1700 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1700 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | |
| // of MachineInstrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/ADT/IntEqClasses.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/ScheduleDFS.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "misched"
 | |
| 
 | |
| static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
 | |
|     cl::ZeroOrMore, cl::init(false),
 | |
|     cl::desc("Enable use of AA during MI DAG construction"));
 | |
| 
 | |
| static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
 | |
|     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
 | |
| 
 | |
| // Note: the two options below might be used in tuning compile time vs
 | |
| // output quality. Setting HugeRegion so large that it will never be
 | |
| // reached means best-effort, but may be slow.
 | |
| 
 | |
| // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
 | |
| // together hold this many SUs, a reduction of maps will be done.
 | |
| static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
 | |
|     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
 | |
|                              "prior to scheduling, at which point a trade-off "
 | |
|                              "is made to avoid excessive compile time."));
 | |
| 
 | |
| static cl::opt<unsigned> ReductionSize("dag-maps-reduction-size", cl::Hidden,
 | |
|     cl::desc("A huge scheduling region will have maps reduced by this many "
 | |
| 	     "nodes at a time. Defaults to HugeRegion / 2."));
 | |
| 
 | |
| static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   dbgs() << "{ ";
 | |
|   for (auto *su : L) {
 | |
|     dbgs() << "SU(" << su->NodeNum << ")";
 | |
|     if (su != L.back())
 | |
|       dbgs() << ", ";
 | |
|   }
 | |
|   dbgs() << "}\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | |
|                                      const MachineLoopInfo *mli,
 | |
|                                      bool RemoveKillFlags)
 | |
|     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
 | |
|       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
 | |
|       TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
 | |
|       UnknownValue(UndefValue::get(
 | |
|                      Type::getVoidTy(mf.getFunction()->getContext()))),
 | |
|       FirstDbgValue(nullptr) {
 | |
|   DbgValues.clear();
 | |
| 
 | |
|   const TargetSubtargetInfo &ST = mf.getSubtarget();
 | |
|   SchedModel.init(ST.getSchedModel(), &ST, TII);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectFromInt - This is the function that does the work of
 | |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | |
|   do {
 | |
|     if (const Operator *U = dyn_cast<Operator>(V)) {
 | |
|       // If we find a ptrtoint, we can transfer control back to the
 | |
|       // regular getUnderlyingObjectFromInt.
 | |
|       if (U->getOpcode() == Instruction::PtrToInt)
 | |
|         return U->getOperand(0);
 | |
|       // If we find an add of a constant, a multiplied value, or a phi, it's
 | |
|       // likely that the other operand will lead us to the base
 | |
|       // object. We don't have to worry about the case where the
 | |
|       // object address is somehow being computed by the multiply,
 | |
|       // because our callers only care when the result is an
 | |
|       // identifiable object.
 | |
|       if (U->getOpcode() != Instruction::Add ||
 | |
|           (!isa<ConstantInt>(U->getOperand(1)) &&
 | |
|            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
 | |
|            !isa<PHINode>(U->getOperand(1))))
 | |
|         return V;
 | |
|       V = U->getOperand(0);
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
 | |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static void getUnderlyingObjects(const Value *V,
 | |
|                                  SmallVectorImpl<Value *> &Objects,
 | |
|                                  const DataLayout &DL) {
 | |
|   SmallPtrSet<const Value *, 16> Visited;
 | |
|   SmallVector<const Value *, 4> Working(1, V);
 | |
|   do {
 | |
|     V = Working.pop_back_val();
 | |
| 
 | |
|     SmallVector<Value *, 4> Objs;
 | |
|     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
 | |
| 
 | |
|     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
 | |
|          I != IE; ++I) {
 | |
|       V = *I;
 | |
|       if (!Visited.insert(V).second)
 | |
|         continue;
 | |
|       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
 | |
|         const Value *O =
 | |
|           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | |
|         if (O->getType()->isPointerTy()) {
 | |
|           Working.push_back(O);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       Objects.push_back(const_cast<Value *>(V));
 | |
|     }
 | |
|   } while (!Working.empty());
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
 | |
| /// information and it can be tracked to a normal reference to a known
 | |
| /// object, return the Value for that object.
 | |
| static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
 | |
|                                          const MachineFrameInfo *MFI,
 | |
|                                          UnderlyingObjectsVector &Objects,
 | |
|                                          const DataLayout &DL) {
 | |
|   if (!MI->hasOneMemOperand() ||
 | |
|       (!(*MI->memoperands_begin())->getValue() &&
 | |
|        !(*MI->memoperands_begin())->getPseudoValue()) ||
 | |
|       (*MI->memoperands_begin())->isVolatile())
 | |
|     return;
 | |
| 
 | |
|   if (const PseudoSourceValue *PSV =
 | |
|       (*MI->memoperands_begin())->getPseudoValue()) {
 | |
|     // Function that contain tail calls don't have unique PseudoSourceValue
 | |
|     // objects. Two PseudoSourceValues might refer to the same or overlapping
 | |
|     // locations. The client code calling this function assumes this is not the
 | |
|     // case. So return a conservative answer of no known object.
 | |
|     if (MFI->hasTailCall())
 | |
|       return;
 | |
| 
 | |
|     // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | |
|     // because the code that uses this function has no way to cope with
 | |
|     // such aliases.
 | |
|     if (!PSV->isAliased(MFI)) {
 | |
|       bool MayAlias = PSV->mayAlias(MFI);
 | |
|       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Value *V = (*MI->memoperands_begin())->getValue();
 | |
|   if (!V)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<Value *, 4> Objs;
 | |
|   getUnderlyingObjects(V, Objs, DL);
 | |
| 
 | |
|   for (Value *V : Objs) {
 | |
|     if (!isIdentifiedObject(V)) {
 | |
|       Objects.clear();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
 | |
|   BB = bb;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::finishBlock() {
 | |
|   // Subclasses should no longer refer to the old block.
 | |
|   BB = nullptr;
 | |
| }
 | |
| 
 | |
| /// Initialize the DAG and common scheduler state for the current scheduling
 | |
| /// region. This does not actually create the DAG, only clears it. The
 | |
| /// scheduling driver may call BuildSchedGraph multiple times per scheduling
 | |
| /// region.
 | |
| void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | |
|                                     MachineBasicBlock::iterator begin,
 | |
|                                     MachineBasicBlock::iterator end,
 | |
|                                     unsigned regioninstrs) {
 | |
|   assert(bb == BB && "startBlock should set BB");
 | |
|   RegionBegin = begin;
 | |
|   RegionEnd = end;
 | |
|   NumRegionInstrs = regioninstrs;
 | |
| }
 | |
| 
 | |
| /// Close the current scheduling region. Don't clear any state in case the
 | |
| /// driver wants to refer to the previous scheduling region.
 | |
| void ScheduleDAGInstrs::exitRegion() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| /// addSchedBarrierDeps - Add dependencies from instructions in the current
 | |
| /// list of instructions being scheduled to scheduling barrier by adding
 | |
| /// the exit SU to the register defs and use list. This is because we want to
 | |
| /// make sure instructions which define registers that are either used by
 | |
| /// the terminator or are live-out are properly scheduled. This is
 | |
| /// especially important when the definition latency of the return value(s)
 | |
| /// are too high to be hidden by the branch or when the liveout registers
 | |
| /// used by instructions in the fallthrough block.
 | |
| void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | |
|   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
 | |
|   ExitSU.setInstr(ExitMI);
 | |
|   bool AllDepKnown = ExitMI &&
 | |
|     (ExitMI->isCall() || ExitMI->isBarrier());
 | |
|   if (ExitMI && AllDepKnown) {
 | |
|     // If it's a call or a barrier, add dependencies on the defs and uses of
 | |
|     // instruction.
 | |
|     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = ExitMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isDef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | |
|       else if (MO.readsReg()) // ignore undef operands
 | |
|         addVRegUseDeps(&ExitSU, i);
 | |
|     }
 | |
|   } else {
 | |
|     // For others, e.g. fallthrough, conditional branch, assume the exit
 | |
|     // uses all the registers that are livein to the successor blocks.
 | |
|     assert(Uses.empty() && "Uses in set before adding deps?");
 | |
|     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|            SE = BB->succ_end(); SI != SE; ++SI)
 | |
|       for (const auto &LI : (*SI)->liveins()) {
 | |
|         if (!Uses.contains(LI.PhysReg))
 | |
|           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MO is an operand of SU's instruction that defines a physical register. Add
 | |
| /// data dependencies from SU to any uses of the physical register.
 | |
| void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
 | |
|   assert(MO.isDef() && "expect physreg def");
 | |
| 
 | |
|   // Ask the target if address-backscheduling is desirable, and if so how much.
 | |
|   const TargetSubtargetInfo &ST = MF.getSubtarget();
 | |
| 
 | |
|   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | |
|        Alias.isValid(); ++Alias) {
 | |
|     if (!Uses.contains(*Alias))
 | |
|       continue;
 | |
|     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
 | |
|       SUnit *UseSU = I->SU;
 | |
|       if (UseSU == SU)
 | |
|         continue;
 | |
| 
 | |
|       // Adjust the dependence latency using operand def/use information,
 | |
|       // then allow the target to perform its own adjustments.
 | |
|       int UseOp = I->OpIdx;
 | |
|       MachineInstr *RegUse = nullptr;
 | |
|       SDep Dep;
 | |
|       if (UseOp < 0)
 | |
|         Dep = SDep(SU, SDep::Artificial);
 | |
|       else {
 | |
|         // Set the hasPhysRegDefs only for physreg defs that have a use within
 | |
|         // the scheduling region.
 | |
|         SU->hasPhysRegDefs = true;
 | |
|         Dep = SDep(SU, SDep::Data, *Alias);
 | |
|         RegUse = UseSU->getInstr();
 | |
|       }
 | |
|       Dep.setLatency(
 | |
|         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
 | |
|                                          UseOp));
 | |
| 
 | |
|       ST.adjustSchedDependency(SU, UseSU, Dep);
 | |
|       UseSU->addPred(Dep);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | |
| /// this SUnit to following instructions in the same scheduling region that
 | |
| /// depend the physical register referenced at OperIdx.
 | |
| void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
|   MachineOperand &MO = MI->getOperand(OperIdx);
 | |
| 
 | |
|   // Optionally add output and anti dependencies. For anti
 | |
|   // dependencies we use a latency of 0 because for a multi-issue
 | |
|   // target we want to allow the defining instruction to issue
 | |
|   // in the same cycle as the using instruction.
 | |
|   // TODO: Using a latency of 1 here for output dependencies assumes
 | |
|   //       there's no cost for reusing registers.
 | |
|   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | |
|   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | |
|        Alias.isValid(); ++Alias) {
 | |
|     if (!Defs.contains(*Alias))
 | |
|       continue;
 | |
|     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
 | |
|       SUnit *DefSU = I->SU;
 | |
|       if (DefSU == &ExitSU)
 | |
|         continue;
 | |
|       if (DefSU != SU &&
 | |
|           (Kind != SDep::Output || !MO.isDead() ||
 | |
|            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | |
|         if (Kind == SDep::Anti)
 | |
|           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
 | |
|         else {
 | |
|           SDep Dep(SU, Kind, /*Reg=*/*Alias);
 | |
|           Dep.setLatency(
 | |
|             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | |
|           DefSU->addPred(Dep);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MO.isDef()) {
 | |
|     SU->hasPhysRegUses = true;
 | |
|     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | |
|     // retrieve the existing SUnits list for this register's uses.
 | |
|     // Push this SUnit on the use list.
 | |
|     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
 | |
|     if (RemoveKillFlags)
 | |
|       MO.setIsKill(false);
 | |
|   }
 | |
|   else {
 | |
|     addPhysRegDataDeps(SU, OperIdx);
 | |
|     unsigned Reg = MO.getReg();
 | |
| 
 | |
|     // clear this register's use list
 | |
|     if (Uses.contains(Reg))
 | |
|       Uses.eraseAll(Reg);
 | |
| 
 | |
|     if (!MO.isDead()) {
 | |
|       Defs.eraseAll(Reg);
 | |
|     } else if (SU->isCall) {
 | |
|       // Calls will not be reordered because of chain dependencies (see
 | |
|       // below). Since call operands are dead, calls may continue to be added
 | |
|       // to the DefList making dependence checking quadratic in the size of
 | |
|       // the block. Instead, we leave only one call at the back of the
 | |
|       // DefList.
 | |
|       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
 | |
|       Reg2SUnitsMap::iterator B = P.first;
 | |
|       Reg2SUnitsMap::iterator I = P.second;
 | |
|       for (bool isBegin = I == B; !isBegin; /* empty */) {
 | |
|         isBegin = (--I) == B;
 | |
|         if (!I->SU->isCall)
 | |
|           break;
 | |
|         I = Defs.erase(I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Defs are pushed in the order they are visited and never reordered.
 | |
|     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
 | |
|   }
 | |
| }
 | |
| 
 | |
| LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
 | |
| {
 | |
|   unsigned Reg = MO.getReg();
 | |
|   // No point in tracking lanemasks if we don't have interesting subregisters.
 | |
|   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
 | |
|   if (!RC.HasDisjunctSubRegs)
 | |
|     return ~0u;
 | |
| 
 | |
|   unsigned SubReg = MO.getSubReg();
 | |
|   if (SubReg == 0)
 | |
|     return RC.getLaneMask();
 | |
|   return TRI->getSubRegIndexLaneMask(SubReg);
 | |
| }
 | |
| 
 | |
| /// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | |
| /// to instructions that occur later in the same scheduling region if they read
 | |
| /// from or write to the virtual register defined at OperIdx.
 | |
| ///
 | |
| /// TODO: Hoist loop induction variable increments. This has to be
 | |
| /// reevaluated. Generally, IV scheduling should be done before coalescing.
 | |
| void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
|   MachineOperand &MO = MI->getOperand(OperIdx);
 | |
|   unsigned Reg = MO.getReg();
 | |
| 
 | |
|   LaneBitmask DefLaneMask;
 | |
|   LaneBitmask KillLaneMask;
 | |
|   if (TrackLaneMasks) {
 | |
|     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
 | |
|     DefLaneMask = getLaneMaskForMO(MO);
 | |
|     // If we have a <read-undef> flag, none of the lane values comes from an
 | |
|     // earlier instruction.
 | |
|     KillLaneMask = IsKill ? ~0u : DefLaneMask;
 | |
| 
 | |
|     // Clear undef flag, we'll re-add it later once we know which subregister
 | |
|     // Def is first.
 | |
|     MO.setIsUndef(false);
 | |
|   } else {
 | |
|     DefLaneMask = ~0u;
 | |
|     KillLaneMask = ~0u;
 | |
|   }
 | |
| 
 | |
|   if (MO.isDead()) {
 | |
|     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
 | |
|            "Dead defs should have no uses");
 | |
|   } else {
 | |
|     // Add data dependence to all uses we found so far.
 | |
|     const TargetSubtargetInfo &ST = MF.getSubtarget();
 | |
|     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
 | |
|          E = CurrentVRegUses.end(); I != E; /*empty*/) {
 | |
|       LaneBitmask LaneMask = I->LaneMask;
 | |
|       // Ignore uses of other lanes.
 | |
|       if ((LaneMask & KillLaneMask) == 0) {
 | |
|         ++I;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if ((LaneMask & DefLaneMask) != 0) {
 | |
|         SUnit *UseSU = I->SU;
 | |
|         MachineInstr *Use = UseSU->getInstr();
 | |
|         SDep Dep(SU, SDep::Data, Reg);
 | |
|         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
 | |
|                                                         I->OperandIndex));
 | |
|         ST.adjustSchedDependency(SU, UseSU, Dep);
 | |
|         UseSU->addPred(Dep);
 | |
|       }
 | |
| 
 | |
|       LaneMask &= ~KillLaneMask;
 | |
|       // If we found a Def for all lanes of this use, remove it from the list.
 | |
|       if (LaneMask != 0) {
 | |
|         I->LaneMask = LaneMask;
 | |
|         ++I;
 | |
|       } else
 | |
|         I = CurrentVRegUses.erase(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Shortcut: Singly defined vregs do not have output/anti dependencies.
 | |
|   if (MRI.hasOneDef(Reg))
 | |
|     return;
 | |
| 
 | |
|   // Add output dependence to the next nearest defs of this vreg.
 | |
|   //
 | |
|   // Unless this definition is dead, the output dependence should be
 | |
|   // transitively redundant with antidependencies from this definition's
 | |
|   // uses. We're conservative for now until we have a way to guarantee the uses
 | |
|   // are not eliminated sometime during scheduling. The output dependence edge
 | |
|   // is also useful if output latency exceeds def-use latency.
 | |
|   LaneBitmask LaneMask = DefLaneMask;
 | |
|   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
 | |
|                                      CurrentVRegDefs.end())) {
 | |
|     // Ignore defs for other lanes.
 | |
|     if ((V2SU.LaneMask & LaneMask) == 0)
 | |
|       continue;
 | |
|     // Add an output dependence.
 | |
|     SUnit *DefSU = V2SU.SU;
 | |
|     // Ignore additional defs of the same lanes in one instruction. This can
 | |
|     // happen because lanemasks are shared for targets with too many
 | |
|     // subregisters. We also use some representration tricks/hacks where we
 | |
|     // add super-register defs/uses, to imply that although we only access parts
 | |
|     // of the reg we care about the full one.
 | |
|     if (DefSU == SU)
 | |
|       continue;
 | |
|     SDep Dep(SU, SDep::Output, Reg);
 | |
|     Dep.setLatency(
 | |
|       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | |
|     DefSU->addPred(Dep);
 | |
| 
 | |
|     // Update current definition. This can get tricky if the def was about a
 | |
|     // bigger lanemask before. We then have to shrink it and create a new
 | |
|     // VReg2SUnit for the non-overlapping part.
 | |
|     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
 | |
|     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
 | |
|     if (NonOverlapMask != 0)
 | |
|       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
 | |
|     V2SU.SU = SU;
 | |
|     V2SU.LaneMask = OverlapMask;
 | |
|   }
 | |
|   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
 | |
|   if (LaneMask != 0)
 | |
|     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
 | |
| }
 | |
| 
 | |
| /// addVRegUseDeps - Add a register data dependency if the instruction that
 | |
| /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
 | |
| /// register antidependency from this SUnit to instructions that occur later in
 | |
| /// the same scheduling region if they write the virtual register.
 | |
| ///
 | |
| /// TODO: Handle ExitSU "uses" properly.
 | |
| void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   const MachineOperand &MO = MI->getOperand(OperIdx);
 | |
|   unsigned Reg = MO.getReg();
 | |
| 
 | |
|   // Remember the use. Data dependencies will be added when we find the def.
 | |
|   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
 | |
|   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
 | |
| 
 | |
|   // Add antidependences to the following defs of the vreg.
 | |
|   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
 | |
|                                      CurrentVRegDefs.end())) {
 | |
|     // Ignore defs for unrelated lanes.
 | |
|     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
 | |
|     if ((PrevDefLaneMask & LaneMask) == 0)
 | |
|       continue;
 | |
|     if (V2SU.SU == SU)
 | |
|       continue;
 | |
| 
 | |
|     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if MI is an instruction we are unable to reason about
 | |
| /// (like a call or something with unmodeled side effects).
 | |
| static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
 | |
|   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | |
|          (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
 | |
| }
 | |
| 
 | |
| /// This returns true if the two MIs need a chain edge between them.
 | |
| /// This is called on normal stores and loads.
 | |
| static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | |
|                              const DataLayout &DL, MachineInstr *MIa,
 | |
|                              MachineInstr *MIb) {
 | |
|   const MachineFunction *MF = MIa->getParent()->getParent();
 | |
|   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   assert ((MIa->mayStore() || MIb->mayStore()) &&
 | |
|           "Dependency checked between two loads");
 | |
| 
 | |
|   // Let the target decide if memory accesses cannot possibly overlap.
 | |
|   if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
 | |
|     return false;
 | |
| 
 | |
|   // To this point analysis is generic. From here on we do need AA.
 | |
|   if (!AA)
 | |
|     return true;
 | |
| 
 | |
|   // FIXME: Need to handle multiple memory operands to support all targets.
 | |
|   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
 | |
|     return true;
 | |
| 
 | |
|   MachineMemOperand *MMOa = *MIa->memoperands_begin();
 | |
|   MachineMemOperand *MMOb = *MIb->memoperands_begin();
 | |
| 
 | |
|   if (!MMOa->getValue() || !MMOb->getValue())
 | |
|     return true;
 | |
| 
 | |
|   // The following interface to AA is fashioned after DAGCombiner::isAlias
 | |
|   // and operates with MachineMemOperand offset with some important
 | |
|   // assumptions:
 | |
|   //   - LLVM fundamentally assumes flat address spaces.
 | |
|   //   - MachineOperand offset can *only* result from legalization and
 | |
|   //     cannot affect queries other than the trivial case of overlap
 | |
|   //     checking.
 | |
|   //   - These offsets never wrap and never step outside
 | |
|   //     of allocated objects.
 | |
|   //   - There should never be any negative offsets here.
 | |
|   //
 | |
|   // FIXME: Modify API to hide this math from "user"
 | |
|   // FIXME: Even before we go to AA we can reason locally about some
 | |
|   // memory objects. It can save compile time, and possibly catch some
 | |
|   // corner cases not currently covered.
 | |
| 
 | |
|   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | |
|   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | |
| 
 | |
|   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
 | |
|   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
 | |
|   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
 | |
| 
 | |
|   AliasResult AAResult =
 | |
|       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
 | |
|                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
 | |
|                 MemoryLocation(MMOb->getValue(), Overlapb,
 | |
|                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
 | |
| 
 | |
|   return (AAResult != NoAlias);
 | |
| }
 | |
| 
 | |
| /// Check whether two objects need a chain edge and add it if needed.
 | |
| void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
 | |
|                                             unsigned Latency) {
 | |
|   if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
 | |
| 		       SUb->getInstr())) {
 | |
|     SDep Dep(SUa, SDep::MayAliasMem);
 | |
|     Dep.setLatency(Latency);
 | |
|     SUb->addPred(Dep);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create an SUnit for each real instruction, numbered in top-down topological
 | |
| /// order. The instruction order A < B, implies that no edge exists from B to A.
 | |
| ///
 | |
| /// Map each real instruction to its SUnit.
 | |
| ///
 | |
| /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | |
| /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | |
| /// instead of pointers.
 | |
| ///
 | |
| /// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | |
| /// the original instruction list.
 | |
| void ScheduleDAGInstrs::initSUnits() {
 | |
|   // We'll be allocating one SUnit for each real instruction in the region,
 | |
|   // which is contained within a basic block.
 | |
|   SUnits.reserve(NumRegionInstrs);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
 | |
|     MachineInstr *MI = I;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     SUnit *SU = newSUnit(MI);
 | |
|     MISUnitMap[MI] = SU;
 | |
| 
 | |
|     SU->isCall = MI->isCall();
 | |
|     SU->isCommutable = MI->isCommutable();
 | |
| 
 | |
|     // Assign the Latency field of SU using target-provided information.
 | |
|     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
 | |
| 
 | |
|     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
 | |
|     //
 | |
|     // Reserved resources block an instruction from issuing and stall the
 | |
|     // entire pipeline. These are identified by BufferSize=0.
 | |
|     //
 | |
|     // Unbuffered resources prevent execution of subsequent instructions that
 | |
|     // require the same resources. This is used for in-order execution pipelines
 | |
|     // within an out-of-order core. These are identified by BufferSize=1.
 | |
|     if (SchedModel.hasInstrSchedModel()) {
 | |
|       const MCSchedClassDesc *SC = getSchedClass(SU);
 | |
|       for (TargetSchedModel::ProcResIter
 | |
|              PI = SchedModel.getWriteProcResBegin(SC),
 | |
|              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
 | |
|         case 0:
 | |
|           SU->hasReservedResource = true;
 | |
|           break;
 | |
|         case 1:
 | |
|           SU->isUnbuffered = true;
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (!MO.readsReg())
 | |
|       continue;
 | |
|     if (TrackLaneMasks && !MO.isUse())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore re-defs.
 | |
|     if (TrackLaneMasks) {
 | |
|       bool FoundDef = false;
 | |
|       for (const MachineOperand &MO2 : MI->operands()) {
 | |
|         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
 | |
|           FoundDef = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (FoundDef)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Record this local VReg use.
 | |
|     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
 | |
|     for (; UI != VRegUses.end(); ++UI) {
 | |
|       if (UI->SU == SU)
 | |
|         break;
 | |
|     }
 | |
|     if (UI == VRegUses.end())
 | |
|       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
 | |
| 
 | |
|   /// Current total number of SUs in map.
 | |
|   unsigned NumNodes;
 | |
| 
 | |
|   /// 1 for loads, 0 for stores. (see comment in SUList)
 | |
|   unsigned TrueMemOrderLatency;
 | |
| public:
 | |
| 
 | |
|   Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
 | |
| 
 | |
|   /// To keep NumNodes up to date, insert() is used instead of
 | |
|   /// this operator w/ push_back().
 | |
|   ValueType &operator[](const SUList &Key) {
 | |
|     llvm_unreachable("Don't use. Use insert() instead."); };
 | |
| 
 | |
|   /// Add SU to the SUList of V. If Map grows huge, reduce its size
 | |
|   /// by calling reduce().
 | |
|   void inline insert(SUnit *SU, ValueType V) {
 | |
|     MapVector::operator[](V).push_back(SU);
 | |
|     NumNodes++;
 | |
|   }
 | |
| 
 | |
|   /// Clears the list of SUs mapped to V.
 | |
|   void inline clearList(ValueType V) {
 | |
|     iterator Itr = find(V);
 | |
|     if (Itr != end()) {
 | |
|       assert (NumNodes >= Itr->second.size());
 | |
|       NumNodes -= Itr->second.size();
 | |
| 
 | |
|       Itr->second.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Clears map from all contents.
 | |
|   void clear() {
 | |
|     MapVector<ValueType, SUList>::clear();
 | |
|     NumNodes = 0;
 | |
|   }
 | |
| 
 | |
|   unsigned inline size() const { return NumNodes; }
 | |
| 
 | |
|   /// Count the number of SUs in this map after a reduction.
 | |
|   void reComputeSize(void) {
 | |
|     NumNodes = 0;
 | |
|     for (auto &I : *this)
 | |
|       NumNodes += I.second.size();
 | |
|   }
 | |
| 
 | |
|   unsigned inline getTrueMemOrderLatency() const {
 | |
|     return TrueMemOrderLatency;
 | |
|   }
 | |
| 
 | |
|   void dump();
 | |
| };
 | |
| 
 | |
| void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
 | |
|                                              Value2SUsMap &Val2SUsMap) {
 | |
|   for (auto &I : Val2SUsMap)
 | |
|     addChainDependencies(SU, I.second,
 | |
|                          Val2SUsMap.getTrueMemOrderLatency());
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
 | |
|                                              Value2SUsMap &Val2SUsMap,
 | |
|                                              ValueType V) {
 | |
|   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
 | |
|   if (Itr != Val2SUsMap.end())
 | |
|     addChainDependencies(SU, Itr->second,
 | |
|                          Val2SUsMap.getTrueMemOrderLatency());
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
 | |
|   assert (BarrierChain != nullptr);
 | |
| 
 | |
|   for (auto &I : map) {
 | |
|     SUList &sus = I.second;
 | |
|     for (auto *SU : sus)
 | |
|       SU->addPredBarrier(BarrierChain);
 | |
|   }
 | |
|   map.clear();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
 | |
|   assert (BarrierChain != nullptr);
 | |
| 
 | |
|   // Go through all lists of SUs.
 | |
|   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
 | |
|     Value2SUsMap::iterator CurrItr = I++;
 | |
|     SUList &sus = CurrItr->second;
 | |
|     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
 | |
|     for (; SUItr != SUEE; ++SUItr) {
 | |
|       // Stop on BarrierChain or any instruction above it.
 | |
|       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
 | |
|         break;
 | |
| 
 | |
|       (*SUItr)->addPredBarrier(BarrierChain);
 | |
|     }
 | |
| 
 | |
|     // Remove also the BarrierChain from list if present.
 | |
|     if (*SUItr == BarrierChain)
 | |
|       SUItr++;
 | |
| 
 | |
|     // Remove all SUs that are now successors of BarrierChain.
 | |
|     if (SUItr != sus.begin())
 | |
|       sus.erase(sus.begin(), SUItr);
 | |
|   }
 | |
| 
 | |
|   // Remove all entries with empty su lists.
 | |
|   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
 | |
|       return (mapEntry.second.empty()); });
 | |
| 
 | |
|   // Recompute the size of the map (NumNodes).
 | |
|   map.reComputeSize();
 | |
| }
 | |
| 
 | |
| /// If RegPressure is non-null, compute register pressure as a side effect. The
 | |
| /// DAG builder is an efficient place to do it because it already visits
 | |
| /// operands.
 | |
| void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
 | |
|                                         RegPressureTracker *RPTracker,
 | |
|                                         PressureDiffs *PDiffs,
 | |
|                                         LiveIntervals *LIS,
 | |
|                                         bool TrackLaneMasks) {
 | |
|   const TargetSubtargetInfo &ST = MF.getSubtarget();
 | |
|   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
 | |
|                                                        : ST.useAA();
 | |
|   AAForDep = UseAA ? AA : nullptr;
 | |
| 
 | |
|   BarrierChain = nullptr;
 | |
| 
 | |
|   this->TrackLaneMasks = TrackLaneMasks;
 | |
|   MISUnitMap.clear();
 | |
|   ScheduleDAG::clearDAG();
 | |
| 
 | |
|   // Create an SUnit for each real instruction.
 | |
|   initSUnits();
 | |
| 
 | |
|   if (PDiffs)
 | |
|     PDiffs->init(SUnits.size());
 | |
| 
 | |
|   // We build scheduling units by walking a block's instruction list
 | |
|   // from bottom to top.
 | |
| 
 | |
|   // Each MIs' memory operand(s) is analyzed to a list of underlying
 | |
|   // objects. The SU is then inserted in the SUList(s) mapped from the
 | |
|   // Value(s). Each Value thus gets mapped to lists of SUs depending
 | |
|   // on it, stores and loads kept separately. Two SUs are trivially
 | |
|   // non-aliasing if they both depend on only identified Values and do
 | |
|   // not share any common Value.
 | |
|   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
 | |
| 
 | |
|   // Certain memory accesses are known to not alias any SU in Stores
 | |
|   // or Loads, and have therefore their own 'NonAlias'
 | |
|   // domain. E.g. spill / reload instructions never alias LLVM I/R
 | |
|   // Values. It would be nice to assume that this type of memory
 | |
|   // accesses always have a proper memory operand modelling, and are
 | |
|   // therefore never unanalyzable, but this is conservatively not
 | |
|   // done.
 | |
|   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
 | |
| 
 | |
|   // Always reduce a huge region with half of the elements, except
 | |
|   // when user sets this number explicitly.
 | |
|   if (ReductionSize.getNumOccurrences() == 0)
 | |
|     ReductionSize = (HugeRegion / 2);
 | |
| 
 | |
|   // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | |
|   // without emitting the info from the previous call.
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = nullptr;
 | |
| 
 | |
|   assert(Defs.empty() && Uses.empty() &&
 | |
|          "Only BuildGraph should update Defs/Uses");
 | |
|   Defs.setUniverse(TRI->getNumRegs());
 | |
|   Uses.setUniverse(TRI->getNumRegs());
 | |
| 
 | |
|   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
 | |
|   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
 | |
|   unsigned NumVirtRegs = MRI.getNumVirtRegs();
 | |
|   CurrentVRegDefs.setUniverse(NumVirtRegs);
 | |
|   CurrentVRegUses.setUniverse(NumVirtRegs);
 | |
| 
 | |
|   VRegUses.clear();
 | |
|   VRegUses.setUniverse(NumVirtRegs);
 | |
| 
 | |
|   // Model data dependencies between instructions being scheduled and the
 | |
|   // ExitSU.
 | |
|   addSchedBarrierDeps();
 | |
| 
 | |
|   // Walk the list of instructions, from bottom moving up.
 | |
|   MachineInstr *DbgMI = nullptr;
 | |
|   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr *MI = std::prev(MII);
 | |
|     if (MI && DbgMI) {
 | |
|       DbgValues.push_back(std::make_pair(DbgMI, MI));
 | |
|       DbgMI = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (MI->isDebugValue()) {
 | |
|       DbgMI = MI;
 | |
|       continue;
 | |
|     }
 | |
|     SUnit *SU = MISUnitMap[MI];
 | |
|     assert(SU && "No SUnit mapped to this MI");
 | |
| 
 | |
|     if (RPTracker) {
 | |
|       collectVRegUses(SU);
 | |
| 
 | |
|       RegisterOperands RegOpers;
 | |
|       RegOpers.collect(*MI, *TRI, MRI, TrackLaneMasks, false);
 | |
|       if (TrackLaneMasks) {
 | |
|         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI);
 | |
|         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
 | |
|       }
 | |
|       if (PDiffs != nullptr)
 | |
|         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
 | |
| 
 | |
|       RPTracker->recedeSkipDebugValues();
 | |
|       assert(&*RPTracker->getPos() == MI && "RPTracker in sync");
 | |
|       RPTracker->recede(RegOpers);
 | |
|     }
 | |
| 
 | |
|     assert(
 | |
|         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
 | |
|         "Cannot schedule terminators or labels!");
 | |
| 
 | |
|     // Add register-based dependencies (data, anti, and output).
 | |
|     bool HasVRegDef = false;
 | |
|     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | |
|       const MachineOperand &MO = MI->getOperand(j);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         addPhysRegDeps(SU, j);
 | |
|       else {
 | |
|         if (MO.isDef()) {
 | |
|           HasVRegDef = true;
 | |
|           addVRegDefDeps(SU, j);
 | |
|         }
 | |
|         else if (MO.readsReg()) // ignore undef operands
 | |
|           addVRegUseDeps(SU, j);
 | |
|       }
 | |
|     }
 | |
|     // If we haven't seen any uses in this scheduling region, create a
 | |
|     // dependence edge to ExitSU to model the live-out latency. This is required
 | |
|     // for vreg defs with no in-region use, and prefetches with no vreg def.
 | |
|     //
 | |
|     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
 | |
|     // check currently relies on being called before adding chain deps.
 | |
|     if (SU->NumSuccs == 0 && SU->Latency > 1
 | |
|         && (HasVRegDef || MI->mayLoad())) {
 | |
|       SDep Dep(SU, SDep::Artificial);
 | |
|       Dep.setLatency(SU->Latency - 1);
 | |
|       ExitSU.addPred(Dep);
 | |
|     }
 | |
| 
 | |
|     // Add memory dependencies (Note: isStoreToStackSlot and
 | |
|     // isLoadFromStackSLot are not usable after stack slots are lowered to
 | |
|     // actual addresses).
 | |
| 
 | |
|     // This is a barrier event that acts as a pivotal node in the DAG.
 | |
|     if (isGlobalMemoryObject(AA, MI)) {
 | |
| 
 | |
|       // Become the barrier chain.
 | |
|       if (BarrierChain)
 | |
|         BarrierChain->addPredBarrier(SU);
 | |
|       BarrierChain = SU;
 | |
| 
 | |
|       DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
 | |
|             << BarrierChain->NodeNum << ").\n";);
 | |
| 
 | |
|       // Add dependencies against everything below it and clear maps.
 | |
|       addBarrierChain(Stores);
 | |
|       addBarrierChain(Loads);
 | |
|       addBarrierChain(NonAliasStores);
 | |
|       addBarrierChain(NonAliasLoads);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If it's not a store or a variant load, we're done.
 | |
|     if (!MI->mayStore() && !(MI->mayLoad() && !MI->isInvariantLoad(AA)))
 | |
|       continue;
 | |
| 
 | |
|     // Always add dependecy edge to BarrierChain if present.
 | |
|     if (BarrierChain)
 | |
|       BarrierChain->addPredBarrier(SU);
 | |
| 
 | |
|     // Find the underlying objects for MI. The Objs vector is either
 | |
|     // empty, or filled with the Values of memory locations which this
 | |
|     // SU depends on. An empty vector means the memory location is
 | |
|     // unknown, and may alias anything.
 | |
|     UnderlyingObjectsVector Objs;
 | |
|     getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
 | |
| 
 | |
|     if (MI->mayStore()) {
 | |
|       if (Objs.empty()) {
 | |
|         // An unknown store depends on all stores and loads.
 | |
|         addChainDependencies(SU, Stores);
 | |
|         addChainDependencies(SU, NonAliasStores);
 | |
|         addChainDependencies(SU, Loads);
 | |
|         addChainDependencies(SU, NonAliasLoads);
 | |
| 
 | |
|         // Map this store to 'UnknownValue'.
 | |
|         Stores.insert(SU, UnknownValue);
 | |
|       } else {
 | |
|         // Add precise dependencies against all previously seen memory
 | |
|         // accesses mapped to the same Value(s).
 | |
|         for (auto &underlObj : Objs) {
 | |
|           ValueType V = underlObj.getPointer();
 | |
|           bool ThisMayAlias = underlObj.getInt();
 | |
| 
 | |
|           Value2SUsMap &stores_ = (ThisMayAlias ? Stores : NonAliasStores);
 | |
| 
 | |
|           // Add dependencies to previous stores and loads mapped to V.
 | |
|           addChainDependencies(SU, stores_, V);
 | |
|           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
 | |
| 
 | |
|           // Map this store to V.
 | |
|           stores_.insert(SU, V);
 | |
|         }
 | |
|         // The store may have dependencies to unanalyzable loads and
 | |
|         // stores.
 | |
|         addChainDependencies(SU, Loads, UnknownValue);
 | |
|         addChainDependencies(SU, Stores, UnknownValue);
 | |
|       }
 | |
|     } else { // SU is a load.
 | |
|       if (Objs.empty()) {
 | |
|         // An unknown load depends on all stores.
 | |
|         addChainDependencies(SU, Stores);
 | |
|         addChainDependencies(SU, NonAliasStores);
 | |
| 
 | |
|         Loads.insert(SU, UnknownValue);
 | |
|       } else {
 | |
|         for (auto &underlObj : Objs) {
 | |
|           ValueType V = underlObj.getPointer();
 | |
|           bool ThisMayAlias = underlObj.getInt();
 | |
| 
 | |
|           // Add precise dependencies against all previously seen stores
 | |
|           // mapping to the same Value(s).
 | |
|           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
 | |
| 
 | |
|           // Map this load to V.
 | |
|           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
 | |
|         }
 | |
|         // The load may have dependencies to unanalyzable stores.
 | |
|         addChainDependencies(SU, Stores, UnknownValue);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Reduce maps if they grow huge.
 | |
|     if (Stores.size() + Loads.size() >= HugeRegion) {
 | |
|       DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
 | |
|       reduceHugeMemNodeMaps(Stores, Loads, ReductionSize);
 | |
|     }
 | |
|     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
 | |
|       DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
 | |
|       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, ReductionSize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DbgMI)
 | |
|     FirstDbgValue = DbgMI;
 | |
| 
 | |
|   Defs.clear();
 | |
|   Uses.clear();
 | |
|   CurrentVRegDefs.clear();
 | |
|   CurrentVRegUses.clear();
 | |
| }
 | |
| 
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
 | |
|   PSV->printCustom(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::Value2SUsMap::dump() {
 | |
|   for (auto &Itr : *this) {
 | |
|     if (Itr.first.is<const Value*>()) {
 | |
|       const Value *V = Itr.first.get<const Value*>();
 | |
|       if (isa<UndefValue>(V))
 | |
|         dbgs() << "Unknown";
 | |
|       else
 | |
|         V->printAsOperand(dbgs());
 | |
|     }
 | |
|     else if (Itr.first.is<const PseudoSourceValue*>())
 | |
|       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
 | |
|     else
 | |
|       llvm_unreachable("Unknown Value type.");
 | |
| 
 | |
|     dbgs() << " : ";
 | |
|     dumpSUList(Itr.second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Reduce maps in FIFO order, by N SUs. This is better than turning
 | |
| /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
 | |
| /// it avoids unnecessary edges between seen SUs above the new
 | |
| /// BarrierChain, and those below it.
 | |
| void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
 | |
|                                               Value2SUsMap &loads, unsigned N) {
 | |
|   DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
 | |
|         stores.dump();
 | |
|         dbgs() << "Loading SUnits:\n";
 | |
|         loads.dump());
 | |
| 
 | |
|   // Insert all SU's NodeNums into a vector and sort it.
 | |
|   std::vector<unsigned> NodeNums;
 | |
|   NodeNums.reserve(stores.size() + loads.size());
 | |
|   for (auto &I : stores)
 | |
|     for (auto *SU : I.second)
 | |
|       NodeNums.push_back(SU->NodeNum);
 | |
|   for (auto &I : loads)
 | |
|     for (auto *SU : I.second)
 | |
|       NodeNums.push_back(SU->NodeNum);
 | |
|   std::sort(NodeNums.begin(), NodeNums.end());
 | |
| 
 | |
|   // The N last elements in NodeNums will be removed, and the SU with
 | |
|   // the lowest NodeNum of them will become the new BarrierChain to
 | |
|   // let the not yet seen SUs have a dependency to the removed SUs.
 | |
|   assert (N <= NodeNums.size());
 | |
|   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
 | |
|   if (BarrierChain) {
 | |
|     // The aliasing and non-aliasing maps reduce independently of each
 | |
|     // other, but share a common BarrierChain. Check if the
 | |
|     // newBarrierChain is above the former one. If it is not, it may
 | |
|     // introduce a loop to use newBarrierChain, so keep the old one.
 | |
|     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
 | |
|       BarrierChain->addPredBarrier(newBarrierChain);
 | |
|       BarrierChain = newBarrierChain;
 | |
|       DEBUG(dbgs() << "Inserting new barrier chain: SU("
 | |
|             << BarrierChain->NodeNum << ").\n";);
 | |
|     }
 | |
|     else
 | |
|       DEBUG(dbgs() << "Keeping old barrier chain: SU("
 | |
|             << BarrierChain->NodeNum << ").\n";);
 | |
|   }
 | |
|   else
 | |
|     BarrierChain = newBarrierChain;
 | |
| 
 | |
|   insertBarrierChain(stores);
 | |
|   insertBarrierChain(loads);
 | |
| 
 | |
|   DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
 | |
|         stores.dump();
 | |
|         dbgs() << "Loading SUnits:\n";
 | |
|         loads.dump());
 | |
| }
 | |
| 
 | |
| /// \brief Initialize register live-range state for updating kills.
 | |
| void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
 | |
|   // Start with no live registers.
 | |
|   LiveRegs.reset();
 | |
| 
 | |
|   // Examine the live-in regs of all successors.
 | |
|   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|        SE = BB->succ_end(); SI != SE; ++SI) {
 | |
|     for (const auto &LI : (*SI)->liveins()) {
 | |
|       // Repeat, for reg and all subregs.
 | |
|       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
 | |
|            SubRegs.isValid(); ++SubRegs)
 | |
|         LiveRegs.set(*SubRegs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief If we change a kill flag on the bundle instruction implicit register
 | |
| /// operands, then we also need to propagate that to any instructions inside
 | |
| /// the bundle which had the same kill state.
 | |
| static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
 | |
|                                  bool NewKillState) {
 | |
|   if (MI->getOpcode() != TargetOpcode::BUNDLE)
 | |
|     return;
 | |
| 
 | |
|   // Walk backwards from the last instruction in the bundle to the first.
 | |
|   // Once we set a kill flag on an instruction, we bail out, as otherwise we
 | |
|   // might set it on too many operands.  We will clear as many flags as we
 | |
|   // can though.
 | |
|   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
 | |
|   MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
 | |
|   while (Begin != End) {
 | |
|     for (MachineOperand &MO : (--End)->operands()) {
 | |
|       if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
 | |
|         continue;
 | |
| 
 | |
|       // DEBUG_VALUE nodes do not contribute to code generation and should
 | |
|       // always be ignored.  Failure to do so may result in trying to modify
 | |
|       // KILL flags on DEBUG_VALUE nodes, which is distressing.
 | |
|       if (MO.isDebug())
 | |
|         continue;
 | |
| 
 | |
|       // If the register has the internal flag then it could be killing an
 | |
|       // internal def of the register.  In this case, just skip.  We only want
 | |
|       // to toggle the flag on operands visible outside the bundle.
 | |
|       if (MO.isInternalRead())
 | |
|         continue;
 | |
| 
 | |
|       if (MO.isKill() == NewKillState)
 | |
|         continue;
 | |
|       MO.setIsKill(NewKillState);
 | |
|       if (NewKillState)
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
 | |
|   // Setting kill flag...
 | |
|   if (!MO.isKill()) {
 | |
|     MO.setIsKill(true);
 | |
|     toggleBundleKillFlag(MI, MO.getReg(), true);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If MO itself is live, clear the kill flag...
 | |
|   if (LiveRegs.test(MO.getReg())) {
 | |
|     MO.setIsKill(false);
 | |
|     toggleBundleKillFlag(MI, MO.getReg(), false);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If any subreg of MO is live, then create an imp-def for that
 | |
|   // subreg and keep MO marked as killed.
 | |
|   MO.setIsKill(false);
 | |
|   toggleBundleKillFlag(MI, MO.getReg(), false);
 | |
|   bool AllDead = true;
 | |
|   const unsigned SuperReg = MO.getReg();
 | |
|   MachineInstrBuilder MIB(MF, MI);
 | |
|   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
 | |
|     if (LiveRegs.test(*SubRegs)) {
 | |
|       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
 | |
|       AllDead = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(AllDead) {
 | |
|     MO.setIsKill(true);
 | |
|     toggleBundleKillFlag(MI, MO.getReg(), true);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FIXME: Reuse the LivePhysRegs utility for this.
 | |
| void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
 | |
| 
 | |
|   LiveRegs.resize(TRI->getNumRegs());
 | |
|   BitVector killedRegs(TRI->getNumRegs());
 | |
| 
 | |
|   startBlockForKills(MBB);
 | |
| 
 | |
|   // Examine block from end to start...
 | |
|   unsigned Count = MBB->size();
 | |
|   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
 | |
|        I != E; --Count) {
 | |
|     MachineInstr *MI = --I;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     // Update liveness.  Registers that are defed but not used in this
 | |
|     // instruction are now dead. Mark register and all subregs as they
 | |
|     // are completely defined.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isRegMask())
 | |
|         LiveRegs.clearBitsNotInMask(MO.getRegMask());
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
|       if (!MO.isDef()) continue;
 | |
|       // Ignore two-addr defs.
 | |
|       if (MI->isRegTiedToUseOperand(i)) continue;
 | |
| 
 | |
|       // Repeat for reg and all subregs.
 | |
|       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|            SubRegs.isValid(); ++SubRegs)
 | |
|         LiveRegs.reset(*SubRegs);
 | |
|     }
 | |
| 
 | |
|     // Examine all used registers and set/clear kill flag. When a
 | |
|     // register is used multiple times we only set the kill flag on
 | |
|     // the first use. Don't set kill flags on undef operands.
 | |
|     killedRegs.reset();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | |
| 
 | |
|       bool kill = false;
 | |
|       if (!killedRegs.test(Reg)) {
 | |
|         kill = true;
 | |
|         // A register is not killed if any subregs are live...
 | |
|         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
 | |
|           if (LiveRegs.test(*SubRegs)) {
 | |
|             kill = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If subreg is not live, then register is killed if it became
 | |
|         // live in this instruction
 | |
|         if (kill)
 | |
|           kill = !LiveRegs.test(Reg);
 | |
|       }
 | |
| 
 | |
|       if (MO.isKill() != kill) {
 | |
|         DEBUG(dbgs() << "Fixing " << MO << " in ");
 | |
|         // Warning: toggleKillFlag may invalidate MO.
 | |
|         toggleKillFlag(MI, MO);
 | |
|         DEBUG(MI->dump());
 | |
|         DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
 | |
|           MachineBasicBlock::instr_iterator Begin = MI->getIterator();
 | |
|           MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
 | |
|           while (++Begin != End)
 | |
|             DEBUG(Begin->dump());
 | |
|         });
 | |
|       }
 | |
| 
 | |
|       killedRegs.set(Reg);
 | |
|     }
 | |
| 
 | |
|     // Mark any used register (that is not using undef) and subregs as
 | |
|     // now live...
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | |
| 
 | |
|       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|            SubRegs.isValid(); ++SubRegs)
 | |
|         LiveRegs.set(*SubRegs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   SU->getInstr()->dump();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | |
|   std::string s;
 | |
|   raw_string_ostream oss(s);
 | |
|   if (SU == &EntrySU)
 | |
|     oss << "<entry>";
 | |
|   else if (SU == &ExitSU)
 | |
|     oss << "<exit>";
 | |
|   else
 | |
|     SU->getInstr()->print(oss, /*SkipOpers=*/true);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| /// Return the basic block label. It is not necessarilly unique because a block
 | |
| /// contains multiple scheduling regions. But it is fine for visualization.
 | |
| std::string ScheduleDAGInstrs::getDAGName() const {
 | |
|   return "dag." + BB->getFullName();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SchedDFSResult Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace llvm {
 | |
| /// \brief Internal state used to compute SchedDFSResult.
 | |
| class SchedDFSImpl {
 | |
|   SchedDFSResult &R;
 | |
| 
 | |
|   /// Join DAG nodes into equivalence classes by their subtree.
 | |
|   IntEqClasses SubtreeClasses;
 | |
|   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
 | |
|   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
 | |
| 
 | |
|   struct RootData {
 | |
|     unsigned NodeID;
 | |
|     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
 | |
|     unsigned SubInstrCount; // Instr count in this tree only, not children.
 | |
| 
 | |
|     RootData(unsigned id): NodeID(id),
 | |
|                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
 | |
|                            SubInstrCount(0) {}
 | |
| 
 | |
|     unsigned getSparseSetIndex() const { return NodeID; }
 | |
|   };
 | |
| 
 | |
|   SparseSet<RootData> RootSet;
 | |
| 
 | |
| public:
 | |
|   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
 | |
|     RootSet.setUniverse(R.DFSNodeData.size());
 | |
|   }
 | |
| 
 | |
|   /// Return true if this node been visited by the DFS traversal.
 | |
|   ///
 | |
|   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
 | |
|   /// ID. Later, SubtreeID is updated but remains valid.
 | |
|   bool isVisited(const SUnit *SU) const {
 | |
|     return R.DFSNodeData[SU->NodeNum].SubtreeID
 | |
|       != SchedDFSResult::InvalidSubtreeID;
 | |
|   }
 | |
| 
 | |
|   /// Initialize this node's instruction count. We don't need to flag the node
 | |
|   /// visited until visitPostorder because the DAG cannot have cycles.
 | |
|   void visitPreorder(const SUnit *SU) {
 | |
|     R.DFSNodeData[SU->NodeNum].InstrCount =
 | |
|       SU->getInstr()->isTransient() ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   /// Called once for each node after all predecessors are visited. Revisit this
 | |
|   /// node's predecessors and potentially join them now that we know the ILP of
 | |
|   /// the other predecessors.
 | |
|   void visitPostorderNode(const SUnit *SU) {
 | |
|     // Mark this node as the root of a subtree. It may be joined with its
 | |
|     // successors later.
 | |
|     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
 | |
|     RootData RData(SU->NodeNum);
 | |
|     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
 | |
| 
 | |
|     // If any predecessors are still in their own subtree, they either cannot be
 | |
|     // joined or are large enough to remain separate. If this parent node's
 | |
|     // total instruction count is not greater than a child subtree by at least
 | |
|     // the subtree limit, then try to join it now since splitting subtrees is
 | |
|     // only useful if multiple high-pressure paths are possible.
 | |
|     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
 | |
|     for (SUnit::const_pred_iterator
 | |
|            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | |
|       if (PI->getKind() != SDep::Data)
 | |
|         continue;
 | |
|       unsigned PredNum = PI->getSUnit()->NodeNum;
 | |
|       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
 | |
|         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
 | |
| 
 | |
|       // Either link or merge the TreeData entry from the child to the parent.
 | |
|       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
 | |
|         // If the predecessor's parent is invalid, this is a tree edge and the
 | |
|         // current node is the parent.
 | |
|         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
 | |
|           RootSet[PredNum].ParentNodeID = SU->NodeNum;
 | |
|       }
 | |
|       else if (RootSet.count(PredNum)) {
 | |
|         // The predecessor is not a root, but is still in the root set. This
 | |
|         // must be the new parent that it was just joined to. Note that
 | |
|         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
 | |
|         // set to the original parent.
 | |
|         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
 | |
|         RootSet.erase(PredNum);
 | |
|       }
 | |
|     }
 | |
|     RootSet[SU->NodeNum] = RData;
 | |
|   }
 | |
| 
 | |
|   /// Called once for each tree edge after calling visitPostOrderNode on the
 | |
|   /// predecessor. Increment the parent node's instruction count and
 | |
|   /// preemptively join this subtree to its parent's if it is small enough.
 | |
|   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
 | |
|     R.DFSNodeData[Succ->NodeNum].InstrCount
 | |
|       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
 | |
|     joinPredSubtree(PredDep, Succ);
 | |
|   }
 | |
| 
 | |
|   /// Add a connection for cross edges.
 | |
|   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
 | |
|     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
 | |
|   }
 | |
| 
 | |
|   /// Set each node's subtree ID to the representative ID and record connections
 | |
|   /// between trees.
 | |
|   void finalize() {
 | |
|     SubtreeClasses.compress();
 | |
|     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
 | |
|     assert(SubtreeClasses.getNumClasses() == RootSet.size()
 | |
|            && "number of roots should match trees");
 | |
|     for (SparseSet<RootData>::const_iterator
 | |
|            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
 | |
|       unsigned TreeID = SubtreeClasses[RI->NodeID];
 | |
|       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
 | |
|         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
 | |
|       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
 | |
|       // Note that SubInstrCount may be greater than InstrCount if we joined
 | |
|       // subtrees across a cross edge. InstrCount will be attributed to the
 | |
|       // original parent, while SubInstrCount will be attributed to the joined
 | |
|       // parent.
 | |
|     }
 | |
|     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
 | |
|     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
 | |
|     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
 | |
|     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
 | |
|       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
 | |
|       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
 | |
|             << R.DFSNodeData[Idx].SubtreeID << '\n');
 | |
|     }
 | |
|     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
 | |
|            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
 | |
|          I != E; ++I) {
 | |
|       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
 | |
|       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
 | |
|       if (PredTree == SuccTree)
 | |
|         continue;
 | |
|       unsigned Depth = I->first->getDepth();
 | |
|       addConnection(PredTree, SuccTree, Depth);
 | |
|       addConnection(SuccTree, PredTree, Depth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   /// Join the predecessor subtree with the successor that is its DFS
 | |
|   /// parent. Apply some heuristics before joining.
 | |
|   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
 | |
|                        bool CheckLimit = true) {
 | |
|     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
 | |
| 
 | |
|     // Check if the predecessor is already joined.
 | |
|     const SUnit *PredSU = PredDep.getSUnit();
 | |
|     unsigned PredNum = PredSU->NodeNum;
 | |
|     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
 | |
|       return false;
 | |
| 
 | |
|     // Four is the magic number of successors before a node is considered a
 | |
|     // pinch point.
 | |
|     unsigned NumDataSucs = 0;
 | |
|     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
 | |
|            SE = PredSU->Succs.end(); SI != SE; ++SI) {
 | |
|       if (SI->getKind() == SDep::Data) {
 | |
|         if (++NumDataSucs >= 4)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
 | |
|       return false;
 | |
|     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
 | |
|     SubtreeClasses.join(Succ->NodeNum, PredNum);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Called by finalize() to record a connection between trees.
 | |
|   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
 | |
|     if (!Depth)
 | |
|       return;
 | |
| 
 | |
|     do {
 | |
|       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
 | |
|         R.SubtreeConnections[FromTree];
 | |
|       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
 | |
|              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
 | |
|         if (I->TreeID == ToTree) {
 | |
|           I->Level = std::max(I->Level, Depth);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
 | |
|       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
 | |
|     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
 | |
|   }
 | |
| };
 | |
| } // namespace llvm
 | |
| 
 | |
| namespace {
 | |
| /// \brief Manage the stack used by a reverse depth-first search over the DAG.
 | |
| class SchedDAGReverseDFS {
 | |
|   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
 | |
| public:
 | |
|   bool isComplete() const { return DFSStack.empty(); }
 | |
| 
 | |
|   void follow(const SUnit *SU) {
 | |
|     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
 | |
|   }
 | |
|   void advance() { ++DFSStack.back().second; }
 | |
| 
 | |
|   const SDep *backtrack() {
 | |
|     DFSStack.pop_back();
 | |
|     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
 | |
|   }
 | |
| 
 | |
|   const SUnit *getCurr() const { return DFSStack.back().first; }
 | |
| 
 | |
|   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
 | |
| 
 | |
|   SUnit::const_pred_iterator getPredEnd() const {
 | |
|     return getCurr()->Preds.end();
 | |
|   }
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| static bool hasDataSucc(const SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator
 | |
|          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
 | |
|     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
 | |
| /// search from this root.
 | |
| void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
 | |
|   if (!IsBottomUp)
 | |
|     llvm_unreachable("Top-down ILP metric is unimplemnted");
 | |
| 
 | |
|   SchedDFSImpl Impl(*this);
 | |
|   for (ArrayRef<SUnit>::const_iterator
 | |
|          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
 | |
|     const SUnit *SU = &*SI;
 | |
|     if (Impl.isVisited(SU) || hasDataSucc(SU))
 | |
|       continue;
 | |
| 
 | |
|     SchedDAGReverseDFS DFS;
 | |
|     Impl.visitPreorder(SU);
 | |
|     DFS.follow(SU);
 | |
|     for (;;) {
 | |
|       // Traverse the leftmost path as far as possible.
 | |
|       while (DFS.getPred() != DFS.getPredEnd()) {
 | |
|         const SDep &PredDep = *DFS.getPred();
 | |
|         DFS.advance();
 | |
|         // Ignore non-data edges.
 | |
|         if (PredDep.getKind() != SDep::Data
 | |
|             || PredDep.getSUnit()->isBoundaryNode()) {
 | |
|           continue;
 | |
|         }
 | |
|         // An already visited edge is a cross edge, assuming an acyclic DAG.
 | |
|         if (Impl.isVisited(PredDep.getSUnit())) {
 | |
|           Impl.visitCrossEdge(PredDep, DFS.getCurr());
 | |
|           continue;
 | |
|         }
 | |
|         Impl.visitPreorder(PredDep.getSUnit());
 | |
|         DFS.follow(PredDep.getSUnit());
 | |
|       }
 | |
|       // Visit the top of the stack in postorder and backtrack.
 | |
|       const SUnit *Child = DFS.getCurr();
 | |
|       const SDep *PredDep = DFS.backtrack();
 | |
|       Impl.visitPostorderNode(Child);
 | |
|       if (PredDep)
 | |
|         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
 | |
|       if (DFS.isComplete())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   Impl.finalize();
 | |
| }
 | |
| 
 | |
| /// The root of the given SubtreeID was just scheduled. For all subtrees
 | |
| /// connected to this tree, record the depth of the connection so that the
 | |
| /// nearest connected subtrees can be prioritized.
 | |
| void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
 | |
|   for (SmallVectorImpl<Connection>::const_iterator
 | |
|          I = SubtreeConnections[SubtreeID].begin(),
 | |
|          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
 | |
|     SubtreeConnectLevels[I->TreeID] =
 | |
|       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
 | |
|     DEBUG(dbgs() << "  Tree: " << I->TreeID
 | |
|           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD
 | |
| void ILPValue::print(raw_ostream &OS) const {
 | |
|   OS << InstrCount << " / " << Length << " = ";
 | |
|   if (!Length)
 | |
|     OS << "BADILP";
 | |
|   else
 | |
|     OS << format("%g", ((double)InstrCount / Length));
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD
 | |
| void ILPValue::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| LLVM_DUMP_METHOD
 | |
| raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
 | |
|   Val.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |