1134 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1134 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass deletes dead arguments from internal functions.  Dead argument
 | |
| // elimination removes arguments which are directly dead, as well as arguments
 | |
| // only passed into function calls as dead arguments of other functions.  This
 | |
| // pass also deletes dead return values in a similar way.
 | |
| //
 | |
| // This pass is often useful as a cleanup pass to run after aggressive
 | |
| // interprocedural passes, which add possibly-dead arguments or return values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <tuple>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "deadargelim"
 | |
| 
 | |
| STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
 | |
| STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
 | |
| STATISTIC(NumArgumentsReplacedWithUndef, 
 | |
|           "Number of unread args replaced with undef");
 | |
| namespace {
 | |
|   /// DAE - The dead argument elimination pass.
 | |
|   ///
 | |
|   class DAE : public ModulePass {
 | |
|   public:
 | |
| 
 | |
|     /// Struct that represents (part of) either a return value or a function
 | |
|     /// argument.  Used so that arguments and return values can be used
 | |
|     /// interchangeably.
 | |
|     struct RetOrArg {
 | |
|       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
 | |
|                IsArg(IsArg) {}
 | |
|       const Function *F;
 | |
|       unsigned Idx;
 | |
|       bool IsArg;
 | |
| 
 | |
|       /// Make RetOrArg comparable, so we can put it into a map.
 | |
|       bool operator<(const RetOrArg &O) const {
 | |
|         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
 | |
|       }
 | |
| 
 | |
|       /// Make RetOrArg comparable, so we can easily iterate the multimap.
 | |
|       bool operator==(const RetOrArg &O) const {
 | |
|         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
 | |
|       }
 | |
| 
 | |
|       std::string getDescription() const {
 | |
|         return (Twine(IsArg ? "Argument #" : "Return value #") + Twine(Idx) +
 | |
|                 " of function " + F->getName()).str();
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// Liveness enum - During our initial pass over the program, we determine
 | |
|     /// that things are either alive or maybe alive. We don't mark anything
 | |
|     /// explicitly dead (even if we know they are), since anything not alive
 | |
|     /// with no registered uses (in Uses) will never be marked alive and will
 | |
|     /// thus become dead in the end.
 | |
|     enum Liveness { Live, MaybeLive };
 | |
| 
 | |
|     /// Convenience wrapper
 | |
|     RetOrArg CreateRet(const Function *F, unsigned Idx) {
 | |
|       return RetOrArg(F, Idx, false);
 | |
|     }
 | |
|     /// Convenience wrapper
 | |
|     RetOrArg CreateArg(const Function *F, unsigned Idx) {
 | |
|       return RetOrArg(F, Idx, true);
 | |
|     }
 | |
| 
 | |
|     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
 | |
|     /// This maps a return value or argument to any MaybeLive return values or
 | |
|     /// arguments it uses. This allows the MaybeLive values to be marked live
 | |
|     /// when any of its users is marked live.
 | |
|     /// For example (indices are left out for clarity):
 | |
|     ///  - Uses[ret F] = ret G
 | |
|     ///    This means that F calls G, and F returns the value returned by G.
 | |
|     ///  - Uses[arg F] = ret G
 | |
|     ///    This means that some function calls G and passes its result as an
 | |
|     ///    argument to F.
 | |
|     ///  - Uses[ret F] = arg F
 | |
|     ///    This means that F returns one of its own arguments.
 | |
|     ///  - Uses[arg F] = arg G
 | |
|     ///    This means that G calls F and passes one of its own (G's) arguments
 | |
|     ///    directly to F.
 | |
|     UseMap Uses;
 | |
| 
 | |
|     typedef std::set<RetOrArg> LiveSet;
 | |
|     typedef std::set<const Function*> LiveFuncSet;
 | |
| 
 | |
|     /// This set contains all values that have been determined to be live.
 | |
|     LiveSet LiveValues;
 | |
|     /// This set contains all values that are cannot be changed in any way.
 | |
|     LiveFuncSet LiveFunctions;
 | |
| 
 | |
|     typedef SmallVector<RetOrArg, 5> UseVector;
 | |
| 
 | |
|   protected:
 | |
|     // DAH uses this to specify a different ID.
 | |
|     explicit DAE(char &ID) : ModulePass(ID) {}
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     DAE() : ModulePass(ID) {
 | |
|       initializeDAEPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnModule(Module &M) override;
 | |
| 
 | |
|     virtual bool ShouldHackArguments() const { return false; }
 | |
| 
 | |
|   private:
 | |
|     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
 | |
|     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
 | |
|                        unsigned RetValNum = -1U);
 | |
|     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
 | |
| 
 | |
|     void SurveyFunction(const Function &F);
 | |
|     void MarkValue(const RetOrArg &RA, Liveness L,
 | |
|                    const UseVector &MaybeLiveUses);
 | |
|     void MarkLive(const RetOrArg &RA);
 | |
|     void MarkLive(const Function &F);
 | |
|     void PropagateLiveness(const RetOrArg &RA);
 | |
|     bool RemoveDeadStuffFromFunction(Function *F);
 | |
|     bool DeleteDeadVarargs(Function &Fn);
 | |
|     bool RemoveDeadArgumentsFromCallers(Function &Fn);
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| char DAE::ID = 0;
 | |
| INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
 | |
| 
 | |
| namespace {
 | |
|   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
 | |
|   /// deletes arguments to functions which are external.  This is only for use
 | |
|   /// by bugpoint.
 | |
|   struct DAH : public DAE {
 | |
|     static char ID;
 | |
|     DAH() : DAE(ID) {}
 | |
| 
 | |
|     bool ShouldHackArguments() const override { return true; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char DAH::ID = 0;
 | |
| INITIALIZE_PASS(DAH, "deadarghaX0r", 
 | |
|                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
 | |
|                 false, false)
 | |
| 
 | |
| /// createDeadArgEliminationPass - This pass removes arguments from functions
 | |
| /// which are not used by the body of the function.
 | |
| ///
 | |
| ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
 | |
| ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
 | |
| 
 | |
| /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
 | |
| /// llvm.vastart is never called, the varargs list is dead for the function.
 | |
| bool DAE::DeleteDeadVarargs(Function &Fn) {
 | |
|   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
 | |
|   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
 | |
| 
 | |
|   // Ensure that the function is only directly called.
 | |
|   if (Fn.hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   // Don't touch naked functions. The assembly might be using an argument, or
 | |
|   // otherwise rely on the frame layout in a way that this analysis will not
 | |
|   // see.
 | |
|   if (Fn.hasFnAttribute(Attribute::Naked)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know we can transform this function if safe.  Scan its body
 | |
|   // looking for calls marked musttail or calls to llvm.vastart.
 | |
|   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       CallInst *CI = dyn_cast<CallInst>(I);
 | |
|       if (!CI)
 | |
|         continue;
 | |
|       if (CI->isMustTailCall())
 | |
|         return false;
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::vastart)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we get here, there are no calls to llvm.vastart in the function body,
 | |
|   // remove the "..." and adjust all the calls.
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but doesn't have isVarArg set.
 | |
|   FunctionType *FTy = Fn.getFunctionType();
 | |
| 
 | |
|   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
 | |
|   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
 | |
|                                                 Params, false);
 | |
|   unsigned NumArgs = Params.size();
 | |
| 
 | |
|   // Create the new function body and insert it into the module...
 | |
|   Function *NF = Function::Create(NFTy, Fn.getLinkage());
 | |
|   NF->copyAttributesFrom(&Fn);
 | |
|   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
 | |
|   NF->takeName(&Fn);
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in a smaller number of arguments into the new function.
 | |
|   //
 | |
|   std::vector<Value*> Args;
 | |
|   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
 | |
|     CallSite CS(*I++);
 | |
|     if (!CS)
 | |
|       continue;
 | |
|     Instruction *Call = CS.getInstruction();
 | |
| 
 | |
|     // Pass all the same arguments.
 | |
|     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
 | |
| 
 | |
|     // Drop any attributes that were on the vararg arguments.
 | |
|     AttributeSet PAL = CS.getAttributes();
 | |
|     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
 | |
|       SmallVector<AttributeSet, 8> AttributesVec;
 | |
|       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
 | |
|         AttributesVec.push_back(PAL.getSlotAttributes(i));
 | |
|       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | |
|         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
 | |
|                                                   PAL.getFnAttributes()));
 | |
|       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
 | |
|     }
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args, "", Call);
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<InvokeInst>(New)->setAttributes(PAL);
 | |
|     } else {
 | |
|       New = CallInst::Create(NF, Args, "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<CallInst>(New)->setAttributes(PAL);
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     New->setDebugLoc(Call->getDebugLoc());
 | |
| 
 | |
|     Args.clear();
 | |
| 
 | |
|     if (!Call->use_empty())
 | |
|       Call->replaceAllUsesWith(New);
 | |
| 
 | |
|     New->takeName(Call);
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transferring uses of the old arguments over to
 | |
|   // the new arguments, also transferring over the names as well.  While we're at
 | |
|   // it, remove the dead arguments from the DeadArguments list.
 | |
|   //
 | |
|   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
 | |
|        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
 | |
|     // Move the name and users over to the new version.
 | |
|     I->replaceAllUsesWith(&*I2);
 | |
|     I2->takeName(&*I);
 | |
|   }
 | |
| 
 | |
|   // Patch the pointer to LLVM function in debug info descriptor.
 | |
|   NF->setSubprogram(Fn.getSubprogram());
 | |
| 
 | |
|   // Fix up any BlockAddresses that refer to the function.
 | |
|   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
 | |
|   // Delete the bitcast that we just created, so that NF does not
 | |
|   // appear to be address-taken.
 | |
|   NF->removeDeadConstantUsers();
 | |
|   // Finally, nuke the old function.
 | |
|   Fn.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 
 | |
| /// arguments that are unused, and changes the caller parameters to be undefined
 | |
| /// instead.
 | |
| bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
 | |
| {
 | |
|   // We cannot change the arguments if this TU does not define the function or
 | |
|   // if the linker may choose a function body from another TU, even if the
 | |
|   // nominal linkage indicates that other copies of the function have the same
 | |
|   // semantics. In the below example, the dead load from %p may not have been
 | |
|   // eliminated from the linker-chosen copy of f, so replacing %p with undef
 | |
|   // in callers may introduce undefined behavior.
 | |
|   //
 | |
|   // define linkonce_odr void @f(i32* %p) {
 | |
|   //   %v = load i32 %p
 | |
|   //   ret void
 | |
|   // }
 | |
|   if (!Fn.isStrongDefinitionForLinker())
 | |
|     return false;
 | |
| 
 | |
|   // Functions with local linkage should already have been handled, except the
 | |
|   // fragile (variadic) ones which we can improve here.
 | |
|   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // Don't touch naked functions. The assembly might be using an argument, or
 | |
|   // otherwise rely on the frame layout in a way that this analysis will not
 | |
|   // see.
 | |
|   if (Fn.hasFnAttribute(Attribute::Naked))
 | |
|     return false;
 | |
| 
 | |
|   if (Fn.use_empty())
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<unsigned, 8> UnusedArgs;
 | |
|   for (Argument &Arg : Fn.args()) {
 | |
|     if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
 | |
|       UnusedArgs.push_back(Arg.getArgNo());
 | |
|   }
 | |
| 
 | |
|   if (UnusedArgs.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (Use &U : Fn.uses()) {
 | |
|     CallSite CS(U.getUser());
 | |
|     if (!CS || !CS.isCallee(&U))
 | |
|       continue;
 | |
| 
 | |
|     // Now go through all unused args and replace them with "undef".
 | |
|     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
 | |
|       unsigned ArgNo = UnusedArgs[I];
 | |
| 
 | |
|       Value *Arg = CS.getArgument(ArgNo);
 | |
|       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
 | |
|       ++NumArgumentsReplacedWithUndef;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Convenience function that returns the number of return values. It returns 0
 | |
| /// for void functions and 1 for functions not returning a struct. It returns
 | |
| /// the number of struct elements for functions returning a struct.
 | |
| static unsigned NumRetVals(const Function *F) {
 | |
|   Type *RetTy = F->getReturnType();
 | |
|   if (RetTy->isVoidTy())
 | |
|     return 0;
 | |
|   else if (StructType *STy = dyn_cast<StructType>(RetTy))
 | |
|     return STy->getNumElements();
 | |
|   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
 | |
|     return ATy->getNumElements();
 | |
|   else
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /// Returns the sub-type a function will return at a given Idx. Should
 | |
| /// correspond to the result type of an ExtractValue instruction executed with
 | |
| /// just that one Idx (i.e. only top-level structure is considered).
 | |
| static Type *getRetComponentType(const Function *F, unsigned Idx) {
 | |
|   Type *RetTy = F->getReturnType();
 | |
|   assert(!RetTy->isVoidTy() && "void type has no subtype");
 | |
| 
 | |
|   if (StructType *STy = dyn_cast<StructType>(RetTy))
 | |
|     return STy->getElementType(Idx);
 | |
|   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
 | |
|     return ATy->getElementType();
 | |
|   else
 | |
|     return RetTy;
 | |
| }
 | |
| 
 | |
| /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
 | |
| /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
 | |
| /// liveness of Use.
 | |
| DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
 | |
|   // We're live if our use or its Function is already marked as live.
 | |
|   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
 | |
|     return Live;
 | |
| 
 | |
|   // We're maybe live otherwise, but remember that we must become live if
 | |
|   // Use becomes live.
 | |
|   MaybeLiveUses.push_back(Use);
 | |
|   return MaybeLive;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SurveyUse - This looks at a single use of an argument or return value
 | |
| /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
 | |
| /// if it causes the used value to become MaybeLive.
 | |
| ///
 | |
| /// RetValNum is the return value number to use when this use is used in a
 | |
| /// return instruction. This is used in the recursion, you should always leave
 | |
| /// it at 0.
 | |
| DAE::Liveness DAE::SurveyUse(const Use *U,
 | |
|                              UseVector &MaybeLiveUses, unsigned RetValNum) {
 | |
|     const User *V = U->getUser();
 | |
|     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
 | |
|       // The value is returned from a function. It's only live when the
 | |
|       // function's return value is live. We use RetValNum here, for the case
 | |
|       // that U is really a use of an insertvalue instruction that uses the
 | |
|       // original Use.
 | |
|       const Function *F = RI->getParent()->getParent();
 | |
|       if (RetValNum != -1U) {
 | |
|         RetOrArg Use = CreateRet(F, RetValNum);
 | |
|         // We might be live, depending on the liveness of Use.
 | |
|         return MarkIfNotLive(Use, MaybeLiveUses);
 | |
|       } else {
 | |
|         DAE::Liveness Result = MaybeLive;
 | |
|         for (unsigned i = 0; i < NumRetVals(F); ++i) {
 | |
|           RetOrArg Use = CreateRet(F, i);
 | |
|           // We might be live, depending on the liveness of Use. If any
 | |
|           // sub-value is live, then the entire value is considered live. This
 | |
|           // is a conservative choice, and better tracking is possible.
 | |
|           DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
 | |
|           if (Result != Live)
 | |
|             Result = SubResult;
 | |
|         }
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
|     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
 | |
|       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
 | |
|           && IV->hasIndices())
 | |
|         // The use we are examining is inserted into an aggregate. Our liveness
 | |
|         // depends on all uses of that aggregate, but if it is used as a return
 | |
|         // value, only index at which we were inserted counts.
 | |
|         RetValNum = *IV->idx_begin();
 | |
| 
 | |
|       // Note that if we are used as the aggregate operand to the insertvalue,
 | |
|       // we don't change RetValNum, but do survey all our uses.
 | |
| 
 | |
|       Liveness Result = MaybeLive;
 | |
|       for (const Use &UU : IV->uses()) {
 | |
|         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
 | |
|         if (Result == Live)
 | |
|           break;
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     if (auto CS = ImmutableCallSite(V)) {
 | |
|       const Function *F = CS.getCalledFunction();
 | |
|       if (F) {
 | |
|         // Used in a direct call.
 | |
| 
 | |
|         // The function argument is live if it is used as a bundle operand.
 | |
|         if (CS.isBundleOperand(U))
 | |
|           return Live;
 | |
| 
 | |
|         // Find the argument number. We know for sure that this use is an
 | |
|         // argument, since if it was the function argument this would be an
 | |
|         // indirect call and the we know can't be looking at a value of the
 | |
|         // label type (for the invoke instruction).
 | |
|         unsigned ArgNo = CS.getArgumentNo(U);
 | |
| 
 | |
|         if (ArgNo >= F->getFunctionType()->getNumParams())
 | |
|           // The value is passed in through a vararg! Must be live.
 | |
|           return Live;
 | |
| 
 | |
|         assert(CS.getArgument(ArgNo)
 | |
|                == CS->getOperand(U->getOperandNo())
 | |
|                && "Argument is not where we expected it");
 | |
| 
 | |
|         // Value passed to a normal call. It's only live when the corresponding
 | |
|         // argument to the called function turns out live.
 | |
|         RetOrArg Use = CreateArg(F, ArgNo);
 | |
|         return MarkIfNotLive(Use, MaybeLiveUses);
 | |
|       }
 | |
|     }
 | |
|     // Used in any other way? Value must be live.
 | |
|     return Live;
 | |
| }
 | |
| 
 | |
| /// SurveyUses - This looks at all the uses of the given value
 | |
| /// Returns the Liveness deduced from the uses of this value.
 | |
| ///
 | |
| /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
 | |
| /// the result is Live, MaybeLiveUses might be modified but its content should
 | |
| /// be ignored (since it might not be complete).
 | |
| DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
 | |
|   // Assume it's dead (which will only hold if there are no uses at all..).
 | |
|   Liveness Result = MaybeLive;
 | |
|   // Check each use.
 | |
|   for (const Use &U : V->uses()) {
 | |
|     Result = SurveyUse(&U, MaybeLiveUses);
 | |
|     if (Result == Live)
 | |
|       break;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // SurveyFunction - This performs the initial survey of the specified function,
 | |
| // checking out whether or not it uses any of its incoming arguments or whether
 | |
| // any callers use the return value.  This fills in the LiveValues set and Uses
 | |
| // map.
 | |
| //
 | |
| // We consider arguments of non-internal functions to be intrinsically alive as
 | |
| // well as arguments to functions which have their "address taken".
 | |
| //
 | |
| void DAE::SurveyFunction(const Function &F) {
 | |
|   // Functions with inalloca parameters are expecting args in a particular
 | |
|   // register and memory layout.
 | |
|   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
 | |
|     MarkLive(F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't touch naked functions. The assembly might be using an argument, or
 | |
|   // otherwise rely on the frame layout in a way that this analysis will not
 | |
|   // see.
 | |
|   if (F.hasFnAttribute(Attribute::Naked)) {
 | |
|     MarkLive(F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned RetCount = NumRetVals(&F);
 | |
|   // Assume all return values are dead
 | |
|   typedef SmallVector<Liveness, 5> RetVals;
 | |
|   RetVals RetValLiveness(RetCount, MaybeLive);
 | |
| 
 | |
|   typedef SmallVector<UseVector, 5> RetUses;
 | |
|   // These vectors map each return value to the uses that make it MaybeLive, so
 | |
|   // we can add those to the Uses map if the return value really turns out to be
 | |
|   // MaybeLive. Initialized to a list of RetCount empty lists.
 | |
|   RetUses MaybeLiveRetUses(RetCount);
 | |
| 
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | |
|       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
 | |
|           != F.getFunctionType()->getReturnType()) {
 | |
|         // We don't support old style multiple return values.
 | |
|         MarkLive(F);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
 | |
|     MarkLive(F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
 | |
|   // Keep track of the number of live retvals, so we can skip checks once all
 | |
|   // of them turn out to be live.
 | |
|   unsigned NumLiveRetVals = 0;
 | |
|   // Loop all uses of the function.
 | |
|   for (const Use &U : F.uses()) {
 | |
|     // If the function is PASSED IN as an argument, its address has been
 | |
|     // taken.
 | |
|     ImmutableCallSite CS(U.getUser());
 | |
|     if (!CS || !CS.isCallee(&U)) {
 | |
|       MarkLive(F);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If this use is anything other than a call site, the function is alive.
 | |
|     const Instruction *TheCall = CS.getInstruction();
 | |
|     if (!TheCall) {   // Not a direct call site?
 | |
|       MarkLive(F);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If we end up here, we are looking at a direct call to our function.
 | |
| 
 | |
|     // Now, check how our return value(s) is/are used in this caller. Don't
 | |
|     // bother checking return values if all of them are live already.
 | |
|     if (NumLiveRetVals == RetCount)
 | |
|       continue;
 | |
| 
 | |
|     // Check all uses of the return value.
 | |
|     for (const Use &U : TheCall->uses()) {
 | |
|       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
 | |
|         // This use uses a part of our return value, survey the uses of
 | |
|         // that part and store the results for this index only.
 | |
|         unsigned Idx = *Ext->idx_begin();
 | |
|         if (RetValLiveness[Idx] != Live) {
 | |
|           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
 | |
|           if (RetValLiveness[Idx] == Live)
 | |
|             NumLiveRetVals++;
 | |
|         }
 | |
|       } else {
 | |
|         // Used by something else than extractvalue. Survey, but assume that the
 | |
|         // result applies to all sub-values.
 | |
|         UseVector MaybeLiveAggregateUses;
 | |
|         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
 | |
|           NumLiveRetVals = RetCount;
 | |
|           RetValLiveness.assign(RetCount, Live);
 | |
|           break;
 | |
|         } else {
 | |
|           for (unsigned i = 0; i != RetCount; ++i) {
 | |
|             if (RetValLiveness[i] != Live)
 | |
|               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
 | |
|                                          MaybeLiveAggregateUses.end());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we've inspected all callers, record the liveness of our return values.
 | |
|   for (unsigned i = 0; i != RetCount; ++i)
 | |
|     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
 | |
| 
 | |
|   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
 | |
| 
 | |
|   // Now, check all of our arguments.
 | |
|   unsigned i = 0;
 | |
|   UseVector MaybeLiveArgUses;
 | |
|   for (Function::const_arg_iterator AI = F.arg_begin(),
 | |
|        E = F.arg_end(); AI != E; ++AI, ++i) {
 | |
|     Liveness Result;
 | |
|     if (F.getFunctionType()->isVarArg()) {
 | |
|       // Variadic functions will already have a va_arg function expanded inside
 | |
|       // them, making them potentially very sensitive to ABI changes resulting
 | |
|       // from removing arguments entirely, so don't. For example AArch64 handles
 | |
|       // register and stack HFAs very differently, and this is reflected in the
 | |
|       // IR which has already been generated.
 | |
|       Result = Live;
 | |
|     } else {
 | |
|       // See what the effect of this use is (recording any uses that cause
 | |
|       // MaybeLive in MaybeLiveArgUses). 
 | |
|       Result = SurveyUses(&*AI, MaybeLiveArgUses);
 | |
|     }
 | |
| 
 | |
|     // Mark the result.
 | |
|     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
 | |
|     // Clear the vector again for the next iteration.
 | |
|     MaybeLiveArgUses.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MarkValue - This function marks the liveness of RA depending on L. If L is
 | |
| /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
 | |
| /// such that RA will be marked live if any use in MaybeLiveUses gets marked
 | |
| /// live later on.
 | |
| void DAE::MarkValue(const RetOrArg &RA, Liveness L,
 | |
|                     const UseVector &MaybeLiveUses) {
 | |
|   switch (L) {
 | |
|     case Live: MarkLive(RA); break;
 | |
|     case MaybeLive:
 | |
|     {
 | |
|       // Note any uses of this value, so this return value can be
 | |
|       // marked live whenever one of the uses becomes live.
 | |
|       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
 | |
|            UE = MaybeLiveUses.end(); UI != UE; ++UI)
 | |
|         Uses.insert(std::make_pair(*UI, RA));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MarkLive - Mark the given Function as alive, meaning that it cannot be
 | |
| /// changed in any way. Additionally,
 | |
| /// mark any values that are used as this function's parameters or by its return
 | |
| /// values (according to Uses) live as well.
 | |
| void DAE::MarkLive(const Function &F) {
 | |
|   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
 | |
|   // Mark the function as live.
 | |
|   LiveFunctions.insert(&F);
 | |
|   // Mark all arguments as live.
 | |
|   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
 | |
|     PropagateLiveness(CreateArg(&F, i));
 | |
|   // Mark all return values as live.
 | |
|   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
 | |
|     PropagateLiveness(CreateRet(&F, i));
 | |
| }
 | |
| 
 | |
| /// MarkLive - Mark the given return value or argument as live. Additionally,
 | |
| /// mark any values that are used by this value (according to Uses) live as
 | |
| /// well.
 | |
| void DAE::MarkLive(const RetOrArg &RA) {
 | |
|   if (LiveFunctions.count(RA.F))
 | |
|     return; // Function was already marked Live.
 | |
| 
 | |
|   if (!LiveValues.insert(RA).second)
 | |
|     return; // We were already marked Live.
 | |
| 
 | |
|   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
 | |
|   PropagateLiveness(RA);
 | |
| }
 | |
| 
 | |
| /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
 | |
| /// to any other values it uses (according to Uses).
 | |
| void DAE::PropagateLiveness(const RetOrArg &RA) {
 | |
|   // We don't use upper_bound (or equal_range) here, because our recursive call
 | |
|   // to ourselves is likely to cause the upper_bound (which is the first value
 | |
|   // not belonging to RA) to become erased and the iterator invalidated.
 | |
|   UseMap::iterator Begin = Uses.lower_bound(RA);
 | |
|   UseMap::iterator E = Uses.end();
 | |
|   UseMap::iterator I;
 | |
|   for (I = Begin; I != E && I->first == RA; ++I)
 | |
|     MarkLive(I->second);
 | |
| 
 | |
|   // Erase RA from the Uses map (from the lower bound to wherever we ended up
 | |
|   // after the loop).
 | |
|   Uses.erase(Begin, I);
 | |
| }
 | |
| 
 | |
| // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
 | |
| // that are not in LiveValues. Transform the function and all of the callees of
 | |
| // the function to not have these arguments and return values.
 | |
| //
 | |
| bool DAE::RemoveDeadStuffFromFunction(Function *F) {
 | |
|   // Don't modify fully live functions
 | |
|   if (LiveFunctions.count(F))
 | |
|     return false;
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but has fewer arguments and a different return type.
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
|   std::vector<Type*> Params;
 | |
| 
 | |
|   // Keep track of if we have a live 'returned' argument
 | |
|   bool HasLiveReturnedArg = false;
 | |
| 
 | |
|   // Set up to build a new list of parameter attributes.
 | |
|   SmallVector<AttributeSet, 8> AttributesVec;
 | |
|   const AttributeSet &PAL = F->getAttributes();
 | |
| 
 | |
|   // Remember which arguments are still alive.
 | |
|   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
 | |
|   // Construct the new parameter list from non-dead arguments. Also construct
 | |
|   // a new set of parameter attributes to correspond. Skip the first parameter
 | |
|   // attribute, since that belongs to the return value.
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++i) {
 | |
|     RetOrArg Arg = CreateArg(F, i);
 | |
|     if (LiveValues.erase(Arg)) {
 | |
|       Params.push_back(I->getType());
 | |
|       ArgAlive[i] = true;
 | |
| 
 | |
|       // Get the original parameter attributes (skipping the first one, that is
 | |
|       // for the return value.
 | |
|       if (PAL.hasAttributes(i + 1)) {
 | |
|         AttrBuilder B(PAL, i + 1);
 | |
|         if (B.contains(Attribute::Returned))
 | |
|           HasLiveReturnedArg = true;
 | |
|         AttributesVec.
 | |
|           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
 | |
|       }
 | |
|     } else {
 | |
|       ++NumArgumentsEliminated;
 | |
|       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
 | |
|             << ") from " << F->getName() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Find out the new return value.
 | |
|   Type *RetTy = FTy->getReturnType();
 | |
|   Type *NRetTy = nullptr;
 | |
|   unsigned RetCount = NumRetVals(F);
 | |
| 
 | |
|   // -1 means unused, other numbers are the new index
 | |
|   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
 | |
|   std::vector<Type*> RetTypes;
 | |
| 
 | |
|   // If there is a function with a live 'returned' argument but a dead return
 | |
|   // value, then there are two possible actions:
 | |
|   // 1) Eliminate the return value and take off the 'returned' attribute on the
 | |
|   //    argument.
 | |
|   // 2) Retain the 'returned' attribute and treat the return value (but not the
 | |
|   //    entire function) as live so that it is not eliminated.
 | |
|   // 
 | |
|   // It's not clear in the general case which option is more profitable because,
 | |
|   // even in the absence of explicit uses of the return value, code generation
 | |
|   // is free to use the 'returned' attribute to do things like eliding
 | |
|   // save/restores of registers across calls. Whether or not this happens is
 | |
|   // target and ABI-specific as well as depending on the amount of register
 | |
|   // pressure, so there's no good way for an IR-level pass to figure this out.
 | |
|   //
 | |
|   // Fortunately, the only places where 'returned' is currently generated by
 | |
|   // the FE are places where 'returned' is basically free and almost always a
 | |
|   // performance win, so the second option can just be used always for now.
 | |
|   //
 | |
|   // This should be revisited if 'returned' is ever applied more liberally.
 | |
|   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
 | |
|     NRetTy = RetTy;
 | |
|   } else {
 | |
|     // Look at each of the original return values individually.
 | |
|     for (unsigned i = 0; i != RetCount; ++i) {
 | |
|       RetOrArg Ret = CreateRet(F, i);
 | |
|       if (LiveValues.erase(Ret)) {
 | |
|         RetTypes.push_back(getRetComponentType(F, i));
 | |
|         NewRetIdxs[i] = RetTypes.size() - 1;
 | |
|       } else {
 | |
|         ++NumRetValsEliminated;
 | |
|         DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
 | |
|               << F->getName() << "\n");
 | |
|       }
 | |
|     }
 | |
|     if (RetTypes.size() > 1) {
 | |
|       // More than one return type? Reduce it down to size.
 | |
|       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
 | |
|         // Make the new struct packed if we used to return a packed struct
 | |
|         // already.
 | |
|         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
 | |
|       } else {
 | |
|         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
 | |
|         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
 | |
|       }
 | |
|     } else if (RetTypes.size() == 1)
 | |
|       // One return type? Just a simple value then, but only if we didn't use to
 | |
|       // return a struct with that simple value before.
 | |
|       NRetTy = RetTypes.front();
 | |
|     else if (RetTypes.size() == 0)
 | |
|       // No return types? Make it void, but only if we didn't use to return {}.
 | |
|       NRetTy = Type::getVoidTy(F->getContext());
 | |
|   }
 | |
| 
 | |
|   assert(NRetTy && "No new return type found?");
 | |
| 
 | |
|   // The existing function return attributes.
 | |
|   AttributeSet RAttrs = PAL.getRetAttributes();
 | |
| 
 | |
|   // Remove any incompatible attributes, but only if we removed all return
 | |
|   // values. Otherwise, ensure that we don't have any conflicting attributes
 | |
|   // here. Currently, this should not be possible, but special handling might be
 | |
|   // required when new return value attributes are added.
 | |
|   if (NRetTy->isVoidTy())
 | |
|     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
 | |
|                                      AttributeSet::ReturnIndex,
 | |
|                                      AttributeFuncs::typeIncompatible(NRetTy));
 | |
|   else
 | |
|     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
 | |
|              overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
 | |
|            "Return attributes no longer compatible?");
 | |
| 
 | |
|   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
 | |
|     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
 | |
| 
 | |
|   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | |
|     AttributesVec.push_back(AttributeSet::get(F->getContext(),
 | |
|                                               PAL.getFnAttributes()));
 | |
| 
 | |
|   // Reconstruct the AttributesList based on the vector we constructed.
 | |
|   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
 | |
| 
 | |
|   // Create the new function type based on the recomputed parameters.
 | |
|   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
 | |
| 
 | |
|   // No change?
 | |
|   if (NFTy == FTy)
 | |
|     return false;
 | |
| 
 | |
|   // Create the new function body and insert it into the module...
 | |
|   Function *NF = Function::Create(NFTy, F->getLinkage());
 | |
|   NF->copyAttributesFrom(F);
 | |
|   NF->setAttributes(NewPAL);
 | |
|   // Insert the new function before the old function, so we won't be processing
 | |
|   // it again.
 | |
|   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
 | |
|   NF->takeName(F);
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in a smaller number of arguments into the new function.
 | |
|   //
 | |
|   std::vector<Value*> Args;
 | |
|   while (!F->use_empty()) {
 | |
|     CallSite CS(F->user_back());
 | |
|     Instruction *Call = CS.getInstruction();
 | |
| 
 | |
|     AttributesVec.clear();
 | |
|     const AttributeSet &CallPAL = CS.getAttributes();
 | |
| 
 | |
|     // The call return attributes.
 | |
|     AttributeSet RAttrs = CallPAL.getRetAttributes();
 | |
| 
 | |
|     // Adjust in case the function was changed to return void.
 | |
|     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
 | |
|                                      AttributeSet::ReturnIndex,
 | |
|                         AttributeFuncs::typeIncompatible(NF->getReturnType()));
 | |
|     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
 | |
|       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
 | |
| 
 | |
|     // Declare these outside of the loops, so we can reuse them for the second
 | |
|     // loop, which loops the varargs.
 | |
|     CallSite::arg_iterator I = CS.arg_begin();
 | |
|     unsigned i = 0;
 | |
|     // Loop over those operands, corresponding to the normal arguments to the
 | |
|     // original function, and add those that are still alive.
 | |
|     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
 | |
|       if (ArgAlive[i]) {
 | |
|         Args.push_back(*I);
 | |
|         // Get original parameter attributes, but skip return attributes.
 | |
|         if (CallPAL.hasAttributes(i + 1)) {
 | |
|           AttrBuilder B(CallPAL, i + 1);
 | |
|           // If the return type has changed, then get rid of 'returned' on the
 | |
|           // call site. The alternative is to make all 'returned' attributes on
 | |
|           // call sites keep the return value alive just like 'returned'
 | |
|           // attributes on function declaration but it's less clearly a win
 | |
|           // and this is not an expected case anyway
 | |
|           if (NRetTy != RetTy && B.contains(Attribute::Returned))
 | |
|             B.removeAttribute(Attribute::Returned);
 | |
|           AttributesVec.
 | |
|             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Push any varargs arguments on the list. Don't forget their attributes.
 | |
|     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
 | |
|       Args.push_back(*I);
 | |
|       if (CallPAL.hasAttributes(i + 1)) {
 | |
|         AttrBuilder B(CallPAL, i + 1);
 | |
|         AttributesVec.
 | |
|           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
 | |
|       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
 | |
|                                                 CallPAL.getFnAttributes()));
 | |
| 
 | |
|     // Reconstruct the AttributesList based on the vector we constructed.
 | |
|     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args, "", Call->getParent());
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
 | |
|     } else {
 | |
|       New = CallInst::Create(NF, Args, "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<CallInst>(New)->setAttributes(NewCallPAL);
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     New->setDebugLoc(Call->getDebugLoc());
 | |
| 
 | |
|     Args.clear();
 | |
| 
 | |
|     if (!Call->use_empty()) {
 | |
|       if (New->getType() == Call->getType()) {
 | |
|         // Return type not changed? Just replace users then.
 | |
|         Call->replaceAllUsesWith(New);
 | |
|         New->takeName(Call);
 | |
|       } else if (New->getType()->isVoidTy()) {
 | |
|         // Our return value has uses, but they will get removed later on.
 | |
|         // Replace by null for now.
 | |
|         if (!Call->getType()->isX86_MMXTy())
 | |
|           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
 | |
|       } else {
 | |
|         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
 | |
|                "Return type changed, but not into a void. The old return type"
 | |
|                " must have been a struct or an array!");
 | |
|         Instruction *InsertPt = Call;
 | |
|         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|           BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
 | |
|           InsertPt = &*NewEdge->getFirstInsertionPt();
 | |
|         }
 | |
| 
 | |
|         // We used to return a struct or array. Instead of doing smart stuff
 | |
|         // with all the uses, we will just rebuild it using extract/insertvalue
 | |
|         // chaining and let instcombine clean that up.
 | |
|         //
 | |
|         // Start out building up our return value from undef
 | |
|         Value *RetVal = UndefValue::get(RetTy);
 | |
|         for (unsigned i = 0; i != RetCount; ++i)
 | |
|           if (NewRetIdxs[i] != -1) {
 | |
|             Value *V;
 | |
|             if (RetTypes.size() > 1)
 | |
|               // We are still returning a struct, so extract the value from our
 | |
|               // return value
 | |
|               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
 | |
|                                            InsertPt);
 | |
|             else
 | |
|               // We are now returning a single element, so just insert that
 | |
|               V = New;
 | |
|             // Insert the value at the old position
 | |
|             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
 | |
|           }
 | |
|         // Now, replace all uses of the old call instruction with the return
 | |
|         // struct we built
 | |
|         Call->replaceAllUsesWith(RetVal);
 | |
|         New->takeName(Call);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transferring uses of the old arguments over to
 | |
|   // the new arguments, also transferring over the names as well.
 | |
|   i = 0;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | |
|        I2 = NF->arg_begin(); I != E; ++I, ++i)
 | |
|     if (ArgAlive[i]) {
 | |
|       // If this is a live argument, move the name and users over to the new
 | |
|       // version.
 | |
|       I->replaceAllUsesWith(&*I2);
 | |
|       I2->takeName(&*I);
 | |
|       ++I2;
 | |
|     } else {
 | |
|       // If this argument is dead, replace any uses of it with null constants
 | |
|       // (these are guaranteed to become unused later on).
 | |
|       if (!I->getType()->isX86_MMXTy())
 | |
|         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
 | |
|     }
 | |
| 
 | |
|   // If we change the return value of the function we must rewrite any return
 | |
|   // instructions.  Check this now.
 | |
|   if (F->getReturnType() != NF->getReturnType())
 | |
|     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
 | |
|       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|         Value *RetVal;
 | |
| 
 | |
|         if (NFTy->getReturnType()->isVoidTy()) {
 | |
|           RetVal = nullptr;
 | |
|         } else {
 | |
|           assert(RetTy->isStructTy() || RetTy->isArrayTy());
 | |
|           // The original return value was a struct or array, insert
 | |
|           // extractvalue/insertvalue chains to extract only the values we need
 | |
|           // to return and insert them into our new result.
 | |
|           // This does generate messy code, but we'll let it to instcombine to
 | |
|           // clean that up.
 | |
|           Value *OldRet = RI->getOperand(0);
 | |
|           // Start out building up our return value from undef
 | |
|           RetVal = UndefValue::get(NRetTy);
 | |
|           for (unsigned i = 0; i != RetCount; ++i)
 | |
|             if (NewRetIdxs[i] != -1) {
 | |
|               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
 | |
|                                                               "oldret", RI);
 | |
|               if (RetTypes.size() > 1) {
 | |
|                 // We're still returning a struct, so reinsert the value into
 | |
|                 // our new return value at the new index
 | |
| 
 | |
|                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
 | |
|                                                  "newret", RI);
 | |
|               } else {
 | |
|                 // We are now only returning a simple value, so just return the
 | |
|                 // extracted value.
 | |
|                 RetVal = EV;
 | |
|               }
 | |
|             }
 | |
|         }
 | |
|         // Replace the return instruction with one returning the new return
 | |
|         // value (possibly 0 if we became void).
 | |
|         ReturnInst::Create(F->getContext(), RetVal, RI);
 | |
|         BB->getInstList().erase(RI);
 | |
|       }
 | |
| 
 | |
|   // Patch the pointer to LLVM function in debug info descriptor.
 | |
|   NF->setSubprogram(F->getSubprogram());
 | |
| 
 | |
|   // Now that the old function is dead, delete it.
 | |
|   F->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DAE::runOnModule(Module &M) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // First pass: Do a simple check to see if any functions can have their "..."
 | |
|   // removed.  We can do this if they never call va_start.  This loop cannot be
 | |
|   // fused with the next loop, because deleting a function invalidates
 | |
|   // information computed while surveying other functions.
 | |
|   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | |
|     Function &F = *I++;
 | |
|     if (F.getFunctionType()->isVarArg())
 | |
|       Changed |= DeleteDeadVarargs(F);
 | |
|   }
 | |
| 
 | |
|   // Second phase:loop through the module, determining which arguments are live.
 | |
|   // We assume all arguments are dead unless proven otherwise (allowing us to
 | |
|   // determine that dead arguments passed into recursive functions are dead).
 | |
|   //
 | |
|   DEBUG(dbgs() << "DAE - Determining liveness\n");
 | |
|   for (auto &F : M)
 | |
|     SurveyFunction(F);
 | |
| 
 | |
|   // Now, remove all dead arguments and return values from each function in
 | |
|   // turn.
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | |
|     // Increment now, because the function will probably get removed (ie.
 | |
|     // replaced by a new one).
 | |
|     Function *F = &*I++;
 | |
|     Changed |= RemoveDeadStuffFromFunction(F);
 | |
|   }
 | |
| 
 | |
|   // Finally, look for any unused parameters in functions with non-local
 | |
|   // linkage and replace the passed in parameters with undef.
 | |
|   for (auto &F : M)
 | |
|     Changed |= RemoveDeadArgumentsFromCallers(F);
 | |
| 
 | |
|   return Changed;
 | |
| }
 |