
 | 
						|
    ++NumGVNLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 4: Eliminate partial redundancy.
 | 
						|
  if (!EnablePRE || !EnableLoadPRE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
 | 
						|
  // Patch the replacement so that it is not more restrictive than the value
 | 
						|
  // being replaced.
 | 
						|
  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
 | 
						|
  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
 | 
						|
  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
 | 
						|
      isa<OverflowingBinaryOperator>(ReplOp)) {
 | 
						|
    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
 | 
						|
      ReplOp->setHasNoSignedWrap(false);
 | 
						|
    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
 | 
						|
      ReplOp->setHasNoUnsignedWrap(false);
 | 
						|
  }
 | 
						|
  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
 | 
						|
    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
 | 
						|
    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
    for (int i = 0, n = Metadata.size(); i < n; ++i) {
 | 
						|
      unsigned Kind = Metadata[i].first;
 | 
						|
      MDNode *IMD = I->getMetadata(Kind);
 | 
						|
      MDNode *ReplMD = Metadata[i].second;
 | 
						|
      switch(Kind) {
 | 
						|
      default:
 | 
						|
        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_dbg:
 | 
						|
        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_range:
 | 
						|
        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_prof:
 | 
						|
        llvm_unreachable("MD_prof in a non terminator instruction");
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
 | 
						|
  patchReplacementInstruction(I, Repl);
 | 
						|
  I->replaceAllUsesWith(Repl);
 | 
						|
}
 | 
						|
 | 
						|
/// processLoad - Attempt to eliminate a load, first by eliminating it
 | 
						|
/// locally, and then attempting non-local elimination if that fails.
 | 
						|
bool GVN::processLoad(LoadInst *L) {
 | 
						|
  if (!MD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!L->isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (L->use_empty()) {
 | 
						|
    markInstructionForDeletion(L);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // ... to a pointer that has been loaded from before...
 | 
						|
  MemDepResult Dep = MD->getDependency(L);
 | 
						|
 | 
						|
  // If we have a clobber and target data is around, see if this is a clobber
 | 
						|
  // that we can fix up through code synthesis.
 | 
						|
  if (Dep.isClobber() && TD) {
 | 
						|
    // Check to see if we have something like this:
 | 
						|
    //   store i32 123, i32* %P
 | 
						|
    //   %A = bitcast i32* %P to i8*
 | 
						|
    //   %B = gep i8* %A, i32 1
 | 
						|
    //   %C = load i8* %B
 | 
						|
    //
 | 
						|
    // We could do that by recognizing if the clobber instructions are obviously
 | 
						|
    // a common base + constant offset, and if the previous store (or memset)
 | 
						|
    // completely covers this load.  This sort of thing can happen in bitfield
 | 
						|
    // access code.
 | 
						|
    Value *AvailVal = 0;
 | 
						|
    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
 | 
						|
      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
 | 
						|
                                                  L->getPointerOperand(),
 | 
						|
                                                  DepSI, *TD);
 | 
						|
      if (Offset != -1)
 | 
						|
        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
 | 
						|
                                        L->getType(), L, *TD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if we have something like this:
 | 
						|
    //    load i32* P
 | 
						|
    //    load i8* (P+1)
 | 
						|
    // if we have this, replace the later with an extraction from the former.
 | 
						|
    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
 | 
						|
      // If this is a clobber and L is the first instruction in its block, then
 | 
						|
      // we have the first instruction in the entry block.
 | 
						|
      if (DepLI == L)
 | 
						|
        return false;
 | 
						|
 | 
						|
      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
 | 
						|
                                                 L->getPointerOperand(),
 | 
						|
                                                 DepLI, *TD);
 | 
						|
      if (Offset != -1)
 | 
						|
        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
 | 
						|
    // a value on from it.
 | 
						|
    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
 | 
						|
      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
 | 
						|
                                                    L->getPointerOperand(),
 | 
						|
                                                    DepMI, *TD);
 | 
						|
      if (Offset != -1)
 | 
						|
        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AvailVal) {
 | 
						|
      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
 | 
						|
            << *AvailVal << '\n' << *L << "\n\n\n");
 | 
						|
 | 
						|
      // Replace the load!
 | 
						|
      L->replaceAllUsesWith(AvailVal);
 | 
						|
      if (AvailVal->getType()->getScalarType()->isPointerTy())
 | 
						|
        MD->invalidateCachedPointerInfo(AvailVal);
 | 
						|
      markInstructionForDeletion(L);
 | 
						|
      ++NumGVNLoad;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value isn't available, don't do anything!
 | 
						|
  if (Dep.isClobber()) {
 | 
						|
    DEBUG(
 | 
						|
      // fast print dep, using operator<< on instruction is too slow.
 | 
						|
      dbgs() << "GVN: load ";
 | 
						|
      WriteAsOperand(dbgs(), L);
 | 
						|
      Instruction *I = Dep.getInst();
 | 
						|
      dbgs() << " is clobbered by " << *I << '\n';
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is defined in another block, try harder.
 | 
						|
  if (Dep.isNonLocal())
 | 
						|
    return processNonLocalLoad(L);
 | 
						|
 | 
						|
  if (!Dep.isDef()) {
 | 
						|
    DEBUG(
 | 
						|
      // fast print dep, using operator<< on instruction is too slow.
 | 
						|
      dbgs() << "GVN: load ";
 | 
						|
      WriteAsOperand(dbgs(), L);
 | 
						|
      dbgs() << " has unknown dependence\n";
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *DepInst = Dep.getInst();
 | 
						|
  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
    Value *StoredVal = DepSI->getValueOperand();
 | 
						|
 | 
						|
    // The store and load are to a must-aliased pointer, but they may not
 | 
						|
    // actually have the same type.  See if we know how to reuse the stored
 | 
						|
    // value (depending on its type).
 | 
						|
    if (StoredVal->getType() != L->getType()) {
 | 
						|
      if (TD) {
 | 
						|
        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
 | 
						|
                                                   L, *TD);
 | 
						|
        if (StoredVal == 0)
 | 
						|
          return false;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
 | 
						|
                     << '\n' << *L << "\n\n\n");
 | 
						|
      }
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove it!
 | 
						|
    L->replaceAllUsesWith(StoredVal);
 | 
						|
    if (StoredVal->getType()->getScalarType()->isPointerTy())
 | 
						|
      MD->invalidateCachedPointerInfo(StoredVal);
 | 
						|
    markInstructionForDeletion(L);
 | 
						|
    ++NumGVNLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
    Value *AvailableVal = DepLI;
 | 
						|
 | 
						|
    // The loads are of a must-aliased pointer, but they may not actually have
 | 
						|
    // the same type.  See if we know how to reuse the previously loaded value
 | 
						|
    // (depending on its type).
 | 
						|
    if (DepLI->getType() != L->getType()) {
 | 
						|
      if (TD) {
 | 
						|
        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
 | 
						|
                                                      L, *TD);
 | 
						|
        if (AvailableVal == 0)
 | 
						|
          return false;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
 | 
						|
                     << "\n" << *L << "\n\n\n");
 | 
						|
      }
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove it!
 | 
						|
    patchAndReplaceAllUsesWith(L, AvailableVal);
 | 
						|
    if (DepLI->getType()->getScalarType()->isPointerTy())
 | 
						|
      MD->invalidateCachedPointerInfo(DepLI);
 | 
						|
    markInstructionForDeletion(L);
 | 
						|
    ++NumGVNLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this load really doesn't depend on anything, then we must be loading an
 | 
						|
  // undef value.  This can happen when loading for a fresh allocation with no
 | 
						|
  // intervening stores, for example.
 | 
						|
  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
 | 
						|
    L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | 
						|
    markInstructionForDeletion(L);
 | 
						|
    ++NumGVNLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this load occurs either right after a lifetime begin,
 | 
						|
  // then the loaded value is undefined.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
 | 
						|
      L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | 
						|
      markInstructionForDeletion(L);
 | 
						|
      ++NumGVNLoad;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// findLeader - In order to find a leader for a given value number at a
 | 
						|
// specific basic block, we first obtain the list of all Values for that number,
 | 
						|
// and then scan the list to find one whose block dominates the block in
 | 
						|
// question.  This is fast because dominator tree queries consist of only
 | 
						|
// a few comparisons of DFS numbers.
 | 
						|
Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
 | 
						|
  LeaderTableEntry Vals = LeaderTable[num];
 | 
						|
  if (!Vals.Val) return 0;
 | 
						|
 | 
						|
  Value *Val = 0;
 | 
						|
  if (DT->dominates(Vals.BB, BB)) {
 | 
						|
    Val = Vals.Val;
 | 
						|
    if (isa<Constant>(Val)) return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  LeaderTableEntry* Next = Vals.Next;
 | 
						|
  while (Next) {
 | 
						|
    if (DT->dominates(Next->BB, BB)) {
 | 
						|
      if (isa<Constant>(Next->Val)) return Next->Val;
 | 
						|
      if (!Val) Val = Next->Val;
 | 
						|
    }
 | 
						|
 | 
						|
    Next = Next->Next;
 | 
						|
  }
 | 
						|
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
 | 
						|
/// use is dominated by the given basic block.  Returns the number of uses that
 | 
						|
/// were replaced.
 | 
						|
unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                          const BasicBlockEdge &Root) {
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | 
						|
       UI != UE; ) {
 | 
						|
    Use &U = (UI++).getUse();
 | 
						|
 | 
						|
    if (DT->dominates(Root, U)) {
 | 
						|
      U.set(To);
 | 
						|
      ++Count;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
 | 
						|
/// true if every path from the entry block to 'Dst' passes via this edge.  In
 | 
						|
/// particular 'Dst' must not be reachable via another edge from 'Src'.
 | 
						|
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
 | 
						|
                                       DominatorTree *DT) {
 | 
						|
  // While in theory it is interesting to consider the case in which Dst has
 | 
						|
  // more than one predecessor, because Dst might be part of a loop which is
 | 
						|
  // only reachable from Src, in practice it is pointless since at the time
 | 
						|
  // GVN runs all such loops have preheaders, which means that Dst will have
 | 
						|
  // been changed to have only one predecessor, namely Src.
 | 
						|
  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
 | 
						|
  const BasicBlock *Src = E.getStart();
 | 
						|
  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
 | 
						|
  (void)Src;
 | 
						|
  return Pred != 0;
 | 
						|
}
 | 
						|
 | 
						|
/// propagateEquality - The given values are known to be equal in every block
 | 
						|
/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
 | 
						|
/// 'RHS' everywhere in the scope.  Returns whether a change was made.
 | 
						|
bool GVN::propagateEquality(Value *LHS, Value *RHS,
 | 
						|
                            const BasicBlockEdge &Root) {
 | 
						|
  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
 | 
						|
  Worklist.push_back(std::make_pair(LHS, RHS));
 | 
						|
  bool Changed = false;
 | 
						|
  // For speed, compute a conservative fast approximation to
 | 
						|
  // DT->dominates(Root, Root.getEnd());
 | 
						|
  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
 | 
						|
    LHS = Item.first; RHS = Item.second;
 | 
						|
 | 
						|
    if (LHS == RHS) continue;
 | 
						|
    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
 | 
						|
 | 
						|
    // Don't try to propagate equalities between constants.
 | 
						|
    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
 | 
						|
 | 
						|
    // Prefer a constant on the right-hand side, or an Argument if no constants.
 | 
						|
    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
 | 
						|
 | 
						|
    // If there is no obvious reason to prefer the left-hand side over the right-
 | 
						|
    // hand side, ensure the longest lived term is on the right-hand side, so the
 | 
						|
    // shortest lived term will be replaced by the longest lived.  This tends to
 | 
						|
    // expose more simplifications.
 | 
						|
    uint32_t LVN = VN.lookup_or_add(LHS);
 | 
						|
    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
 | 
						|
        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
 | 
						|
      // Move the 'oldest' value to the right-hand side, using the value number as
 | 
						|
      // a proxy for age.
 | 
						|
      uint32_t RVN = VN.lookup_or_add(RHS);
 | 
						|
      if (LVN < RVN) {
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
        LVN = RVN;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If value numbering later sees that an instruction in the scope is equal
 | 
						|
    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
 | 
						|
    // the invariant that instructions only occur in the leader table for their
 | 
						|
    // own value number (this is used by removeFromLeaderTable), do not do this
 | 
						|
    // if RHS is an instruction (if an instruction in the scope is morphed into
 | 
						|
    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
 | 
						|
    // using the leader table is about compiling faster, not optimizing better).
 | 
						|
    // The leader table only tracks basic blocks, not edges. Only add to if we
 | 
						|
    // have the simple case where the edge dominates the end.
 | 
						|
    if (RootDominatesEnd && !isa<Instruction>(RHS))
 | 
						|
      addToLeaderTable(LVN, RHS, Root.getEnd());
 | 
						|
 | 
						|
    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
 | 
						|
    // LHS always has at least one use that is not dominated by Root, this will
 | 
						|
    // never do anything if LHS has only one use.
 | 
						|
    if (!LHS->hasOneUse()) {
 | 
						|
      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
 | 
						|
      Changed |= NumReplacements > 0;
 | 
						|
      NumGVNEqProp += NumReplacements;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now try to deduce additional equalities from this one.  For example, if the
 | 
						|
    // known equality was "(A != B)" == "false" then it follows that A and B are
 | 
						|
    // equal in the scope.  Only boolean equalities with an explicit true or false
 | 
						|
    // RHS are currently supported.
 | 
						|
    if (!RHS->getType()->isIntegerTy(1))
 | 
						|
      // Not a boolean equality - bail out.
 | 
						|
      continue;
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
 | 
						|
    if (!CI)
 | 
						|
      // RHS neither 'true' nor 'false' - bail out.
 | 
						|
      continue;
 | 
						|
    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
 | 
						|
    bool isKnownTrue = CI->isAllOnesValue();
 | 
						|
    bool isKnownFalse = !isKnownTrue;
 | 
						|
 | 
						|
    // If "A && B" is known true then both A and B are known true.  If "A || B"
 | 
						|
    // is known false then both A and B are known false.
 | 
						|
    Value *A, *B;
 | 
						|
    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
 | 
						|
        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
 | 
						|
      Worklist.push_back(std::make_pair(A, RHS));
 | 
						|
      Worklist.push_back(std::make_pair(B, RHS));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are propagating an equality like "(A == B)" == "true" then also
 | 
						|
    // propagate the equality A == B.  When propagating a comparison such as
 | 
						|
    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
 | 
						|
    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
 | 
						|
      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
 | 
						|
 | 
						|
      // If "A == B" is known true, or "A != B" is known false, then replace
 | 
						|
      // A with B everywhere in the scope.
 | 
						|
      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
 | 
						|
          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
 | 
						|
        Worklist.push_back(std::make_pair(Op0, Op1));
 | 
						|
 | 
						|
      // If "A >= B" is known true, replace "A < B" with false everywhere.
 | 
						|
      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
 | 
						|
      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
 | 
						|
      // Since we don't have the instruction "A < B" immediately to hand, work out
 | 
						|
      // the value number that it would have and use that to find an appropriate
 | 
						|
      // instruction (if any).
 | 
						|
      uint32_t NextNum = VN.getNextUnusedValueNumber();
 | 
						|
      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
 | 
						|
      // If the number we were assigned was brand new then there is no point in
 | 
						|
      // looking for an instruction realizing it: there cannot be one!
 | 
						|
      if (Num < NextNum) {
 | 
						|
        Value *NotCmp = findLeader(Root.getEnd(), Num);
 | 
						|
        if (NotCmp && isa<Instruction>(NotCmp)) {
 | 
						|
          unsigned NumReplacements =
 | 
						|
            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
 | 
						|
          Changed |= NumReplacements > 0;
 | 
						|
          NumGVNEqProp += NumReplacements;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Ensure that any instruction in scope that gets the "A < B" value number
 | 
						|
      // is replaced with false.
 | 
						|
      // The leader table only tracks basic blocks, not edges. Only add to if we
 | 
						|
      // have the simple case where the edge dominates the end.
 | 
						|
      if (RootDominatesEnd)
 | 
						|
        addToLeaderTable(Num, NotVal, Root.getEnd());
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// processInstruction - When calculating availability, handle an instruction
 | 
						|
/// by inserting it into the appropriate sets
 | 
						|
bool GVN::processInstruction(Instruction *I) {
 | 
						|
  // Ignore dbg info intrinsics.
 | 
						|
  if (isa<DbgInfoIntrinsic>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the instruction can be easily simplified then do so now in preference
 | 
						|
  // to value numbering it.  Value numbering often exposes redundancies, for
 | 
						|
  // example if it determines that %y is equal to %x then the instruction
 | 
						|
  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
 | 
						|
  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
 | 
						|
    I->replaceAllUsesWith(V);
 | 
						|
    if (MD && V->getType()->getScalarType()->isPointerTy())
 | 
						|
      MD->invalidateCachedPointerInfo(V);
 | 
						|
    markInstructionForDeletion(I);
 | 
						|
    ++NumGVNSimpl;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (processLoad(LI))
 | 
						|
      return true;
 | 
						|
 | 
						|
    unsigned Num = VN.lookup_or_add(LI);
 | 
						|
    addToLeaderTable(Num, LI, LI->getParent());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For conditional branches, we can perform simple conditional propagation on
 | 
						|
  // the condition value itself.
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | 
						|
    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *BranchCond = BI->getCondition();
 | 
						|
 | 
						|
    BasicBlock *TrueSucc = BI->getSuccessor(0);
 | 
						|
    BasicBlock *FalseSucc = BI->getSuccessor(1);
 | 
						|
    // Avoid multiple edges early.
 | 
						|
    if (TrueSucc == FalseSucc)
 | 
						|
      return false;
 | 
						|
 | 
						|
    BasicBlock *Parent = BI->getParent();
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
 | 
						|
    BasicBlockEdge TrueE(Parent, TrueSucc);
 | 
						|
    Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
 | 
						|
 | 
						|
    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
 | 
						|
    BasicBlockEdge FalseE(Parent, FalseSucc);
 | 
						|
    Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
 | 
						|
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // For switches, propagate the case values into the case destinations.
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
 | 
						|
    Value *SwitchCond = SI->getCondition();
 | 
						|
    BasicBlock *Parent = SI->getParent();
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // Remember how many outgoing edges there are to every successor.
 | 
						|
    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
 | 
						|
    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
 | 
						|
      ++SwitchEdges[SI->getSuccessor(i)];
 | 
						|
 | 
						|
    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      BasicBlock *Dst = i.getCaseSuccessor();
 | 
						|
      // If there is only a single edge, propagate the case value into it.
 | 
						|
      if (SwitchEdges.lookup(Dst) == 1) {
 | 
						|
        BasicBlockEdge E(Parent, Dst);
 | 
						|
        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // Instructions with void type don't return a value, so there's
 | 
						|
  // no point in trying to find redundancies in them.
 | 
						|
  if (I->getType()->isVoidTy()) return false;
 | 
						|
 | 
						|
  uint32_t NextNum = VN.getNextUnusedValueNumber();
 | 
						|
  unsigned Num = VN.lookup_or_add(I);
 | 
						|
 | 
						|
  // Allocations are always uniquely numbered, so we can save time and memory
 | 
						|
  // by fast failing them.
 | 
						|
  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
 | 
						|
    addToLeaderTable(Num, I, I->getParent());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the number we were assigned was a brand new VN, then we don't
 | 
						|
  // need to do a lookup to see if the number already exists
 | 
						|
  // somewhere in the domtree: it can't!
 | 
						|
  if (Num >= NextNum) {
 | 
						|
    addToLeaderTable(Num, I, I->getParent());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform fast-path value-number based elimination of values inherited from
 | 
						|
  // dominators.
 | 
						|
  Value *repl = findLeader(I->getParent(), Num);
 | 
						|
  if (repl == 0) {
 | 
						|
    // Failure, just remember this instance for future use.
 | 
						|
    addToLeaderTable(Num, I, I->getParent());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove it!
 | 
						|
  patchAndReplaceAllUsesWith(I, repl);
 | 
						|
  if (MD && repl->getType()->getScalarType()->isPointerTy())
 | 
						|
    MD->invalidateCachedPointerInfo(repl);
 | 
						|
  markInstructionForDeletion(I);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - This is the main transformation entry point for a function.
 | 
						|
bool GVN::runOnFunction(Function& F) {
 | 
						|
  if (!NoLoads)
 | 
						|
    MD = &getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  TD = getAnalysisIfAvailable<DataLayout>();
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfo>();
 | 
						|
  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | 
						|
  VN.setMemDep(MD);
 | 
						|
  VN.setDomTree(DT);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  bool ShouldContinue = true;
 | 
						|
 | 
						|
  // Merge unconditional branches, allowing PRE to catch more
 | 
						|
  // optimization opportunities.
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | 
						|
    BasicBlock *BB = FI++;
 | 
						|
 | 
						|
    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | 
						|
    if (removedBlock) ++NumGVNBlocks;
 | 
						|
 | 
						|
    Changed |= removedBlock;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Iteration = 0;
 | 
						|
  while (ShouldContinue) {
 | 
						|
    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
 | 
						|
    ShouldContinue = iterateOnFunction(F);
 | 
						|
    Changed |= ShouldContinue;
 | 
						|
    ++Iteration;
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnablePRE) {
 | 
						|
    bool PREChanged = true;
 | 
						|
    while (PREChanged) {
 | 
						|
      PREChanged = performPRE(F);
 | 
						|
      Changed |= PREChanged;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Should perform GVN again after PRE does something.  PRE can move
 | 
						|
  // computations into blocks where they become fully redundant.  Note that
 | 
						|
  // we can't do this until PRE's critical edge splitting updates memdep.
 | 
						|
  // Actually, when this happens, we should just fully integrate PRE into GVN.
 | 
						|
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool GVN::processBlock(BasicBlock *BB) {
 | 
						|
  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
 | 
						|
  // (and incrementing BI before processing an instruction).
 | 
						|
  assert(InstrsToErase.empty() &&
 | 
						|
         "We expect InstrsToErase to be empty across iterations");
 | 
						|
  bool ChangedFunction = false;
 | 
						|
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | 
						|
       BI != BE;) {
 | 
						|
    ChangedFunction |= processInstruction(BI);
 | 
						|
    if (InstrsToErase.empty()) {
 | 
						|
      ++BI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we need some instructions deleted, do it now.
 | 
						|
    NumGVNInstr += InstrsToErase.size();
 | 
						|
 | 
						|
    // Avoid iterator invalidation.
 | 
						|
    bool AtStart = BI == BB->begin();
 | 
						|
    if (!AtStart)
 | 
						|
      --BI;
 | 
						|
 | 
						|
    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
 | 
						|
         E = InstrsToErase.end(); I != E; ++I) {
 | 
						|
      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
 | 
						|
      if (MD) MD->removeInstruction(*I);
 | 
						|
      DEBUG(verifyRemoved(*I));
 | 
						|
      (*I)->eraseFromParent();
 | 
						|
    }
 | 
						|
    InstrsToErase.clear();
 | 
						|
 | 
						|
    if (AtStart)
 | 
						|
      BI = BB->begin();
 | 
						|
    else
 | 
						|
      ++BI;
 | 
						|
  }
 | 
						|
 | 
						|
  return ChangedFunction;
 | 
						|
}
 | 
						|
 | 
						|
/// performPRE - Perform a purely local form of PRE that looks for diamond
 | 
						|
/// control flow patterns and attempts to perform simple PRE at the join point.
 | 
						|
bool GVN::performPRE(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
 | 
						|
  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | 
						|
       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | 
						|
    BasicBlock *CurrentBlock = *DI;
 | 
						|
 | 
						|
    // Nothing to PRE in the entry block.
 | 
						|
    if (CurrentBlock == &F.getEntryBlock()) continue;
 | 
						|
 | 
						|
    // Don't perform PRE on a landing pad.
 | 
						|
    if (CurrentBlock->isLandingPad()) continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | 
						|
         BE = CurrentBlock->end(); BI != BE; ) {
 | 
						|
      Instruction *CurInst = BI++;
 | 
						|
 | 
						|
      if (isa<AllocaInst>(CurInst) ||
 | 
						|
          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
 | 
						|
          CurInst->getType()->isVoidTy() ||
 | 
						|
          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
 | 
						|
          isa<DbgInfoIntrinsic>(CurInst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
 | 
						|
      // sinking the compare again, and it would force the code generator to
 | 
						|
      // move the i1 from processor flags or predicate registers into a general
 | 
						|
      // purpose register.
 | 
						|
      if (isa<CmpInst>(CurInst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We don't currently value number ANY inline asm calls.
 | 
						|
      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
 | 
						|
        if (CallI->isInlineAsm())
 | 
						|
          continue;
 | 
						|
 | 
						|
      uint32_t ValNo = VN.lookup(CurInst);
 | 
						|
 | 
						|
      // Look for the predecessors for PRE opportunities.  We're
 | 
						|
      // only trying to solve the basic diamond case, where
 | 
						|
      // a value is computed in the successor and one predecessor,
 | 
						|
      // but not the other.  We also explicitly disallow cases
 | 
						|
      // where the successor is its own predecessor, because they're
 | 
						|
      // more complicated to get right.
 | 
						|
      unsigned NumWith = 0;
 | 
						|
      unsigned NumWithout = 0;
 | 
						|
      BasicBlock *PREPred = 0;
 | 
						|
      predMap.clear();
 | 
						|
 | 
						|
      for (pred_iterator PI = pred_begin(CurrentBlock),
 | 
						|
           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | 
						|
        BasicBlock *P = *PI;
 | 
						|
        // We're not interested in PRE where the block is its
 | 
						|
        // own predecessor, or in blocks with predecessors
 | 
						|
        // that are not reachable.
 | 
						|
        if (P == CurrentBlock) {
 | 
						|
          NumWithout = 2;
 | 
						|
          break;
 | 
						|
        } else if (!DT->isReachableFromEntry(P))  {
 | 
						|
          NumWithout = 2;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        Value* predV = findLeader(P, ValNo);
 | 
						|
        if (predV == 0) {
 | 
						|
          predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
 | 
						|
          PREPred = P;
 | 
						|
          ++NumWithout;
 | 
						|
        } else if (predV == CurInst) {
 | 
						|
          /* CurInst dominates this predecessor. */
 | 
						|
          NumWithout = 2;
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          predMap.push_back(std::make_pair(predV, P));
 | 
						|
          ++NumWith;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't do PRE when it might increase code size, i.e. when
 | 
						|
      // we would need to insert instructions in more than one pred.
 | 
						|
      if (NumWithout != 1 || NumWith == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Don't do PRE across indirect branch.
 | 
						|
      if (isa<IndirectBrInst>(PREPred->getTerminator()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We can't do PRE safely on a critical edge, so instead we schedule
 | 
						|
      // the edge to be split and perform the PRE the next time we iterate
 | 
						|
      // on the function.
 | 
						|
      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
 | 
						|
      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
 | 
						|
        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Instantiate the expression in the predecessor that lacked it.
 | 
						|
      // Because we are going top-down through the block, all value numbers
 | 
						|
      // will be available in the predecessor by the time we need them.  Any
 | 
						|
      // that weren't originally present will have been instantiated earlier
 | 
						|
      // in this loop.
 | 
						|
      Instruction *PREInstr = CurInst->clone();
 | 
						|
      bool success = true;
 | 
						|
      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *Op = PREInstr->getOperand(i);
 | 
						|
        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
 | 
						|
          PREInstr->setOperand(i, V);
 | 
						|
        } else {
 | 
						|
          success = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Fail out if we encounter an operand that is not available in
 | 
						|
      // the PRE predecessor.  This is typically because of loads which
 | 
						|
      // are not value numbered precisely.
 | 
						|
      if (!success) {
 | 
						|
        DEBUG(verifyRemoved(PREInstr));
 | 
						|
        delete PREInstr;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      PREInstr->insertBefore(PREPred->getTerminator());
 | 
						|
      PREInstr->setName(CurInst->getName() + ".pre");
 | 
						|
      PREInstr->setDebugLoc(CurInst->getDebugLoc());
 | 
						|
      VN.add(PREInstr, ValNo);
 | 
						|
      ++NumGVNPRE;
 | 
						|
 | 
						|
      // Update the availability map to include the new instruction.
 | 
						|
      addToLeaderTable(ValNo, PREInstr, PREPred);
 | 
						|
 | 
						|
      // Create a PHI to make the value available in this block.
 | 
						|
      PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
 | 
						|
                                     CurInst->getName() + ".pre-phi",
 | 
						|
                                     CurrentBlock->begin());
 | 
						|
      for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
 | 
						|
        if (Value *V = predMap[i].first)
 | 
						|
          Phi->addIncoming(V, predMap[i].second);
 | 
						|
        else
 | 
						|
          Phi->addIncoming(PREInstr, PREPred);
 | 
						|
      }
 | 
						|
 | 
						|
      VN.add(Phi, ValNo);
 | 
						|
      addToLeaderTable(ValNo, Phi, CurrentBlock);
 | 
						|
      Phi->setDebugLoc(CurInst->getDebugLoc());
 | 
						|
      CurInst->replaceAllUsesWith(Phi);
 | 
						|
      if (Phi->getType()->getScalarType()->isPointerTy()) {
 | 
						|
        // Because we have added a PHI-use of the pointer value, it has now
 | 
						|
        // "escaped" from alias analysis' perspective.  We need to inform
 | 
						|
        // AA of this.
 | 
						|
        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
 | 
						|
             ++ii) {
 | 
						|
          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
 | 
						|
          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
 | 
						|
        }
 | 
						|
 | 
						|
        if (MD)
 | 
						|
          MD->invalidateCachedPointerInfo(Phi);
 | 
						|
      }
 | 
						|
      VN.erase(CurInst);
 | 
						|
      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
 | 
						|
      if (MD) MD->removeInstruction(CurInst);
 | 
						|
      DEBUG(verifyRemoved(CurInst));
 | 
						|
      CurInst->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (splitCriticalEdges())
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Split the critical edge connecting the given two blocks, and return
 | 
						|
/// the block inserted to the critical edge.
 | 
						|
BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
 | 
						|
  BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
 | 
						|
  if (MD)
 | 
						|
    MD->invalidateCachedPredecessors();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// splitCriticalEdges - Split critical edges found during the previous
 | 
						|
/// iteration that may enable further optimization.
 | 
						|
bool GVN::splitCriticalEdges() {
 | 
						|
  if (toSplit.empty())
 | 
						|
    return false;
 | 
						|
  do {
 | 
						|
    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
 | 
						|
    SplitCriticalEdge(Edge.first, Edge.second, this);
 | 
						|
  } while (!toSplit.empty());
 | 
						|
  if (MD) MD->invalidateCachedPredecessors();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// iterateOnFunction - Executes one iteration of GVN
 | 
						|
bool GVN::iterateOnFunction(Function &F) {
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  // Top-down walk of the dominator tree
 | 
						|
  bool Changed = false;
 | 
						|
#if 0
 | 
						|
  // Needed for value numbering with phi construction to work.
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
 | 
						|
       RE = RPOT.end(); RI != RE; ++RI)
 | 
						|
    Changed |= processBlock(*RI);
 | 
						|
#else
 | 
						|
  // Save the blocks this function have before transformation begins. GVN may
 | 
						|
  // split critical edge, and hence may invalidate the RPO/DT iterator.
 | 
						|
  //
 | 
						|
  std::vector<BasicBlock *> BBVect;
 | 
						|
  BBVect.reserve(256);
 | 
						|
  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | 
						|
       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
 | 
						|
    BBVect.push_back(DI->getBlock());
 | 
						|
 | 
						|
  for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
 | 
						|
       I != E; I++)
 | 
						|
    Changed |= processBlock(*I);
 | 
						|
#endif
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void GVN::cleanupGlobalSets() {
 | 
						|
  VN.clear();
 | 
						|
  LeaderTable.clear();
 | 
						|
  TableAllocator.Reset();
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the specified instruction does not occur in our
 | 
						|
/// internal data structures.
 | 
						|
void GVN::verifyRemoved(const Instruction *Inst) const {
 | 
						|
  VN.verifyRemoved(Inst);
 | 
						|
 | 
						|
  // Walk through the value number scope to make sure the instruction isn't
 | 
						|
  // ferreted away in it.
 | 
						|
  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
 | 
						|
       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
 | 
						|
    const LeaderTableEntry *Node = &I->second;
 | 
						|
    assert(Node->Val != Inst && "Inst still in value numbering scope!");
 | 
						|
 | 
						|
    while (Node->Next) {
 | 
						|
      Node = Node->Next;
 | 
						|
      assert(Node->Val != Inst && "Inst still in value numbering scope!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |