4309 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4309 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the Base ARM implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM.h"
 | |
| #include "ARMBaseInstrInfo.h"
 | |
| #include "ARMBaseRegisterInfo.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMFeatures.h"
 | |
| #include "ARMHazardRecognizer.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| 
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #include "ARMGenInstrInfo.inc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
 | |
|                cl::desc("Enable ARM 2-addr to 3-addr conv"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
 | |
|            cl::desc("Widen ARM vmovs to vmovd when possible"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| SwiftPartialUpdateClearance("swift-partial-update-clearance",
 | |
|      cl::Hidden, cl::init(12),
 | |
|      cl::desc("Clearance before partial register updates"));
 | |
| 
 | |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions.
 | |
| struct ARM_MLxEntry {
 | |
|   uint16_t MLxOpc;     // MLA / MLS opcode
 | |
|   uint16_t MulOpc;     // Expanded multiplication opcode
 | |
|   uint16_t AddSubOpc;  // Expanded add / sub opcode
 | |
|   bool NegAcc;         // True if the acc is negated before the add / sub.
 | |
|   bool HasLane;        // True if instruction has an extra "lane" operand.
 | |
| };
 | |
| 
 | |
| static const ARM_MLxEntry ARM_MLxTable[] = {
 | |
|   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
 | |
|   // fp scalar ops
 | |
|   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
 | |
|   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
 | |
|   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
 | |
|   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
 | |
|   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
 | |
|   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
 | |
|   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
 | |
|   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
 | |
| 
 | |
|   // fp SIMD ops
 | |
|   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
 | |
|   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
 | |
|   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
 | |
|   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
 | |
|   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
 | |
|   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
 | |
|   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
 | |
|   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
 | |
| };
 | |
| 
 | |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
 | |
|   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
 | |
|     Subtarget(STI) {
 | |
|   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
 | |
|     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
 | |
|     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
 | |
| // currently defaults to no prepass hazard recognizer.
 | |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::
 | |
| CreateTargetHazardRecognizer(const TargetMachine *TM,
 | |
|                              const ScheduleDAG *DAG) const {
 | |
|   if (usePreRAHazardRecognizer()) {
 | |
|     const InstrItineraryData *II = TM->getInstrItineraryData();
 | |
|     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
 | |
|   }
 | |
|   return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
 | |
| }
 | |
| 
 | |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::
 | |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                    const ScheduleDAG *DAG) const {
 | |
|   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
 | |
|     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
 | |
|   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                         MachineBasicBlock::iterator &MBBI,
 | |
|                                         LiveVariables *LV) const {
 | |
|   // FIXME: Thumb2 support.
 | |
| 
 | |
|   if (!EnableARM3Addr)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   uint64_t TSFlags = MI->getDesc().TSFlags;
 | |
|   bool isPre = false;
 | |
|   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
 | |
|   default: return NULL;
 | |
|   case ARMII::IndexModePre:
 | |
|     isPre = true;
 | |
|     break;
 | |
|   case ARMII::IndexModePost:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
 | |
|   // operation.
 | |
|   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
 | |
|   if (MemOpc == 0)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *UpdateMI = NULL;
 | |
|   MachineInstr *MemMI = NULL;
 | |
|   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   unsigned NumOps = MCID.getNumOperands();
 | |
|   bool isLoad = !MI->mayStore();
 | |
|   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
 | |
|   const MachineOperand &Base = MI->getOperand(2);
 | |
|   const MachineOperand &Offset = MI->getOperand(NumOps-3);
 | |
|   unsigned WBReg = WB.getReg();
 | |
|   unsigned BaseReg = Base.getReg();
 | |
|   unsigned OffReg = Offset.getReg();
 | |
|   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
 | |
|   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
 | |
|   switch (AddrMode) {
 | |
|   default: llvm_unreachable("Unknown indexed op!");
 | |
|   case ARMII::AddrMode2: {
 | |
|     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
 | |
|     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
 | |
|     if (OffReg == 0) {
 | |
|       if (ARM_AM::getSOImmVal(Amt) == -1)
 | |
|         // Can't encode it in a so_imm operand. This transformation will
 | |
|         // add more than 1 instruction. Abandon!
 | |
|         return NULL;
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
 | |
|         .addReg(BaseReg).addImm(Amt)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     } else if (Amt != 0) {
 | |
|       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
 | |
|       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     } else
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode3 : {
 | |
|     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
 | |
|     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
 | |
|     if (OffReg == 0)
 | |
|       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
 | |
|         .addReg(BaseReg).addImm(Amt)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     else
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   std::vector<MachineInstr*> NewMIs;
 | |
|   if (isPre) {
 | |
|     if (isLoad)
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc), MI->getOperand(0).getReg())
 | |
|         .addReg(WBReg).addImm(0).addImm(Pred);
 | |
|     else
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
 | |
|         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
 | |
|     NewMIs.push_back(MemMI);
 | |
|     NewMIs.push_back(UpdateMI);
 | |
|   } else {
 | |
|     if (isLoad)
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc), MI->getOperand(0).getReg())
 | |
|         .addReg(BaseReg).addImm(0).addImm(Pred);
 | |
|     else
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
 | |
|         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
 | |
|     if (WB.isDead())
 | |
|       UpdateMI->getOperand(0).setIsDead();
 | |
|     NewMIs.push_back(UpdateMI);
 | |
|     NewMIs.push_back(MemMI);
 | |
|   }
 | |
| 
 | |
|   // Transfer LiveVariables states, kill / dead info.
 | |
|   if (LV) {
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|         unsigned Reg = MO.getReg();
 | |
| 
 | |
|         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
 | |
|         if (MO.isDef()) {
 | |
|           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
 | |
|           if (MO.isDead())
 | |
|             LV->addVirtualRegisterDead(Reg, NewMI);
 | |
|         }
 | |
|         if (MO.isUse() && MO.isKill()) {
 | |
|           for (unsigned j = 0; j < 2; ++j) {
 | |
|             // Look at the two new MI's in reverse order.
 | |
|             MachineInstr *NewMI = NewMIs[j];
 | |
|             if (!NewMI->readsRegister(Reg))
 | |
|               continue;
 | |
|             LV->addVirtualRegisterKilled(Reg, NewMI);
 | |
|             if (VI.removeKill(MI))
 | |
|               VI.Kills.push_back(NewMI);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MFI->insert(MBBI, NewMIs[1]);
 | |
|   MFI->insert(MBBI, NewMIs[0]);
 | |
|   return NewMIs[0];
 | |
| }
 | |
| 
 | |
| // Branch analysis.
 | |
| bool
 | |
| ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
 | |
|                                 MachineBasicBlock *&FBB,
 | |
|                                 SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                 bool AllowModify) const {
 | |
|   TBB = 0;
 | |
|   FBB = 0;
 | |
| 
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin())
 | |
|     return false; // Empty blocks are easy.
 | |
|   --I;
 | |
| 
 | |
|   // Walk backwards from the end of the basic block until the branch is
 | |
|   // analyzed or we give up.
 | |
|   while (isPredicated(I) || I->isTerminator()) {
 | |
| 
 | |
|     // Flag to be raised on unanalyzeable instructions. This is useful in cases
 | |
|     // where we want to clean up on the end of the basic block before we bail
 | |
|     // out.
 | |
|     bool CantAnalyze = false;
 | |
| 
 | |
|     // Skip over DEBUG values and predicated nonterminators.
 | |
|     while (I->isDebugValue() || !I->isTerminator()) {
 | |
|       if (I == MBB.begin())
 | |
|         return false;
 | |
|       --I;
 | |
|     }
 | |
| 
 | |
|     if (isIndirectBranchOpcode(I->getOpcode()) ||
 | |
|         isJumpTableBranchOpcode(I->getOpcode())) {
 | |
|       // Indirect branches and jump tables can't be analyzed, but we still want
 | |
|       // to clean up any instructions at the tail of the basic block.
 | |
|       CantAnalyze = true;
 | |
|     } else if (isUncondBranchOpcode(I->getOpcode())) {
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|     } else if (isCondBranchOpcode(I->getOpcode())) {
 | |
|       // Bail out if we encounter multiple conditional branches.
 | |
|       if (!Cond.empty())
 | |
|         return true;
 | |
| 
 | |
|       assert(!FBB && "FBB should have been null.");
 | |
|       FBB = TBB;
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       Cond.push_back(I->getOperand(1));
 | |
|       Cond.push_back(I->getOperand(2));
 | |
|     } else if (I->isReturn()) {
 | |
|       // Returns can't be analyzed, but we should run cleanup.
 | |
|       CantAnalyze = !isPredicated(I);
 | |
|     } else {
 | |
|       // We encountered other unrecognized terminator. Bail out immediately.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Cleanup code - to be run for unpredicated unconditional branches and
 | |
|     //                returns.
 | |
|     if (!isPredicated(I) &&
 | |
|           (isUncondBranchOpcode(I->getOpcode()) ||
 | |
|            isIndirectBranchOpcode(I->getOpcode()) ||
 | |
|            isJumpTableBranchOpcode(I->getOpcode()) ||
 | |
|            I->isReturn())) {
 | |
|       // Forget any previous condition branch information - it no longer applies.
 | |
|       Cond.clear();
 | |
|       FBB = 0;
 | |
| 
 | |
|       // If we can modify the function, delete everything below this
 | |
|       // unconditional branch.
 | |
|       if (AllowModify) {
 | |
|         MachineBasicBlock::iterator DI = llvm::next(I);
 | |
|         while (DI != MBB.end()) {
 | |
|           MachineInstr *InstToDelete = DI;
 | |
|           ++DI;
 | |
|           InstToDelete->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CantAnalyze)
 | |
|       return true;
 | |
| 
 | |
|     if (I == MBB.begin())
 | |
|       return false;
 | |
| 
 | |
|     --I;
 | |
|   }
 | |
| 
 | |
|   // We made it past the terminators without bailing out - we must have
 | |
|   // analyzed this branch successfully.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin()) return 0;
 | |
|   --I;
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.begin())
 | |
|       return 0;
 | |
|     --I;
 | |
|   }
 | |
|   if (!isUncondBranchOpcode(I->getOpcode()) &&
 | |
|       !isCondBranchOpcode(I->getOpcode()))
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (!isCondBranchOpcode(I->getOpcode()))
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                                MachineBasicBlock *FBB,
 | |
|                                const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                DebugLoc DL) const {
 | |
|   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
 | |
|   int BOpc   = !AFI->isThumbFunction()
 | |
|     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
 | |
|   int BccOpc = !AFI->isThumbFunction()
 | |
|     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
 | |
|   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
 | |
| 
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "ARM branch conditions have two components!");
 | |
| 
 | |
|   if (FBB == 0) {
 | |
|     if (Cond.empty()) { // Unconditional branch?
 | |
|       if (isThumb)
 | |
|         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
 | |
|       else
 | |
|         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
 | |
|     } else
 | |
|       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
 | |
|         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Two-way conditional branch.
 | |
|   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
 | |
|     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
 | |
|   if (isThumb)
 | |
|     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
 | |
|   else
 | |
|     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
 | |
|   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
 | |
|   if (MI->isBundle()) {
 | |
|     MachineBasicBlock::const_instr_iterator I = MI;
 | |
|     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
 | |
|     while (++I != E && I->isInsideBundle()) {
 | |
|       int PIdx = I->findFirstPredOperandIdx();
 | |
|       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   int PIdx = MI->findFirstPredOperandIdx();
 | |
|   return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| PredicateInstruction(MachineInstr *MI,
 | |
|                      const SmallVectorImpl<MachineOperand> &Pred) const {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   if (isUncondBranchOpcode(Opc)) {
 | |
|     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
 | |
|     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | |
|       .addImm(Pred[0].getImm())
 | |
|       .addReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int PIdx = MI->findFirstPredOperandIdx();
 | |
|   if (PIdx != -1) {
 | |
|     MachineOperand &PMO = MI->getOperand(PIdx);
 | |
|     PMO.setImm(Pred[0].getImm());
 | |
|     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
 | |
|                   const SmallVectorImpl<MachineOperand> &Pred2) const {
 | |
|   if (Pred1.size() > 2 || Pred2.size() > 2)
 | |
|     return false;
 | |
| 
 | |
|   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
 | |
|   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
 | |
|   if (CC1 == CC2)
 | |
|     return true;
 | |
| 
 | |
|   switch (CC1) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARMCC::AL:
 | |
|     return true;
 | |
|   case ARMCC::HS:
 | |
|     return CC2 == ARMCC::HI;
 | |
|   case ARMCC::LS:
 | |
|     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
 | |
|   case ARMCC::GE:
 | |
|     return CC2 == ARMCC::GT;
 | |
|   case ARMCC::LE:
 | |
|     return CC2 == ARMCC::LT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
 | |
|                                     std::vector<MachineOperand> &Pred) const {
 | |
|   bool Found = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
 | |
|         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
 | |
|       Pred.push_back(MO);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| /// isPredicable - Return true if the specified instruction can be predicated.
 | |
| /// By default, this returns true for every instruction with a
 | |
| /// PredicateOperand.
 | |
| bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
 | |
|   if (!MI->isPredicable())
 | |
|     return false;
 | |
| 
 | |
|   ARMFunctionInfo *AFI =
 | |
|     MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   if (AFI->isThumb2Function()) {
 | |
|     if (getSubtarget().restrictIT())
 | |
|       return isV8EligibleForIT(MI);
 | |
|   } else { // non-Thumb
 | |
|     if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
 | |
| LLVM_ATTRIBUTE_NOINLINE
 | |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
 | |
|                                 unsigned JTI);
 | |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
 | |
|                                 unsigned JTI) {
 | |
|   assert(JTI < JT.size());
 | |
|   return JT[JTI].MBBs.size();
 | |
| }
 | |
| 
 | |
| /// GetInstSize - Return the size of the specified MachineInstr.
 | |
| ///
 | |
| unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
 | |
|   const MachineBasicBlock &MBB = *MI->getParent();
 | |
|   const MachineFunction *MF = MBB.getParent();
 | |
|   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (MCID.getSize())
 | |
|     return MCID.getSize();
 | |
| 
 | |
|   // If this machine instr is an inline asm, measure it.
 | |
|   if (MI->getOpcode() == ARM::INLINEASM)
 | |
|     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
 | |
|   if (MI->isLabel())
 | |
|     return 0;
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case TargetOpcode::IMPLICIT_DEF:
 | |
|   case TargetOpcode::KILL:
 | |
|   case TargetOpcode::PROLOG_LABEL:
 | |
|   case TargetOpcode::EH_LABEL:
 | |
|   case TargetOpcode::DBG_VALUE:
 | |
|     return 0;
 | |
|   case TargetOpcode::BUNDLE:
 | |
|     return getInstBundleLength(MI);
 | |
|   case ARM::MOVi16_ga_pcrel:
 | |
|   case ARM::MOVTi16_ga_pcrel:
 | |
|   case ARM::t2MOVi16_ga_pcrel:
 | |
|   case ARM::t2MOVTi16_ga_pcrel:
 | |
|     return 4;
 | |
|   case ARM::MOVi32imm:
 | |
|   case ARM::t2MOVi32imm:
 | |
|     return 8;
 | |
|   case ARM::CONSTPOOL_ENTRY:
 | |
|     // If this machine instr is a constant pool entry, its size is recorded as
 | |
|     // operand #2.
 | |
|     return MI->getOperand(2).getImm();
 | |
|   case ARM::Int_eh_sjlj_longjmp:
 | |
|     return 16;
 | |
|   case ARM::tInt_eh_sjlj_longjmp:
 | |
|     return 10;
 | |
|   case ARM::Int_eh_sjlj_setjmp:
 | |
|   case ARM::Int_eh_sjlj_setjmp_nofp:
 | |
|     return 20;
 | |
|   case ARM::tInt_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp_nofp:
 | |
|     return 12;
 | |
|   case ARM::BR_JTr:
 | |
|   case ARM::BR_JTm:
 | |
|   case ARM::BR_JTadd:
 | |
|   case ARM::tBR_JTr:
 | |
|   case ARM::t2BR_JT:
 | |
|   case ARM::t2TBB_JT:
 | |
|   case ARM::t2TBH_JT: {
 | |
|     // These are jumptable branches, i.e. a branch followed by an inlined
 | |
|     // jumptable. The size is 4 + 4 * number of entries. For TBB, each
 | |
|     // entry is one byte; TBH two byte each.
 | |
|     unsigned EntrySize = (Opc == ARM::t2TBB_JT)
 | |
|       ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
 | |
|     unsigned NumOps = MCID.getNumOperands();
 | |
|     MachineOperand JTOP =
 | |
|       MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
 | |
|     unsigned JTI = JTOP.getIndex();
 | |
|     const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
 | |
|     assert(MJTI != 0);
 | |
|     const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|     assert(JTI < JT.size());
 | |
|     // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
 | |
|     // 4 aligned. The assembler / linker may add 2 byte padding just before
 | |
|     // the JT entries.  The size does not include this padding; the
 | |
|     // constant islands pass does separate bookkeeping for it.
 | |
|     // FIXME: If we know the size of the function is less than (1 << 16) *2
 | |
|     // bytes, we can use 16-bit entries instead. Then there won't be an
 | |
|     // alignment issue.
 | |
|     unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
 | |
|     unsigned NumEntries = getNumJTEntries(JT, JTI);
 | |
|     if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
 | |
|       // Make sure the instruction that follows TBB is 2-byte aligned.
 | |
|       // FIXME: Constant island pass should insert an "ALIGN" instruction
 | |
|       // instead.
 | |
|       ++NumEntries;
 | |
|     return NumEntries * EntrySize + InstSize;
 | |
|   }
 | |
|   default:
 | |
|     // Otherwise, pseudo-instruction sizes are zero.
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
 | |
|   unsigned Size = 0;
 | |
|   MachineBasicBlock::const_instr_iterator I = MI;
 | |
|   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
 | |
|   while (++I != E && I->isInsideBundle()) {
 | |
|     assert(!I->isBundle() && "No nested bundle!");
 | |
|     Size += GetInstSizeInBytes(&*I);
 | |
|   }
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator I, DebugLoc DL,
 | |
|                                    unsigned DestReg, unsigned SrcReg,
 | |
|                                    bool KillSrc) const {
 | |
|   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
 | |
|   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
 | |
| 
 | |
|   if (GPRDest && GPRSrc) {
 | |
|     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
 | |
|                                     .addReg(SrcReg, getKillRegState(KillSrc))));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
 | |
|   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   if (SPRDest && SPRSrc)
 | |
|     Opc = ARM::VMOVS;
 | |
|   else if (GPRDest && SPRSrc)
 | |
|     Opc = ARM::VMOVRS;
 | |
|   else if (SPRDest && GPRSrc)
 | |
|     Opc = ARM::VMOVSR;
 | |
|   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VMOVD;
 | |
|   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VORRq;
 | |
| 
 | |
|   if (Opc) {
 | |
|     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
 | |
|     MIB.addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     if (Opc == ARM::VORRq)
 | |
|       MIB.addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     AddDefaultPred(MIB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle register classes that require multiple instructions.
 | |
|   unsigned BeginIdx = 0;
 | |
|   unsigned SubRegs = 0;
 | |
|   int Spacing = 1;
 | |
| 
 | |
|   // Use VORRq when possible.
 | |
|   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VORRq;
 | |
|     BeginIdx = ARM::qsub_0;
 | |
|     SubRegs = 2;
 | |
|   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VORRq;
 | |
|     BeginIdx = ARM::qsub_0;
 | |
|     SubRegs = 4;
 | |
|   // Fall back to VMOVD.
 | |
|   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 2;
 | |
|   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 3;
 | |
|   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 4;
 | |
|   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
 | |
|     BeginIdx = ARM::gsub_0;
 | |
|     SubRegs = 2;
 | |
|   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 2;
 | |
|     Spacing = 2;
 | |
|   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 3;
 | |
|     Spacing = 2;
 | |
|   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
 | |
|     Opc = ARM::VMOVD;
 | |
|     BeginIdx = ARM::dsub_0;
 | |
|     SubRegs = 4;
 | |
|     Spacing = 2;
 | |
|   }
 | |
| 
 | |
|   assert(Opc && "Impossible reg-to-reg copy");
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   MachineInstrBuilder Mov;
 | |
| 
 | |
|   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
 | |
|   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
 | |
|     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
 | |
|     Spacing = -Spacing;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   SmallSet<unsigned, 4> DstRegs;
 | |
| #endif
 | |
|   for (unsigned i = 0; i != SubRegs; ++i) {
 | |
|     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
 | |
|     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
 | |
|     assert(Dst && Src && "Bad sub-register");
 | |
| #ifndef NDEBUG
 | |
|     assert(!DstRegs.count(Src) && "destructive vector copy");
 | |
|     DstRegs.insert(Dst);
 | |
| #endif
 | |
|     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
 | |
|     // VORR takes two source operands.
 | |
|     if (Opc == ARM::VORRq)
 | |
|       Mov.addReg(Src);
 | |
|     Mov = AddDefaultPred(Mov);
 | |
|     // MOVr can set CC.
 | |
|     if (Opc == ARM::MOVr)
 | |
|       Mov = AddDefaultCC(Mov);
 | |
|   }
 | |
|   // Add implicit super-register defs and kills to the last instruction.
 | |
|   Mov->addRegisterDefined(DestReg, TRI);
 | |
|   if (KillSrc)
 | |
|     Mov->addRegisterKilled(SrcReg, TRI);
 | |
| }
 | |
| 
 | |
| const MachineInstrBuilder &
 | |
| ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
 | |
|                           unsigned SubIdx, unsigned State,
 | |
|                           const TargetRegisterInfo *TRI) const {
 | |
|   if (!SubIdx)
 | |
|     return MIB.addReg(Reg, State);
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
 | |
|   return MIB.addReg(Reg, State, SubIdx);
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                     unsigned SrcReg, bool isKill, int FI,
 | |
|                     const TargetRegisterClass *RC,
 | |
|                     const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL;
 | |
|   if (I != MBB.end()) DL = I->getDebugLoc();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
 | |
|                             MachineMemOperand::MOStore,
 | |
|                             MFI.getObjectSize(FI),
 | |
|                             Align);
 | |
| 
 | |
|   switch (RC->getSize()) {
 | |
|     case 4:
 | |
|       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     case 8:
 | |
|       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
 | |
|         if (Subtarget.hasV5TEOps()) {
 | |
|           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
 | |
|           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
 | |
|           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
 | |
|           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
 | |
| 
 | |
|           AddDefaultPred(MIB);
 | |
|         } else {
 | |
|           // Fallback to STM instruction, which has existed since the dawn of
 | |
|           // time.
 | |
|           MachineInstrBuilder MIB =
 | |
|             AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
 | |
|                              .addFrameIndex(FI).addMemOperand(MMO));
 | |
|           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
 | |
|           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
 | |
|         }
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     case 16:
 | |
|       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
 | |
|         // Use aligned spills if the stack can be realigned.
 | |
|         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addMemOperand(MMO));
 | |
|         } else {
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addFrameIndex(FI)
 | |
|                      .addMemOperand(MMO));
 | |
|         }
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     case 24:
 | |
|       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
 | |
|         // Use aligned spills if the stack can be realigned.
 | |
|         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addMemOperand(MMO));
 | |
|         } else {
 | |
|           MachineInstrBuilder MIB =
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
 | |
|                        .addFrameIndex(FI))
 | |
|                        .addMemOperand(MMO);
 | |
|           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
 | |
|           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
 | |
|           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
 | |
|         }
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     case 32:
 | |
|       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
 | |
|         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|           // FIXME: It's possible to only store part of the QQ register if the
 | |
|           // spilled def has a sub-register index.
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addMemOperand(MMO));
 | |
|         } else {
 | |
|           MachineInstrBuilder MIB =
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
 | |
|                        .addFrameIndex(FI))
 | |
|                        .addMemOperand(MMO);
 | |
|           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
 | |
|           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
 | |
|           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
 | |
|                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
 | |
|         }
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     case 64:
 | |
|       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
 | |
|         MachineInstrBuilder MIB =
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
 | |
|                          .addFrameIndex(FI))
 | |
|                          .addMemOperand(MMO);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
 | |
|         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
 | |
|               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
 | |
|       } else
 | |
|         llvm_unreachable("Unknown reg class!");
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                      int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::STRrs:
 | |
|   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isReg() &&
 | |
|         MI->getOperand(3).isImm() &&
 | |
|         MI->getOperand(2).getReg() == 0 &&
 | |
|         MI->getOperand(3).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::STRi12:
 | |
|   case ARM::t2STRi12:
 | |
|   case ARM::tSTRspi:
 | |
|   case ARM::VSTRD:
 | |
|   case ARM::VSTRS:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isImm() &&
 | |
|         MI->getOperand(2).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VST1q64:
 | |
|   case ARM::VST1d64TPseudo:
 | |
|   case ARM::VST1d64QPseudo:
 | |
|     if (MI->getOperand(0).isFI() &&
 | |
|         MI->getOperand(2).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(0).getIndex();
 | |
|       return MI->getOperand(2).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VSTMQIA:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                     int &FrameIndex) const {
 | |
|   const MachineMemOperand *Dummy;
 | |
|   return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                      unsigned DestReg, int FI,
 | |
|                      const TargetRegisterClass *RC,
 | |
|                      const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL;
 | |
|   if (I != MBB.end()) DL = I->getDebugLoc();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(
 | |
|                     MachinePointerInfo::getFixedStack(FI),
 | |
|                             MachineMemOperand::MOLoad,
 | |
|                             MFI.getObjectSize(FI),
 | |
|                             Align);
 | |
| 
 | |
|   switch (RC->getSize()) {
 | |
|   case 4:
 | |
|     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
| 
 | |
|     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|   case 8:
 | |
|     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
 | |
|       MachineInstrBuilder MIB;
 | |
| 
 | |
|       if (Subtarget.hasV5TEOps()) {
 | |
|         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
 | |
|         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
 | |
|         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
 | |
|         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
 | |
| 
 | |
|         AddDefaultPred(MIB);
 | |
|       } else {
 | |
|         // Fallback to LDM instruction, which has existed since the dawn of
 | |
|         // time.
 | |
|         MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
 | |
|                                  .addFrameIndex(FI).addMemOperand(MMO));
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
 | |
|       }
 | |
| 
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
 | |
|         MIB.addReg(DestReg, RegState::ImplicitDefine);
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|   case 16:
 | |
|     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
 | |
|       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addMemOperand(MMO));
 | |
|       } else {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
 | |
|                        .addFrameIndex(FI)
 | |
|                        .addMemOperand(MMO));
 | |
|       }
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|   case 24:
 | |
|     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
 | |
|       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addMemOperand(MMO));
 | |
|       } else {
 | |
|         MachineInstrBuilder MIB =
 | |
|           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
 | |
|                          .addFrameIndex(FI)
 | |
|                          .addMemOperand(MMO));
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
 | |
|           MIB.addReg(DestReg, RegState::ImplicitDefine);
 | |
|       }
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|    case 32:
 | |
|     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
 | |
|       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addMemOperand(MMO));
 | |
|       } else {
 | |
|         MachineInstrBuilder MIB =
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
 | |
|                        .addFrameIndex(FI))
 | |
|                        .addMemOperand(MMO);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
 | |
|         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
 | |
|           MIB.addReg(DestReg, RegState::ImplicitDefine);
 | |
|       }
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|   case 64:
 | |
|     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
 | |
|       MachineInstrBuilder MIB =
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
 | |
|                      .addFrameIndex(FI))
 | |
|                      .addMemOperand(MMO);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
 | |
|         MIB.addReg(DestReg, RegState::ImplicitDefine);
 | |
|     } else
 | |
|       llvm_unreachable("Unknown reg class!");
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                       int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::LDRrs:
 | |
|   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isReg() &&
 | |
|         MI->getOperand(3).isImm() &&
 | |
|         MI->getOperand(2).getReg() == 0 &&
 | |
|         MI->getOperand(3).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::tLDRspi:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isImm() &&
 | |
|         MI->getOperand(2).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VLD1q64:
 | |
|   case ARM::VLD1d64TPseudo:
 | |
|   case ARM::VLD1d64QPseudo:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VLDMQIA:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
 | |
|                                              int &FrameIndex) const {
 | |
|   const MachineMemOperand *Dummy;
 | |
|   return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
 | |
|   // This hook gets to expand COPY instructions before they become
 | |
|   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
 | |
|   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
 | |
|   // changed into a VORR that can go down the NEON pipeline.
 | |
|   if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
 | |
|     return false;
 | |
| 
 | |
|   // Look for a copy between even S-registers.  That is where we keep floats
 | |
|   // when using NEON v2f32 instructions for f32 arithmetic.
 | |
|   unsigned DstRegS = MI->getOperand(0).getReg();
 | |
|   unsigned SrcRegS = MI->getOperand(1).getReg();
 | |
|   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
 | |
|                                               &ARM::DPRRegClass);
 | |
|   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
 | |
|                                               &ARM::DPRRegClass);
 | |
|   if (!DstRegD || !SrcRegD)
 | |
|     return false;
 | |
| 
 | |
|   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
 | |
|   // legal if the COPY already defines the full DstRegD, and it isn't a
 | |
|   // sub-register insertion.
 | |
|   if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
 | |
|     return false;
 | |
| 
 | |
|   // A dead copy shouldn't show up here, but reject it just in case.
 | |
|   if (MI->getOperand(0).isDead())
 | |
|     return false;
 | |
| 
 | |
|   // All clear, widen the COPY.
 | |
|   DEBUG(dbgs() << "widening:    " << *MI);
 | |
|   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
 | |
| 
 | |
|   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
 | |
|   // or some other super-register.
 | |
|   int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
 | |
|   if (ImpDefIdx != -1)
 | |
|     MI->RemoveOperand(ImpDefIdx);
 | |
| 
 | |
|   // Change the opcode and operands.
 | |
|   MI->setDesc(get(ARM::VMOVD));
 | |
|   MI->getOperand(0).setReg(DstRegD);
 | |
|   MI->getOperand(1).setReg(SrcRegD);
 | |
|   AddDefaultPred(MIB);
 | |
| 
 | |
|   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
 | |
|   // register scavenger and machine verifier, so we need to indicate that we
 | |
|   // are reading an undefined value from SrcRegD, but a proper value from
 | |
|   // SrcRegS.
 | |
|   MI->getOperand(1).setIsUndef();
 | |
|   MIB.addReg(SrcRegS, RegState::Implicit);
 | |
| 
 | |
|   // SrcRegD may actually contain an unrelated value in the ssub_1
 | |
|   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
 | |
|   if (MI->getOperand(1).isKill()) {
 | |
|     MI->getOperand(1).setIsKill(false);
 | |
|     MI->addRegisterKilled(SrcRegS, TRI, true);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "replaced by: " << *MI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Create a copy of a const pool value. Update CPI to the new index and return
 | |
| /// the label UID.
 | |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
 | |
|   MachineConstantPool *MCP = MF.getConstantPool();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
 | |
|   assert(MCPE.isMachineConstantPoolEntry() &&
 | |
|          "Expecting a machine constantpool entry!");
 | |
|   ARMConstantPoolValue *ACPV =
 | |
|     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
 | |
| 
 | |
|   unsigned PCLabelId = AFI->createPICLabelUId();
 | |
|   ARMConstantPoolValue *NewCPV = 0;
 | |
|   // FIXME: The below assumes PIC relocation model and that the function
 | |
|   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
 | |
|   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
 | |
|   // instructions, so that's probably OK, but is PIC always correct when
 | |
|   // we get here?
 | |
|   if (ACPV->isGlobalValue())
 | |
|     NewCPV = ARMConstantPoolConstant::
 | |
|       Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
 | |
|              ARMCP::CPValue, 4);
 | |
|   else if (ACPV->isExtSymbol())
 | |
|     NewCPV = ARMConstantPoolSymbol::
 | |
|       Create(MF.getFunction()->getContext(),
 | |
|              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
 | |
|   else if (ACPV->isBlockAddress())
 | |
|     NewCPV = ARMConstantPoolConstant::
 | |
|       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
 | |
|              ARMCP::CPBlockAddress, 4);
 | |
|   else if (ACPV->isLSDA())
 | |
|     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
 | |
|                                              ARMCP::CPLSDA, 4);
 | |
|   else if (ACPV->isMachineBasicBlock())
 | |
|     NewCPV = ARMConstantPoolMBB::
 | |
|       Create(MF.getFunction()->getContext(),
 | |
|              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
 | |
|   else
 | |
|     llvm_unreachable("Unexpected ARM constantpool value type!!");
 | |
|   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
 | |
|   return PCLabelId;
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| reMaterialize(MachineBasicBlock &MBB,
 | |
|               MachineBasicBlock::iterator I,
 | |
|               unsigned DestReg, unsigned SubIdx,
 | |
|               const MachineInstr *Orig,
 | |
|               const TargetRegisterInfo &TRI) const {
 | |
|   unsigned Opcode = Orig->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   default: {
 | |
|     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | |
|     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | |
|     MBB.insert(I, MI);
 | |
|     break;
 | |
|   }
 | |
|   case ARM::tLDRpci_pic:
 | |
|   case ARM::t2LDRpci_pic: {
 | |
|     MachineFunction &MF = *MBB.getParent();
 | |
|     unsigned CPI = Orig->getOperand(1).getIndex();
 | |
|     unsigned PCLabelId = duplicateCPV(MF, CPI);
 | |
|     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
 | |
|                                       DestReg)
 | |
|       .addConstantPoolIndex(CPI).addImm(PCLabelId);
 | |
|     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
 | |
|   MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
 | |
|   switch(Orig->getOpcode()) {
 | |
|   case ARM::tLDRpci_pic:
 | |
|   case ARM::t2LDRpci_pic: {
 | |
|     unsigned CPI = Orig->getOperand(1).getIndex();
 | |
|     unsigned PCLabelId = duplicateCPV(MF, CPI);
 | |
|     Orig->getOperand(1).setIndex(CPI);
 | |
|     Orig->getOperand(2).setImm(PCLabelId);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
 | |
|                                         const MachineInstr *MI1,
 | |
|                                         const MachineRegisterInfo *MRI) const {
 | |
|   int Opcode = MI0->getOpcode();
 | |
|   if (Opcode == ARM::t2LDRpci ||
 | |
|       Opcode == ARM::t2LDRpci_pic ||
 | |
|       Opcode == ARM::tLDRpci ||
 | |
|       Opcode == ARM::tLDRpci_pic ||
 | |
|       Opcode == ARM::MOV_ga_pcrel ||
 | |
|       Opcode == ARM::MOV_ga_pcrel_ldr ||
 | |
|       Opcode == ARM::t2MOV_ga_pcrel) {
 | |
|     if (MI1->getOpcode() != Opcode)
 | |
|       return false;
 | |
|     if (MI0->getNumOperands() != MI1->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     const MachineOperand &MO0 = MI0->getOperand(1);
 | |
|     const MachineOperand &MO1 = MI1->getOperand(1);
 | |
|     if (MO0.getOffset() != MO1.getOffset())
 | |
|       return false;
 | |
| 
 | |
|     if (Opcode == ARM::MOV_ga_pcrel ||
 | |
|         Opcode == ARM::MOV_ga_pcrel_ldr ||
 | |
|         Opcode == ARM::t2MOV_ga_pcrel)
 | |
|       // Ignore the PC labels.
 | |
|       return MO0.getGlobal() == MO1.getGlobal();
 | |
| 
 | |
|     const MachineFunction *MF = MI0->getParent()->getParent();
 | |
|     const MachineConstantPool *MCP = MF->getConstantPool();
 | |
|     int CPI0 = MO0.getIndex();
 | |
|     int CPI1 = MO1.getIndex();
 | |
|     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
 | |
|     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
 | |
|     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
 | |
|     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
 | |
|     if (isARMCP0 && isARMCP1) {
 | |
|       ARMConstantPoolValue *ACPV0 =
 | |
|         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
 | |
|       ARMConstantPoolValue *ACPV1 =
 | |
|         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
 | |
|       return ACPV0->hasSameValue(ACPV1);
 | |
|     } else if (!isARMCP0 && !isARMCP1) {
 | |
|       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
 | |
|     }
 | |
|     return false;
 | |
|   } else if (Opcode == ARM::PICLDR) {
 | |
|     if (MI1->getOpcode() != Opcode)
 | |
|       return false;
 | |
|     if (MI0->getNumOperands() != MI1->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     unsigned Addr0 = MI0->getOperand(1).getReg();
 | |
|     unsigned Addr1 = MI1->getOperand(1).getReg();
 | |
|     if (Addr0 != Addr1) {
 | |
|       if (!MRI ||
 | |
|           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
 | |
|           !TargetRegisterInfo::isVirtualRegister(Addr1))
 | |
|         return false;
 | |
| 
 | |
|       // This assumes SSA form.
 | |
|       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
 | |
|       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
 | |
|       // Check if the loaded value, e.g. a constantpool of a global address, are
 | |
|       // the same.
 | |
|       if (!produceSameValue(Def0, Def1, MRI))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
 | |
|       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
 | |
|       const MachineOperand &MO0 = MI0->getOperand(i);
 | |
|       const MachineOperand &MO1 = MI1->getOperand(i);
 | |
|       if (!MO0.isIdenticalTo(MO1))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
 | |
| }
 | |
| 
 | |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
 | |
| /// determine if two loads are loading from the same base address. It should
 | |
| /// only return true if the base pointers are the same and the only differences
 | |
| /// between the two addresses is the offset. It also returns the offsets by
 | |
| /// reference.
 | |
| ///
 | |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
 | |
| /// is permanently disabled.
 | |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
 | |
|                                                int64_t &Offset1,
 | |
|                                                int64_t &Offset2) const {
 | |
|   // Don't worry about Thumb: just ARM and Thumb2.
 | |
|   if (Subtarget.isThumb1Only()) return false;
 | |
| 
 | |
|   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   switch (Load1->getMachineOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::LDRBi12:
 | |
|   case ARM::LDRD:
 | |
|   case ARM::LDRH:
 | |
|   case ARM::LDRSB:
 | |
|   case ARM::LDRSH:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|   case ARM::t2LDRi8:
 | |
|   case ARM::t2LDRBi8:
 | |
|   case ARM::t2LDRDi8:
 | |
|   case ARM::t2LDRSHi8:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::t2LDRBi12:
 | |
|   case ARM::t2LDRSHi12:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (Load2->getMachineOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::LDRBi12:
 | |
|   case ARM::LDRD:
 | |
|   case ARM::LDRH:
 | |
|   case ARM::LDRSB:
 | |
|   case ARM::LDRSH:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|   case ARM::t2LDRi8:
 | |
|   case ARM::t2LDRBi8:
 | |
|   case ARM::t2LDRSHi8:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::t2LDRBi12:
 | |
|   case ARM::t2LDRSHi12:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check if base addresses and chain operands match.
 | |
|   if (Load1->getOperand(0) != Load2->getOperand(0) ||
 | |
|       Load1->getOperand(4) != Load2->getOperand(4))
 | |
|     return false;
 | |
| 
 | |
|   // Index should be Reg0.
 | |
|   if (Load1->getOperand(3) != Load2->getOperand(3))
 | |
|     return false;
 | |
| 
 | |
|   // Determine the offsets.
 | |
|   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
 | |
|       isa<ConstantSDNode>(Load2->getOperand(1))) {
 | |
|     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
 | |
|     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
 | |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
 | |
| /// be scheduled togther. On some targets if two loads are loading from
 | |
| /// addresses in the same cache line, it's better if they are scheduled
 | |
| /// together. This function takes two integers that represent the load offsets
 | |
| /// from the common base address. It returns true if it decides it's desirable
 | |
| /// to schedule the two loads together. "NumLoads" is the number of loads that
 | |
| /// have already been scheduled after Load1.
 | |
| ///
 | |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
 | |
| /// is permanently disabled.
 | |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
 | |
|                                                int64_t Offset1, int64_t Offset2,
 | |
|                                                unsigned NumLoads) const {
 | |
|   // Don't worry about Thumb: just ARM and Thumb2.
 | |
|   if (Subtarget.isThumb1Only()) return false;
 | |
| 
 | |
|   assert(Offset2 > Offset1);
 | |
| 
 | |
|   if ((Offset2 - Offset1) / 8 > 64)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the machine opcodes are different. If they are different
 | |
|   // then we consider them to not be of the same base address,
 | |
|   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
 | |
|   // In this case, they are considered to be the same because they are different
 | |
|   // encoding forms of the same basic instruction.
 | |
|   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
 | |
|       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
 | |
|          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
 | |
|         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
 | |
|          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
 | |
|     return false;  // FIXME: overly conservative?
 | |
| 
 | |
|   // Four loads in a row should be sufficient.
 | |
|   if (NumLoads >= 3)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
 | |
|                                             const MachineBasicBlock *MBB,
 | |
|                                             const MachineFunction &MF) const {
 | |
|   // Debug info is never a scheduling boundary. It's necessary to be explicit
 | |
|   // due to the special treatment of IT instructions below, otherwise a
 | |
|   // dbg_value followed by an IT will result in the IT instruction being
 | |
|   // considered a scheduling hazard, which is wrong. It should be the actual
 | |
|   // instruction preceding the dbg_value instruction(s), just like it is
 | |
|   // when debug info is not present.
 | |
|   if (MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Terminators and labels can't be scheduled around.
 | |
|   if (MI->isTerminator() || MI->isLabel())
 | |
|     return true;
 | |
| 
 | |
|   // Treat the start of the IT block as a scheduling boundary, but schedule
 | |
|   // t2IT along with all instructions following it.
 | |
|   // FIXME: This is a big hammer. But the alternative is to add all potential
 | |
|   // true and anti dependencies to IT block instructions as implicit operands
 | |
|   // to the t2IT instruction. The added compile time and complexity does not
 | |
|   // seem worth it.
 | |
|   MachineBasicBlock::const_iterator I = MI;
 | |
|   // Make sure to skip any dbg_value instructions
 | |
|   while (++I != MBB->end() && I->isDebugValue())
 | |
|     ;
 | |
|   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
 | |
|     return true;
 | |
| 
 | |
|   // Don't attempt to schedule around any instruction that defines
 | |
|   // a stack-oriented pointer, as it's unlikely to be profitable. This
 | |
|   // saves compile time, because it doesn't require every single
 | |
|   // stack slot reference to depend on the instruction that does the
 | |
|   // modification.
 | |
|   // Calls don't actually change the stack pointer, even if they have imp-defs.
 | |
|   // No ARM calling conventions change the stack pointer. (X86 calling
 | |
|   // conventions sometimes do).
 | |
|   if (!MI->isCall() && MI->definesRegister(ARM::SP))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &MBB,
 | |
|                     unsigned NumCycles, unsigned ExtraPredCycles,
 | |
|                     const BranchProbability &Probability) const {
 | |
|   if (!NumCycles)
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to estimate the relative costs of predication versus branching.
 | |
|   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
 | |
|   UnpredCost /= Probability.getDenominator();
 | |
|   UnpredCost += 1; // The branch itself
 | |
|   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
 | |
| 
 | |
|   return (NumCycles + ExtraPredCycles) <= UnpredCost;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                     unsigned TCycles, unsigned TExtra,
 | |
|                     MachineBasicBlock &FMBB,
 | |
|                     unsigned FCycles, unsigned FExtra,
 | |
|                     const BranchProbability &Probability) const {
 | |
|   if (!TCycles || !FCycles)
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to estimate the relative costs of predication versus branching.
 | |
|   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
 | |
|   TUnpredCost /= Probability.getDenominator();
 | |
| 
 | |
|   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
 | |
|   unsigned FUnpredCost = Comp * FCycles;
 | |
|   FUnpredCost /= Probability.getDenominator();
 | |
| 
 | |
|   unsigned UnpredCost = TUnpredCost + FUnpredCost;
 | |
|   UnpredCost += 1; // The branch itself
 | |
|   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
 | |
| 
 | |
|   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
 | |
|                                             MachineBasicBlock &FMBB) const {
 | |
|   // Reduce false anti-dependencies to let Swift's out-of-order execution
 | |
|   // engine do its thing.
 | |
|   return Subtarget.isSwift();
 | |
| }
 | |
| 
 | |
| /// getInstrPredicate - If instruction is predicated, returns its predicate
 | |
| /// condition, otherwise returns AL. It also returns the condition code
 | |
| /// register by reference.
 | |
| ARMCC::CondCodes
 | |
| llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
 | |
|   int PIdx = MI->findFirstPredOperandIdx();
 | |
|   if (PIdx == -1) {
 | |
|     PredReg = 0;
 | |
|     return ARMCC::AL;
 | |
|   }
 | |
| 
 | |
|   PredReg = MI->getOperand(PIdx+1).getReg();
 | |
|   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
 | |
| }
 | |
| 
 | |
| 
 | |
| int llvm::getMatchingCondBranchOpcode(int Opc) {
 | |
|   if (Opc == ARM::B)
 | |
|     return ARM::Bcc;
 | |
|   if (Opc == ARM::tB)
 | |
|     return ARM::tBcc;
 | |
|   if (Opc == ARM::t2B)
 | |
|     return ARM::t2Bcc;
 | |
| 
 | |
|   llvm_unreachable("Unknown unconditional branch opcode!");
 | |
| }
 | |
| 
 | |
| /// commuteInstruction - Handle commutable instructions.
 | |
| MachineInstr *
 | |
| ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case ARM::MOVCCr:
 | |
|   case ARM::t2MOVCCr: {
 | |
|     // MOVCC can be commuted by inverting the condition.
 | |
|     unsigned PredReg = 0;
 | |
|     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
 | |
|     // MOVCC AL can't be inverted. Shouldn't happen.
 | |
|     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
 | |
|       return NULL;
 | |
|     MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
 | |
|     if (!MI)
 | |
|       return NULL;
 | |
|     // After swapping the MOVCC operands, also invert the condition.
 | |
|     MI->getOperand(MI->findFirstPredOperandIdx())
 | |
|       .setImm(ARMCC::getOppositeCondition(CC));
 | |
|     return MI;
 | |
|   }
 | |
|   }
 | |
|   return TargetInstrInfo::commuteInstruction(MI, NewMI);
 | |
| }
 | |
| 
 | |
| /// Identify instructions that can be folded into a MOVCC instruction, and
 | |
| /// return the defining instruction.
 | |
| static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
 | |
|                                       const MachineRegisterInfo &MRI,
 | |
|                                       const TargetInstrInfo *TII) {
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return 0;
 | |
|   if (!MRI.hasOneNonDBGUse(Reg))
 | |
|     return 0;
 | |
|   MachineInstr *MI = MRI.getVRegDef(Reg);
 | |
|   if (!MI)
 | |
|     return 0;
 | |
|   // MI is folded into the MOVCC by predicating it.
 | |
|   if (!MI->isPredicable())
 | |
|     return 0;
 | |
|   // Check if MI has any non-dead defs or physreg uses. This also detects
 | |
|   // predicated instructions which will be reading CPSR.
 | |
|   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     // Reject frame index operands, PEI can't handle the predicated pseudos.
 | |
|     if (MO.isFI() || MO.isCPI() || MO.isJTI())
 | |
|       return 0;
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     // MI can't have any tied operands, that would conflict with predication.
 | |
|     if (MO.isTied())
 | |
|       return 0;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
 | |
|       return 0;
 | |
|     if (MO.isDef() && !MO.isDead())
 | |
|       return 0;
 | |
|   }
 | |
|   bool DontMoveAcrossStores = true;
 | |
|   if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
 | |
|     return 0;
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
 | |
|                                      SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                      unsigned &TrueOp, unsigned &FalseOp,
 | |
|                                      bool &Optimizable) const {
 | |
|   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
 | |
|          "Unknown select instruction");
 | |
|   // MOVCC operands:
 | |
|   // 0: Def.
 | |
|   // 1: True use.
 | |
|   // 2: False use.
 | |
|   // 3: Condition code.
 | |
|   // 4: CPSR use.
 | |
|   TrueOp = 1;
 | |
|   FalseOp = 2;
 | |
|   Cond.push_back(MI->getOperand(3));
 | |
|   Cond.push_back(MI->getOperand(4));
 | |
|   // We can always fold a def.
 | |
|   Optimizable = true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
 | |
|                                                bool PreferFalse) const {
 | |
|   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
 | |
|          "Unknown select instruction");
 | |
|   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | |
|   MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
 | |
|   bool Invert = !DefMI;
 | |
|   if (!DefMI)
 | |
|     DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
 | |
|   if (!DefMI)
 | |
|     return 0;
 | |
| 
 | |
|   // Find new register class to use.
 | |
|   MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
 | |
|   unsigned       DestReg  = MI->getOperand(0).getReg();
 | |
|   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
 | |
|   if (!MRI.constrainRegClass(DestReg, PreviousClass))
 | |
|     return 0;
 | |
| 
 | |
|   // Create a new predicated version of DefMI.
 | |
|   // Rfalse is the first use.
 | |
|   MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                                       DefMI->getDesc(), DestReg);
 | |
| 
 | |
|   // Copy all the DefMI operands, excluding its (null) predicate.
 | |
|   const MCInstrDesc &DefDesc = DefMI->getDesc();
 | |
|   for (unsigned i = 1, e = DefDesc.getNumOperands();
 | |
|        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
 | |
|     NewMI.addOperand(DefMI->getOperand(i));
 | |
| 
 | |
|   unsigned CondCode = MI->getOperand(3).getImm();
 | |
|   if (Invert)
 | |
|     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
 | |
|   else
 | |
|     NewMI.addImm(CondCode);
 | |
|   NewMI.addOperand(MI->getOperand(4));
 | |
| 
 | |
|   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
 | |
|   if (NewMI->hasOptionalDef())
 | |
|     AddDefaultCC(NewMI);
 | |
| 
 | |
|   // The output register value when the predicate is false is an implicit
 | |
|   // register operand tied to the first def.
 | |
|   // The tie makes the register allocator ensure the FalseReg is allocated the
 | |
|   // same register as operand 0.
 | |
|   FalseReg.setImplicit();
 | |
|   NewMI.addOperand(FalseReg);
 | |
|   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
 | |
| 
 | |
|   // The caller will erase MI, but not DefMI.
 | |
|   DefMI->eraseFromParent();
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
 | |
| /// instruction is encoded with an 'S' bit is determined by the optional CPSR
 | |
| /// def operand.
 | |
| ///
 | |
| /// This will go away once we can teach tblgen how to set the optional CPSR def
 | |
| /// operand itself.
 | |
| struct AddSubFlagsOpcodePair {
 | |
|   uint16_t PseudoOpc;
 | |
|   uint16_t MachineOpc;
 | |
| };
 | |
| 
 | |
| static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
 | |
|   {ARM::ADDSri, ARM::ADDri},
 | |
|   {ARM::ADDSrr, ARM::ADDrr},
 | |
|   {ARM::ADDSrsi, ARM::ADDrsi},
 | |
|   {ARM::ADDSrsr, ARM::ADDrsr},
 | |
| 
 | |
|   {ARM::SUBSri, ARM::SUBri},
 | |
|   {ARM::SUBSrr, ARM::SUBrr},
 | |
|   {ARM::SUBSrsi, ARM::SUBrsi},
 | |
|   {ARM::SUBSrsr, ARM::SUBrsr},
 | |
| 
 | |
|   {ARM::RSBSri, ARM::RSBri},
 | |
|   {ARM::RSBSrsi, ARM::RSBrsi},
 | |
|   {ARM::RSBSrsr, ARM::RSBrsr},
 | |
| 
 | |
|   {ARM::t2ADDSri, ARM::t2ADDri},
 | |
|   {ARM::t2ADDSrr, ARM::t2ADDrr},
 | |
|   {ARM::t2ADDSrs, ARM::t2ADDrs},
 | |
| 
 | |
|   {ARM::t2SUBSri, ARM::t2SUBri},
 | |
|   {ARM::t2SUBSrr, ARM::t2SUBrr},
 | |
|   {ARM::t2SUBSrs, ARM::t2SUBrs},
 | |
| 
 | |
|   {ARM::t2RSBSri, ARM::t2RSBri},
 | |
|   {ARM::t2RSBSrs, ARM::t2RSBrs},
 | |
| };
 | |
| 
 | |
| unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
 | |
|   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
 | |
|     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
 | |
|       return AddSubFlagsOpcodeMap[i].MachineOpc;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
 | |
|                                unsigned DestReg, unsigned BaseReg, int NumBytes,
 | |
|                                ARMCC::CondCodes Pred, unsigned PredReg,
 | |
|                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
 | |
|   if (NumBytes == 0 && DestReg != BaseReg) {
 | |
|     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
 | |
|       .addReg(BaseReg, RegState::Kill)
 | |
|       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
 | |
|       .setMIFlags(MIFlags);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool isSub = NumBytes < 0;
 | |
|   if (isSub) NumBytes = -NumBytes;
 | |
| 
 | |
|   while (NumBytes) {
 | |
|     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
 | |
|     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
 | |
|     assert(ThisVal && "Didn't extract field correctly");
 | |
| 
 | |
|     // We will handle these bits from offset, clear them.
 | |
|     NumBytes &= ~ThisVal;
 | |
| 
 | |
|     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
 | |
| 
 | |
|     // Build the new ADD / SUB.
 | |
|     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
 | |
|     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
 | |
|       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
 | |
|       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
 | |
|       .setMIFlags(MIFlags);
 | |
|     BaseReg = DestReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool llvm::tryFoldSPUpdateIntoPushPop(MachineFunction &MF,
 | |
|                                       MachineInstr *MI,
 | |
|                                       unsigned NumBytes) {
 | |
|   // This optimisation potentially adds lots of load and store
 | |
|   // micro-operations, it's only really a great benefit to code-size.
 | |
|   if (!MF.getFunction()->hasFnAttribute(Attribute::MinSize))
 | |
|     return false;
 | |
| 
 | |
|   // If only one register is pushed/popped, LLVM can use an LDR/STR
 | |
|   // instead. We can't modify those so make sure we're dealing with an
 | |
|   // instruction we understand.
 | |
|   bool IsPop = isPopOpcode(MI->getOpcode());
 | |
|   bool IsPush = isPushOpcode(MI->getOpcode());
 | |
|   if (!IsPush && !IsPop)
 | |
|     return false;
 | |
| 
 | |
|   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
 | |
|                       MI->getOpcode() == ARM::VLDMDIA_UPD;
 | |
|   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
 | |
|                      MI->getOpcode() == ARM::tPOP ||
 | |
|                      MI->getOpcode() == ARM::tPOP_RET;
 | |
| 
 | |
|   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
 | |
|                           MI->getOperand(1).getReg() == ARM::SP)) &&
 | |
|          "trying to fold sp update into non-sp-updating push/pop");
 | |
| 
 | |
|   // The VFP push & pop act on D-registers, so we can only fold an adjustment
 | |
|   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
 | |
|   // if this is violated.
 | |
|   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
 | |
|   // pred) so the list starts at 4. Thumb1 starts after the predicate.
 | |
|   int RegListIdx = IsT1PushPop ? 2 : 4;
 | |
| 
 | |
|   // Calculate the space we'll need in terms of registers.
 | |
|   unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
 | |
|   unsigned RD0Reg, RegsNeeded;
 | |
|   if (IsVFPPushPop) {
 | |
|     RD0Reg = ARM::D0;
 | |
|     RegsNeeded = NumBytes / 8;
 | |
|   } else {
 | |
|     RD0Reg = ARM::R0;
 | |
|     RegsNeeded = NumBytes / 4;
 | |
|   }
 | |
| 
 | |
|   // We're going to have to strip all list operands off before
 | |
|   // re-adding them since the order matters, so save the existing ones
 | |
|   // for later.
 | |
|   SmallVector<MachineOperand, 4> RegList;
 | |
|   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
 | |
|     RegList.push_back(MI->getOperand(i));
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
 | |
| 
 | |
|   // Now try to find enough space in the reglist to allocate NumBytes.
 | |
|   for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
 | |
|        --CurReg, --RegsNeeded) {
 | |
|     if (!IsPop) {
 | |
|       // Pushing any register is completely harmless, mark the
 | |
|       // register involved as undef since we don't care about it in
 | |
|       // the slightest.
 | |
|       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
 | |
|                                                   false, false, true));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // However, we can only pop an extra register if it's not live. Otherwise we
 | |
|     // might clobber a return value register. We assume that once we find a live
 | |
|     // return register all lower ones will be too so there's no use proceeding.
 | |
|     if (MBB->computeRegisterLiveness(TRI, CurReg, MI) !=
 | |
|         MachineBasicBlock::LQR_Dead)
 | |
|       return false;
 | |
| 
 | |
|     // Mark the unimportant registers as <def,dead> in the POP.
 | |
|     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
 | |
|                                                 true));
 | |
|   }
 | |
| 
 | |
|   if (RegsNeeded > 0)
 | |
|     return false;
 | |
| 
 | |
|   // Finally we know we can profitably perform the optimisation so go
 | |
|   // ahead: strip all existing registers off and add them back again
 | |
|   // in the right order.
 | |
|   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
 | |
|     MI->RemoveOperand(i);
 | |
| 
 | |
|   // Add the complete list back in.
 | |
|   MachineInstrBuilder MIB(MF, &*MI);
 | |
|   for (int i = RegList.size() - 1; i >= 0; --i)
 | |
|     MIB.addOperand(RegList[i]);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
 | |
|                                 unsigned FrameReg, int &Offset,
 | |
|                                 const ARMBaseInstrInfo &TII) {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
|   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
 | |
|   bool isSub = false;
 | |
| 
 | |
|   // Memory operands in inline assembly always use AddrMode2.
 | |
|   if (Opcode == ARM::INLINEASM)
 | |
|     AddrMode = ARMII::AddrMode2;
 | |
| 
 | |
|   if (Opcode == ARM::ADDri) {
 | |
|     Offset += MI.getOperand(FrameRegIdx+1).getImm();
 | |
|     if (Offset == 0) {
 | |
|       // Turn it into a move.
 | |
|       MI.setDesc(TII.get(ARM::MOVr));
 | |
|       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|       MI.RemoveOperand(FrameRegIdx+1);
 | |
|       Offset = 0;
 | |
|       return true;
 | |
|     } else if (Offset < 0) {
 | |
|       Offset = -Offset;
 | |
|       isSub = true;
 | |
|       MI.setDesc(TII.get(ARM::SUBri));
 | |
|     }
 | |
| 
 | |
|     // Common case: small offset, fits into instruction.
 | |
|     if (ARM_AM::getSOImmVal(Offset) != -1) {
 | |
|       // Replace the FrameIndex with sp / fp
 | |
|       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
 | |
|       Offset = 0;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
 | |
|     // as possible.
 | |
|     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
 | |
|     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
 | |
| 
 | |
|     // We will handle these bits from offset, clear them.
 | |
|     Offset &= ~ThisImmVal;
 | |
| 
 | |
|     // Get the properly encoded SOImmVal field.
 | |
|     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
 | |
|            "Bit extraction didn't work?");
 | |
|     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
 | |
|  } else {
 | |
|     unsigned ImmIdx = 0;
 | |
|     int InstrOffs = 0;
 | |
|     unsigned NumBits = 0;
 | |
|     unsigned Scale = 1;
 | |
|     switch (AddrMode) {
 | |
|     case ARMII::AddrMode_i12: {
 | |
|       ImmIdx = FrameRegIdx + 1;
 | |
|       InstrOffs = MI.getOperand(ImmIdx).getImm();
 | |
|       NumBits = 12;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode2: {
 | |
|       ImmIdx = FrameRegIdx+2;
 | |
|       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 12;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode3: {
 | |
|       ImmIdx = FrameRegIdx+2;
 | |
|       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 8;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode4:
 | |
|     case ARMII::AddrMode6:
 | |
|       // Can't fold any offset even if it's zero.
 | |
|       return false;
 | |
|     case ARMII::AddrMode5: {
 | |
|       ImmIdx = FrameRegIdx+1;
 | |
|       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 8;
 | |
|       Scale = 4;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unsupported addressing mode!");
 | |
|     }
 | |
| 
 | |
|     Offset += InstrOffs * Scale;
 | |
|     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
 | |
|     if (Offset < 0) {
 | |
|       Offset = -Offset;
 | |
|       isSub = true;
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold address comp. if opcode has offset bits
 | |
|     if (NumBits > 0) {
 | |
|       // Common case: small offset, fits into instruction.
 | |
|       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
 | |
|       int ImmedOffset = Offset / Scale;
 | |
|       unsigned Mask = (1 << NumBits) - 1;
 | |
|       if ((unsigned)Offset <= Mask * Scale) {
 | |
|         // Replace the FrameIndex with sp
 | |
|         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|         // FIXME: When addrmode2 goes away, this will simplify (like the
 | |
|         // T2 version), as the LDR.i12 versions don't need the encoding
 | |
|         // tricks for the offset value.
 | |
|         if (isSub) {
 | |
|           if (AddrMode == ARMII::AddrMode_i12)
 | |
|             ImmedOffset = -ImmedOffset;
 | |
|           else
 | |
|             ImmedOffset |= 1 << NumBits;
 | |
|         }
 | |
|         ImmOp.ChangeToImmediate(ImmedOffset);
 | |
|         Offset = 0;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
 | |
|       ImmedOffset = ImmedOffset & Mask;
 | |
|       if (isSub) {
 | |
|         if (AddrMode == ARMII::AddrMode_i12)
 | |
|           ImmedOffset = -ImmedOffset;
 | |
|         else
 | |
|           ImmedOffset |= 1 << NumBits;
 | |
|       }
 | |
|       ImmOp.ChangeToImmediate(ImmedOffset);
 | |
|       Offset &= ~(Mask*Scale);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Offset = (isSub) ? -Offset : Offset;
 | |
|   return Offset == 0;
 | |
| }
 | |
| 
 | |
| /// analyzeCompare - For a comparison instruction, return the source registers
 | |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it
 | |
| /// compares against in CmpValue. Return true if the comparison instruction
 | |
| /// can be analyzed.
 | |
| bool ARMBaseInstrInfo::
 | |
| analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
 | |
|                int &CmpMask, int &CmpValue) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::CMPri:
 | |
|   case ARM::t2CMPri:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = MI->getOperand(1).getImm();
 | |
|     return true;
 | |
|   case ARM::CMPrr:
 | |
|   case ARM::t2CMPrr:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     SrcReg2 = MI->getOperand(1).getReg();
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = 0;
 | |
|     return true;
 | |
|   case ARM::TSTri:
 | |
|   case ARM::t2TSTri:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     CmpMask = MI->getOperand(1).getImm();
 | |
|     CmpValue = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isSuitableForMask - Identify a suitable 'and' instruction that
 | |
| /// operates on the given source register and applies the same mask
 | |
| /// as a 'tst' instruction. Provide a limited look-through for copies.
 | |
| /// When successful, MI will hold the found instruction.
 | |
| static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
 | |
|                               int CmpMask, bool CommonUse) {
 | |
|   switch (MI->getOpcode()) {
 | |
|     case ARM::ANDri:
 | |
|     case ARM::t2ANDri:
 | |
|       if (CmpMask != MI->getOperand(2).getImm())
 | |
|         return false;
 | |
|       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
 | |
|         return true;
 | |
|       break;
 | |
|     case ARM::COPY: {
 | |
|       // Walk down one instruction which is potentially an 'and'.
 | |
|       const MachineInstr &Copy = *MI;
 | |
|       MachineBasicBlock::iterator AND(
 | |
|         llvm::next(MachineBasicBlock::iterator(MI)));
 | |
|       if (AND == MI->getParent()->end()) return false;
 | |
|       MI = AND;
 | |
|       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
 | |
|                                CmpMask, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getSwappedCondition - assume the flags are set by MI(a,b), return
 | |
| /// the condition code if we modify the instructions such that flags are
 | |
| /// set by MI(b,a).
 | |
| inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
 | |
|   switch (CC) {
 | |
|   default: return ARMCC::AL;
 | |
|   case ARMCC::EQ: return ARMCC::EQ;
 | |
|   case ARMCC::NE: return ARMCC::NE;
 | |
|   case ARMCC::HS: return ARMCC::LS;
 | |
|   case ARMCC::LO: return ARMCC::HI;
 | |
|   case ARMCC::HI: return ARMCC::LO;
 | |
|   case ARMCC::LS: return ARMCC::HS;
 | |
|   case ARMCC::GE: return ARMCC::LE;
 | |
|   case ARMCC::LT: return ARMCC::GT;
 | |
|   case ARMCC::GT: return ARMCC::LT;
 | |
|   case ARMCC::LE: return ARMCC::GE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isRedundantFlagInstr - check whether the first instruction, whose only
 | |
| /// purpose is to update flags, can be made redundant.
 | |
| /// CMPrr can be made redundant by SUBrr if the operands are the same.
 | |
| /// CMPri can be made redundant by SUBri if the operands are the same.
 | |
| /// This function can be extended later on.
 | |
| inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
 | |
|                                         unsigned SrcReg2, int ImmValue,
 | |
|                                         MachineInstr *OI) {
 | |
|   if ((CmpI->getOpcode() == ARM::CMPrr ||
 | |
|        CmpI->getOpcode() == ARM::t2CMPrr) &&
 | |
|       (OI->getOpcode() == ARM::SUBrr ||
 | |
|        OI->getOpcode() == ARM::t2SUBrr) &&
 | |
|       ((OI->getOperand(1).getReg() == SrcReg &&
 | |
|         OI->getOperand(2).getReg() == SrcReg2) ||
 | |
|        (OI->getOperand(1).getReg() == SrcReg2 &&
 | |
|         OI->getOperand(2).getReg() == SrcReg)))
 | |
|     return true;
 | |
| 
 | |
|   if ((CmpI->getOpcode() == ARM::CMPri ||
 | |
|        CmpI->getOpcode() == ARM::t2CMPri) &&
 | |
|       (OI->getOpcode() == ARM::SUBri ||
 | |
|        OI->getOpcode() == ARM::t2SUBri) &&
 | |
|       OI->getOperand(1).getReg() == SrcReg &&
 | |
|       OI->getOperand(2).getImm() == ImmValue)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// optimizeCompareInstr - Convert the instruction supplying the argument to the
 | |
| /// comparison into one that sets the zero bit in the flags register;
 | |
| /// Remove a redundant Compare instruction if an earlier instruction can set the
 | |
| /// flags in the same way as Compare.
 | |
| /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
 | |
| /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
 | |
| /// condition code of instructions which use the flags.
 | |
| bool ARMBaseInstrInfo::
 | |
| optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
 | |
|                      int CmpMask, int CmpValue,
 | |
|                      const MachineRegisterInfo *MRI) const {
 | |
|   // Get the unique definition of SrcReg.
 | |
|   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | |
|   if (!MI) return false;
 | |
| 
 | |
|   // Masked compares sometimes use the same register as the corresponding 'and'.
 | |
|   if (CmpMask != ~0) {
 | |
|     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
 | |
|       MI = 0;
 | |
|       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
 | |
|            UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|         if (UI->getParent() != CmpInstr->getParent()) continue;
 | |
|         MachineInstr *PotentialAND = &*UI;
 | |
|         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
 | |
|             isPredicated(PotentialAND))
 | |
|           continue;
 | |
|         MI = PotentialAND;
 | |
|         break;
 | |
|       }
 | |
|       if (!MI) return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get ready to iterate backward from CmpInstr.
 | |
|   MachineBasicBlock::iterator I = CmpInstr, E = MI,
 | |
|                               B = CmpInstr->getParent()->begin();
 | |
| 
 | |
|   // Early exit if CmpInstr is at the beginning of the BB.
 | |
|   if (I == B) return false;
 | |
| 
 | |
|   // There are two possible candidates which can be changed to set CPSR:
 | |
|   // One is MI, the other is a SUB instruction.
 | |
|   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
 | |
|   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
 | |
|   MachineInstr *Sub = NULL;
 | |
|   if (SrcReg2 != 0)
 | |
|     // MI is not a candidate for CMPrr.
 | |
|     MI = NULL;
 | |
|   else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
 | |
|     // Conservatively refuse to convert an instruction which isn't in the same
 | |
|     // BB as the comparison.
 | |
|     // For CMPri, we need to check Sub, thus we can't return here.
 | |
|     if (CmpInstr->getOpcode() == ARM::CMPri ||
 | |
|        CmpInstr->getOpcode() == ARM::t2CMPri)
 | |
|       MI = NULL;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check that CPSR isn't set between the comparison instruction and the one we
 | |
|   // want to change. At the same time, search for Sub.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   --I;
 | |
|   for (; I != E; --I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
| 
 | |
|     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
 | |
|         Instr.readsRegister(ARM::CPSR, TRI))
 | |
|       // This instruction modifies or uses CPSR after the one we want to
 | |
|       // change. We can't do this transformation.
 | |
|       return false;
 | |
| 
 | |
|     // Check whether CmpInstr can be made redundant by the current instruction.
 | |
|     if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
 | |
|       Sub = &*I;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (I == B)
 | |
|       // The 'and' is below the comparison instruction.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Return false if no candidates exist.
 | |
|   if (!MI && !Sub)
 | |
|     return false;
 | |
| 
 | |
|   // The single candidate is called MI.
 | |
|   if (!MI) MI = Sub;
 | |
| 
 | |
|   // We can't use a predicated instruction - it doesn't always write the flags.
 | |
|   if (isPredicated(MI))
 | |
|     return false;
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::RSBrr:
 | |
|   case ARM::RSBri:
 | |
|   case ARM::RSCrr:
 | |
|   case ARM::RSCri:
 | |
|   case ARM::ADDrr:
 | |
|   case ARM::ADDri:
 | |
|   case ARM::ADCrr:
 | |
|   case ARM::ADCri:
 | |
|   case ARM::SUBrr:
 | |
|   case ARM::SUBri:
 | |
|   case ARM::SBCrr:
 | |
|   case ARM::SBCri:
 | |
|   case ARM::t2RSBri:
 | |
|   case ARM::t2ADDrr:
 | |
|   case ARM::t2ADDri:
 | |
|   case ARM::t2ADCrr:
 | |
|   case ARM::t2ADCri:
 | |
|   case ARM::t2SUBrr:
 | |
|   case ARM::t2SUBri:
 | |
|   case ARM::t2SBCrr:
 | |
|   case ARM::t2SBCri:
 | |
|   case ARM::ANDrr:
 | |
|   case ARM::ANDri:
 | |
|   case ARM::t2ANDrr:
 | |
|   case ARM::t2ANDri:
 | |
|   case ARM::ORRrr:
 | |
|   case ARM::ORRri:
 | |
|   case ARM::t2ORRrr:
 | |
|   case ARM::t2ORRri:
 | |
|   case ARM::EORrr:
 | |
|   case ARM::EORri:
 | |
|   case ARM::t2EORrr:
 | |
|   case ARM::t2EORri: {
 | |
|     // Scan forward for the use of CPSR
 | |
|     // When checking against MI: if it's a conditional code requires
 | |
|     // checking of V bit, then this is not safe to do.
 | |
|     // It is safe to remove CmpInstr if CPSR is redefined or killed.
 | |
|     // If we are done with the basic block, we need to check whether CPSR is
 | |
|     // live-out.
 | |
|     SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
 | |
|         OperandsToUpdate;
 | |
|     bool isSafe = false;
 | |
|     I = CmpInstr;
 | |
|     E = CmpInstr->getParent()->end();
 | |
|     while (!isSafe && ++I != E) {
 | |
|       const MachineInstr &Instr = *I;
 | |
|       for (unsigned IO = 0, EO = Instr.getNumOperands();
 | |
|            !isSafe && IO != EO; ++IO) {
 | |
|         const MachineOperand &MO = Instr.getOperand(IO);
 | |
|         if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
 | |
|           isSafe = true;
 | |
|           break;
 | |
|         }
 | |
|         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
 | |
|           continue;
 | |
|         if (MO.isDef()) {
 | |
|           isSafe = true;
 | |
|           break;
 | |
|         }
 | |
|         // Condition code is after the operand before CPSR.
 | |
|         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
 | |
|         if (Sub) {
 | |
|           ARMCC::CondCodes NewCC = getSwappedCondition(CC);
 | |
|           if (NewCC == ARMCC::AL)
 | |
|             return false;
 | |
|           // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
 | |
|           // on CMP needs to be updated to be based on SUB.
 | |
|           // Push the condition code operands to OperandsToUpdate.
 | |
|           // If it is safe to remove CmpInstr, the condition code of these
 | |
|           // operands will be modified.
 | |
|           if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | |
|               Sub->getOperand(2).getReg() == SrcReg)
 | |
|             OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
 | |
|                                                       NewCC));
 | |
|         }
 | |
|         else
 | |
|           switch (CC) {
 | |
|           default:
 | |
|             // CPSR can be used multiple times, we should continue.
 | |
|             break;
 | |
|           case ARMCC::VS:
 | |
|           case ARMCC::VC:
 | |
|           case ARMCC::GE:
 | |
|           case ARMCC::LT:
 | |
|           case ARMCC::GT:
 | |
|           case ARMCC::LE:
 | |
|             return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If CPSR is not killed nor re-defined, we should check whether it is
 | |
|     // live-out. If it is live-out, do not optimize.
 | |
|     if (!isSafe) {
 | |
|       MachineBasicBlock *MBB = CmpInstr->getParent();
 | |
|       for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|                SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|         if ((*SI)->isLiveIn(ARM::CPSR))
 | |
|           return false;
 | |
|     }
 | |
| 
 | |
|     // Toggle the optional operand to CPSR.
 | |
|     MI->getOperand(5).setReg(ARM::CPSR);
 | |
|     MI->getOperand(5).setIsDef(true);
 | |
|     assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
 | |
|     CmpInstr->eraseFromParent();
 | |
| 
 | |
|     // Modify the condition code of operands in OperandsToUpdate.
 | |
|     // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
 | |
|     // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | |
|     for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
 | |
|       OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
 | |
|                                      MachineInstr *DefMI, unsigned Reg,
 | |
|                                      MachineRegisterInfo *MRI) const {
 | |
|   // Fold large immediates into add, sub, or, xor.
 | |
|   unsigned DefOpc = DefMI->getOpcode();
 | |
|   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
 | |
|     return false;
 | |
|   if (!DefMI->getOperand(1).isImm())
 | |
|     // Could be t2MOVi32imm <ga:xx>
 | |
|     return false;
 | |
| 
 | |
|   if (!MRI->hasOneNonDBGUse(Reg))
 | |
|     return false;
 | |
| 
 | |
|   const MCInstrDesc &DefMCID = DefMI->getDesc();
 | |
|   if (DefMCID.hasOptionalDef()) {
 | |
|     unsigned NumOps = DefMCID.getNumOperands();
 | |
|     const MachineOperand &MO = DefMI->getOperand(NumOps-1);
 | |
|     if (MO.getReg() == ARM::CPSR && !MO.isDead())
 | |
|       // If DefMI defines CPSR and it is not dead, it's obviously not safe
 | |
|       // to delete DefMI.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc &UseMCID = UseMI->getDesc();
 | |
|   if (UseMCID.hasOptionalDef()) {
 | |
|     unsigned NumOps = UseMCID.getNumOperands();
 | |
|     if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
 | |
|       // If the instruction sets the flag, do not attempt this optimization
 | |
|       // since it may change the semantics of the code.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   unsigned UseOpc = UseMI->getOpcode();
 | |
|   unsigned NewUseOpc = 0;
 | |
|   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
 | |
|   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
 | |
|   bool Commute = false;
 | |
|   switch (UseOpc) {
 | |
|   default: return false;
 | |
|   case ARM::SUBrr:
 | |
|   case ARM::ADDrr:
 | |
|   case ARM::ORRrr:
 | |
|   case ARM::EORrr:
 | |
|   case ARM::t2SUBrr:
 | |
|   case ARM::t2ADDrr:
 | |
|   case ARM::t2ORRrr:
 | |
|   case ARM::t2EORrr: {
 | |
|     Commute = UseMI->getOperand(2).getReg() != Reg;
 | |
|     switch (UseOpc) {
 | |
|     default: break;
 | |
|     case ARM::SUBrr: {
 | |
|       if (Commute)
 | |
|         return false;
 | |
|       ImmVal = -ImmVal;
 | |
|       NewUseOpc = ARM::SUBri;
 | |
|       // Fallthrough
 | |
|     }
 | |
|     case ARM::ADDrr:
 | |
|     case ARM::ORRrr:
 | |
|     case ARM::EORrr: {
 | |
|       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
 | |
|         return false;
 | |
|       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
 | |
|       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
 | |
|       switch (UseOpc) {
 | |
|       default: break;
 | |
|       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
 | |
|       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
 | |
|       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2SUBrr: {
 | |
|       if (Commute)
 | |
|         return false;
 | |
|       ImmVal = -ImmVal;
 | |
|       NewUseOpc = ARM::t2SUBri;
 | |
|       // Fallthrough
 | |
|     }
 | |
|     case ARM::t2ADDrr:
 | |
|     case ARM::t2ORRrr:
 | |
|     case ARM::t2EORrr: {
 | |
|       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
 | |
|         return false;
 | |
|       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
 | |
|       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
 | |
|       switch (UseOpc) {
 | |
|       default: break;
 | |
|       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
 | |
|       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
 | |
|       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   unsigned OpIdx = Commute ? 2 : 1;
 | |
|   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
 | |
|   bool isKill = UseMI->getOperand(OpIdx).isKill();
 | |
|   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
 | |
|   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
 | |
|                                       UseMI, UseMI->getDebugLoc(),
 | |
|                                       get(NewUseOpc), NewReg)
 | |
|                               .addReg(Reg1, getKillRegState(isKill))
 | |
|                               .addImm(SOImmValV1)));
 | |
|   UseMI->setDesc(get(NewUseOpc));
 | |
|   UseMI->getOperand(1).setReg(NewReg);
 | |
|   UseMI->getOperand(1).setIsKill();
 | |
|   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
 | |
|   DefMI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
 | |
|                                         const MachineInstr *MI) {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: {
 | |
|     const MCInstrDesc &Desc = MI->getDesc();
 | |
|     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
 | |
|     assert(UOps >= 0 && "bad # UOps");
 | |
|     return UOps;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRrs:
 | |
|   case ARM::LDRBrs:
 | |
|   case ARM::STRrs:
 | |
|   case ARM::STRBrs: {
 | |
|     unsigned ShOpVal = MI->getOperand(3).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|     if (!isSub &&
 | |
|         (ShImm == 0 ||
 | |
|          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|       return 1;
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRH:
 | |
|   case ARM::STRH: {
 | |
|     if (!MI->getOperand(2).getReg())
 | |
|       return 1;
 | |
| 
 | |
|     unsigned ShOpVal = MI->getOperand(3).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|     if (!isSub &&
 | |
|         (ShImm == 0 ||
 | |
|          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|       return 1;
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRSB:
 | |
|   case ARM::LDRSH:
 | |
|     return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
 | |
| 
 | |
|   case ARM::LDRSB_POST:
 | |
|   case ARM::LDRSH_POST: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     return (Rt == Rm) ? 4 : 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDR_PRE_REG:
 | |
|   case ARM::LDRB_PRE_REG: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     if (Rt == Rm)
 | |
|       return 3;
 | |
|     unsigned ShOpVal = MI->getOperand(4).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|     if (!isSub &&
 | |
|         (ShImm == 0 ||
 | |
|          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|       return 2;
 | |
|     return 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::STR_PRE_REG:
 | |
|   case ARM::STRB_PRE_REG: {
 | |
|     unsigned ShOpVal = MI->getOperand(4).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|     if (!isSub &&
 | |
|         (ShImm == 0 ||
 | |
|          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|       return 2;
 | |
|     return 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRH_PRE:
 | |
|   case ARM::STRH_PRE: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     if (!Rm)
 | |
|       return 2;
 | |
|     if (Rt == Rm)
 | |
|       return 3;
 | |
|     return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
 | |
|       ? 3 : 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDR_POST_REG:
 | |
|   case ARM::LDRB_POST_REG:
 | |
|   case ARM::LDRH_POST: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     return (Rt == Rm) ? 3 : 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDR_PRE_IMM:
 | |
|   case ARM::LDRB_PRE_IMM:
 | |
|   case ARM::LDR_POST_IMM:
 | |
|   case ARM::LDRB_POST_IMM:
 | |
|   case ARM::STRB_POST_IMM:
 | |
|   case ARM::STRB_POST_REG:
 | |
|   case ARM::STRB_PRE_IMM:
 | |
|   case ARM::STRH_POST:
 | |
|   case ARM::STR_POST_IMM:
 | |
|   case ARM::STR_POST_REG:
 | |
|   case ARM::STR_PRE_IMM:
 | |
|     return 2;
 | |
| 
 | |
|   case ARM::LDRSB_PRE:
 | |
|   case ARM::LDRSH_PRE: {
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     if (Rm == 0)
 | |
|       return 3;
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     if (Rt == Rm)
 | |
|       return 4;
 | |
|     unsigned ShOpVal = MI->getOperand(4).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|     if (!isSub &&
 | |
|         (ShImm == 0 ||
 | |
|          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|       return 3;
 | |
|     return 4;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRD: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rn = MI->getOperand(2).getReg();
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     if (Rm)
 | |
|       return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
 | |
|     return (Rt == Rn) ? 3 : 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::STRD: {
 | |
|     unsigned Rm = MI->getOperand(3).getReg();
 | |
|     if (Rm)
 | |
|       return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDRD_POST:
 | |
|   case ARM::t2LDRD_POST:
 | |
|     return 3;
 | |
| 
 | |
|   case ARM::STRD_POST:
 | |
|   case ARM::t2STRD_POST:
 | |
|     return 4;
 | |
| 
 | |
|   case ARM::LDRD_PRE: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rn = MI->getOperand(3).getReg();
 | |
|     unsigned Rm = MI->getOperand(4).getReg();
 | |
|     if (Rm)
 | |
|       return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
 | |
|     return (Rt == Rn) ? 4 : 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::t2LDRD_PRE: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rn = MI->getOperand(3).getReg();
 | |
|     return (Rt == Rn) ? 4 : 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::STRD_PRE: {
 | |
|     unsigned Rm = MI->getOperand(4).getReg();
 | |
|     if (Rm)
 | |
|       return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
 | |
|     return 3;
 | |
|   }
 | |
| 
 | |
|   case ARM::t2STRD_PRE:
 | |
|     return 3;
 | |
| 
 | |
|   case ARM::t2LDR_POST:
 | |
|   case ARM::t2LDRB_POST:
 | |
|   case ARM::t2LDRB_PRE:
 | |
|   case ARM::t2LDRSBi12:
 | |
|   case ARM::t2LDRSBi8:
 | |
|   case ARM::t2LDRSBpci:
 | |
|   case ARM::t2LDRSBs:
 | |
|   case ARM::t2LDRH_POST:
 | |
|   case ARM::t2LDRH_PRE:
 | |
|   case ARM::t2LDRSBT:
 | |
|   case ARM::t2LDRSB_POST:
 | |
|   case ARM::t2LDRSB_PRE:
 | |
|   case ARM::t2LDRSH_POST:
 | |
|   case ARM::t2LDRSH_PRE:
 | |
|   case ARM::t2LDRSHi12:
 | |
|   case ARM::t2LDRSHi8:
 | |
|   case ARM::t2LDRSHpci:
 | |
|   case ARM::t2LDRSHs:
 | |
|     return 2;
 | |
| 
 | |
|   case ARM::t2LDRDi8: {
 | |
|     unsigned Rt = MI->getOperand(0).getReg();
 | |
|     unsigned Rn = MI->getOperand(2).getReg();
 | |
|     return (Rt == Rn) ? 3 : 2;
 | |
|   }
 | |
| 
 | |
|   case ARM::t2STRB_POST:
 | |
|   case ARM::t2STRB_PRE:
 | |
|   case ARM::t2STRBs:
 | |
|   case ARM::t2STRDi8:
 | |
|   case ARM::t2STRH_POST:
 | |
|   case ARM::t2STRH_PRE:
 | |
|   case ARM::t2STRHs:
 | |
|   case ARM::t2STR_POST:
 | |
|   case ARM::t2STR_PRE:
 | |
|   case ARM::t2STRs:
 | |
|     return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the number of 32-bit words loaded by LDM or stored by STM. If this
 | |
| // can't be easily determined return 0 (missing MachineMemOperand).
 | |
| //
 | |
| // FIXME: The current MachineInstr design does not support relying on machine
 | |
| // mem operands to determine the width of a memory access. Instead, we expect
 | |
| // the target to provide this information based on the instruction opcode and
 | |
| // operands. However, using MachineMemOperand is a the best solution now for
 | |
| // two reasons:
 | |
| //
 | |
| // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
 | |
| // operands. This is much more dangerous than using the MachineMemOperand
 | |
| // sizes because CodeGen passes can insert/remove optional machine operands. In
 | |
| // fact, it's totally incorrect for preRA passes and appears to be wrong for
 | |
| // postRA passes as well.
 | |
| //
 | |
| // 2) getNumLDMAddresses is only used by the scheduling machine model and any
 | |
| // machine model that calls this should handle the unknown (zero size) case.
 | |
| //
 | |
| // Long term, we should require a target hook that verifies MachineMemOperand
 | |
| // sizes during MC lowering. That target hook should be local to MC lowering
 | |
| // because we can't ensure that it is aware of other MI forms. Doing this will
 | |
| // ensure that MachineMemOperands are correctly propagated through all passes.
 | |
| unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
 | |
|   unsigned Size = 0;
 | |
|   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | |
|          E = MI->memoperands_end(); I != E; ++I) {
 | |
|     Size += (*I)->getSize();
 | |
|   }
 | |
|   return Size / 4;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
 | |
|                                  const MachineInstr *MI) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   const MCInstrDesc &Desc = MI->getDesc();
 | |
|   unsigned Class = Desc.getSchedClass();
 | |
|   int ItinUOps = ItinData->getNumMicroOps(Class);
 | |
|   if (ItinUOps >= 0) {
 | |
|     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
 | |
|       return getNumMicroOpsSwiftLdSt(ItinData, MI);
 | |
| 
 | |
|     return ItinUOps;
 | |
|   }
 | |
| 
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected multi-uops instruction!");
 | |
|   case ARM::VLDMQIA:
 | |
|   case ARM::VSTMQIA:
 | |
|     return 2;
 | |
| 
 | |
|   // The number of uOps for load / store multiple are determined by the number
 | |
|   // registers.
 | |
|   //
 | |
|   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
 | |
|   // same cycle. The scheduling for the first load / store must be done
 | |
|   // separately by assuming the address is not 64-bit aligned.
 | |
|   //
 | |
|   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
 | |
|   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
 | |
|   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
 | |
|   case ARM::VLDMDIA:
 | |
|   case ARM::VLDMDIA_UPD:
 | |
|   case ARM::VLDMDDB_UPD:
 | |
|   case ARM::VLDMSIA:
 | |
|   case ARM::VLDMSIA_UPD:
 | |
|   case ARM::VLDMSDB_UPD:
 | |
|   case ARM::VSTMDIA:
 | |
|   case ARM::VSTMDIA_UPD:
 | |
|   case ARM::VSTMDDB_UPD:
 | |
|   case ARM::VSTMSIA:
 | |
|   case ARM::VSTMSIA_UPD:
 | |
|   case ARM::VSTMSDB_UPD: {
 | |
|     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
 | |
|     return (NumRegs / 2) + (NumRegs % 2) + 1;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDMIA_RET:
 | |
|   case ARM::LDMIA:
 | |
|   case ARM::LDMDA:
 | |
|   case ARM::LDMDB:
 | |
|   case ARM::LDMIB:
 | |
|   case ARM::LDMIA_UPD:
 | |
|   case ARM::LDMDA_UPD:
 | |
|   case ARM::LDMDB_UPD:
 | |
|   case ARM::LDMIB_UPD:
 | |
|   case ARM::STMIA:
 | |
|   case ARM::STMDA:
 | |
|   case ARM::STMDB:
 | |
|   case ARM::STMIB:
 | |
|   case ARM::STMIA_UPD:
 | |
|   case ARM::STMDA_UPD:
 | |
|   case ARM::STMDB_UPD:
 | |
|   case ARM::STMIB_UPD:
 | |
|   case ARM::tLDMIA:
 | |
|   case ARM::tLDMIA_UPD:
 | |
|   case ARM::tSTMIA_UPD:
 | |
|   case ARM::tPOP_RET:
 | |
|   case ARM::tPOP:
 | |
|   case ARM::tPUSH:
 | |
|   case ARM::t2LDMIA_RET:
 | |
|   case ARM::t2LDMIA:
 | |
|   case ARM::t2LDMDB:
 | |
|   case ARM::t2LDMIA_UPD:
 | |
|   case ARM::t2LDMDB_UPD:
 | |
|   case ARM::t2STMIA:
 | |
|   case ARM::t2STMDB:
 | |
|   case ARM::t2STMIA_UPD:
 | |
|   case ARM::t2STMDB_UPD: {
 | |
|     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
 | |
|     if (Subtarget.isSwift()) {
 | |
|       int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
 | |
|       switch (Opc) {
 | |
|       default: break;
 | |
|       case ARM::VLDMDIA_UPD:
 | |
|       case ARM::VLDMDDB_UPD:
 | |
|       case ARM::VLDMSIA_UPD:
 | |
|       case ARM::VLDMSDB_UPD:
 | |
|       case ARM::VSTMDIA_UPD:
 | |
|       case ARM::VSTMDDB_UPD:
 | |
|       case ARM::VSTMSIA_UPD:
 | |
|       case ARM::VSTMSDB_UPD:
 | |
|       case ARM::LDMIA_UPD:
 | |
|       case ARM::LDMDA_UPD:
 | |
|       case ARM::LDMDB_UPD:
 | |
|       case ARM::LDMIB_UPD:
 | |
|       case ARM::STMIA_UPD:
 | |
|       case ARM::STMDA_UPD:
 | |
|       case ARM::STMDB_UPD:
 | |
|       case ARM::STMIB_UPD:
 | |
|       case ARM::tLDMIA_UPD:
 | |
|       case ARM::tSTMIA_UPD:
 | |
|       case ARM::t2LDMIA_UPD:
 | |
|       case ARM::t2LDMDB_UPD:
 | |
|       case ARM::t2STMIA_UPD:
 | |
|       case ARM::t2STMDB_UPD:
 | |
|         ++UOps; // One for base register writeback.
 | |
|         break;
 | |
|       case ARM::LDMIA_RET:
 | |
|       case ARM::tPOP_RET:
 | |
|       case ARM::t2LDMIA_RET:
 | |
|         UOps += 2; // One for base reg wb, one for write to pc.
 | |
|         break;
 | |
|       }
 | |
|       return UOps;
 | |
|     } else if (Subtarget.isCortexA8()) {
 | |
|       if (NumRegs < 4)
 | |
|         return 2;
 | |
|       // 4 registers would be issued: 2, 2.
 | |
|       // 5 registers would be issued: 2, 2, 1.
 | |
|       int A8UOps = (NumRegs / 2);
 | |
|       if (NumRegs % 2)
 | |
|         ++A8UOps;
 | |
|       return A8UOps;
 | |
|     } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
 | |
|       int A9UOps = (NumRegs / 2);
 | |
|       // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|       // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|       if ((NumRegs % 2) ||
 | |
|           !MI->hasOneMemOperand() ||
 | |
|           (*MI->memoperands_begin())->getAlignment() < 8)
 | |
|         ++A9UOps;
 | |
|       return A9UOps;
 | |
|     } else {
 | |
|       // Assume the worst.
 | |
|       return NumRegs;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
 | |
|                                   const MCInstrDesc &DefMCID,
 | |
|                                   unsigned DefClass,
 | |
|                                   unsigned DefIdx, unsigned DefAlign) const {
 | |
|   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     // Def is the address writeback.
 | |
|     return ItinData->getOperandCycle(DefClass, DefIdx);
 | |
| 
 | |
|   int DefCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // (regno / 2) + (regno % 2) + 1
 | |
|     DefCycle = RegNo / 2 + 1;
 | |
|     if (RegNo % 2)
 | |
|       ++DefCycle;
 | |
|   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
 | |
|     DefCycle = RegNo;
 | |
|     bool isSLoad = false;
 | |
| 
 | |
|     switch (DefMCID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VLDMSIA:
 | |
|     case ARM::VLDMSIA_UPD:
 | |
|     case ARM::VLDMSDB_UPD:
 | |
|       isSLoad = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra cycle.
 | |
|     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
 | |
|       ++DefCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     DefCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return DefCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
 | |
|                                  const MCInstrDesc &DefMCID,
 | |
|                                  unsigned DefClass,
 | |
|                                  unsigned DefIdx, unsigned DefAlign) const {
 | |
|   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     // Def is the address writeback.
 | |
|     return ItinData->getOperandCycle(DefClass, DefIdx);
 | |
| 
 | |
|   int DefCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // 4 registers would be issued: 1, 2, 1.
 | |
|     // 5 registers would be issued: 1, 2, 2.
 | |
|     DefCycle = RegNo / 2;
 | |
|     if (DefCycle < 1)
 | |
|       DefCycle = 1;
 | |
|     // Result latency is issue cycle + 2: E2.
 | |
|     DefCycle += 2;
 | |
|   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
 | |
|     DefCycle = (RegNo / 2);
 | |
|     // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|     if ((RegNo % 2) || DefAlign < 8)
 | |
|       ++DefCycle;
 | |
|     // Result latency is AGU cycles + 2.
 | |
|     DefCycle += 2;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     DefCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return DefCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
 | |
|                                   const MCInstrDesc &UseMCID,
 | |
|                                   unsigned UseClass,
 | |
|                                   unsigned UseIdx, unsigned UseAlign) const {
 | |
|   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     return ItinData->getOperandCycle(UseClass, UseIdx);
 | |
| 
 | |
|   int UseCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // (regno / 2) + (regno % 2) + 1
 | |
|     UseCycle = RegNo / 2 + 1;
 | |
|     if (RegNo % 2)
 | |
|       ++UseCycle;
 | |
|   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
 | |
|     UseCycle = RegNo;
 | |
|     bool isSStore = false;
 | |
| 
 | |
|     switch (UseMCID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VSTMSIA:
 | |
|     case ARM::VSTMSIA_UPD:
 | |
|     case ARM::VSTMSDB_UPD:
 | |
|       isSStore = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra cycle.
 | |
|     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
 | |
|       ++UseCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     UseCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
 | |
|                                  const MCInstrDesc &UseMCID,
 | |
|                                  unsigned UseClass,
 | |
|                                  unsigned UseIdx, unsigned UseAlign) const {
 | |
|   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     return ItinData->getOperandCycle(UseClass, UseIdx);
 | |
| 
 | |
|   int UseCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     UseCycle = RegNo / 2;
 | |
|     if (UseCycle < 2)
 | |
|       UseCycle = 2;
 | |
|     // Read in E3.
 | |
|     UseCycle += 2;
 | |
|   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
 | |
|     UseCycle = (RegNo / 2);
 | |
|     // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|     if ((RegNo % 2) || UseAlign < 8)
 | |
|       ++UseCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     UseCycle = 1;
 | |
|   }
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const MCInstrDesc &DefMCID,
 | |
|                                     unsigned DefIdx, unsigned DefAlign,
 | |
|                                     const MCInstrDesc &UseMCID,
 | |
|                                     unsigned UseIdx, unsigned UseAlign) const {
 | |
|   unsigned DefClass = DefMCID.getSchedClass();
 | |
|   unsigned UseClass = UseMCID.getSchedClass();
 | |
| 
 | |
|   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
 | |
|     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | |
| 
 | |
|   // This may be a def / use of a variable_ops instruction, the operand
 | |
|   // latency might be determinable dynamically. Let the target try to
 | |
|   // figure it out.
 | |
|   int DefCycle = -1;
 | |
|   bool LdmBypass = false;
 | |
|   switch (DefMCID.getOpcode()) {
 | |
|   default:
 | |
|     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|     break;
 | |
| 
 | |
|   case ARM::VLDMDIA:
 | |
|   case ARM::VLDMDIA_UPD:
 | |
|   case ARM::VLDMDDB_UPD:
 | |
|   case ARM::VLDMSIA:
 | |
|   case ARM::VLDMSIA_UPD:
 | |
|   case ARM::VLDMSDB_UPD:
 | |
|     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
 | |
|     break;
 | |
| 
 | |
|   case ARM::LDMIA_RET:
 | |
|   case ARM::LDMIA:
 | |
|   case ARM::LDMDA:
 | |
|   case ARM::LDMDB:
 | |
|   case ARM::LDMIB:
 | |
|   case ARM::LDMIA_UPD:
 | |
|   case ARM::LDMDA_UPD:
 | |
|   case ARM::LDMDB_UPD:
 | |
|   case ARM::LDMIB_UPD:
 | |
|   case ARM::tLDMIA:
 | |
|   case ARM::tLDMIA_UPD:
 | |
|   case ARM::tPUSH:
 | |
|   case ARM::t2LDMIA_RET:
 | |
|   case ARM::t2LDMIA:
 | |
|   case ARM::t2LDMDB:
 | |
|   case ARM::t2LDMIA_UPD:
 | |
|   case ARM::t2LDMDB_UPD:
 | |
|     LdmBypass = 1;
 | |
|     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (DefCycle == -1)
 | |
|     // We can't seem to determine the result latency of the def, assume it's 2.
 | |
|     DefCycle = 2;
 | |
| 
 | |
|   int UseCycle = -1;
 | |
|   switch (UseMCID.getOpcode()) {
 | |
|   default:
 | |
|     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
 | |
|     break;
 | |
| 
 | |
|   case ARM::VSTMDIA:
 | |
|   case ARM::VSTMDIA_UPD:
 | |
|   case ARM::VSTMDDB_UPD:
 | |
|   case ARM::VSTMSIA:
 | |
|   case ARM::VSTMSIA_UPD:
 | |
|   case ARM::VSTMSDB_UPD:
 | |
|     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
 | |
|     break;
 | |
| 
 | |
|   case ARM::STMIA:
 | |
|   case ARM::STMDA:
 | |
|   case ARM::STMDB:
 | |
|   case ARM::STMIB:
 | |
|   case ARM::STMIA_UPD:
 | |
|   case ARM::STMDA_UPD:
 | |
|   case ARM::STMDB_UPD:
 | |
|   case ARM::STMIB_UPD:
 | |
|   case ARM::tSTMIA_UPD:
 | |
|   case ARM::tPOP_RET:
 | |
|   case ARM::tPOP:
 | |
|   case ARM::t2STMIA:
 | |
|   case ARM::t2STMDB:
 | |
|   case ARM::t2STMIA_UPD:
 | |
|   case ARM::t2STMDB_UPD:
 | |
|     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (UseCycle == -1)
 | |
|     // Assume it's read in the first stage.
 | |
|     UseCycle = 1;
 | |
| 
 | |
|   UseCycle = DefCycle - UseCycle + 1;
 | |
|   if (UseCycle > 0) {
 | |
|     if (LdmBypass) {
 | |
|       // It's a variable_ops instruction so we can't use DefIdx here. Just use
 | |
|       // first def operand.
 | |
|       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
 | |
|                                           UseClass, UseIdx))
 | |
|         --UseCycle;
 | |
|     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
 | |
|                                                UseClass, UseIdx)) {
 | |
|       --UseCycle;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
 | |
|                                            const MachineInstr *MI, unsigned Reg,
 | |
|                                            unsigned &DefIdx, unsigned &Dist) {
 | |
|   Dist = 0;
 | |
| 
 | |
|   MachineBasicBlock::const_iterator I = MI; ++I;
 | |
|   MachineBasicBlock::const_instr_iterator II =
 | |
|     llvm::prior(I.getInstrIterator());
 | |
|   assert(II->isInsideBundle() && "Empty bundle?");
 | |
| 
 | |
|   int Idx = -1;
 | |
|   while (II->isInsideBundle()) {
 | |
|     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
 | |
|     if (Idx != -1)
 | |
|       break;
 | |
|     --II;
 | |
|     ++Dist;
 | |
|   }
 | |
| 
 | |
|   assert(Idx != -1 && "Cannot find bundled definition!");
 | |
|   DefIdx = Idx;
 | |
|   return II;
 | |
| }
 | |
| 
 | |
| static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
 | |
|                                            const MachineInstr *MI, unsigned Reg,
 | |
|                                            unsigned &UseIdx, unsigned &Dist) {
 | |
|   Dist = 0;
 | |
| 
 | |
|   MachineBasicBlock::const_instr_iterator II = MI; ++II;
 | |
|   assert(II->isInsideBundle() && "Empty bundle?");
 | |
|   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
 | |
| 
 | |
|   // FIXME: This doesn't properly handle multiple uses.
 | |
|   int Idx = -1;
 | |
|   while (II != E && II->isInsideBundle()) {
 | |
|     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
 | |
|     if (Idx != -1)
 | |
|       break;
 | |
|     if (II->getOpcode() != ARM::t2IT)
 | |
|       ++Dist;
 | |
|     ++II;
 | |
|   }
 | |
| 
 | |
|   if (Idx == -1) {
 | |
|     Dist = 0;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   UseIdx = Idx;
 | |
|   return II;
 | |
| }
 | |
| 
 | |
| /// Return the number of cycles to add to (or subtract from) the static
 | |
| /// itinerary based on the def opcode and alignment. The caller will ensure that
 | |
| /// adjusted latency is at least one cycle.
 | |
| static int adjustDefLatency(const ARMSubtarget &Subtarget,
 | |
|                             const MachineInstr *DefMI,
 | |
|                             const MCInstrDesc *DefMCID, unsigned DefAlign) {
 | |
|   int Adjust = 0;
 | |
|   if (Subtarget.isCortexA8() || Subtarget.isLikeA9()) {
 | |
|     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
 | |
|     // variants are one cycle cheaper.
 | |
|     switch (DefMCID->getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal = DefMI->getOperand(3).getImm();
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (ShImm == 0 ||
 | |
|           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
 | |
|         --Adjust;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl only.
 | |
|       unsigned ShAmt = DefMI->getOperand(3).getImm();
 | |
|       if (ShAmt == 0 || ShAmt == 2)
 | |
|         --Adjust;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   } else if (Subtarget.isSwift()) {
 | |
|     // FIXME: Properly handle all of the latency adjustments for address
 | |
|     // writeback.
 | |
|     switch (DefMCID->getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal = DefMI->getOperand(3).getImm();
 | |
|       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (!isSub &&
 | |
|           (ShImm == 0 ||
 | |
|            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
 | |
|         Adjust -= 2;
 | |
|       else if (!isSub &&
 | |
|                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
 | |
|         --Adjust;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl only.
 | |
|       unsigned ShAmt = DefMI->getOperand(3).getImm();
 | |
|       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
 | |
|         Adjust -= 2;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DefAlign < 8 && Subtarget.isLikeA9()) {
 | |
|     switch (DefMCID->getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VLD1q8:
 | |
|     case ARM::VLD1q16:
 | |
|     case ARM::VLD1q32:
 | |
|     case ARM::VLD1q64:
 | |
|     case ARM::VLD1q8wb_fixed:
 | |
|     case ARM::VLD1q16wb_fixed:
 | |
|     case ARM::VLD1q32wb_fixed:
 | |
|     case ARM::VLD1q64wb_fixed:
 | |
|     case ARM::VLD1q8wb_register:
 | |
|     case ARM::VLD1q16wb_register:
 | |
|     case ARM::VLD1q32wb_register:
 | |
|     case ARM::VLD1q64wb_register:
 | |
|     case ARM::VLD2d8:
 | |
|     case ARM::VLD2d16:
 | |
|     case ARM::VLD2d32:
 | |
|     case ARM::VLD2q8:
 | |
|     case ARM::VLD2q16:
 | |
|     case ARM::VLD2q32:
 | |
|     case ARM::VLD2d8wb_fixed:
 | |
|     case ARM::VLD2d16wb_fixed:
 | |
|     case ARM::VLD2d32wb_fixed:
 | |
|     case ARM::VLD2q8wb_fixed:
 | |
|     case ARM::VLD2q16wb_fixed:
 | |
|     case ARM::VLD2q32wb_fixed:
 | |
|     case ARM::VLD2d8wb_register:
 | |
|     case ARM::VLD2d16wb_register:
 | |
|     case ARM::VLD2d32wb_register:
 | |
|     case ARM::VLD2q8wb_register:
 | |
|     case ARM::VLD2q16wb_register:
 | |
|     case ARM::VLD2q32wb_register:
 | |
|     case ARM::VLD3d8:
 | |
|     case ARM::VLD3d16:
 | |
|     case ARM::VLD3d32:
 | |
|     case ARM::VLD1d64T:
 | |
|     case ARM::VLD3d8_UPD:
 | |
|     case ARM::VLD3d16_UPD:
 | |
|     case ARM::VLD3d32_UPD:
 | |
|     case ARM::VLD1d64Twb_fixed:
 | |
|     case ARM::VLD1d64Twb_register:
 | |
|     case ARM::VLD3q8_UPD:
 | |
|     case ARM::VLD3q16_UPD:
 | |
|     case ARM::VLD3q32_UPD:
 | |
|     case ARM::VLD4d8:
 | |
|     case ARM::VLD4d16:
 | |
|     case ARM::VLD4d32:
 | |
|     case ARM::VLD1d64Q:
 | |
|     case ARM::VLD4d8_UPD:
 | |
|     case ARM::VLD4d16_UPD:
 | |
|     case ARM::VLD4d32_UPD:
 | |
|     case ARM::VLD1d64Qwb_fixed:
 | |
|     case ARM::VLD1d64Qwb_register:
 | |
|     case ARM::VLD4q8_UPD:
 | |
|     case ARM::VLD4q16_UPD:
 | |
|     case ARM::VLD4q32_UPD:
 | |
|     case ARM::VLD1DUPq8:
 | |
|     case ARM::VLD1DUPq16:
 | |
|     case ARM::VLD1DUPq32:
 | |
|     case ARM::VLD1DUPq8wb_fixed:
 | |
|     case ARM::VLD1DUPq16wb_fixed:
 | |
|     case ARM::VLD1DUPq32wb_fixed:
 | |
|     case ARM::VLD1DUPq8wb_register:
 | |
|     case ARM::VLD1DUPq16wb_register:
 | |
|     case ARM::VLD1DUPq32wb_register:
 | |
|     case ARM::VLD2DUPd8:
 | |
|     case ARM::VLD2DUPd16:
 | |
|     case ARM::VLD2DUPd32:
 | |
|     case ARM::VLD2DUPd8wb_fixed:
 | |
|     case ARM::VLD2DUPd16wb_fixed:
 | |
|     case ARM::VLD2DUPd32wb_fixed:
 | |
|     case ARM::VLD2DUPd8wb_register:
 | |
|     case ARM::VLD2DUPd16wb_register:
 | |
|     case ARM::VLD2DUPd32wb_register:
 | |
|     case ARM::VLD4DUPd8:
 | |
|     case ARM::VLD4DUPd16:
 | |
|     case ARM::VLD4DUPd32:
 | |
|     case ARM::VLD4DUPd8_UPD:
 | |
|     case ARM::VLD4DUPd16_UPD:
 | |
|     case ARM::VLD4DUPd32_UPD:
 | |
|     case ARM::VLD1LNd8:
 | |
|     case ARM::VLD1LNd16:
 | |
|     case ARM::VLD1LNd32:
 | |
|     case ARM::VLD1LNd8_UPD:
 | |
|     case ARM::VLD1LNd16_UPD:
 | |
|     case ARM::VLD1LNd32_UPD:
 | |
|     case ARM::VLD2LNd8:
 | |
|     case ARM::VLD2LNd16:
 | |
|     case ARM::VLD2LNd32:
 | |
|     case ARM::VLD2LNq16:
 | |
|     case ARM::VLD2LNq32:
 | |
|     case ARM::VLD2LNd8_UPD:
 | |
|     case ARM::VLD2LNd16_UPD:
 | |
|     case ARM::VLD2LNd32_UPD:
 | |
|     case ARM::VLD2LNq16_UPD:
 | |
|     case ARM::VLD2LNq32_UPD:
 | |
|     case ARM::VLD4LNd8:
 | |
|     case ARM::VLD4LNd16:
 | |
|     case ARM::VLD4LNd32:
 | |
|     case ARM::VLD4LNq16:
 | |
|     case ARM::VLD4LNq32:
 | |
|     case ARM::VLD4LNd8_UPD:
 | |
|     case ARM::VLD4LNd16_UPD:
 | |
|     case ARM::VLD4LNd32_UPD:
 | |
|     case ARM::VLD4LNq16_UPD:
 | |
|     case ARM::VLD4LNq32_UPD:
 | |
|       // If the address is not 64-bit aligned, the latencies of these
 | |
|       // instructions increases by one.
 | |
|       ++Adjust;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Adjust;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                                     const MachineInstr *UseMI,
 | |
|                                     unsigned UseIdx) const {
 | |
|   // No operand latency. The caller may fall back to getInstrLatency.
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return -1;
 | |
| 
 | |
|   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
 | |
|   unsigned Reg = DefMO.getReg();
 | |
|   const MCInstrDesc *DefMCID = &DefMI->getDesc();
 | |
|   const MCInstrDesc *UseMCID = &UseMI->getDesc();
 | |
| 
 | |
|   unsigned DefAdj = 0;
 | |
|   if (DefMI->isBundle()) {
 | |
|     DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
 | |
|     DefMCID = &DefMI->getDesc();
 | |
|   }
 | |
|   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
 | |
|       DefMI->isRegSequence() || DefMI->isImplicitDef()) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   unsigned UseAdj = 0;
 | |
|   if (UseMI->isBundle()) {
 | |
|     unsigned NewUseIdx;
 | |
|     const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
 | |
|                                                    Reg, NewUseIdx, UseAdj);
 | |
|     if (!NewUseMI)
 | |
|       return -1;
 | |
| 
 | |
|     UseMI = NewUseMI;
 | |
|     UseIdx = NewUseIdx;
 | |
|     UseMCID = &UseMI->getDesc();
 | |
|   }
 | |
| 
 | |
|   if (Reg == ARM::CPSR) {
 | |
|     if (DefMI->getOpcode() == ARM::FMSTAT) {
 | |
|       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
 | |
|       return Subtarget.isLikeA9() ? 1 : 20;
 | |
|     }
 | |
| 
 | |
|     // CPSR set and branch can be paired in the same cycle.
 | |
|     if (UseMI->isBranch())
 | |
|       return 0;
 | |
| 
 | |
|     // Otherwise it takes the instruction latency (generally one).
 | |
|     unsigned Latency = getInstrLatency(ItinData, DefMI);
 | |
| 
 | |
|     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
 | |
|     // its uses. Instructions which are otherwise scheduled between them may
 | |
|     // incur a code size penalty (not able to use the CPSR setting 16-bit
 | |
|     // instructions).
 | |
|     if (Latency > 0 && Subtarget.isThumb2()) {
 | |
|       const MachineFunction *MF = DefMI->getParent()->getParent();
 | |
|       if (MF->getFunction()->getAttributes().
 | |
|             hasAttribute(AttributeSet::FunctionIndex,
 | |
|                          Attribute::OptimizeForSize))
 | |
|         --Latency;
 | |
|     }
 | |
|     return Latency;
 | |
|   }
 | |
| 
 | |
|   if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
 | |
|     return -1;
 | |
| 
 | |
|   unsigned DefAlign = DefMI->hasOneMemOperand()
 | |
|     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
 | |
|   unsigned UseAlign = UseMI->hasOneMemOperand()
 | |
|     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
 | |
| 
 | |
|   // Get the itinerary's latency if possible, and handle variable_ops.
 | |
|   int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
 | |
|                                   *UseMCID, UseIdx, UseAlign);
 | |
|   // Unable to find operand latency. The caller may resort to getInstrLatency.
 | |
|   if (Latency < 0)
 | |
|     return Latency;
 | |
| 
 | |
|   // Adjust for IT block position.
 | |
|   int Adj = DefAdj + UseAdj;
 | |
| 
 | |
|   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
 | |
|   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
 | |
|   if (Adj >= 0 || (int)Latency > -Adj) {
 | |
|     return Latency + Adj;
 | |
|   }
 | |
|   // Return the itinerary latency, which may be zero but not less than zero.
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     SDNode *DefNode, unsigned DefIdx,
 | |
|                                     SDNode *UseNode, unsigned UseIdx) const {
 | |
|   if (!DefNode->isMachineOpcode())
 | |
|     return 1;
 | |
| 
 | |
|   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
 | |
| 
 | |
|   if (isZeroCost(DefMCID.Opcode))
 | |
|     return 0;
 | |
| 
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return DefMCID.mayLoad() ? 3 : 1;
 | |
| 
 | |
|   if (!UseNode->isMachineOpcode()) {
 | |
|     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
 | |
|     if (Subtarget.isLikeA9() || Subtarget.isSwift())
 | |
|       return Latency <= 2 ? 1 : Latency - 1;
 | |
|     else
 | |
|       return Latency <= 3 ? 1 : Latency - 2;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
 | |
|   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
 | |
|   unsigned DefAlign = !DefMN->memoperands_empty()
 | |
|     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
 | |
|   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
 | |
|   unsigned UseAlign = !UseMN->memoperands_empty()
 | |
|     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
 | |
|   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
 | |
|                                   UseMCID, UseIdx, UseAlign);
 | |
| 
 | |
|   if (Latency > 1 &&
 | |
|       (Subtarget.isCortexA8() || Subtarget.isLikeA9())) {
 | |
|     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
 | |
|     // variants are one cycle cheaper.
 | |
|     switch (DefMCID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal =
 | |
|         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (ShImm == 0 ||
 | |
|           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl only.
 | |
|       unsigned ShAmt =
 | |
|         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
 | |
|       if (ShAmt == 0 || ShAmt == 2)
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
 | |
|     // FIXME: Properly handle all of the latency adjustments for address
 | |
|     // writeback.
 | |
|     switch (DefMCID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal =
 | |
|         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (ShImm == 0 ||
 | |
|           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
 | |
|            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
 | |
|         Latency -= 2;
 | |
|       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl 0-3 only.
 | |
|       Latency -= 2;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DefAlign < 8 && Subtarget.isLikeA9())
 | |
|     switch (DefMCID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VLD1q8:
 | |
|     case ARM::VLD1q16:
 | |
|     case ARM::VLD1q32:
 | |
|     case ARM::VLD1q64:
 | |
|     case ARM::VLD1q8wb_register:
 | |
|     case ARM::VLD1q16wb_register:
 | |
|     case ARM::VLD1q32wb_register:
 | |
|     case ARM::VLD1q64wb_register:
 | |
|     case ARM::VLD1q8wb_fixed:
 | |
|     case ARM::VLD1q16wb_fixed:
 | |
|     case ARM::VLD1q32wb_fixed:
 | |
|     case ARM::VLD1q64wb_fixed:
 | |
|     case ARM::VLD2d8:
 | |
|     case ARM::VLD2d16:
 | |
|     case ARM::VLD2d32:
 | |
|     case ARM::VLD2q8Pseudo:
 | |
|     case ARM::VLD2q16Pseudo:
 | |
|     case ARM::VLD2q32Pseudo:
 | |
|     case ARM::VLD2d8wb_fixed:
 | |
|     case ARM::VLD2d16wb_fixed:
 | |
|     case ARM::VLD2d32wb_fixed:
 | |
|     case ARM::VLD2q8PseudoWB_fixed:
 | |
|     case ARM::VLD2q16PseudoWB_fixed:
 | |
|     case ARM::VLD2q32PseudoWB_fixed:
 | |
|     case ARM::VLD2d8wb_register:
 | |
|     case ARM::VLD2d16wb_register:
 | |
|     case ARM::VLD2d32wb_register:
 | |
|     case ARM::VLD2q8PseudoWB_register:
 | |
|     case ARM::VLD2q16PseudoWB_register:
 | |
|     case ARM::VLD2q32PseudoWB_register:
 | |
|     case ARM::VLD3d8Pseudo:
 | |
|     case ARM::VLD3d16Pseudo:
 | |
|     case ARM::VLD3d32Pseudo:
 | |
|     case ARM::VLD1d64TPseudo:
 | |
|     case ARM::VLD3d8Pseudo_UPD:
 | |
|     case ARM::VLD3d16Pseudo_UPD:
 | |
|     case ARM::VLD3d32Pseudo_UPD:
 | |
|     case ARM::VLD3q8Pseudo_UPD:
 | |
|     case ARM::VLD3q16Pseudo_UPD:
 | |
|     case ARM::VLD3q32Pseudo_UPD:
 | |
|     case ARM::VLD3q8oddPseudo:
 | |
|     case ARM::VLD3q16oddPseudo:
 | |
|     case ARM::VLD3q32oddPseudo:
 | |
|     case ARM::VLD3q8oddPseudo_UPD:
 | |
|     case ARM::VLD3q16oddPseudo_UPD:
 | |
|     case ARM::VLD3q32oddPseudo_UPD:
 | |
|     case ARM::VLD4d8Pseudo:
 | |
|     case ARM::VLD4d16Pseudo:
 | |
|     case ARM::VLD4d32Pseudo:
 | |
|     case ARM::VLD1d64QPseudo:
 | |
|     case ARM::VLD4d8Pseudo_UPD:
 | |
|     case ARM::VLD4d16Pseudo_UPD:
 | |
|     case ARM::VLD4d32Pseudo_UPD:
 | |
|     case ARM::VLD4q8Pseudo_UPD:
 | |
|     case ARM::VLD4q16Pseudo_UPD:
 | |
|     case ARM::VLD4q32Pseudo_UPD:
 | |
|     case ARM::VLD4q8oddPseudo:
 | |
|     case ARM::VLD4q16oddPseudo:
 | |
|     case ARM::VLD4q32oddPseudo:
 | |
|     case ARM::VLD4q8oddPseudo_UPD:
 | |
|     case ARM::VLD4q16oddPseudo_UPD:
 | |
|     case ARM::VLD4q32oddPseudo_UPD:
 | |
|     case ARM::VLD1DUPq8:
 | |
|     case ARM::VLD1DUPq16:
 | |
|     case ARM::VLD1DUPq32:
 | |
|     case ARM::VLD1DUPq8wb_fixed:
 | |
|     case ARM::VLD1DUPq16wb_fixed:
 | |
|     case ARM::VLD1DUPq32wb_fixed:
 | |
|     case ARM::VLD1DUPq8wb_register:
 | |
|     case ARM::VLD1DUPq16wb_register:
 | |
|     case ARM::VLD1DUPq32wb_register:
 | |
|     case ARM::VLD2DUPd8:
 | |
|     case ARM::VLD2DUPd16:
 | |
|     case ARM::VLD2DUPd32:
 | |
|     case ARM::VLD2DUPd8wb_fixed:
 | |
|     case ARM::VLD2DUPd16wb_fixed:
 | |
|     case ARM::VLD2DUPd32wb_fixed:
 | |
|     case ARM::VLD2DUPd8wb_register:
 | |
|     case ARM::VLD2DUPd16wb_register:
 | |
|     case ARM::VLD2DUPd32wb_register:
 | |
|     case ARM::VLD4DUPd8Pseudo:
 | |
|     case ARM::VLD4DUPd16Pseudo:
 | |
|     case ARM::VLD4DUPd32Pseudo:
 | |
|     case ARM::VLD4DUPd8Pseudo_UPD:
 | |
|     case ARM::VLD4DUPd16Pseudo_UPD:
 | |
|     case ARM::VLD4DUPd32Pseudo_UPD:
 | |
|     case ARM::VLD1LNq8Pseudo:
 | |
|     case ARM::VLD1LNq16Pseudo:
 | |
|     case ARM::VLD1LNq32Pseudo:
 | |
|     case ARM::VLD1LNq8Pseudo_UPD:
 | |
|     case ARM::VLD1LNq16Pseudo_UPD:
 | |
|     case ARM::VLD1LNq32Pseudo_UPD:
 | |
|     case ARM::VLD2LNd8Pseudo:
 | |
|     case ARM::VLD2LNd16Pseudo:
 | |
|     case ARM::VLD2LNd32Pseudo:
 | |
|     case ARM::VLD2LNq16Pseudo:
 | |
|     case ARM::VLD2LNq32Pseudo:
 | |
|     case ARM::VLD2LNd8Pseudo_UPD:
 | |
|     case ARM::VLD2LNd16Pseudo_UPD:
 | |
|     case ARM::VLD2LNd32Pseudo_UPD:
 | |
|     case ARM::VLD2LNq16Pseudo_UPD:
 | |
|     case ARM::VLD2LNq32Pseudo_UPD:
 | |
|     case ARM::VLD4LNd8Pseudo:
 | |
|     case ARM::VLD4LNd16Pseudo:
 | |
|     case ARM::VLD4LNd32Pseudo:
 | |
|     case ARM::VLD4LNq16Pseudo:
 | |
|     case ARM::VLD4LNq32Pseudo:
 | |
|     case ARM::VLD4LNd8Pseudo_UPD:
 | |
|     case ARM::VLD4LNd16Pseudo_UPD:
 | |
|     case ARM::VLD4LNd32Pseudo_UPD:
 | |
|     case ARM::VLD4LNq16Pseudo_UPD:
 | |
|     case ARM::VLD4LNq32Pseudo_UPD:
 | |
|       // If the address is not 64-bit aligned, the latencies of these
 | |
|       // instructions increases by one.
 | |
|       ++Latency;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
 | |
|    if (MI->isCopyLike() || MI->isInsertSubreg() ||
 | |
|       MI->isRegSequence() || MI->isImplicitDef())
 | |
|     return 0;
 | |
| 
 | |
|   if (MI->isBundle())
 | |
|     return 0;
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
| 
 | |
|   if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
 | |
|     // When predicated, CPSR is an additional source operand for CPSR updating
 | |
|     // instructions, this apparently increases their latencies.
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                            const MachineInstr *MI,
 | |
|                                            unsigned *PredCost) const {
 | |
|   if (MI->isCopyLike() || MI->isInsertSubreg() ||
 | |
|       MI->isRegSequence() || MI->isImplicitDef())
 | |
|     return 1;
 | |
| 
 | |
|   // An instruction scheduler typically runs on unbundled instructions, however
 | |
|   // other passes may query the latency of a bundled instruction.
 | |
|   if (MI->isBundle()) {
 | |
|     unsigned Latency = 0;
 | |
|     MachineBasicBlock::const_instr_iterator I = MI;
 | |
|     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
 | |
|     while (++I != E && I->isInsideBundle()) {
 | |
|       if (I->getOpcode() != ARM::t2IT)
 | |
|         Latency += getInstrLatency(ItinData, I, PredCost);
 | |
|     }
 | |
|     return Latency;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
 | |
|     // When predicated, CPSR is an additional source operand for CPSR updating
 | |
|     // instructions, this apparently increases their latencies.
 | |
|     *PredCost = 1;
 | |
|   }
 | |
|   // Be sure to call getStageLatency for an empty itinerary in case it has a
 | |
|   // valid MinLatency property.
 | |
|   if (!ItinData)
 | |
|     return MI->mayLoad() ? 3 : 1;
 | |
| 
 | |
|   unsigned Class = MCID.getSchedClass();
 | |
| 
 | |
|   // For instructions with variable uops, use uops as latency.
 | |
|   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
 | |
|     return getNumMicroOps(ItinData, MI);
 | |
| 
 | |
|   // For the common case, fall back on the itinerary's latency.
 | |
|   unsigned Latency = ItinData->getStageLatency(Class);
 | |
| 
 | |
|   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
 | |
|   unsigned DefAlign = MI->hasOneMemOperand()
 | |
|     ? (*MI->memoperands_begin())->getAlignment() : 0;
 | |
|   int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
 | |
|   if (Adj >= 0 || (int)Latency > -Adj) {
 | |
|     return Latency + Adj;
 | |
|   }
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                       SDNode *Node) const {
 | |
|   if (!Node->isMachineOpcode())
 | |
|     return 1;
 | |
| 
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   unsigned Opcode = Node->getMachineOpcode();
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return ItinData->getStageLatency(get(Opcode).getSchedClass());
 | |
|   case ARM::VLDMQIA:
 | |
|   case ARM::VSTMQIA:
 | |
|     return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| hasHighOperandLatency(const InstrItineraryData *ItinData,
 | |
|                       const MachineRegisterInfo *MRI,
 | |
|                       const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                       const MachineInstr *UseMI, unsigned UseIdx) const {
 | |
|   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   if (Subtarget.isCortexA8() &&
 | |
|       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
 | |
|     // CortexA8 VFP instructions are not pipelined.
 | |
|     return true;
 | |
| 
 | |
|   // Hoist VFP / NEON instructions with 4 or higher latency.
 | |
|   int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
 | |
|   if (Latency < 0)
 | |
|     Latency = getInstrLatency(ItinData, DefMI);
 | |
|   if (Latency <= 3)
 | |
|     return false;
 | |
|   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
 | |
|          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| hasLowDefLatency(const InstrItineraryData *ItinData,
 | |
|                  const MachineInstr *DefMI, unsigned DefIdx) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   if (DDomain == ARMII::DomainGeneral) {
 | |
|     unsigned DefClass = DefMI->getDesc().getSchedClass();
 | |
|     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|     return (DefCycle != -1 && DefCycle <= 2);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
 | |
|                                          StringRef &ErrInfo) const {
 | |
|   if (convertAddSubFlagsOpcode(MI->getOpcode())) {
 | |
|     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
 | |
|                                      unsigned &AddSubOpc,
 | |
|                                      bool &NegAcc, bool &HasLane) const {
 | |
|   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
 | |
|   if (I == MLxEntryMap.end())
 | |
|     return false;
 | |
| 
 | |
|   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
 | |
|   MulOpc = Entry.MulOpc;
 | |
|   AddSubOpc = Entry.AddSubOpc;
 | |
|   NegAcc = Entry.NegAcc;
 | |
|   HasLane = Entry.HasLane;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Execution domains.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
 | |
| // and some can go down both.  The vmov instructions go down the VFP pipeline,
 | |
| // but they can be changed to vorr equivalents that are executed by the NEON
 | |
| // pipeline.
 | |
| //
 | |
| // We use the following execution domain numbering:
 | |
| //
 | |
| enum ARMExeDomain {
 | |
|   ExeGeneric = 0,
 | |
|   ExeVFP = 1,
 | |
|   ExeNEON = 2
 | |
| };
 | |
| //
 | |
| // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
 | |
| //
 | |
| std::pair<uint16_t, uint16_t>
 | |
| ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
 | |
|   // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
 | |
|   // if they are not predicated.
 | |
|   if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
 | |
|     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
 | |
| 
 | |
|   // CortexA9 is particularly picky about mixing the two and wants these
 | |
|   // converted.
 | |
|   if (Subtarget.isCortexA9() && !isPredicated(MI) &&
 | |
|       (MI->getOpcode() == ARM::VMOVRS ||
 | |
|        MI->getOpcode() == ARM::VMOVSR ||
 | |
|        MI->getOpcode() == ARM::VMOVS))
 | |
|     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
 | |
| 
 | |
|   // No other instructions can be swizzled, so just determine their domain.
 | |
|   unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
 | |
| 
 | |
|   if (Domain & ARMII::DomainNEON)
 | |
|     return std::make_pair(ExeNEON, 0);
 | |
| 
 | |
|   // Certain instructions can go either way on Cortex-A8.
 | |
|   // Treat them as NEON instructions.
 | |
|   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
 | |
|     return std::make_pair(ExeNEON, 0);
 | |
| 
 | |
|   if (Domain & ARMII::DomainVFP)
 | |
|     return std::make_pair(ExeVFP, 0);
 | |
| 
 | |
|   return std::make_pair(ExeGeneric, 0);
 | |
| }
 | |
| 
 | |
| static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
 | |
|                                             unsigned SReg, unsigned &Lane) {
 | |
|   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
 | |
|   Lane = 0;
 | |
| 
 | |
|   if (DReg != ARM::NoRegister)
 | |
|    return DReg;
 | |
| 
 | |
|   Lane = 1;
 | |
|   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
 | |
| 
 | |
|   assert(DReg && "S-register with no D super-register?");
 | |
|   return DReg;
 | |
| }
 | |
| 
 | |
| /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
 | |
| /// set ImplicitSReg to a register number that must be marked as implicit-use or
 | |
| /// zero if no register needs to be defined as implicit-use.
 | |
| ///
 | |
| /// If the function cannot determine if an SPR should be marked implicit use or
 | |
| /// not, it returns false.
 | |
| ///
 | |
| /// This function handles cases where an instruction is being modified from taking
 | |
| /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
 | |
| /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
 | |
| /// lane of the DPR).
 | |
| ///
 | |
| /// If the other SPR is defined, an implicit-use of it should be added. Else,
 | |
| /// (including the case where the DPR itself is defined), it should not.
 | |
| ///
 | |
| static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
 | |
|                                        MachineInstr *MI,
 | |
|                                        unsigned DReg, unsigned Lane,
 | |
|                                        unsigned &ImplicitSReg) {
 | |
|   // If the DPR is defined or used already, the other SPR lane will be chained
 | |
|   // correctly, so there is nothing to be done.
 | |
|   if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
 | |
|     ImplicitSReg = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise we need to go searching to see if the SPR is set explicitly.
 | |
|   ImplicitSReg = TRI->getSubReg(DReg,
 | |
|                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
 | |
|   MachineBasicBlock::LivenessQueryResult LQR =
 | |
|     MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
 | |
| 
 | |
|   if (LQR == MachineBasicBlock::LQR_Live)
 | |
|     return true;
 | |
|   else if (LQR == MachineBasicBlock::LQR_Unknown)
 | |
|     return false;
 | |
| 
 | |
|   // If the register is known not to be live, there is no need to add an
 | |
|   // implicit-use.
 | |
|   ImplicitSReg = 0;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
 | |
|   unsigned DstReg, SrcReg, DReg;
 | |
|   unsigned Lane;
 | |
|   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   switch (MI->getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable("cannot handle opcode!");
 | |
|       break;
 | |
|     case ARM::VMOVD:
 | |
|       if (Domain != ExeNEON)
 | |
|         break;
 | |
| 
 | |
|       // Zap the predicate operands.
 | |
|       assert(!isPredicated(MI) && "Cannot predicate a VORRd");
 | |
| 
 | |
|       // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
 | |
|       DstReg = MI->getOperand(0).getReg();
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
 | |
|         MI->RemoveOperand(i-1);
 | |
| 
 | |
|       // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
 | |
|       MI->setDesc(get(ARM::VORRd));
 | |
|       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
 | |
|                         .addReg(SrcReg)
 | |
|                         .addReg(SrcReg));
 | |
|       break;
 | |
|     case ARM::VMOVRS:
 | |
|       if (Domain != ExeNEON)
 | |
|         break;
 | |
|       assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
 | |
| 
 | |
|       // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
 | |
|       DstReg = MI->getOperand(0).getReg();
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
 | |
|         MI->RemoveOperand(i-1);
 | |
| 
 | |
|       DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
 | |
| 
 | |
|       // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
 | |
|       // Note that DSrc has been widened and the other lane may be undef, which
 | |
|       // contaminates the entire register.
 | |
|       MI->setDesc(get(ARM::VGETLNi32));
 | |
|       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
 | |
|                         .addReg(DReg, RegState::Undef)
 | |
|                         .addImm(Lane));
 | |
| 
 | |
|       // The old source should be an implicit use, otherwise we might think it
 | |
|       // was dead before here.
 | |
|       MIB.addReg(SrcReg, RegState::Implicit);
 | |
|       break;
 | |
|     case ARM::VMOVSR: {
 | |
|       if (Domain != ExeNEON)
 | |
|         break;
 | |
|       assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
 | |
| 
 | |
|       // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
 | |
|       DstReg = MI->getOperand(0).getReg();
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|       DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
 | |
| 
 | |
|       unsigned ImplicitSReg;
 | |
|       if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
 | |
|         break;
 | |
| 
 | |
|       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
 | |
|         MI->RemoveOperand(i-1);
 | |
| 
 | |
|       // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
 | |
|       // Again DDst may be undefined at the beginning of this instruction.
 | |
|       MI->setDesc(get(ARM::VSETLNi32));
 | |
|       MIB.addReg(DReg, RegState::Define)
 | |
|          .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
 | |
|          .addReg(SrcReg)
 | |
|          .addImm(Lane);
 | |
|       AddDefaultPred(MIB);
 | |
| 
 | |
|       // The narrower destination must be marked as set to keep previous chains
 | |
|       // in place.
 | |
|       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
 | |
|       if (ImplicitSReg != 0)
 | |
|         MIB.addReg(ImplicitSReg, RegState::Implicit);
 | |
|       break;
 | |
|     }
 | |
|     case ARM::VMOVS: {
 | |
|       if (Domain != ExeNEON)
 | |
|         break;
 | |
| 
 | |
|       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
 | |
|       DstReg = MI->getOperand(0).getReg();
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
 | |
|       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
 | |
|       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
 | |
| 
 | |
|       unsigned ImplicitSReg;
 | |
|       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
 | |
|         break;
 | |
| 
 | |
|       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
 | |
|         MI->RemoveOperand(i-1);
 | |
| 
 | |
|       if (DSrc == DDst) {
 | |
|         // Destination can be:
 | |
|         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
 | |
|         MI->setDesc(get(ARM::VDUPLN32d));
 | |
|         MIB.addReg(DDst, RegState::Define)
 | |
|            .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
 | |
|            .addImm(SrcLane);
 | |
|         AddDefaultPred(MIB);
 | |
| 
 | |
|         // Neither the source or the destination are naturally represented any
 | |
|         // more, so add them in manually.
 | |
|         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
 | |
|         MIB.addReg(SrcReg, RegState::Implicit);
 | |
|         if (ImplicitSReg != 0)
 | |
|           MIB.addReg(ImplicitSReg, RegState::Implicit);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // In general there's no single instruction that can perform an S <-> S
 | |
|       // move in NEON space, but a pair of VEXT instructions *can* do the
 | |
|       // job. It turns out that the VEXTs needed will only use DSrc once, with
 | |
|       // the position based purely on the combination of lane-0 and lane-1
 | |
|       // involved. For example
 | |
|       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
 | |
|       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
 | |
|       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
 | |
|       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
 | |
|       //
 | |
|       // Pattern of the MachineInstrs is:
 | |
|       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
 | |
|       MachineInstrBuilder NewMIB;
 | |
|       NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                        get(ARM::VEXTd32), DDst);
 | |
| 
 | |
|       // On the first instruction, both DSrc and DDst may be <undef> if present.
 | |
|       // Specifically when the original instruction didn't have them as an
 | |
|       // <imp-use>.
 | |
|       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
 | |
|       bool CurUndef = !MI->readsRegister(CurReg, TRI);
 | |
|       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
 | |
| 
 | |
|       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
 | |
|       CurUndef = !MI->readsRegister(CurReg, TRI);
 | |
|       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
 | |
| 
 | |
|       NewMIB.addImm(1);
 | |
|       AddDefaultPred(NewMIB);
 | |
| 
 | |
|       if (SrcLane == DstLane)
 | |
|         NewMIB.addReg(SrcReg, RegState::Implicit);
 | |
| 
 | |
|       MI->setDesc(get(ARM::VEXTd32));
 | |
|       MIB.addReg(DDst, RegState::Define);
 | |
| 
 | |
|       // On the second instruction, DDst has definitely been defined above, so
 | |
|       // it is not <undef>. DSrc, if present, can be <undef> as above.
 | |
|       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
 | |
|       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
 | |
|       MIB.addReg(CurReg, getUndefRegState(CurUndef));
 | |
| 
 | |
|       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
 | |
|       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
 | |
|       MIB.addReg(CurReg, getUndefRegState(CurUndef));
 | |
| 
 | |
|       MIB.addImm(1);
 | |
|       AddDefaultPred(MIB);
 | |
| 
 | |
|       if (SrcLane != DstLane)
 | |
|         MIB.addReg(SrcReg, RegState::Implicit);
 | |
| 
 | |
|       // As before, the original destination is no longer represented, add it
 | |
|       // implicitly.
 | |
|       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
 | |
|       if (ImplicitSReg != 0)
 | |
|         MIB.addReg(ImplicitSReg, RegState::Implicit);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Partial register updates
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Swift renames NEON registers with 64-bit granularity.  That means any
 | |
| // instruction writing an S-reg implicitly reads the containing D-reg.  The
 | |
| // problem is mostly avoided by translating f32 operations to v2f32 operations
 | |
| // on D-registers, but f32 loads are still a problem.
 | |
| //
 | |
| // These instructions can load an f32 into a NEON register:
 | |
| //
 | |
| // VLDRS - Only writes S, partial D update.
 | |
| // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
 | |
| // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
 | |
| //
 | |
| // FCONSTD can be used as a dependency-breaking instruction.
 | |
| unsigned ARMBaseInstrInfo::
 | |
| getPartialRegUpdateClearance(const MachineInstr *MI,
 | |
|                              unsigned OpNum,
 | |
|                              const TargetRegisterInfo *TRI) const {
 | |
|   if (!SwiftPartialUpdateClearance ||
 | |
|       !(Subtarget.isSwift() || Subtarget.isCortexA15()))
 | |
|     return 0;
 | |
| 
 | |
|   assert(TRI && "Need TRI instance");
 | |
| 
 | |
|   const MachineOperand &MO = MI->getOperand(OpNum);
 | |
|   if (MO.readsReg())
 | |
|     return 0;
 | |
|   unsigned Reg = MO.getReg();
 | |
|   int UseOp = -1;
 | |
| 
 | |
|   switch(MI->getOpcode()) {
 | |
|     // Normal instructions writing only an S-register.
 | |
|   case ARM::VLDRS:
 | |
|   case ARM::FCONSTS:
 | |
|   case ARM::VMOVSR:
 | |
|   case ARM::VMOVv8i8:
 | |
|   case ARM::VMOVv4i16:
 | |
|   case ARM::VMOVv2i32:
 | |
|   case ARM::VMOVv2f32:
 | |
|   case ARM::VMOVv1i64:
 | |
|     UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
 | |
|     break;
 | |
| 
 | |
|     // Explicitly reads the dependency.
 | |
|   case ARM::VLD1LNd32:
 | |
|     UseOp = 3;
 | |
|     break;
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If this instruction actually reads a value from Reg, there is no unwanted
 | |
|   // dependency.
 | |
|   if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
 | |
|     return 0;
 | |
| 
 | |
|   // We must be able to clobber the whole D-reg.
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     // Virtual register must be a foo:ssub_0<def,undef> operand.
 | |
|     if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
 | |
|       return 0;
 | |
|   } else if (ARM::SPRRegClass.contains(Reg)) {
 | |
|     // Physical register: MI must define the full D-reg.
 | |
|     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
 | |
|                                              &ARM::DPRRegClass);
 | |
|     if (!DReg || !MI->definesRegister(DReg, TRI))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // MI has an unwanted D-register dependency.
 | |
|   // Avoid defs in the previous N instructrions.
 | |
|   return SwiftPartialUpdateClearance;
 | |
| }
 | |
| 
 | |
| // Break a partial register dependency after getPartialRegUpdateClearance
 | |
| // returned non-zero.
 | |
| void ARMBaseInstrInfo::
 | |
| breakPartialRegDependency(MachineBasicBlock::iterator MI,
 | |
|                           unsigned OpNum,
 | |
|                           const TargetRegisterInfo *TRI) const {
 | |
|   assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
 | |
|   assert(TRI && "Need TRI instance");
 | |
| 
 | |
|   const MachineOperand &MO = MI->getOperand(OpNum);
 | |
|   unsigned Reg = MO.getReg();
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|          "Can't break virtual register dependencies.");
 | |
|   unsigned DReg = Reg;
 | |
| 
 | |
|   // If MI defines an S-reg, find the corresponding D super-register.
 | |
|   if (ARM::SPRRegClass.contains(Reg)) {
 | |
|     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
 | |
|     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
 | |
|   }
 | |
| 
 | |
|   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
 | |
|   assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
 | |
| 
 | |
|   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
 | |
|   // the full D-register by loading the same value to both lanes.  The
 | |
|   // instruction is micro-coded with 2 uops, so don't do this until we can
 | |
|   // properly schedule micro-coded instructions.  The dispatcher stalls cause
 | |
|   // too big regressions.
 | |
| 
 | |
|   // Insert the dependency-breaking FCONSTD before MI.
 | |
|   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
 | |
|   AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                          get(ARM::FCONSTD), DReg).addImm(96));
 | |
|   MI->addRegisterKilled(DReg, TRI, true);
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::hasNOP() const {
 | |
|   return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
 | |
|   if (MI->getNumOperands() < 4)
 | |
|     return true;
 | |
|   unsigned ShOpVal = MI->getOperand(3).getImm();
 | |
|   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
 | |
|   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
 | |
|   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
 | |
|       ((ShImm == 1 || ShImm == 2) &&
 | |
|        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 |