2073 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2073 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for Objective C declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ExternalSemaSource.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| static void DiagnoseObjCImplementedDeprecations(Sema &S,
 | |
|                                                 NamedDecl *ND,
 | |
|                                                 SourceLocation ImplLoc,
 | |
|                                                 int select) {
 | |
|   if (ND && ND->isDeprecated()) {
 | |
|     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
 | |
|     if (select == 0)
 | |
|       S.Diag(ND->getLocation(), diag::note_method_declared_at);
 | |
|     else
 | |
|       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
 | |
| /// and user declared, in the method definition's AST.
 | |
| void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
 | |
|   assert(getCurMethodDecl() == 0 && "Method parsing confused");
 | |
|   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | |
| 
 | |
|   // If we don't have a valid method decl, simply return.
 | |
|   if (!MDecl)
 | |
|     return;
 | |
| 
 | |
|   // Allow the rest of sema to find private method decl implementations.
 | |
|   if (MDecl->isInstanceMethod())
 | |
|     AddInstanceMethodToGlobalPool(MDecl, true);
 | |
|   else
 | |
|     AddFactoryMethodToGlobalPool(MDecl, true);
 | |
|   
 | |
|   // Allow all of Sema to see that we are entering a method definition.
 | |
|   PushDeclContext(FnBodyScope, MDecl);
 | |
|   PushFunctionScope();
 | |
|   
 | |
|   // Create Decl objects for each parameter, entrring them in the scope for
 | |
|   // binding to their use.
 | |
| 
 | |
|   // Insert the invisible arguments, self and _cmd!
 | |
|   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
 | |
| 
 | |
|   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
 | |
|   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
 | |
| 
 | |
|   // Introduce all of the other parameters into this scope.
 | |
|   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
 | |
|        E = MDecl->param_end(); PI != E; ++PI) {
 | |
|     ParmVarDecl *Param = (*PI);
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                             diag::err_typecheck_decl_incomplete_type))
 | |
|           Param->setInvalidDecl();
 | |
|     if ((*PI)->getIdentifier())
 | |
|       PushOnScopeChains(*PI, FnBodyScope);
 | |
|   }
 | |
|   // Warn on implementating deprecated methods under 
 | |
|   // -Wdeprecated-implementations flag.
 | |
|   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface())
 | |
|     if (ObjCMethodDecl *IMD = 
 | |
|           IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
 | |
|       DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                           dyn_cast<NamedDecl>(IMD), 
 | |
|                                           MDecl->getLocation(), 0);
 | |
| }
 | |
| 
 | |
| Decl *Sema::
 | |
| ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
 | |
|                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
 | |
|                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
 | |
|                          const SourceLocation *ProtoLocs, 
 | |
|                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
 | |
|   assert(ClassName && "Missing class identifier");
 | |
| 
 | |
|   // Check for another declaration kind with the same name.
 | |
|   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
 | |
|                                          LookupOrdinaryName, ForRedeclaration);
 | |
| 
 | |
|   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|   }
 | |
| 
 | |
|   ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
|   if (IDecl) {
 | |
|     // Class already seen. Is it a forward declaration?
 | |
|     if (!IDecl->isForwardDecl()) {
 | |
|       IDecl->setInvalidDecl();
 | |
|       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
 | |
|       Diag(IDecl->getLocation(), diag::note_previous_definition);
 | |
| 
 | |
|       // Return the previous class interface.
 | |
|       // FIXME: don't leak the objects passed in!
 | |
|       return IDecl;
 | |
|     } else {
 | |
|       IDecl->setLocation(AtInterfaceLoc);
 | |
|       IDecl->setForwardDecl(false);
 | |
|       IDecl->setClassLoc(ClassLoc);
 | |
|       // If the forward decl was in a PCH, we need to write it again in a
 | |
|       // dependent AST file.
 | |
|       IDecl->setChangedSinceDeserialization(true);
 | |
|       
 | |
|       // Since this ObjCInterfaceDecl was created by a forward declaration,
 | |
|       // we now add it to the DeclContext since it wasn't added before
 | |
|       // (see ActOnForwardClassDeclaration).
 | |
|       IDecl->setLexicalDeclContext(CurContext);
 | |
|       CurContext->addDecl(IDecl);
 | |
|       
 | |
|       if (AttrList)
 | |
|         ProcessDeclAttributeList(TUScope, IDecl, AttrList);
 | |
|     }
 | |
|   } else {
 | |
|     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
 | |
|                                       ClassName, ClassLoc);
 | |
|     if (AttrList)
 | |
|       ProcessDeclAttributeList(TUScope, IDecl, AttrList);
 | |
| 
 | |
|     PushOnScopeChains(IDecl, TUScope);
 | |
|   }
 | |
| 
 | |
|   if (SuperName) {
 | |
|     // Check if a different kind of symbol declared in this scope.
 | |
|     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | |
|                                 LookupOrdinaryName);
 | |
| 
 | |
|     if (!PrevDecl) {
 | |
|       // Try to correct for a typo in the superclass name.
 | |
|       LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
 | |
|       if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
 | |
|           (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
 | |
|         Diag(SuperLoc, diag::err_undef_superclass_suggest)
 | |
|           << SuperName << ClassName << PrevDecl->getDeclName();
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
 | |
|           << PrevDecl->getDeclName();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (PrevDecl == IDecl) {
 | |
|       Diag(SuperLoc, diag::err_recursive_superclass)
 | |
|         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | |
|       IDecl->setLocEnd(ClassLoc);
 | |
|     } else {
 | |
|       ObjCInterfaceDecl *SuperClassDecl =
 | |
|                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
| 
 | |
|       // Diagnose classes that inherit from deprecated classes.
 | |
|       if (SuperClassDecl)
 | |
|         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
 | |
| 
 | |
|       if (PrevDecl && SuperClassDecl == 0) {
 | |
|         // The previous declaration was not a class decl. Check if we have a
 | |
|         // typedef. If we do, get the underlying class type.
 | |
|         if (const TypedefNameDecl *TDecl =
 | |
|               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | |
|           QualType T = TDecl->getUnderlyingType();
 | |
|           if (T->isObjCObjectType()) {
 | |
|             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
 | |
|               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // This handles the following case:
 | |
|         //
 | |
|         // typedef int SuperClass;
 | |
|         // @interface MyClass : SuperClass {} @end
 | |
|         //
 | |
|         if (!SuperClassDecl) {
 | |
|           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
 | |
|           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | |
|         if (!SuperClassDecl)
 | |
|           Diag(SuperLoc, diag::err_undef_superclass)
 | |
|             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | |
|         else if (SuperClassDecl->isForwardDecl())
 | |
|           Diag(SuperLoc, diag::err_undef_superclass)
 | |
|             << SuperClassDecl->getDeclName() << ClassName
 | |
|             << SourceRange(AtInterfaceLoc, ClassLoc);
 | |
|       }
 | |
|       IDecl->setSuperClass(SuperClassDecl);
 | |
|       IDecl->setSuperClassLoc(SuperLoc);
 | |
|       IDecl->setLocEnd(SuperLoc);
 | |
|     }
 | |
|   } else { // we have a root class.
 | |
|     IDecl->setLocEnd(ClassLoc);
 | |
|   }
 | |
| 
 | |
|   // Check then save referenced protocols.
 | |
|   if (NumProtoRefs) {
 | |
|     IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
 | |
|                            ProtoLocs, Context);
 | |
|     IDecl->setLocEnd(EndProtoLoc);
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(IDecl);
 | |
|   return IDecl;
 | |
| }
 | |
| 
 | |
| /// ActOnCompatiblityAlias - this action is called after complete parsing of
 | |
| /// @compatibility_alias declaration. It sets up the alias relationships.
 | |
| Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
 | |
|                                         IdentifierInfo *AliasName,
 | |
|                                         SourceLocation AliasLocation,
 | |
|                                         IdentifierInfo *ClassName,
 | |
|                                         SourceLocation ClassLocation) {
 | |
|   // Look for previous declaration of alias name
 | |
|   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
 | |
|                                       LookupOrdinaryName, ForRedeclaration);
 | |
|   if (ADecl) {
 | |
|     if (isa<ObjCCompatibleAliasDecl>(ADecl))
 | |
|       Diag(AliasLocation, diag::warn_previous_alias_decl);
 | |
|     else
 | |
|       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
 | |
|     Diag(ADecl->getLocation(), diag::note_previous_declaration);
 | |
|     return 0;
 | |
|   }
 | |
|   // Check for class declaration
 | |
|   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | |
|                                        LookupOrdinaryName, ForRedeclaration);
 | |
|   if (const TypedefNameDecl *TDecl =
 | |
|         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
 | |
|     QualType T = TDecl->getUnderlyingType();
 | |
|     if (T->isObjCObjectType()) {
 | |
|       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
 | |
|         ClassName = IDecl->getIdentifier();
 | |
|         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | |
|                                   LookupOrdinaryName, ForRedeclaration);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
 | |
|   if (CDecl == 0) {
 | |
|     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
 | |
|     if (CDeclU)
 | |
|       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Everything checked out, instantiate a new alias declaration AST.
 | |
|   ObjCCompatibleAliasDecl *AliasDecl =
 | |
|     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
 | |
| 
 | |
|   if (!CheckObjCDeclScope(AliasDecl))
 | |
|     PushOnScopeChains(AliasDecl, TUScope);
 | |
| 
 | |
|   return AliasDecl;
 | |
| }
 | |
| 
 | |
| void Sema::CheckForwardProtocolDeclarationForCircularDependency(
 | |
|   IdentifierInfo *PName,
 | |
|   SourceLocation &Ploc, SourceLocation PrevLoc,
 | |
|   const ObjCList<ObjCProtocolDecl> &PList) {
 | |
|   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
 | |
|        E = PList.end(); I != E; ++I) {
 | |
| 
 | |
|     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
 | |
|                                                  Ploc)) {
 | |
|       if (PDecl->getIdentifier() == PName) {
 | |
|         Diag(Ploc, diag::err_protocol_has_circular_dependency);
 | |
|         Diag(PrevLoc, diag::note_previous_definition);
 | |
|       }
 | |
|       CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
 | |
|         PDecl->getLocation(), PDecl->getReferencedProtocols());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *
 | |
| Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
 | |
|                                   IdentifierInfo *ProtocolName,
 | |
|                                   SourceLocation ProtocolLoc,
 | |
|                                   Decl * const *ProtoRefs,
 | |
|                                   unsigned NumProtoRefs,
 | |
|                                   const SourceLocation *ProtoLocs,
 | |
|                                   SourceLocation EndProtoLoc,
 | |
|                                   AttributeList *AttrList) {
 | |
|   // FIXME: Deal with AttrList.
 | |
|   assert(ProtocolName && "Missing protocol identifier");
 | |
|   ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
 | |
|   if (PDecl) {
 | |
|     // Protocol already seen. Better be a forward protocol declaration
 | |
|     if (!PDecl->isForwardDecl()) {
 | |
|       Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
 | |
|       Diag(PDecl->getLocation(), diag::note_previous_definition);
 | |
|       // Just return the protocol we already had.
 | |
|       // FIXME: don't leak the objects passed in!
 | |
|       return PDecl;
 | |
|     }
 | |
|     ObjCList<ObjCProtocolDecl> PList;
 | |
|     PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
 | |
|     CheckForwardProtocolDeclarationForCircularDependency(
 | |
|       ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
 | |
| 
 | |
|     // Make sure the cached decl gets a valid start location.
 | |
|     PDecl->setLocation(AtProtoInterfaceLoc);
 | |
|     PDecl->setForwardDecl(false);
 | |
|     CurContext->addDecl(PDecl);
 | |
|     // Repeat in dependent AST files.
 | |
|     PDecl->setChangedSinceDeserialization(true);
 | |
|   } else {
 | |
|     PDecl = ObjCProtocolDecl::Create(Context, CurContext,
 | |
|                                      AtProtoInterfaceLoc,ProtocolName);
 | |
|     PushOnScopeChains(PDecl, TUScope);
 | |
|     PDecl->setForwardDecl(false);
 | |
|   }
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
 | |
|   if (NumProtoRefs) {
 | |
|     /// Check then save referenced protocols.
 | |
|     PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
 | |
|                            ProtoLocs, Context);
 | |
|     PDecl->setLocEnd(EndProtoLoc);
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(PDecl);
 | |
|   return PDecl;
 | |
| }
 | |
| 
 | |
| /// FindProtocolDeclaration - This routine looks up protocols and
 | |
| /// issues an error if they are not declared. It returns list of
 | |
| /// protocol declarations in its 'Protocols' argument.
 | |
| void
 | |
| Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
 | |
|                               const IdentifierLocPair *ProtocolId,
 | |
|                               unsigned NumProtocols,
 | |
|                               llvm::SmallVectorImpl<Decl *> &Protocols) {
 | |
|   for (unsigned i = 0; i != NumProtocols; ++i) {
 | |
|     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
 | |
|                                              ProtocolId[i].second);
 | |
|     if (!PDecl) {
 | |
|       LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
 | |
|                      LookupObjCProtocolName);
 | |
|       if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
 | |
|           (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
 | |
|         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
 | |
|           << ProtocolId[i].first << R.getLookupName();
 | |
|         Diag(PDecl->getLocation(), diag::note_previous_decl)
 | |
|           << PDecl->getDeclName();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PDecl) {
 | |
|       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
 | |
|         << ProtocolId[i].first;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
 | |
| 
 | |
|     // If this is a forward declaration and we are supposed to warn in this
 | |
|     // case, do it.
 | |
|     if (WarnOnDeclarations && PDecl->isForwardDecl())
 | |
|       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
 | |
|         << ProtocolId[i].first;
 | |
|     Protocols.push_back(PDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
 | |
| /// a class method in its extension.
 | |
| ///
 | |
| void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
 | |
|                                             ObjCInterfaceDecl *ID) {
 | |
|   if (!ID)
 | |
|     return;  // Possibly due to previous error
 | |
| 
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
 | |
|   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
 | |
|        e =  ID->meth_end(); i != e; ++i) {
 | |
|     ObjCMethodDecl *MD = *i;
 | |
|     MethodMap[MD->getSelector()] = MD;
 | |
|   }
 | |
| 
 | |
|   if (MethodMap.empty())
 | |
|     return;
 | |
|   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
 | |
|        e =  CAT->meth_end(); i != e; ++i) {
 | |
|     ObjCMethodDecl *Method = *i;
 | |
|     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
 | |
|     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
 | |
|       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|             << Method->getDeclName();
 | |
|       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
 | |
| Decl *
 | |
| Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
 | |
|                                       const IdentifierLocPair *IdentList,
 | |
|                                       unsigned NumElts,
 | |
|                                       AttributeList *attrList) {
 | |
|   llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
 | |
|   llvm::SmallVector<SourceLocation, 8> ProtoLocs;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     IdentifierInfo *Ident = IdentList[i].first;
 | |
|     ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
 | |
|     bool isNew = false;
 | |
|     if (PDecl == 0) { // Not already seen?
 | |
|       PDecl = ObjCProtocolDecl::Create(Context, CurContext,
 | |
|                                        IdentList[i].second, Ident);
 | |
|       PushOnScopeChains(PDecl, TUScope, false);
 | |
|       isNew = true;
 | |
|     }
 | |
|     if (attrList) {
 | |
|       ProcessDeclAttributeList(TUScope, PDecl, attrList);
 | |
|       if (!isNew)
 | |
|         PDecl->setChangedSinceDeserialization(true);
 | |
|     }
 | |
|     Protocols.push_back(PDecl);
 | |
|     ProtoLocs.push_back(IdentList[i].second);
 | |
|   }
 | |
| 
 | |
|   ObjCForwardProtocolDecl *PDecl =
 | |
|     ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
 | |
|                                     Protocols.data(), Protocols.size(),
 | |
|                                     ProtoLocs.data());
 | |
|   CurContext->addDecl(PDecl);
 | |
|   CheckObjCDeclScope(PDecl);
 | |
|   return PDecl;
 | |
| }
 | |
| 
 | |
| Decl *Sema::
 | |
| ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
 | |
|                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                             IdentifierInfo *CategoryName,
 | |
|                             SourceLocation CategoryLoc,
 | |
|                             Decl * const *ProtoRefs,
 | |
|                             unsigned NumProtoRefs,
 | |
|                             const SourceLocation *ProtoLocs,
 | |
|                             SourceLocation EndProtoLoc) {
 | |
|   ObjCCategoryDecl *CDecl;
 | |
|   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | |
| 
 | |
|   /// Check that class of this category is already completely declared.
 | |
|   if (!IDecl || IDecl->isForwardDecl()) {
 | |
|     // Create an invalid ObjCCategoryDecl to serve as context for
 | |
|     // the enclosing method declarations.  We mark the decl invalid
 | |
|     // to make it clear that this isn't a valid AST.
 | |
|     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | |
|                                      ClassLoc, CategoryLoc, CategoryName);
 | |
|     CDecl->setInvalidDecl();
 | |
|     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | |
|     return CDecl;
 | |
|   }
 | |
| 
 | |
|   if (!CategoryName && IDecl->getImplementation()) {
 | |
|     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
 | |
|     Diag(IDecl->getImplementation()->getLocation(), 
 | |
|           diag::note_implementation_declared);
 | |
|   }
 | |
| 
 | |
|   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | |
|                                    ClassLoc, CategoryLoc, CategoryName);
 | |
|   // FIXME: PushOnScopeChains?
 | |
|   CurContext->addDecl(CDecl);
 | |
| 
 | |
|   CDecl->setClassInterface(IDecl);
 | |
|   // Insert class extension to the list of class's categories.
 | |
|   if (!CategoryName)
 | |
|     CDecl->insertNextClassCategory();
 | |
| 
 | |
|   // If the interface is deprecated, warn about it.
 | |
|   (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
 | |
| 
 | |
|   if (CategoryName) {
 | |
|     /// Check for duplicate interface declaration for this category
 | |
|     ObjCCategoryDecl *CDeclChain;
 | |
|     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
 | |
|          CDeclChain = CDeclChain->getNextClassCategory()) {
 | |
|       if (CDeclChain->getIdentifier() == CategoryName) {
 | |
|         // Class extensions can be declared multiple times.
 | |
|         Diag(CategoryLoc, diag::warn_dup_category_def)
 | |
|           << ClassName << CategoryName;
 | |
|         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!CDeclChain)
 | |
|       CDecl->insertNextClassCategory();
 | |
|   }
 | |
| 
 | |
|   if (NumProtoRefs) {
 | |
|     CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 
 | |
|                            ProtoLocs, Context);
 | |
|     // Protocols in the class extension belong to the class.
 | |
|     if (CDecl->IsClassExtension())
 | |
|      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 
 | |
|                                             NumProtoRefs, Context); 
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(CDecl);
 | |
|   return CDecl;
 | |
| }
 | |
| 
 | |
| /// ActOnStartCategoryImplementation - Perform semantic checks on the
 | |
| /// category implementation declaration and build an ObjCCategoryImplDecl
 | |
| /// object.
 | |
| Decl *Sema::ActOnStartCategoryImplementation(
 | |
|                       SourceLocation AtCatImplLoc,
 | |
|                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                       IdentifierInfo *CatName, SourceLocation CatLoc) {
 | |
|   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | |
|   ObjCCategoryDecl *CatIDecl = 0;
 | |
|   if (IDecl) {
 | |
|     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
 | |
|     if (!CatIDecl) {
 | |
|       // Category @implementation with no corresponding @interface.
 | |
|       // Create and install one.
 | |
|       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
 | |
|                                           SourceLocation(), SourceLocation(),
 | |
|                                           CatName);
 | |
|       CatIDecl->setClassInterface(IDecl);
 | |
|       CatIDecl->insertNextClassCategory();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ObjCCategoryImplDecl *CDecl =
 | |
|     ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
 | |
|                                  IDecl);
 | |
|   /// Check that class of this category is already completely declared.
 | |
|   if (!IDecl || IDecl->isForwardDecl())
 | |
|     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | |
| 
 | |
|   // FIXME: PushOnScopeChains?
 | |
|   CurContext->addDecl(CDecl);
 | |
| 
 | |
|   /// Check that CatName, category name, is not used in another implementation.
 | |
|   if (CatIDecl) {
 | |
|     if (CatIDecl->getImplementation()) {
 | |
|       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
 | |
|         << CatName;
 | |
|       Diag(CatIDecl->getImplementation()->getLocation(),
 | |
|            diag::note_previous_definition);
 | |
|     } else {
 | |
|       CatIDecl->setImplementation(CDecl);
 | |
|       // Warn on implementating category of deprecated class under 
 | |
|       // -Wdeprecated-implementations flag.
 | |
|       DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                           dyn_cast<NamedDecl>(IDecl), 
 | |
|                                           CDecl->getLocation(), 2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(CDecl);
 | |
|   return CDecl;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartClassImplementation(
 | |
|                       SourceLocation AtClassImplLoc,
 | |
|                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                       IdentifierInfo *SuperClassname,
 | |
|                       SourceLocation SuperClassLoc) {
 | |
|   ObjCInterfaceDecl* IDecl = 0;
 | |
|   // Check for another declaration kind with the same name.
 | |
|   NamedDecl *PrevDecl
 | |
|     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
 | |
|                        ForRedeclaration);
 | |
|   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
 | |
|     // If this is a forward declaration of an interface, warn.
 | |
|     if (IDecl->isForwardDecl()) {
 | |
|       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
 | |
|       IDecl = 0;
 | |
|     }
 | |
|   } else {
 | |
|     // We did not find anything with the name ClassName; try to correct for 
 | |
|     // typos in the class name.
 | |
|     LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
 | |
|     if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
 | |
|         (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
 | |
|       // Suggest the (potentially) correct interface name. However, put the
 | |
|       // fix-it hint itself in a separate note, since changing the name in 
 | |
|       // the warning would make the fix-it change semantics.However, don't
 | |
|       // provide a code-modification hint or use the typo name for recovery,
 | |
|       // because this is just a warning. The program may actually be correct.
 | |
|       Diag(ClassLoc, diag::warn_undef_interface_suggest)
 | |
|         << ClassName << R.getLookupName();
 | |
|       Diag(IDecl->getLocation(), diag::note_previous_decl)
 | |
|         << R.getLookupName()
 | |
|         << FixItHint::CreateReplacement(ClassLoc,
 | |
|                                         R.getLookupName().getAsString());
 | |
|       IDecl = 0;
 | |
|     } else {
 | |
|       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that super class name is valid class name
 | |
|   ObjCInterfaceDecl* SDecl = 0;
 | |
|   if (SuperClassname) {
 | |
|     // Check if a different kind of symbol declared in this scope.
 | |
|     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
 | |
|                                 LookupOrdinaryName);
 | |
|     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
 | |
|         << SuperClassname;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|     } else {
 | |
|       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
|       if (!SDecl)
 | |
|         Diag(SuperClassLoc, diag::err_undef_superclass)
 | |
|           << SuperClassname << ClassName;
 | |
|       else if (IDecl && IDecl->getSuperClass() != SDecl) {
 | |
|         // This implementation and its interface do not have the same
 | |
|         // super class.
 | |
|         Diag(SuperClassLoc, diag::err_conflicting_super_class)
 | |
|           << SDecl->getDeclName();
 | |
|         Diag(SDecl->getLocation(), diag::note_previous_definition);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!IDecl) {
 | |
|     // Legacy case of @implementation with no corresponding @interface.
 | |
|     // Build, chain & install the interface decl into the identifier.
 | |
| 
 | |
|     // FIXME: Do we support attributes on the @implementation? If so we should
 | |
|     // copy them over.
 | |
|     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
 | |
|                                       ClassName, ClassLoc, false, true);
 | |
|     IDecl->setSuperClass(SDecl);
 | |
|     IDecl->setLocEnd(ClassLoc);
 | |
| 
 | |
|     PushOnScopeChains(IDecl, TUScope);
 | |
|   } else {
 | |
|     // Mark the interface as being completed, even if it was just as
 | |
|     //   @class ....;
 | |
|     // declaration; the user cannot reopen it.
 | |
|     IDecl->setForwardDecl(false);
 | |
|   }
 | |
| 
 | |
|   ObjCImplementationDecl* IMPDecl =
 | |
|     ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
 | |
|                                    IDecl, SDecl);
 | |
| 
 | |
|   if (CheckObjCDeclScope(IMPDecl))
 | |
|     return IMPDecl;
 | |
| 
 | |
|   // Check that there is no duplicate implementation of this class.
 | |
|   if (IDecl->getImplementation()) {
 | |
|     // FIXME: Don't leak everything!
 | |
|     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
 | |
|     Diag(IDecl->getImplementation()->getLocation(),
 | |
|          diag::note_previous_definition);
 | |
|   } else { // add it to the list.
 | |
|     IDecl->setImplementation(IMPDecl);
 | |
|     PushOnScopeChains(IMPDecl, TUScope);
 | |
|     // Warn on implementating deprecated class under 
 | |
|     // -Wdeprecated-implementations flag.
 | |
|     DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                         dyn_cast<NamedDecl>(IDecl), 
 | |
|                                         IMPDecl->getLocation(), 1);
 | |
|   }
 | |
|   return IMPDecl;
 | |
| }
 | |
| 
 | |
| void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
 | |
|                                     ObjCIvarDecl **ivars, unsigned numIvars,
 | |
|                                     SourceLocation RBrace) {
 | |
|   assert(ImpDecl && "missing implementation decl");
 | |
|   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return;
 | |
|   /// Check case of non-existing @interface decl.
 | |
|   /// (legacy objective-c @implementation decl without an @interface decl).
 | |
|   /// Add implementations's ivar to the synthesize class's ivar list.
 | |
|   if (IDecl->isImplicitInterfaceDecl()) {
 | |
|     IDecl->setLocEnd(RBrace);
 | |
|     // Add ivar's to class's DeclContext.
 | |
|     for (unsigned i = 0, e = numIvars; i != e; ++i) {
 | |
|       ivars[i]->setLexicalDeclContext(ImpDecl);
 | |
|       IDecl->makeDeclVisibleInContext(ivars[i], false);
 | |
|       ImpDecl->addDecl(ivars[i]);
 | |
|     }
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   // If implementation has empty ivar list, just return.
 | |
|   if (numIvars == 0)
 | |
|     return;
 | |
| 
 | |
|   assert(ivars && "missing @implementation ivars");
 | |
|   if (LangOpts.ObjCNonFragileABI2) {
 | |
|     if (ImpDecl->getSuperClass())
 | |
|       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
 | |
|     for (unsigned i = 0; i < numIvars; i++) {
 | |
|       ObjCIvarDecl* ImplIvar = ivars[i];
 | |
|       if (const ObjCIvarDecl *ClsIvar = 
 | |
|             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | |
|         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
 | |
|         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|         continue;
 | |
|       }
 | |
|       // Instance ivar to Implementation's DeclContext.
 | |
|       ImplIvar->setLexicalDeclContext(ImpDecl);
 | |
|       IDecl->makeDeclVisibleInContext(ImplIvar, false);
 | |
|       ImpDecl->addDecl(ImplIvar);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // Check interface's Ivar list against those in the implementation.
 | |
|   // names and types must match.
 | |
|   //
 | |
|   unsigned j = 0;
 | |
|   ObjCInterfaceDecl::ivar_iterator
 | |
|     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
 | |
|   for (; numIvars > 0 && IVI != IVE; ++IVI) {
 | |
|     ObjCIvarDecl* ImplIvar = ivars[j++];
 | |
|     ObjCIvarDecl* ClsIvar = *IVI;
 | |
|     assert (ImplIvar && "missing implementation ivar");
 | |
|     assert (ClsIvar && "missing class ivar");
 | |
| 
 | |
|     // First, make sure the types match.
 | |
|     if (Context.getCanonicalType(ImplIvar->getType()) !=
 | |
|         Context.getCanonicalType(ClsIvar->getType())) {
 | |
|       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
 | |
|         << ImplIvar->getIdentifier()
 | |
|         << ImplIvar->getType() << ClsIvar->getType();
 | |
|       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|     } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
 | |
|       Expr *ImplBitWidth = ImplIvar->getBitWidth();
 | |
|       Expr *ClsBitWidth = ClsIvar->getBitWidth();
 | |
|       if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
 | |
|           ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
 | |
|         Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
 | |
|           << ImplIvar->getIdentifier();
 | |
|         Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
 | |
|       }
 | |
|     }
 | |
|     // Make sure the names are identical.
 | |
|     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
 | |
|       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
 | |
|         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
 | |
|       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|     }
 | |
|     --numIvars;
 | |
|   }
 | |
| 
 | |
|   if (numIvars > 0)
 | |
|     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
 | |
|   else if (IVI != IVE)
 | |
|     Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
 | |
| }
 | |
| 
 | |
| void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
 | |
|                                bool &IncompleteImpl, unsigned DiagID) {
 | |
|   if (!IncompleteImpl) {
 | |
|     Diag(ImpLoc, diag::warn_incomplete_impl);
 | |
|     IncompleteImpl = true;
 | |
|   }
 | |
|   if (DiagID == diag::warn_unimplemented_protocol_method)
 | |
|     Diag(ImpLoc, DiagID) << method->getDeclName();
 | |
|   else
 | |
|     Diag(method->getLocation(), DiagID) << method->getDeclName();
 | |
| }
 | |
| 
 | |
| /// Determines if type B can be substituted for type A.  Returns true if we can
 | |
| /// guarantee that anything that the user will do to an object of type A can 
 | |
| /// also be done to an object of type B.  This is trivially true if the two 
 | |
| /// types are the same, or if B is a subclass of A.  It becomes more complex
 | |
| /// in cases where protocols are involved.
 | |
| ///
 | |
| /// Object types in Objective-C describe the minimum requirements for an
 | |
| /// object, rather than providing a complete description of a type.  For
 | |
| /// example, if A is a subclass of B, then B* may refer to an instance of A.
 | |
| /// The principle of substitutability means that we may use an instance of A
 | |
| /// anywhere that we may use an instance of B - it will implement all of the
 | |
| /// ivars of B and all of the methods of B.  
 | |
| ///
 | |
| /// This substitutability is important when type checking methods, because 
 | |
| /// the implementation may have stricter type definitions than the interface.
 | |
| /// The interface specifies minimum requirements, but the implementation may
 | |
| /// have more accurate ones.  For example, a method may privately accept 
 | |
| /// instances of B, but only publish that it accepts instances of A.  Any
 | |
| /// object passed to it will be type checked against B, and so will implicitly
 | |
| /// by a valid A*.  Similarly, a method may return a subclass of the class that
 | |
| /// it is declared as returning.
 | |
| ///
 | |
| /// This is most important when considering subclassing.  A method in a
 | |
| /// subclass must accept any object as an argument that its superclass's
 | |
| /// implementation accepts.  It may, however, accept a more general type
 | |
| /// without breaking substitutability (i.e. you can still use the subclass
 | |
| /// anywhere that you can use the superclass, but not vice versa).  The
 | |
| /// converse requirement applies to return types: the return type for a
 | |
| /// subclass method must be a valid object of the kind that the superclass
 | |
| /// advertises, but it may be specified more accurately.  This avoids the need
 | |
| /// for explicit down-casting by callers.
 | |
| ///
 | |
| /// Note: This is a stricter requirement than for assignment.  
 | |
| static bool isObjCTypeSubstitutable(ASTContext &Context,
 | |
|                                     const ObjCObjectPointerType *A,
 | |
|                                     const ObjCObjectPointerType *B,
 | |
|                                     bool rejectId) {
 | |
|   // Reject a protocol-unqualified id.
 | |
|   if (rejectId && B->isObjCIdType()) return false;
 | |
| 
 | |
|   // If B is a qualified id, then A must also be a qualified id and it must
 | |
|   // implement all of the protocols in B.  It may not be a qualified class.
 | |
|   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
 | |
|   // stricter definition so it is not substitutable for id<A>.
 | |
|   if (B->isObjCQualifiedIdType()) {
 | |
|     return A->isObjCQualifiedIdType() &&
 | |
|            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
 | |
|                                                      QualType(B,0),
 | |
|                                                      false);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   // id is a special type that bypasses type checking completely.  We want a
 | |
|   // warning when it is used in one place but not another.
 | |
|   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
 | |
| 
 | |
| 
 | |
|   // If B is a qualified id, then A must also be a qualified id (which it isn't
 | |
|   // if we've got this far)
 | |
|   if (B->isObjCQualifiedIdType()) return false;
 | |
|   */
 | |
| 
 | |
|   // Now we know that A and B are (potentially-qualified) class types.  The
 | |
|   // normal rules for assignment apply.
 | |
|   return Context.canAssignObjCInterfaces(A, B);
 | |
| }
 | |
| 
 | |
| static SourceRange getTypeRange(TypeSourceInfo *TSI) {
 | |
|   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
 | |
| }
 | |
| 
 | |
| static void CheckMethodOverrideReturn(Sema &S,
 | |
|                                       ObjCMethodDecl *MethodImpl,
 | |
|                                       ObjCMethodDecl *MethodDecl,
 | |
|                                       bool IsProtocolMethodDecl) {
 | |
|   if (IsProtocolMethodDecl &&
 | |
|       (MethodDecl->getObjCDeclQualifier() !=
 | |
|        MethodImpl->getObjCDeclQualifier())) {
 | |
|     S.Diag(MethodImpl->getLocation(), 
 | |
|            diag::warn_conflicting_ret_type_modifiers)
 | |
|         << MethodImpl->getDeclName()
 | |
|         << getTypeRange(MethodImpl->getResultTypeSourceInfo());
 | |
|     S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
 | |
|         << getTypeRange(MethodDecl->getResultTypeSourceInfo());
 | |
|   }
 | |
|   
 | |
|   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
 | |
|                                        MethodDecl->getResultType()))
 | |
|     return;
 | |
| 
 | |
|   unsigned DiagID = diag::warn_conflicting_ret_types;
 | |
| 
 | |
|   // Mismatches between ObjC pointers go into a different warning
 | |
|   // category, and sometimes they're even completely whitelisted.
 | |
|   if (const ObjCObjectPointerType *ImplPtrTy =
 | |
|         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *IfacePtrTy =
 | |
|           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
 | |
|       // Allow non-matching return types as long as they don't violate
 | |
|       // the principle of substitutability.  Specifically, we permit
 | |
|       // return types that are subclasses of the declared return type,
 | |
|       // or that are more-qualified versions of the declared type.
 | |
|       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
 | |
|         return;
 | |
| 
 | |
|       DiagID = diag::warn_non_covariant_ret_types;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(MethodImpl->getLocation(), DiagID)
 | |
|     << MethodImpl->getDeclName()
 | |
|     << MethodDecl->getResultType()
 | |
|     << MethodImpl->getResultType()
 | |
|     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
 | |
|   S.Diag(MethodDecl->getLocation(), diag::note_previous_definition)
 | |
|     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
 | |
| }
 | |
| 
 | |
| static void CheckMethodOverrideParam(Sema &S,
 | |
|                                      ObjCMethodDecl *MethodImpl,
 | |
|                                      ObjCMethodDecl *MethodDecl,
 | |
|                                      ParmVarDecl *ImplVar,
 | |
|                                      ParmVarDecl *IfaceVar,
 | |
|                                      bool IsProtocolMethodDecl) {
 | |
|   if (IsProtocolMethodDecl &&
 | |
|       (ImplVar->getObjCDeclQualifier() !=
 | |
|        IfaceVar->getObjCDeclQualifier())) {
 | |
|     S.Diag(ImplVar->getLocation(), 
 | |
|            diag::warn_conflicting_param_modifiers)
 | |
|         << getTypeRange(ImplVar->getTypeSourceInfo())
 | |
|         << MethodImpl->getDeclName();
 | |
|     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
 | |
|         << getTypeRange(IfaceVar->getTypeSourceInfo());   
 | |
|   }
 | |
|       
 | |
|   QualType ImplTy = ImplVar->getType();
 | |
|   QualType IfaceTy = IfaceVar->getType();
 | |
|   
 | |
|   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
 | |
|     return;
 | |
| 
 | |
|   unsigned DiagID = diag::warn_conflicting_param_types;
 | |
| 
 | |
|   // Mismatches between ObjC pointers go into a different warning
 | |
|   // category, and sometimes they're even completely whitelisted.
 | |
|   if (const ObjCObjectPointerType *ImplPtrTy =
 | |
|         ImplTy->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *IfacePtrTy =
 | |
|           IfaceTy->getAs<ObjCObjectPointerType>()) {
 | |
|       // Allow non-matching argument types as long as they don't
 | |
|       // violate the principle of substitutability.  Specifically, the
 | |
|       // implementation must accept any objects that the superclass
 | |
|       // accepts, however it may also accept others.
 | |
|       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
 | |
|         return;
 | |
| 
 | |
|       DiagID = diag::warn_non_contravariant_param_types;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(ImplVar->getLocation(), DiagID)
 | |
|     << getTypeRange(ImplVar->getTypeSourceInfo())
 | |
|     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
 | |
|   S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
 | |
|     << getTypeRange(IfaceVar->getTypeSourceInfo());
 | |
| }
 | |
|                                      
 | |
| 
 | |
| void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | |
|                                        ObjCMethodDecl *MethodDecl,
 | |
|                                        bool IsProtocolMethodDecl) {
 | |
|   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
 | |
|                             IsProtocolMethodDecl);
 | |
| 
 | |
|   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | |
|        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
 | |
|        IM != EM; ++IM, ++IF)
 | |
|     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
 | |
|                              IsProtocolMethodDecl);
 | |
| 
 | |
|   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
 | |
|     Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
 | |
|     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
 | |
| /// improve the efficiency of selector lookups and type checking by associating
 | |
| /// with each protocol / interface / category the flattened instance tables. If
 | |
| /// we used an immutable set to keep the table then it wouldn't add significant
 | |
| /// memory cost and it would be handy for lookups.
 | |
| 
 | |
| /// CheckProtocolMethodDefs - This routine checks unimplemented methods
 | |
| /// Declared in protocol, and those referenced by it.
 | |
| void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
 | |
|                                    ObjCProtocolDecl *PDecl,
 | |
|                                    bool& IncompleteImpl,
 | |
|                                    const llvm::DenseSet<Selector> &InsMap,
 | |
|                                    const llvm::DenseSet<Selector> &ClsMap,
 | |
|                                    ObjCContainerDecl *CDecl) {
 | |
|   ObjCInterfaceDecl *IDecl;
 | |
|   if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
 | |
|     IDecl = C->getClassInterface();
 | |
|   else
 | |
|     IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
 | |
|   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
 | |
|   
 | |
|   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
 | |
|   ObjCInterfaceDecl *NSIDecl = 0;
 | |
|   if (getLangOptions().NeXTRuntime) {
 | |
|     // check to see if class implements forwardInvocation method and objects
 | |
|     // of this class are derived from 'NSProxy' so that to forward requests
 | |
|     // from one object to another.
 | |
|     // Under such conditions, which means that every method possible is
 | |
|     // implemented in the class, we should not issue "Method definition not
 | |
|     // found" warnings.
 | |
|     // FIXME: Use a general GetUnarySelector method for this.
 | |
|     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
 | |
|     Selector fISelector = Context.Selectors.getSelector(1, &II);
 | |
|     if (InsMap.count(fISelector))
 | |
|       // Is IDecl derived from 'NSProxy'? If so, no instance methods
 | |
|       // need be implemented in the implementation.
 | |
|       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
 | |
|   }
 | |
| 
 | |
|   // If a method lookup fails locally we still need to look and see if
 | |
|   // the method was implemented by a base class or an inherited
 | |
|   // protocol. This lookup is slow, but occurs rarely in correct code
 | |
|   // and otherwise would terminate in a warning.
 | |
| 
 | |
|   // check unimplemented instance methods.
 | |
|   if (!NSIDecl)
 | |
|     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
 | |
|          E = PDecl->instmeth_end(); I != E; ++I) {
 | |
|       ObjCMethodDecl *method = *I;
 | |
|       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | |
|           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
 | |
|           (!Super ||
 | |
|            !Super->lookupInstanceMethod(method->getSelector()))) {
 | |
|             // Ugly, but necessary. Method declared in protcol might have
 | |
|             // have been synthesized due to a property declared in the class which
 | |
|             // uses the protocol.
 | |
|             ObjCMethodDecl *MethodInClass =
 | |
|             IDecl->lookupInstanceMethod(method->getSelector());
 | |
|             if (!MethodInClass || !MethodInClass->isSynthesized()) {
 | |
|               unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | |
|               if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
 | |
|                       != Diagnostic::Ignored) {
 | |
|                 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
 | |
|                 Diag(method->getLocation(), diag::note_method_declared_at);
 | |
|                 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
 | |
|                   << PDecl->getDeclName();
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|     }
 | |
|   // check unimplemented class methods
 | |
|   for (ObjCProtocolDecl::classmeth_iterator
 | |
|          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
 | |
|        I != E; ++I) {
 | |
|     ObjCMethodDecl *method = *I;
 | |
|     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | |
|         !ClsMap.count(method->getSelector()) &&
 | |
|         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
 | |
|       unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | |
|       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
 | |
|         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
 | |
|         Diag(method->getLocation(), diag::note_method_declared_at);
 | |
|         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
 | |
|           PDecl->getDeclName();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Check on this protocols's referenced protocols, recursively.
 | |
|   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
 | |
|        E = PDecl->protocol_end(); PI != E; ++PI)
 | |
|     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
 | |
| }
 | |
| 
 | |
| /// MatchAllMethodDeclarations - Check methods declaraed in interface or
 | |
| /// or protocol against those declared in their implementations.
 | |
| ///
 | |
| void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
 | |
|                                       const llvm::DenseSet<Selector> &ClsMap,
 | |
|                                       llvm::DenseSet<Selector> &InsMapSeen,
 | |
|                                       llvm::DenseSet<Selector> &ClsMapSeen,
 | |
|                                       ObjCImplDecl* IMPDecl,
 | |
|                                       ObjCContainerDecl* CDecl,
 | |
|                                       bool &IncompleteImpl,
 | |
|                                       bool ImmediateClass) {
 | |
|   // Check and see if instance methods in class interface have been
 | |
|   // implemented in the implementation class. If so, their types match.
 | |
|   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
 | |
|        E = CDecl->instmeth_end(); I != E; ++I) {
 | |
|     if (InsMapSeen.count((*I)->getSelector()))
 | |
|         continue;
 | |
|     InsMapSeen.insert((*I)->getSelector());
 | |
|     if (!(*I)->isSynthesized() &&
 | |
|         !InsMap.count((*I)->getSelector())) {
 | |
|       if (ImmediateClass)
 | |
|         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
 | |
|                             diag::note_undef_method_impl);
 | |
|       continue;
 | |
|     } else {
 | |
|       ObjCMethodDecl *ImpMethodDecl =
 | |
|       IMPDecl->getInstanceMethod((*I)->getSelector());
 | |
|       ObjCMethodDecl *MethodDecl =
 | |
|       CDecl->getInstanceMethod((*I)->getSelector());
 | |
|       assert(MethodDecl &&
 | |
|              "MethodDecl is null in ImplMethodsVsClassMethods");
 | |
|       // ImpMethodDecl may be null as in a @dynamic property.
 | |
|       if (ImpMethodDecl)
 | |
|         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
 | |
|                                     isa<ObjCProtocolDecl>(CDecl));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check and see if class methods in class interface have been
 | |
|   // implemented in the implementation class. If so, their types match.
 | |
|    for (ObjCInterfaceDecl::classmeth_iterator
 | |
|        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
 | |
|      if (ClsMapSeen.count((*I)->getSelector()))
 | |
|        continue;
 | |
|      ClsMapSeen.insert((*I)->getSelector());
 | |
|     if (!ClsMap.count((*I)->getSelector())) {
 | |
|       if (ImmediateClass)
 | |
|         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
 | |
|                             diag::note_undef_method_impl);
 | |
|     } else {
 | |
|       ObjCMethodDecl *ImpMethodDecl =
 | |
|         IMPDecl->getClassMethod((*I)->getSelector());
 | |
|       ObjCMethodDecl *MethodDecl =
 | |
|         CDecl->getClassMethod((*I)->getSelector());
 | |
|       WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 
 | |
|                                   isa<ObjCProtocolDecl>(CDecl));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | |
|     // Also methods in class extensions need be looked at next.
 | |
|     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 
 | |
|          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl,
 | |
|                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl), 
 | |
|                                  IncompleteImpl, false);
 | |
|     
 | |
|     // Check for any implementation of a methods declared in protocol.
 | |
|     for (ObjCInterfaceDecl::all_protocol_iterator
 | |
|           PI = I->all_referenced_protocol_begin(),
 | |
|           E = I->all_referenced_protocol_end(); PI != E; ++PI)
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl,
 | |
|                                  (*PI), IncompleteImpl, false);
 | |
|     if (I->getSuperClass())
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl,
 | |
|                                  I->getSuperClass(), IncompleteImpl, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
 | |
|                                      ObjCContainerDecl* CDecl,
 | |
|                                      bool IncompleteImpl) {
 | |
|   llvm::DenseSet<Selector> InsMap;
 | |
|   // Check and see if instance methods in class interface have been
 | |
|   // implemented in the implementation class.
 | |
|   for (ObjCImplementationDecl::instmeth_iterator
 | |
|          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
 | |
|     InsMap.insert((*I)->getSelector());
 | |
| 
 | |
|   // Check and see if properties declared in the interface have either 1)
 | |
|   // an implementation or 2) there is a @synthesize/@dynamic implementation
 | |
|   // of the property in the @implementation.
 | |
|   if (isa<ObjCInterfaceDecl>(CDecl) &&
 | |
|         !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
 | |
|     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
 | |
|       
 | |
|   llvm::DenseSet<Selector> ClsMap;
 | |
|   for (ObjCImplementationDecl::classmeth_iterator
 | |
|        I = IMPDecl->classmeth_begin(),
 | |
|        E = IMPDecl->classmeth_end(); I != E; ++I)
 | |
|     ClsMap.insert((*I)->getSelector());
 | |
| 
 | |
|   // Check for type conflict of methods declared in a class/protocol and
 | |
|   // its implementation; if any.
 | |
|   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
 | |
|   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                              IMPDecl, CDecl,
 | |
|                              IncompleteImpl, true);
 | |
| 
 | |
|   // Check the protocol list for unimplemented methods in the @implementation
 | |
|   // class.
 | |
|   // Check and see if class methods in class interface have been
 | |
|   // implemented in the implementation class.
 | |
| 
 | |
|   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | |
|     for (ObjCInterfaceDecl::all_protocol_iterator
 | |
|           PI = I->all_referenced_protocol_begin(),
 | |
|           E = I->all_referenced_protocol_end(); PI != E; ++PI)
 | |
|       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
 | |
|                               InsMap, ClsMap, I);
 | |
|     // Check class extensions (unnamed categories)
 | |
|     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
 | |
|          Categories; Categories = Categories->getNextClassExtension())
 | |
|       ImplMethodsVsClassMethods(S, IMPDecl, 
 | |
|                                 const_cast<ObjCCategoryDecl*>(Categories), 
 | |
|                                 IncompleteImpl);
 | |
|   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | |
|     // For extended class, unimplemented methods in its protocols will
 | |
|     // be reported in the primary class.
 | |
|     if (!C->IsClassExtension()) {
 | |
|       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
 | |
|            E = C->protocol_end(); PI != E; ++PI)
 | |
|         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
 | |
|                                 InsMap, ClsMap, CDecl);
 | |
|       // Report unimplemented properties in the category as well.
 | |
|       // When reporting on missing setter/getters, do not report when
 | |
|       // setter/getter is implemented in category's primary class 
 | |
|       // implementation.
 | |
|       if (ObjCInterfaceDecl *ID = C->getClassInterface())
 | |
|         if (ObjCImplDecl *IMP = ID->getImplementation()) {
 | |
|           for (ObjCImplementationDecl::instmeth_iterator
 | |
|                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
 | |
|             InsMap.insert((*I)->getSelector());
 | |
|         }
 | |
|       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);      
 | |
|     } 
 | |
|   } else
 | |
|     assert(false && "invalid ObjCContainerDecl type.");
 | |
| }
 | |
| 
 | |
| /// ActOnForwardClassDeclaration -
 | |
| Decl *
 | |
| Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
 | |
|                                    IdentifierInfo **IdentList,
 | |
|                                    SourceLocation *IdentLocs,
 | |
|                                    unsigned NumElts) {
 | |
|   llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     // Check for another declaration kind with the same name.
 | |
|     NamedDecl *PrevDecl
 | |
|       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 
 | |
|                          LookupOrdinaryName, ForRedeclaration);
 | |
|     if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|       // Maybe we will complain about the shadowed template parameter.
 | |
|       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
 | |
|       // Just pretend that we didn't see the previous declaration.
 | |
|       PrevDecl = 0;
 | |
|     }
 | |
| 
 | |
|     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|       // GCC apparently allows the following idiom:
 | |
|       //
 | |
|       // typedef NSObject < XCElementTogglerP > XCElementToggler;
 | |
|       // @class XCElementToggler;
 | |
|       //
 | |
|       // FIXME: Make an extension?
 | |
|       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
 | |
|       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
 | |
|         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       } else {
 | |
|         // a forward class declaration matching a typedef name of a class refers
 | |
|         // to the underlying class.
 | |
|         if (const ObjCObjectType *OI =
 | |
|               TDD->getUnderlyingType()->getAs<ObjCObjectType>())
 | |
|           PrevDecl = OI->getInterface();
 | |
|       }
 | |
|     }
 | |
|     ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
|     if (!IDecl) {  // Not already seen?  Make a forward decl.
 | |
|       IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
 | |
|                                         IdentList[i], IdentLocs[i], true);
 | |
|       
 | |
|       // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
 | |
|       // the current DeclContext.  This prevents clients that walk DeclContext
 | |
|       // from seeing the imaginary ObjCInterfaceDecl until it is actually
 | |
|       // declared later (if at all).  We also take care to explicitly make
 | |
|       // sure this declaration is visible for name lookup.
 | |
|       PushOnScopeChains(IDecl, TUScope, false);
 | |
|       CurContext->makeDeclVisibleInContext(IDecl, true);
 | |
|     }
 | |
| 
 | |
|     Interfaces.push_back(IDecl);
 | |
|   }
 | |
| 
 | |
|   assert(Interfaces.size() == NumElts);
 | |
|   ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
 | |
|                                                Interfaces.data(), IdentLocs,
 | |
|                                                Interfaces.size());
 | |
|   CurContext->addDecl(CDecl);
 | |
|   CheckObjCDeclScope(CDecl);
 | |
|   return CDecl;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
 | |
| /// returns true, or false, accordingly.
 | |
| /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
 | |
| bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
 | |
|                                       const ObjCMethodDecl *PrevMethod,
 | |
|                                       bool matchBasedOnSizeAndAlignment,
 | |
|                                       bool matchBasedOnStrictEqulity) {
 | |
|   QualType T1 = Context.getCanonicalType(Method->getResultType());
 | |
|   QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
 | |
| 
 | |
|   if (T1 != T2) {
 | |
|     // The result types are different.
 | |
|     if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
 | |
|       return false;
 | |
|     // Incomplete types don't have a size and alignment.
 | |
|     if (T1->isIncompleteType() || T2->isIncompleteType())
 | |
|       return false;
 | |
|     // Check is based on size and alignment.
 | |
|     if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
 | |
|        E = Method->param_end();
 | |
|   ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
 | |
| 
 | |
|   for (; ParamI != E; ++ParamI, ++PrevI) {
 | |
|     assert(PrevI != PrevMethod->param_end() && "Param mismatch");
 | |
|     T1 = Context.getCanonicalType((*ParamI)->getType());
 | |
|     T2 = Context.getCanonicalType((*PrevI)->getType());
 | |
|     if (T1 != T2) {
 | |
|       // The result types are different.
 | |
|       if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
 | |
|         return false;
 | |
|       // Incomplete types don't have a size and alignment.
 | |
|       if (T1->isIncompleteType() || T2->isIncompleteType())
 | |
|         return false;
 | |
|       // Check is based on size and alignment.
 | |
|       if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Read the contents of the method pool for a given selector from
 | |
| /// external storage.
 | |
| ///
 | |
| /// This routine should only be called once, when the method pool has no entry
 | |
| /// for this selector.
 | |
| Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
 | |
|   assert(ExternalSource && "We need an external AST source");
 | |
|   assert(MethodPool.find(Sel) == MethodPool.end() &&
 | |
|          "Selector data already loaded into the method pool");
 | |
| 
 | |
|   // Read the method list from the external source.
 | |
|   GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
 | |
| 
 | |
|   return MethodPool.insert(std::make_pair(Sel, Methods)).first;
 | |
| }
 | |
| 
 | |
| void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
 | |
|                                  bool instance) {
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
 | |
|   if (Pos == MethodPool.end()) {
 | |
|     if (ExternalSource)
 | |
|       Pos = ReadMethodPool(Method->getSelector());
 | |
|     else
 | |
|       Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
 | |
|                                              GlobalMethods())).first;
 | |
|   }
 | |
|   Method->setDefined(impl);
 | |
|   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
 | |
|   if (Entry.Method == 0) {
 | |
|     // Haven't seen a method with this selector name yet - add it.
 | |
|     Entry.Method = Method;
 | |
|     Entry.Next = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We've seen a method with this name, see if we have already seen this type
 | |
|   // signature.
 | |
|   for (ObjCMethodList *List = &Entry; List; List = List->Next)
 | |
|     if (MatchTwoMethodDeclarations(Method, List->Method)) {
 | |
|       ObjCMethodDecl *PrevObjCMethod = List->Method;
 | |
|       PrevObjCMethod->setDefined(impl);
 | |
|       // If a method is deprecated, push it in the global pool.
 | |
|       // This is used for better diagnostics.
 | |
|       if (Method->isDeprecated()) {
 | |
|         if (!PrevObjCMethod->isDeprecated())
 | |
|           List->Method = Method;
 | |
|       }
 | |
|       // If new method is unavailable, push it into global pool
 | |
|       // unless previous one is deprecated.
 | |
|       if (Method->isUnavailable()) {
 | |
|         if (PrevObjCMethod->getAvailability() < AR_Deprecated)
 | |
|           List->Method = Method;
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // We have a new signature for an existing method - add it.
 | |
|   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
 | |
|   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
 | |
|   Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
 | |
| }
 | |
| 
 | |
| ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
 | |
|                                                bool receiverIdOrClass,
 | |
|                                                bool warn, bool instance) {
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   if (Pos == MethodPool.end()) {
 | |
|     if (ExternalSource)
 | |
|       Pos = ReadMethodPool(Sel);
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
 | |
| 
 | |
|   bool strictSelectorMatch = receiverIdOrClass && warn &&
 | |
|     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
 | |
|                               R.getBegin()) != 
 | |
|       Diagnostic::Ignored);
 | |
|   if (warn && MethList.Method && MethList.Next) {
 | |
|     bool issueWarning = false;
 | |
|     if (strictSelectorMatch)
 | |
|       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
 | |
|         // This checks if the methods differ in type mismatch.
 | |
|         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
 | |
|           issueWarning = true;
 | |
|       }
 | |
| 
 | |
|     if (!issueWarning)
 | |
|       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
 | |
|         // This checks if the methods differ by size & alignment.
 | |
|         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
 | |
|           issueWarning = true;
 | |
|       }
 | |
| 
 | |
|     if (issueWarning) {
 | |
|       if (strictSelectorMatch)
 | |
|         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
 | |
|       else
 | |
|         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
 | |
|       Diag(MethList.Method->getLocStart(), diag::note_using)
 | |
|         << MethList.Method->getSourceRange();
 | |
|       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
 | |
|         Diag(Next->Method->getLocStart(), diag::note_also_found)
 | |
|           << Next->Method->getSourceRange();
 | |
|     }
 | |
|   }
 | |
|   return MethList.Method;
 | |
| }
 | |
| 
 | |
| ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   if (Pos == MethodPool.end())
 | |
|     return 0;
 | |
| 
 | |
|   GlobalMethods &Methods = Pos->second;
 | |
| 
 | |
|   if (Methods.first.Method && Methods.first.Method->isDefined())
 | |
|     return Methods.first.Method;
 | |
|   if (Methods.second.Method && Methods.second.Method->isDefined())
 | |
|     return Methods.second.Method;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
 | |
| /// identical selector names in current and its super classes and issues
 | |
| /// a warning if any of their argument types are incompatible.
 | |
| void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
 | |
|                                              ObjCMethodDecl *Method,
 | |
|                                              bool IsInstance)  {
 | |
|   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
 | |
|   if (ID == 0) return;
 | |
| 
 | |
|   while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
 | |
|     ObjCMethodDecl *SuperMethodDecl =
 | |
|         SD->lookupMethod(Method->getSelector(), IsInstance);
 | |
|     if (SuperMethodDecl == 0) {
 | |
|       ID = SD;
 | |
|       continue;
 | |
|     }
 | |
|     ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
 | |
|       E = Method->param_end();
 | |
|     ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
 | |
|     for (; ParamI != E; ++ParamI, ++PrevI) {
 | |
|       // Number of parameters are the same and is guaranteed by selector match.
 | |
|       assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
 | |
|       QualType T1 = Context.getCanonicalType((*ParamI)->getType());
 | |
|       QualType T2 = Context.getCanonicalType((*PrevI)->getType());
 | |
|       // If type of argument of method in this class does not match its
 | |
|       // respective argument type in the super class method, issue warning;
 | |
|       if (!Context.typesAreCompatible(T1, T2)) {
 | |
|         Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
 | |
|           << T1 << T2;
 | |
|         Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     ID = SD;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DiagnoseDuplicateIvars - 
 | |
| /// Check for duplicate ivars in the entire class at the start of 
 | |
| /// @implementation. This becomes necesssary because class extension can
 | |
| /// add ivars to a class in random order which will not be known until
 | |
| /// class's @implementation is seen.
 | |
| void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 
 | |
|                                   ObjCInterfaceDecl *SID) {
 | |
|   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
 | |
|        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
 | |
|     ObjCIvarDecl* Ivar = (*IVI);
 | |
|     if (Ivar->isInvalidDecl())
 | |
|       continue;
 | |
|     if (IdentifierInfo *II = Ivar->getIdentifier()) {
 | |
|       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
 | |
|       if (prevIvar) {
 | |
|         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
 | |
|         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
 | |
|         Ivar->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Note: For class/category implemenations, allMethods/allProperties is
 | |
| // always null.
 | |
| void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
 | |
|                       Decl *ClassDecl,
 | |
|                       Decl **allMethods, unsigned allNum,
 | |
|                       Decl **allProperties, unsigned pNum,
 | |
|                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
 | |
|   // FIXME: If we don't have a ClassDecl, we have an error. We should consider
 | |
|   // always passing in a decl. If the decl has an error, isInvalidDecl()
 | |
|   // should be true.
 | |
|   if (!ClassDecl)
 | |
|     return;
 | |
|   
 | |
|   bool isInterfaceDeclKind =
 | |
|         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
 | |
|          || isa<ObjCProtocolDecl>(ClassDecl);
 | |
|   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
 | |
| 
 | |
|   if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
 | |
|     // FIXME: This is wrong.  We shouldn't be pretending that there is
 | |
|     //  an '@end' in the declaration.
 | |
|     SourceLocation L = ClassDecl->getLocation();
 | |
|     AtEnd.setBegin(L);
 | |
|     AtEnd.setEnd(L);
 | |
|     Diag(L, diag::err_missing_atend);
 | |
|   }
 | |
|   
 | |
|   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
 | |
| 
 | |
|   for (unsigned i = 0; i < allNum; i++ ) {
 | |
|     ObjCMethodDecl *Method =
 | |
|       cast_or_null<ObjCMethodDecl>(allMethods[i]);
 | |
| 
 | |
|     if (!Method) continue;  // Already issued a diagnostic.
 | |
|     if (Method->isInstanceMethod()) {
 | |
|       /// Check for instance method of the same name with incompatible types
 | |
|       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
 | |
|       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | |
|                               : false;
 | |
|       if ((isInterfaceDeclKind && PrevMethod && !match)
 | |
|           || (checkIdenticalMethods && match)) {
 | |
|           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|             << Method->getDeclName();
 | |
|           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         Method->setInvalidDecl();
 | |
|       } else {
 | |
|         InsMap[Method->getSelector()] = Method;
 | |
|         /// The following allows us to typecheck messages to "id".
 | |
|         AddInstanceMethodToGlobalPool(Method);
 | |
|         // verify that the instance method conforms to the same definition of
 | |
|         // parent methods if it shadows one.
 | |
|         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
 | |
|       }
 | |
|     } else {
 | |
|       /// Check for class method of the same name with incompatible types
 | |
|       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
 | |
|       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | |
|                               : false;
 | |
|       if ((isInterfaceDeclKind && PrevMethod && !match)
 | |
|           || (checkIdenticalMethods && match)) {
 | |
|         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|           << Method->getDeclName();
 | |
|         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         Method->setInvalidDecl();
 | |
|       } else {
 | |
|         ClsMap[Method->getSelector()] = Method;
 | |
|         /// The following allows us to typecheck messages to "Class".
 | |
|         AddFactoryMethodToGlobalPool(Method);
 | |
|         // verify that the class method conforms to the same definition of
 | |
|         // parent methods if it shadows one.
 | |
|         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
 | |
|     // Compares properties declared in this class to those of its
 | |
|     // super class.
 | |
|     ComparePropertiesInBaseAndSuper(I);
 | |
|     CompareProperties(I, I);
 | |
|   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
 | |
|     // Categories are used to extend the class by declaring new methods.
 | |
|     // By the same token, they are also used to add new properties. No
 | |
|     // need to compare the added property to those in the class.
 | |
| 
 | |
|     // Compare protocol properties with those in category
 | |
|     CompareProperties(C, C);
 | |
|     if (C->IsClassExtension()) {
 | |
|       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
 | |
|       DiagnoseClassExtensionDupMethods(C, CCPrimary);
 | |
|     }
 | |
|   }
 | |
|   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
 | |
|     if (CDecl->getIdentifier())
 | |
|       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
 | |
|       // user-defined setter/getter. It also synthesizes setter/getter methods
 | |
|       // and adds them to the DeclContext and global method pools.
 | |
|       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
 | |
|                                             E = CDecl->prop_end();
 | |
|            I != E; ++I)
 | |
|         ProcessPropertyDecl(*I, CDecl);
 | |
|     CDecl->setAtEndRange(AtEnd);
 | |
|   }
 | |
|   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
 | |
|     IC->setAtEndRange(AtEnd);
 | |
|     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
 | |
|       // Any property declared in a class extension might have user
 | |
|       // declared setter or getter in current class extension or one
 | |
|       // of the other class extensions. Mark them as synthesized as
 | |
|       // property will be synthesized when property with same name is
 | |
|       // seen in the @implementation.
 | |
|       for (const ObjCCategoryDecl *ClsExtDecl =
 | |
|            IDecl->getFirstClassExtension();
 | |
|            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
 | |
|         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
 | |
|              E = ClsExtDecl->prop_end(); I != E; ++I) {
 | |
|           ObjCPropertyDecl *Property = (*I);
 | |
|           // Skip over properties declared @dynamic
 | |
|           if (const ObjCPropertyImplDecl *PIDecl
 | |
|               = IC->FindPropertyImplDecl(Property->getIdentifier()))
 | |
|             if (PIDecl->getPropertyImplementation() 
 | |
|                   == ObjCPropertyImplDecl::Dynamic)
 | |
|               continue;
 | |
|           
 | |
|           for (const ObjCCategoryDecl *CExtDecl =
 | |
|                IDecl->getFirstClassExtension();
 | |
|                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
 | |
|             if (ObjCMethodDecl *GetterMethod =
 | |
|                 CExtDecl->getInstanceMethod(Property->getGetterName()))
 | |
|               GetterMethod->setSynthesized(true);
 | |
|             if (!Property->isReadOnly())
 | |
|               if (ObjCMethodDecl *SetterMethod =
 | |
|                   CExtDecl->getInstanceMethod(Property->getSetterName()))
 | |
|                 SetterMethod->setSynthesized(true);
 | |
|           }        
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (LangOpts.ObjCDefaultSynthProperties &&
 | |
|           LangOpts.ObjCNonFragileABI2)
 | |
|         DefaultSynthesizeProperties(S, IC, IDecl);
 | |
|       ImplMethodsVsClassMethods(S, IC, IDecl);
 | |
|       AtomicPropertySetterGetterRules(IC, IDecl);
 | |
|   
 | |
|       if (LangOpts.ObjCNonFragileABI2)
 | |
|         while (IDecl->getSuperClass()) {
 | |
|           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
 | |
|           IDecl = IDecl->getSuperClass();
 | |
|         }
 | |
|     }
 | |
|     SetIvarInitializers(IC);
 | |
|   } else if (ObjCCategoryImplDecl* CatImplClass =
 | |
|                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
 | |
|     CatImplClass->setAtEndRange(AtEnd);
 | |
| 
 | |
|     // Find category interface decl and then check that all methods declared
 | |
|     // in this interface are implemented in the category @implementation.
 | |
|     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
 | |
|       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
 | |
|            Categories; Categories = Categories->getNextClassCategory()) {
 | |
|         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
 | |
|           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (isInterfaceDeclKind) {
 | |
|     // Reject invalid vardecls.
 | |
|     for (unsigned i = 0; i != tuvNum; i++) {
 | |
|       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
 | |
|       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | |
|         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
 | |
|           if (!VDecl->hasExternalStorage())
 | |
|             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
 | |
| /// objective-c's type qualifier from the parser version of the same info.
 | |
| static Decl::ObjCDeclQualifier
 | |
| CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
 | |
|   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| bool containsInvalidMethodImplAttribute(const AttrVec &A) {
 | |
|   // The 'ibaction' attribute is allowed on method definitions because of
 | |
|   // how the IBAction macro is used on both method declarations and definitions.
 | |
|   // If the method definitions contains any other attributes, return true.
 | |
|   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
 | |
|     if ((*i)->getKind() != attr::IBAction)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnMethodDeclaration(
 | |
|     Scope *S,
 | |
|     SourceLocation MethodLoc, SourceLocation EndLoc,
 | |
|     tok::TokenKind MethodType, Decl *ClassDecl,
 | |
|     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
 | |
|     Selector Sel,
 | |
|     // optional arguments. The number of types/arguments is obtained
 | |
|     // from the Sel.getNumArgs().
 | |
|     ObjCArgInfo *ArgInfo,
 | |
|     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
 | |
|     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
 | |
|     bool isVariadic, bool MethodDefinition) {
 | |
|   // Make sure we can establish a context for the method.
 | |
|   if (!ClassDecl) {
 | |
|     Diag(MethodLoc, diag::error_missing_method_context);
 | |
|     return 0;
 | |
|   }
 | |
|   QualType resultDeclType;
 | |
| 
 | |
|   TypeSourceInfo *ResultTInfo = 0;
 | |
|   if (ReturnType) {
 | |
|     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
 | |
| 
 | |
|     // Methods cannot return interface types. All ObjC objects are
 | |
|     // passed by reference.
 | |
|     if (resultDeclType->isObjCObjectType()) {
 | |
|       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
 | |
|         << 0 << resultDeclType;
 | |
|       return 0;
 | |
|     }
 | |
|   } else // get the type for "id".
 | |
|     resultDeclType = Context.getObjCIdType();
 | |
| 
 | |
|   ObjCMethodDecl* ObjCMethod =
 | |
|     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
 | |
|                            ResultTInfo,
 | |
|                            cast<DeclContext>(ClassDecl),
 | |
|                            MethodType == tok::minus, isVariadic,
 | |
|                            false, false,
 | |
|                            MethodDeclKind == tok::objc_optional ?
 | |
|                            ObjCMethodDecl::Optional :
 | |
|                            ObjCMethodDecl::Required);
 | |
| 
 | |
|   llvm::SmallVector<ParmVarDecl*, 16> Params;
 | |
| 
 | |
|   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
 | |
|     QualType ArgType;
 | |
|     TypeSourceInfo *DI;
 | |
| 
 | |
|     if (ArgInfo[i].Type == 0) {
 | |
|       ArgType = Context.getObjCIdType();
 | |
|       DI = 0;
 | |
|     } else {
 | |
|       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
 | |
|       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
 | |
|       ArgType = adjustParameterType(ArgType);
 | |
|     }
 | |
| 
 | |
|     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 
 | |
|                    LookupOrdinaryName, ForRedeclaration);
 | |
|     LookupName(R, S);
 | |
|     if (R.isSingleResult()) {
 | |
|       NamedDecl *PrevDecl = R.getFoundDecl();
 | |
|       if (S->isDeclScope(PrevDecl)) {
 | |
|         Diag(ArgInfo[i].NameLoc, 
 | |
|              (MethodDefinition ? diag::warn_method_param_redefinition 
 | |
|                                : diag::warn_method_param_declaration)) 
 | |
|           << ArgInfo[i].Name;
 | |
|         Diag(PrevDecl->getLocation(), 
 | |
|              diag::note_previous_declaration);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SourceLocation StartLoc = DI
 | |
|       ? DI->getTypeLoc().getBeginLoc()
 | |
|       : ArgInfo[i].NameLoc;
 | |
| 
 | |
|     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
 | |
|                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
 | |
|                                         ArgType, DI, SC_None, SC_None);
 | |
| 
 | |
|     Param->setObjCMethodScopeInfo(i);
 | |
| 
 | |
|     Param->setObjCDeclQualifier(
 | |
|       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
 | |
| 
 | |
|     // Apply the attributes to the parameter.
 | |
|     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
 | |
| 
 | |
|     S->AddDecl(Param);
 | |
|     IdResolver.AddDecl(Param);
 | |
| 
 | |
|     Params.push_back(Param);
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
 | |
|     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
 | |
|     QualType ArgType = Param->getType();
 | |
|     if (ArgType.isNull())
 | |
|       ArgType = Context.getObjCIdType();
 | |
|     else
 | |
|       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
 | |
|       ArgType = adjustParameterType(ArgType);
 | |
|     if (ArgType->isObjCObjectType()) {
 | |
|       Diag(Param->getLocation(),
 | |
|            diag::err_object_cannot_be_passed_returned_by_value)
 | |
|       << 1 << ArgType;
 | |
|       Param->setInvalidDecl();
 | |
|     }
 | |
|     Param->setDeclContext(ObjCMethod);
 | |
|     
 | |
|     Params.push_back(Param);
 | |
|   }
 | |
|   
 | |
|   ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
 | |
|                               Sel.getNumArgs());
 | |
|   ObjCMethod->setObjCDeclQualifier(
 | |
|     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
 | |
|   const ObjCMethodDecl *PrevMethod = 0;
 | |
| 
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
 | |
| 
 | |
|   const ObjCMethodDecl *InterfaceMD = 0;
 | |
| 
 | |
|   // Add the method now.
 | |
|   if (ObjCImplementationDecl *ImpDecl =
 | |
|         dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
 | |
|     if (MethodType == tok::minus) {
 | |
|       PrevMethod = ImpDecl->getInstanceMethod(Sel);
 | |
|       ImpDecl->addInstanceMethod(ObjCMethod);
 | |
|     } else {
 | |
|       PrevMethod = ImpDecl->getClassMethod(Sel);
 | |
|       ImpDecl->addClassMethod(ObjCMethod);
 | |
|     }
 | |
|     InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
 | |
|                                                    MethodType == tok::minus);
 | |
|     if (ObjCMethod->hasAttrs() &&
 | |
|         containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
 | |
|       Diag(EndLoc, diag::warn_attribute_method_def);
 | |
|   } else if (ObjCCategoryImplDecl *CatImpDecl =
 | |
|              dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
 | |
|     if (MethodType == tok::minus) {
 | |
|       PrevMethod = CatImpDecl->getInstanceMethod(Sel);
 | |
|       CatImpDecl->addInstanceMethod(ObjCMethod);
 | |
|     } else {
 | |
|       PrevMethod = CatImpDecl->getClassMethod(Sel);
 | |
|       CatImpDecl->addClassMethod(ObjCMethod);
 | |
|     }
 | |
|     if (ObjCMethod->hasAttrs() &&
 | |
|         containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
 | |
|       Diag(EndLoc, diag::warn_attribute_method_def);
 | |
|   } else {
 | |
|     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
 | |
|   }
 | |
|   if (PrevMethod) {
 | |
|     // You can never have two method definitions with the same name.
 | |
|     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
 | |
|       << ObjCMethod->getDeclName();
 | |
|     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
| 
 | |
|   // Merge information down from the interface declaration if we have one.
 | |
|   if (InterfaceMD)
 | |
|     mergeObjCMethodDecls(ObjCMethod, InterfaceMD);
 | |
| 
 | |
|   return ObjCMethod;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckObjCDeclScope(Decl *D) {
 | |
|   if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
 | |
|     return false;
 | |
| 
 | |
|   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
 | |
|   D->setInvalidDecl();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
 | |
| /// instance variables of ClassName into Decls.
 | |
| void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | |
|                      IdentifierInfo *ClassName,
 | |
|                      llvm::SmallVectorImpl<Decl*> &Decls) {
 | |
|   // Check that ClassName is a valid class
 | |
|   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
 | |
|   if (!Class) {
 | |
|     Diag(DeclStart, diag::err_undef_interface) << ClassName;
 | |
|     return;
 | |
|   }
 | |
|   if (LangOpts.ObjCNonFragileABI) {
 | |
|     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Collect the instance variables
 | |
|   llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
 | |
|   Context.DeepCollectObjCIvars(Class, true, Ivars);
 | |
|   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
 | |
|   for (unsigned i = 0; i < Ivars.size(); i++) {
 | |
|     FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
 | |
|     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
 | |
|     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
 | |
|                                            /*FIXME: StartL=*/ID->getLocation(),
 | |
|                                            ID->getLocation(),
 | |
|                                            ID->getIdentifier(), ID->getType(),
 | |
|                                            ID->getBitWidth());
 | |
|     Decls.push_back(FD);
 | |
|   }
 | |
| 
 | |
|   // Introduce all of these fields into the appropriate scope.
 | |
|   for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
 | |
|        D != Decls.end(); ++D) {
 | |
|     FieldDecl *FD = cast<FieldDecl>(*D);
 | |
|     if (getLangOptions().CPlusPlus)
 | |
|       PushOnScopeChains(cast<FieldDecl>(FD), S);
 | |
|     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
 | |
|       Record->addDecl(FD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Build a type-check a new Objective-C exception variable declaration.
 | |
| VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
 | |
|                                       SourceLocation StartLoc,
 | |
|                                       SourceLocation IdLoc,
 | |
|                                       IdentifierInfo *Id,
 | |
|                                       bool Invalid) {
 | |
|   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | |
|   // duration shall not be qualified by an address-space qualifier."
 | |
|   // Since all parameters have automatic store duration, they can not have
 | |
|   // an address space.
 | |
|   if (T.getAddressSpace() != 0) {
 | |
|     Diag(IdLoc, diag::err_arg_with_address_space);
 | |
|     Invalid = true;
 | |
|   }
 | |
|   
 | |
|   // An @catch parameter must be an unqualified object pointer type;
 | |
|   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
 | |
|   if (Invalid) {
 | |
|     // Don't do any further checking.
 | |
|   } else if (T->isDependentType()) {
 | |
|     // Okay: we don't know what this type will instantiate to.
 | |
|   } else if (!T->isObjCObjectPointerType()) {
 | |
|     Invalid = true;
 | |
|     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
 | |
|   } else if (T->isObjCQualifiedIdType()) {
 | |
|     Invalid = true;
 | |
|     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
 | |
|   }
 | |
|   
 | |
|   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
 | |
|                                  T, TInfo, SC_None, SC_None);
 | |
|   New->setExceptionVariable(true);
 | |
|   
 | |
|   if (Invalid)
 | |
|     New->setInvalidDecl();
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
|   
 | |
|   // We allow the "register" storage class on exception variables because
 | |
|   // GCC did, but we drop it completely. Any other storage class is an error.
 | |
|   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | |
|     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
 | |
|       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
 | |
|   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | |
|     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
 | |
|       << DS.getStorageClassSpec();
 | |
|   }  
 | |
|   if (D.getDeclSpec().isThreadSpecified())
 | |
|     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | |
|   D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D);
 | |
|   
 | |
|   // Check that there are no default arguments inside the type of this
 | |
|   // exception object (C++ only).
 | |
|   if (getLangOptions().CPlusPlus)
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
|   
 | |
|   TagDecl *OwnedDecl = 0;
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
 | |
|   QualType ExceptionType = TInfo->getType();
 | |
|   
 | |
|   if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
 | |
|     // Objective-C++: Types shall not be defined in exception types.
 | |
|     Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
 | |
|       << Context.getTypeDeclType(OwnedDecl);
 | |
|   }
 | |
| 
 | |
|   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
 | |
|                                         D.getSourceRange().getBegin(),
 | |
|                                         D.getIdentifierLoc(),
 | |
|                                         D.getIdentifier(),
 | |
|                                         D.isInvalidType());
 | |
|   
 | |
|   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|   if (D.getCXXScopeSpec().isSet()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
|   
 | |
|   // Add the parameter declaration into this scope.
 | |
|   S->AddDecl(New);
 | |
|   if (D.getIdentifier())
 | |
|     IdResolver.AddDecl(New);
 | |
|   
 | |
|   ProcessDeclAttributes(S, New, D);
 | |
|   
 | |
|   if (New->hasAttr<BlocksAttr>())
 | |
|     Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
 | |
| /// initialization.
 | |
| void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
 | |
|                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
 | |
|   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 
 | |
|        Iv= Iv->getNextIvar()) {
 | |
|     QualType QT = Context.getBaseElementType(Iv->getType());
 | |
|     if (QT->isRecordType())
 | |
|       Ivars.push_back(Iv);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
 | |
|                                              CXXCtorInitializer ** initializers,
 | |
|                                                  unsigned numInitializers) {
 | |
|   if (numInitializers > 0) {
 | |
|     NumIvarInitializers = numInitializers;
 | |
|     CXXCtorInitializer **ivarInitializers =
 | |
|     new (C) CXXCtorInitializer*[NumIvarInitializers];
 | |
|     memcpy(ivarInitializers, initializers,
 | |
|            numInitializers * sizeof(CXXCtorInitializer*));
 | |
|     IvarInitializers = ivarInitializers;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseUseOfUnimplementedSelectors() {
 | |
|   // Warning will be issued only when selector table is
 | |
|   // generated (which means there is at lease one implementation
 | |
|   // in the TU). This is to match gcc's behavior.
 | |
|   if (ReferencedSelectors.empty() || 
 | |
|       !Context.AnyObjCImplementation())
 | |
|     return;
 | |
|   for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 
 | |
|         ReferencedSelectors.begin(),
 | |
|        E = ReferencedSelectors.end(); S != E; ++S) {
 | |
|     Selector Sel = (*S).first;
 | |
|     if (!LookupImplementedMethodInGlobalPool(Sel))
 | |
|       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
 | |
|   }
 | |
|   return;
 | |
| }
 |