598 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			598 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating functions from LLVM IR into
 | |
| // Machine IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetFrameLowering.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "function-lowering-info"
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a
 | |
| /// switch or atomic instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
 | |
|   if (I->use_empty()) return false;
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   const BasicBlock *BB = I->getParent();
 | |
|   for (const User *U : I->users())
 | |
|     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ISD::NodeType getPreferredExtendForValue(const Value *V) {
 | |
|   // For the users of the source value being used for compare instruction, if
 | |
|   // the number of signed predicate is greater than unsigned predicate, we
 | |
|   // prefer to use SIGN_EXTEND.
 | |
|   //
 | |
|   // With this optimization, we would be able to reduce some redundant sign or
 | |
|   // zero extension instruction, and eventually more machine CSE opportunities
 | |
|   // can be exposed.
 | |
|   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
|   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
 | |
|   for (const User *U : V->users()) {
 | |
|     if (const auto *CI = dyn_cast<CmpInst>(U)) {
 | |
|       NumOfSigned += CI->isSigned();
 | |
|       NumOfUnsigned += CI->isUnsigned();
 | |
|     }
 | |
|   }
 | |
|   if (NumOfSigned > NumOfUnsigned)
 | |
|     ExtendKind = ISD::SIGN_EXTEND;
 | |
| 
 | |
|   return ExtendKind;
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
 | |
|                                SelectionDAG *DAG) {
 | |
|   Fn = &fn;
 | |
|   MF = &mf;
 | |
|   TLI = MF->getSubtarget().getTargetLowering();
 | |
|   RegInfo = &MF->getRegInfo();
 | |
|   MachineModuleInfo &MMI = MF->getMMI();
 | |
|   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
 | |
|   unsigned StackAlign = TFI->getStackAlignment();
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
 | |
|                 mf.getDataLayout());
 | |
|   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
 | |
|                                        Fn->isVarArg(), Outs, Fn->getContext());
 | |
| 
 | |
|   // If this personality uses funclets, we need to do a bit more work.
 | |
|   DenseMap<const AllocaInst *, int *> CatchObjects;
 | |
|   EHPersonality Personality = classifyEHPersonality(
 | |
|       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
 | |
|   if (isFuncletEHPersonality(Personality)) {
 | |
|     // Calculate state numbers if we haven't already.
 | |
|     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
 | |
|     if (Personality == EHPersonality::MSVC_CXX)
 | |
|       calculateWinCXXEHStateNumbers(&fn, EHInfo);
 | |
|     else if (isAsynchronousEHPersonality(Personality))
 | |
|       calculateSEHStateNumbers(&fn, EHInfo);
 | |
|     else if (Personality == EHPersonality::CoreCLR)
 | |
|       calculateClrEHStateNumbers(&fn, EHInfo);
 | |
| 
 | |
|     // Map all BB references in the WinEH data to MBBs.
 | |
|     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | |
|       for (WinEHHandlerType &H : TBME.HandlerArray) {
 | |
|         if (const AllocaInst *AI = H.CatchObj.Alloca)
 | |
|           CatchObjects.insert({AI, &H.CatchObj.FrameIndex});
 | |
|         else
 | |
|           H.CatchObj.FrameIndex = INT_MAX;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | |
|          I != E; ++I) {
 | |
|       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | |
|         Type *Ty = AI->getAllocatedType();
 | |
|         unsigned Align =
 | |
|           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         // Static allocas can be folded into the initial stack frame
 | |
|         // adjustment. For targets that don't realign the stack, don't
 | |
|         // do this if there is an extra alignment requirement.
 | |
|         if (AI->isStaticAlloca() && 
 | |
|             (TFI->isStackRealignable() || (Align <= StackAlign))) {
 | |
|           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
 | |
|           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
 | |
| 
 | |
|           TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|           int FrameIndex = INT_MAX;
 | |
|           auto Iter = CatchObjects.find(AI);
 | |
|           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
 | |
|             FrameIndex = MF->getFrameInfo()->CreateFixedObject(
 | |
|                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
 | |
|             MF->getFrameInfo()->setObjectAlignment(FrameIndex, Align);
 | |
|           } else {
 | |
|             FrameIndex =
 | |
|                 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
 | |
|           }
 | |
| 
 | |
|           StaticAllocaMap[AI] = FrameIndex;
 | |
|           // Update the catch handler information.
 | |
|           if (Iter != CatchObjects.end())
 | |
|             *Iter->second = FrameIndex;
 | |
|         } else {
 | |
|           // FIXME: Overaligned static allocas should be grouped into
 | |
|           // a single dynamic allocation instead of using a separate
 | |
|           // stack allocation for each one.
 | |
|           if (Align <= StackAlign)
 | |
|             Align = 0;
 | |
|           // Inform the Frame Information that we have variable-sized objects.
 | |
|           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Look for inline asm that clobbers the SP register.
 | |
|       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | |
|         ImmutableCallSite CS(&*I);
 | |
|         if (isa<InlineAsm>(CS.getCalledValue())) {
 | |
|           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
 | |
|           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | |
|           std::vector<TargetLowering::AsmOperandInfo> Ops =
 | |
|               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
 | |
|           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
 | |
|             TargetLowering::AsmOperandInfo &Op = Ops[I];
 | |
|             if (Op.Type == InlineAsm::isClobber) {
 | |
|               // Clobbers don't have SDValue operands, hence SDValue().
 | |
|               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
 | |
|               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
 | |
|                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
 | |
|                                                     Op.ConstraintVT);
 | |
|               if (PhysReg.first == SP)
 | |
|                 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Look for calls to the @llvm.va_start intrinsic. We can omit some
 | |
|       // prologue boilerplate for variadic functions that don't examine their
 | |
|       // arguments.
 | |
|       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::vastart)
 | |
|           MF->getFrameInfo()->setHasVAStart(true);
 | |
|       }
 | |
| 
 | |
|       // If we have a musttail call in a variadic function, we need to ensure we
 | |
|       // forward implicit register parameters.
 | |
|       if (const auto *CI = dyn_cast<CallInst>(I)) {
 | |
|         if (CI->isMustTailCall() && Fn->isVarArg())
 | |
|           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
 | |
|       }
 | |
| 
 | |
|       // Mark values used outside their block as exported, by allocating
 | |
|       // a virtual register for them.
 | |
|       if (isUsedOutsideOfDefiningBlock(&*I))
 | |
|         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(&*I);
 | |
| 
 | |
|       // Collect llvm.dbg.declare information. This is done now instead of
 | |
|       // during the initial isel pass through the IR so that it is done
 | |
|       // in a predictable order.
 | |
|       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
 | |
|         assert(DI->getVariable() && "Missing variable");
 | |
|         assert(DI->getDebugLoc() && "Missing location");
 | |
|         if (MMI.hasDebugInfo()) {
 | |
|           // Don't handle byval struct arguments or VLAs, for example.
 | |
|           // Non-byval arguments are handled here (they refer to the stack
 | |
|           // temporary alloca at this point).
 | |
|           const Value *Address = DI->getAddress();
 | |
|           if (Address) {
 | |
|             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|               Address = BCI->getOperand(0);
 | |
|             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
 | |
|               DenseMap<const AllocaInst *, int>::iterator SI =
 | |
|                 StaticAllocaMap.find(AI);
 | |
|               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
 | |
|                 int FI = SI->second;
 | |
|                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
 | |
|                                        FI, DI->getDebugLoc());
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Decide the preferred extend type for a value.
 | |
|       PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
 | |
|     }
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB) {
 | |
|     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
 | |
|     // are really data, and no instructions can live here.
 | |
|     if (BB->isEHPad()) {
 | |
|       const Instruction *I = BB->getFirstNonPHI();
 | |
|       // If this is a non-landingpad EH pad, mark this function as using
 | |
|       // funclets.
 | |
|       // FIXME: SEH catchpads do not create funclets, so we could avoid setting
 | |
|       // this in such cases in order to improve frame layout.
 | |
|       if (!isa<LandingPadInst>(I)) {
 | |
|         MMI.setHasEHFunclets(true);
 | |
|         MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
 | |
|       }
 | |
|       if (isa<CatchSwitchInst>(I)) {
 | |
|         assert(&*BB->begin() == I &&
 | |
|                "WinEHPrepare failed to remove PHIs from imaginary BBs");
 | |
|         continue;
 | |
|       }
 | |
|       if (isa<FuncletPadInst>(I))
 | |
|         assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
 | |
|     MBBMap[&*BB] = MBB;
 | |
|     MF->push_back(MBB);
 | |
| 
 | |
|     // Transfer the address-taken flag. This is necessary because there could
 | |
|     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | |
|     // the first one should be marked.
 | |
|     if (BB->hasAddressTaken())
 | |
|       MBB->setHasAddressTaken();
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Skip empty types
 | |
|       if (PN->getType()->isEmptyTy())
 | |
|         continue;
 | |
| 
 | |
|       DebugLoc DL = PN->getDebugLoc();
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | |
|         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
|         for (unsigned i = 0; i != NumRegisters; ++i)
 | |
|           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
 | |
|         PHIReg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mark landing pad blocks.
 | |
|   SmallVector<const LandingPadInst *, 4> LPads;
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB) {
 | |
|     const Instruction *FNP = BB->getFirstNonPHI();
 | |
|     if (BB->isEHPad() && MBBMap.count(&*BB))
 | |
|       MBBMap[&*BB]->setIsEHPad();
 | |
|     if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
 | |
|       LPads.push_back(LPI);
 | |
|   }
 | |
| 
 | |
|   if (!isFuncletEHPersonality(Personality))
 | |
|     return;
 | |
| 
 | |
|   WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
 | |
| 
 | |
|   // Map all BB references in the WinEH data to MBBs.
 | |
|   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | |
|     for (WinEHHandlerType &H : TBME.HandlerArray) {
 | |
|       if (H.Handler)
 | |
|         H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
 | |
|     }
 | |
|   }
 | |
|   for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
 | |
|     if (UME.Cleanup)
 | |
|       UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
 | |
|   for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
 | |
|     const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
 | |
|     UME.Handler = MBBMap[BB];
 | |
|   }
 | |
|   for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
 | |
|     const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
 | |
|     CME.Handler = MBBMap[BB];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clear - Clear out all the function-specific state. This returns this
 | |
| /// FunctionLoweringInfo to an empty state, ready to be used for a
 | |
| /// different function.
 | |
| void FunctionLoweringInfo::clear() {
 | |
|   MBBMap.clear();
 | |
|   ValueMap.clear();
 | |
|   StaticAllocaMap.clear();
 | |
|   LiveOutRegInfo.clear();
 | |
|   VisitedBBs.clear();
 | |
|   ArgDbgValues.clear();
 | |
|   ByValArgFrameIndexMap.clear();
 | |
|   RegFixups.clear();
 | |
|   StatepointStackSlots.clear();
 | |
|   StatepointSpillMaps.clear();
 | |
|   PreferredExtendType.clear();
 | |
| }
 | |
| 
 | |
| /// CreateReg - Allocate a single virtual register for the given type.
 | |
| unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
 | |
|   return RegInfo->createVirtualRegister(
 | |
|       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| /// CreateRegs - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| ///
 | |
| /// In the case that the given value has struct or array type, this function
 | |
| /// will assign registers for each member or element.
 | |
| ///
 | |
| unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
 | |
|   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
 | |
| 
 | |
|   unsigned FirstReg = 0;
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 | |
| 
 | |
|     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       unsigned R = CreateReg(RegisterVT);
 | |
|       if (!FirstReg) FirstReg = R;
 | |
|     }
 | |
|   }
 | |
|   return FirstReg;
 | |
| }
 | |
| 
 | |
| /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
 | |
| /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
 | |
| /// the register's LiveOutInfo is for a smaller bit width, it is extended to
 | |
| /// the larger bit width by zero extension. The bit width must be no smaller
 | |
| /// than the LiveOutInfo's existing bit width.
 | |
| const FunctionLoweringInfo::LiveOutInfo *
 | |
| FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
 | |
|   if (!LiveOutRegInfo.inBounds(Reg))
 | |
|     return nullptr;
 | |
| 
 | |
|   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
 | |
|   if (!LOI->IsValid)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (BitWidth > LOI->KnownZero.getBitWidth()) {
 | |
|     LOI->NumSignBits = 1;
 | |
|     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
 | |
|     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
 | |
|   }
 | |
| 
 | |
|   return LOI;
 | |
| }
 | |
| 
 | |
| /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 | |
| /// register based on the LiveOutInfo of its operands.
 | |
| void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
 | |
|   Type *Ty = PN->getType();
 | |
|   if (!Ty->isIntegerTy() || Ty->isVectorTy())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<EVT, 1> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
 | |
|   assert(ValueVTs.size() == 1 &&
 | |
|          "PHIs with non-vector integer types should have a single VT.");
 | |
|   EVT IntVT = ValueVTs[0];
 | |
| 
 | |
|   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
 | |
|     return;
 | |
|   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
 | |
|   unsigned BitWidth = IntVT.getSizeInBits();
 | |
| 
 | |
|   unsigned DestReg = ValueMap[PN];
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|     return;
 | |
|   LiveOutRegInfo.grow(DestReg);
 | |
|   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
 | |
| 
 | |
|   Value *V = PN->getIncomingValue(0);
 | |
|   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|     DestLOI.NumSignBits = 1;
 | |
|     APInt Zero(BitWidth, 0);
 | |
|     DestLOI.KnownZero = Zero;
 | |
|     DestLOI.KnownOne = Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|     DestLOI.NumSignBits = Val.getNumSignBits();
 | |
|     DestLOI.KnownZero = ~Val;
 | |
|     DestLOI.KnownOne = Val;
 | |
|   } else {
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
 | |
|                                 "CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI = *SrcLOI;
 | |
|   }
 | |
| 
 | |
|   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
 | |
|          DestLOI.KnownOne.getBitWidth() == BitWidth &&
 | |
|          "Masks should have the same bit width as the type.");
 | |
| 
 | |
|   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|       DestLOI.NumSignBits = 1;
 | |
|       APInt Zero(BitWidth, 0);
 | |
|       DestLOI.KnownZero = Zero;
 | |
|       DestLOI.KnownOne = Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
 | |
|       DestLOI.KnownZero &= ~Val;
 | |
|       DestLOI.KnownOne &= Val;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
 | |
|                                 "its CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
 | |
|     DestLOI.KnownZero &= SrcLOI->KnownZero;
 | |
|     DestLOI.KnownOne &= SrcLOI->KnownOne;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// setArgumentFrameIndex - Record frame index for the byval
 | |
| /// argument. This overrides previous frame index entry for this argument,
 | |
| /// if any.
 | |
| void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
 | |
|                                                  int FI) {
 | |
|   ByValArgFrameIndexMap[A] = FI;
 | |
| }
 | |
| 
 | |
| /// getArgumentFrameIndex - Get frame index for the byval argument.
 | |
| /// If the argument does not have any assigned frame index then 0 is
 | |
| /// returned.
 | |
| int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
 | |
|   DenseMap<const Argument *, int>::iterator I =
 | |
|     ByValArgFrameIndexMap.find(A);
 | |
|   if (I != ByValArgFrameIndexMap.end())
 | |
|     return I->second;
 | |
|   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
 | |
|     const Value *CPI, const TargetRegisterClass *RC) {
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   auto I = CatchPadExceptionPointers.insert({CPI, 0});
 | |
|   unsigned &VReg = I.first->second;
 | |
|   if (I.second)
 | |
|     VReg = MRI.createVirtualRegister(RC);
 | |
|   assert(VReg && "null vreg in exception pointer table!");
 | |
|   return VReg;
 | |
| }
 | |
| 
 | |
| /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
 | |
| /// being passed to this variadic function, and set the MachineModuleInfo's
 | |
| /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
 | |
| /// reference to _fltused on Windows, which will link in MSVCRT's
 | |
| /// floating-point support.
 | |
| void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
 | |
|                                       MachineModuleInfo *MMI)
 | |
| {
 | |
|   FunctionType *FT = cast<FunctionType>(
 | |
|     I.getCalledValue()->getType()->getContainedType(0));
 | |
|   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
 | |
|     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
 | |
|       Type* T = I.getArgOperand(i)->getType();
 | |
|       for (auto i : post_order(T)) {
 | |
|         if (i->isFloatingPointTy()) {
 | |
|           MMI->setUsesVAFloatArgument(true);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddLandingPadInfo - Extract the exception handling information from the
 | |
| /// landingpad instruction and add them to the specified machine module info.
 | |
| void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
 | |
|                              MachineBasicBlock *MBB) {
 | |
|   if (const auto *PF = dyn_cast<Function>(
 | |
|       I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
 | |
|     MMI.addPersonality(PF);
 | |
| 
 | |
|   if (I.isCleanup())
 | |
|     MMI.addCleanup(MBB);
 | |
| 
 | |
|   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
 | |
|   //        but we need to do it this way because of how the DWARF EH emitter
 | |
|   //        processes the clauses.
 | |
|   for (unsigned i = I.getNumClauses(); i != 0; --i) {
 | |
|     Value *Val = I.getClause(i - 1);
 | |
|     if (I.isCatch(i - 1)) {
 | |
|       MMI.addCatchTypeInfo(MBB,
 | |
|                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
 | |
|     } else {
 | |
|       // Add filters in a list.
 | |
|       Constant *CVal = cast<Constant>(Val);
 | |
|       SmallVector<const GlobalValue*, 4> FilterList;
 | |
|       for (User::op_iterator
 | |
|              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
 | |
|         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
 | |
| 
 | |
|       MMI.addFilterTypeInfo(MBB, FilterList);
 | |
|     }
 | |
|   }
 | |
| }
 |