1220 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1220 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file implements interprocedural passes which walk the
 | |
| /// call-graph deducing and/or propagating function attributes.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO/FunctionAttrs.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Analysis/CallGraphSCCPass.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "functionattrs"
 | |
| 
 | |
| STATISTIC(NumReadNone, "Number of functions marked readnone");
 | |
| STATISTIC(NumReadOnly, "Number of functions marked readonly");
 | |
| STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
 | |
| STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
 | |
| STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
 | |
| STATISTIC(NumNoAlias, "Number of function returns marked noalias");
 | |
| STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
 | |
| STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
 | |
| 
 | |
| namespace {
 | |
| typedef SmallSetVector<Function *, 8> SCCNodeSet;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// The three kinds of memory access relevant to 'readonly' and
 | |
| /// 'readnone' attributes.
 | |
| enum MemoryAccessKind {
 | |
|   MAK_ReadNone = 0,
 | |
|   MAK_ReadOnly = 1,
 | |
|   MAK_MayWrite = 2
 | |
| };
 | |
| }
 | |
| 
 | |
| static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
 | |
|                                                   const SCCNodeSet &SCCNodes) {
 | |
|   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
 | |
|   if (MRB == FMRB_DoesNotAccessMemory)
 | |
|     // Already perfect!
 | |
|     return MAK_ReadNone;
 | |
| 
 | |
|   // Definitions with weak linkage may be overridden at linktime with
 | |
|   // something that writes memory, so treat them like declarations.
 | |
|   if (F.isDeclaration() || F.mayBeOverridden()) {
 | |
|     if (AliasAnalysis::onlyReadsMemory(MRB))
 | |
|       return MAK_ReadOnly;
 | |
| 
 | |
|     // Conservatively assume it writes to memory.
 | |
|     return MAK_MayWrite;
 | |
|   }
 | |
| 
 | |
|   // Scan the function body for instructions that may read or write memory.
 | |
|   bool ReadsMemory = false;
 | |
|   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | |
|     Instruction *I = &*II;
 | |
| 
 | |
|     // Some instructions can be ignored even if they read or write memory.
 | |
|     // Detect these now, skipping to the next instruction if one is found.
 | |
|     CallSite CS(cast<Value>(I));
 | |
|     if (CS) {
 | |
|       // Ignore calls to functions in the same SCC, as long as the call sites
 | |
|       // don't have operand bundles.  Calls with operand bundles are allowed to
 | |
|       // have memory effects not described by the memory effects of the call
 | |
|       // target.
 | |
|       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
 | |
|           SCCNodes.count(CS.getCalledFunction()))
 | |
|         continue;
 | |
|       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
 | |
| 
 | |
|       // If the call doesn't access memory, we're done.
 | |
|       if (!(MRB & MRI_ModRef))
 | |
|         continue;
 | |
| 
 | |
|       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
 | |
|         // The call could access any memory. If that includes writes, give up.
 | |
|         if (MRB & MRI_Mod)
 | |
|           return MAK_MayWrite;
 | |
|         // If it reads, note it.
 | |
|         if (MRB & MRI_Ref)
 | |
|           ReadsMemory = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check whether all pointer arguments point to local memory, and
 | |
|       // ignore calls that only access local memory.
 | |
|       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | |
|            CI != CE; ++CI) {
 | |
|         Value *Arg = *CI;
 | |
|         if (!Arg->getType()->isPtrOrPtrVectorTy())
 | |
|           continue;
 | |
| 
 | |
|         AAMDNodes AAInfo;
 | |
|         I->getAAMetadata(AAInfo);
 | |
|         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
 | |
| 
 | |
|         // Skip accesses to local or constant memory as they don't impact the
 | |
|         // externally visible mod/ref behavior.
 | |
|         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | |
|           continue;
 | |
| 
 | |
|         if (MRB & MRI_Mod)
 | |
|           // Writes non-local memory.  Give up.
 | |
|           return MAK_MayWrite;
 | |
|         if (MRB & MRI_Ref)
 | |
|           // Ok, it reads non-local memory.
 | |
|           ReadsMemory = true;
 | |
|       }
 | |
|       continue;
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
 | |
|       if (!LI->isVolatile()) {
 | |
|         MemoryLocation Loc = MemoryLocation::get(LI);
 | |
|         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | |
|           continue;
 | |
|       }
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
 | |
|       if (!SI->isVolatile()) {
 | |
|         MemoryLocation Loc = MemoryLocation::get(SI);
 | |
|         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | |
|           continue;
 | |
|       }
 | |
|     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
 | |
|       // Ignore vaargs on local memory.
 | |
|       MemoryLocation Loc = MemoryLocation::get(VI);
 | |
|       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Any remaining instructions need to be taken seriously!  Check if they
 | |
|     // read or write memory.
 | |
|     if (I->mayWriteToMemory())
 | |
|       // Writes memory.  Just give up.
 | |
|       return MAK_MayWrite;
 | |
| 
 | |
|     // If this instruction may read memory, remember that.
 | |
|     ReadsMemory |= I->mayReadFromMemory();
 | |
|   }
 | |
| 
 | |
|   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
 | |
| }
 | |
| 
 | |
| /// Deduce readonly/readnone attributes for the SCC.
 | |
| template <typename AARGetterT>
 | |
| static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
 | |
|   // Check if any of the functions in the SCC read or write memory.  If they
 | |
|   // write memory then they can't be marked readnone or readonly.
 | |
|   bool ReadsMemory = false;
 | |
|   for (Function *F : SCCNodes) {
 | |
|     // Call the callable parameter to look up AA results for this function.
 | |
|     AAResults &AAR = AARGetter(*F);
 | |
| 
 | |
|     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
 | |
|     case MAK_MayWrite:
 | |
|       return false;
 | |
|     case MAK_ReadOnly:
 | |
|       ReadsMemory = true;
 | |
|       break;
 | |
|     case MAK_ReadNone:
 | |
|       // Nothing to do!
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Success!  Functions in this SCC do not access memory, or only read memory.
 | |
|   // Give them the appropriate attribute.
 | |
|   bool MadeChange = false;
 | |
|   for (Function *F : SCCNodes) {
 | |
|     if (F->doesNotAccessMemory())
 | |
|       // Already perfect!
 | |
|       continue;
 | |
| 
 | |
|     if (F->onlyReadsMemory() && ReadsMemory)
 | |
|       // No change.
 | |
|       continue;
 | |
| 
 | |
|     MadeChange = true;
 | |
| 
 | |
|     // Clear out any existing attributes.
 | |
|     AttrBuilder B;
 | |
|     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
 | |
|     F->removeAttributes(
 | |
|         AttributeSet::FunctionIndex,
 | |
|         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
 | |
| 
 | |
|     // Add in the new attribute.
 | |
|     F->addAttribute(AttributeSet::FunctionIndex,
 | |
|                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
 | |
| 
 | |
|     if (ReadsMemory)
 | |
|       ++NumReadOnly;
 | |
|     else
 | |
|       ++NumReadNone;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// For a given pointer Argument, this retains a list of Arguments of functions
 | |
| /// in the same SCC that the pointer data flows into. We use this to build an
 | |
| /// SCC of the arguments.
 | |
| struct ArgumentGraphNode {
 | |
|   Argument *Definition;
 | |
|   SmallVector<ArgumentGraphNode *, 4> Uses;
 | |
| };
 | |
| 
 | |
| class ArgumentGraph {
 | |
|   // We store pointers to ArgumentGraphNode objects, so it's important that
 | |
|   // that they not move around upon insert.
 | |
|   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
 | |
| 
 | |
|   ArgumentMapTy ArgumentMap;
 | |
| 
 | |
|   // There is no root node for the argument graph, in fact:
 | |
|   //   void f(int *x, int *y) { if (...) f(x, y); }
 | |
|   // is an example where the graph is disconnected. The SCCIterator requires a
 | |
|   // single entry point, so we maintain a fake ("synthetic") root node that
 | |
|   // uses every node. Because the graph is directed and nothing points into
 | |
|   // the root, it will not participate in any SCCs (except for its own).
 | |
|   ArgumentGraphNode SyntheticRoot;
 | |
| 
 | |
| public:
 | |
|   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
 | |
| 
 | |
|   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
 | |
| 
 | |
|   iterator begin() { return SyntheticRoot.Uses.begin(); }
 | |
|   iterator end() { return SyntheticRoot.Uses.end(); }
 | |
|   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
 | |
| 
 | |
|   ArgumentGraphNode *operator[](Argument *A) {
 | |
|     ArgumentGraphNode &Node = ArgumentMap[A];
 | |
|     Node.Definition = A;
 | |
|     SyntheticRoot.Uses.push_back(&Node);
 | |
|     return &Node;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// This tracker checks whether callees are in the SCC, and if so it does not
 | |
| /// consider that a capture, instead adding it to the "Uses" list and
 | |
| /// continuing with the analysis.
 | |
| struct ArgumentUsesTracker : public CaptureTracker {
 | |
|   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
 | |
|       : Captured(false), SCCNodes(SCCNodes) {}
 | |
| 
 | |
|   void tooManyUses() override { Captured = true; }
 | |
| 
 | |
|   bool captured(const Use *U) override {
 | |
|     CallSite CS(U->getUser());
 | |
|     if (!CS.getInstruction()) {
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Function *F = CS.getCalledFunction();
 | |
|     if (!F || F->isDeclaration() || F->mayBeOverridden() ||
 | |
|         !SCCNodes.count(F)) {
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Note: the callee and the two successor blocks *follow* the argument
 | |
|     // operands.  This means there is no need to adjust UseIndex to account for
 | |
|     // these.
 | |
| 
 | |
|     unsigned UseIndex =
 | |
|         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
 | |
| 
 | |
|     assert(UseIndex < CS.data_operands_size() &&
 | |
|            "Indirect function calls should have been filtered above!");
 | |
| 
 | |
|     if (UseIndex >= CS.getNumArgOperands()) {
 | |
|       // Data operand, but not a argument operand -- must be a bundle operand
 | |
|       assert(CS.hasOperandBundles() && "Must be!");
 | |
| 
 | |
|       // CaptureTracking told us that we're being captured by an operand bundle
 | |
|       // use.  In this case it does not matter if the callee is within our SCC
 | |
|       // or not -- we've been captured in some unknown way, and we have to be
 | |
|       // conservative.
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (UseIndex >= F->arg_size()) {
 | |
|       assert(F->isVarArg() && "More params than args in non-varargs call");
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool Captured; // True only if certainly captured (used outside our SCC).
 | |
|   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
 | |
| 
 | |
|   const SCCNodeSet &SCCNodes;
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct GraphTraits<ArgumentGraphNode *> {
 | |
|   typedef ArgumentGraphNode NodeType;
 | |
|   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(NodeType *A) { return A; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return N->Uses.begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return N->Uses.end();
 | |
|   }
 | |
| };
 | |
| template <>
 | |
| struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
 | |
|   static NodeType *getEntryNode(ArgumentGraph *AG) {
 | |
|     return AG->getEntryNode();
 | |
|   }
 | |
|   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
 | |
|     return AG->begin();
 | |
|   }
 | |
|   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
 | |
| static Attribute::AttrKind
 | |
| determinePointerReadAttrs(Argument *A,
 | |
|                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
 | |
| 
 | |
|   SmallVector<Use *, 32> Worklist;
 | |
|   SmallSet<Use *, 32> Visited;
 | |
| 
 | |
|   // inalloca arguments are always clobbered by the call.
 | |
|   if (A->hasInAllocaAttr())
 | |
|     return Attribute::None;
 | |
| 
 | |
|   bool IsRead = false;
 | |
|   // We don't need to track IsWritten. If A is written to, return immediately.
 | |
| 
 | |
|   for (Use &U : A->uses()) {
 | |
|     Visited.insert(&U);
 | |
|     Worklist.push_back(&U);
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Use *U = Worklist.pop_back_val();
 | |
|     Instruction *I = cast<Instruction>(U->getUser());
 | |
| 
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::PHI:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::AddrSpaceCast:
 | |
|       // The original value is not read/written via this if the new value isn't.
 | |
|       for (Use &UU : I->uses())
 | |
|         if (Visited.insert(&UU).second)
 | |
|           Worklist.push_back(&UU);
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Call:
 | |
|     case Instruction::Invoke: {
 | |
|       bool Captures = true;
 | |
| 
 | |
|       if (I->getType()->isVoidTy())
 | |
|         Captures = false;
 | |
| 
 | |
|       auto AddUsersToWorklistIfCapturing = [&] {
 | |
|         if (Captures)
 | |
|           for (Use &UU : I->uses())
 | |
|             if (Visited.insert(&UU).second)
 | |
|               Worklist.push_back(&UU);
 | |
|       };
 | |
| 
 | |
|       CallSite CS(I);
 | |
|       if (CS.doesNotAccessMemory()) {
 | |
|         AddUsersToWorklistIfCapturing();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Function *F = CS.getCalledFunction();
 | |
|       if (!F) {
 | |
|         if (CS.onlyReadsMemory()) {
 | |
|           IsRead = true;
 | |
|           AddUsersToWorklistIfCapturing();
 | |
|           continue;
 | |
|         }
 | |
|         return Attribute::None;
 | |
|       }
 | |
| 
 | |
|       // Note: the callee and the two successor blocks *follow* the argument
 | |
|       // operands.  This means there is no need to adjust UseIndex to account
 | |
|       // for these.
 | |
| 
 | |
|       unsigned UseIndex = std::distance(CS.arg_begin(), U);
 | |
| 
 | |
|       // U cannot be the callee operand use: since we're exploring the
 | |
|       // transitive uses of an Argument, having such a use be a callee would
 | |
|       // imply the CallSite is an indirect call or invoke; and we'd take the
 | |
|       // early exit above.
 | |
|       assert(UseIndex < CS.data_operands_size() &&
 | |
|              "Data operand use expected!");
 | |
| 
 | |
|       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
 | |
| 
 | |
|       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
 | |
|         assert(F->isVarArg() && "More params than args in non-varargs call");
 | |
|         return Attribute::None;
 | |
|       }
 | |
| 
 | |
|       Captures &= !CS.doesNotCapture(UseIndex);
 | |
| 
 | |
|       // Since the optimizer (by design) cannot see the data flow corresponding
 | |
|       // to a operand bundle use, these cannot participate in the optimistic SCC
 | |
|       // analysis.  Instead, we model the operand bundle uses as arguments in
 | |
|       // call to a function external to the SCC.
 | |
|       if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
 | |
|           IsOperandBundleUse) {
 | |
| 
 | |
|         // The accessors used on CallSite here do the right thing for calls and
 | |
|         // invokes with operand bundles.
 | |
| 
 | |
|         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
 | |
|           return Attribute::None;
 | |
|         if (!CS.doesNotAccessMemory(UseIndex))
 | |
|           IsRead = true;
 | |
|       }
 | |
| 
 | |
|       AddUsersToWorklistIfCapturing();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Load:
 | |
|       IsRead = true;
 | |
|       break;
 | |
| 
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::Ret:
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       return Attribute::None;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
 | |
| }
 | |
| 
 | |
| /// Deduce nocapture attributes for the SCC.
 | |
| static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   ArgumentGraph AG;
 | |
| 
 | |
|   AttrBuilder B;
 | |
|   B.addAttribute(Attribute::NoCapture);
 | |
| 
 | |
|   // Check each function in turn, determining which pointer arguments are not
 | |
|   // captured.
 | |
|   for (Function *F : SCCNodes) {
 | |
|     // Definitions with weak linkage may be overridden at linktime with
 | |
|     // something that captures pointers, so treat them like declarations.
 | |
|     if (F->isDeclaration() || F->mayBeOverridden())
 | |
|       continue;
 | |
| 
 | |
|     // Functions that are readonly (or readnone) and nounwind and don't return
 | |
|     // a value can't capture arguments. Don't analyze them.
 | |
|     if (F->onlyReadsMemory() && F->doesNotThrow() &&
 | |
|         F->getReturnType()->isVoidTy()) {
 | |
|       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
 | |
|            ++A) {
 | |
|         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
 | |
|           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
 | |
|           ++NumNoCapture;
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
 | |
|          ++A) {
 | |
|       if (!A->getType()->isPointerTy())
 | |
|         continue;
 | |
|       bool HasNonLocalUses = false;
 | |
|       if (!A->hasNoCaptureAttr()) {
 | |
|         ArgumentUsesTracker Tracker(SCCNodes);
 | |
|         PointerMayBeCaptured(&*A, &Tracker);
 | |
|         if (!Tracker.Captured) {
 | |
|           if (Tracker.Uses.empty()) {
 | |
|             // If it's trivially not captured, mark it nocapture now.
 | |
|             A->addAttr(
 | |
|                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
 | |
|             ++NumNoCapture;
 | |
|             Changed = true;
 | |
|           } else {
 | |
|             // If it's not trivially captured and not trivially not captured,
 | |
|             // then it must be calling into another function in our SCC. Save
 | |
|             // its particulars for Argument-SCC analysis later.
 | |
|             ArgumentGraphNode *Node = AG[&*A];
 | |
|             for (SmallVectorImpl<Argument *>::iterator
 | |
|                      UI = Tracker.Uses.begin(),
 | |
|                      UE = Tracker.Uses.end();
 | |
|                  UI != UE; ++UI) {
 | |
|               Node->Uses.push_back(AG[*UI]);
 | |
|               if (*UI != &*A)
 | |
|                 HasNonLocalUses = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
 | |
|       }
 | |
|       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
 | |
|         // Can we determine that it's readonly/readnone without doing an SCC?
 | |
|         // Note that we don't allow any calls at all here, or else our result
 | |
|         // will be dependent on the iteration order through the functions in the
 | |
|         // SCC.
 | |
|         SmallPtrSet<Argument *, 8> Self;
 | |
|         Self.insert(&*A);
 | |
|         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
 | |
|         if (R != Attribute::None) {
 | |
|           AttrBuilder B;
 | |
|           B.addAttribute(R);
 | |
|           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | |
|           Changed = true;
 | |
|           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The graph we've collected is partial because we stopped scanning for
 | |
|   // argument uses once we solved the argument trivially. These partial nodes
 | |
|   // show up as ArgumentGraphNode objects with an empty Uses list, and for
 | |
|   // these nodes the final decision about whether they capture has already been
 | |
|   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
 | |
|   // captures.
 | |
| 
 | |
|   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
 | |
|     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
 | |
|     if (ArgumentSCC.size() == 1) {
 | |
|       if (!ArgumentSCC[0]->Definition)
 | |
|         continue; // synthetic root node
 | |
| 
 | |
|       // eg. "void f(int* x) { if (...) f(x); }"
 | |
|       if (ArgumentSCC[0]->Uses.size() == 1 &&
 | |
|           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
 | |
|         Argument *A = ArgumentSCC[0]->Definition;
 | |
|         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | |
|         ++NumNoCapture;
 | |
|         Changed = true;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool SCCCaptured = false;
 | |
|     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
 | |
|          I != E && !SCCCaptured; ++I) {
 | |
|       ArgumentGraphNode *Node = *I;
 | |
|       if (Node->Uses.empty()) {
 | |
|         if (!Node->Definition->hasNoCaptureAttr())
 | |
|           SCCCaptured = true;
 | |
|       }
 | |
|     }
 | |
|     if (SCCCaptured)
 | |
|       continue;
 | |
| 
 | |
|     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
 | |
|     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
 | |
|     // quickly looking up whether a given Argument is in this ArgumentSCC.
 | |
|     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); I != E; ++I) {
 | |
|       ArgumentSCCNodes.insert((*I)->Definition);
 | |
|     }
 | |
| 
 | |
|     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
 | |
|          I != E && !SCCCaptured; ++I) {
 | |
|       ArgumentGraphNode *N = *I;
 | |
|       for (SmallVectorImpl<ArgumentGraphNode *>::iterator UI = N->Uses.begin(),
 | |
|                                                           UE = N->Uses.end();
 | |
|            UI != UE; ++UI) {
 | |
|         Argument *A = (*UI)->Definition;
 | |
|         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
 | |
|           continue;
 | |
|         SCCCaptured = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (SCCCaptured)
 | |
|       continue;
 | |
| 
 | |
|     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | |
|       Argument *A = ArgumentSCC[i]->Definition;
 | |
|       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | |
|       ++NumNoCapture;
 | |
|       Changed = true;
 | |
|     }
 | |
| 
 | |
|     // We also want to compute readonly/readnone. With a small number of false
 | |
|     // negatives, we can assume that any pointer which is captured isn't going
 | |
|     // to be provably readonly or readnone, since by definition we can't
 | |
|     // analyze all uses of a captured pointer.
 | |
|     //
 | |
|     // The false negatives happen when the pointer is captured by a function
 | |
|     // that promises readonly/readnone behaviour on the pointer, then the
 | |
|     // pointer's lifetime ends before anything that writes to arbitrary memory.
 | |
|     // Also, a readonly/readnone pointer may be returned, but returning a
 | |
|     // pointer is capturing it.
 | |
| 
 | |
|     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
 | |
|     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | |
|       Argument *A = ArgumentSCC[i]->Definition;
 | |
|       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
 | |
|       if (K == Attribute::ReadNone)
 | |
|         continue;
 | |
|       if (K == Attribute::ReadOnly) {
 | |
|         ReadAttr = Attribute::ReadOnly;
 | |
|         continue;
 | |
|       }
 | |
|       ReadAttr = K;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (ReadAttr != Attribute::None) {
 | |
|       AttrBuilder B, R;
 | |
|       B.addAttribute(ReadAttr);
 | |
|       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
 | |
|       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | |
|         Argument *A = ArgumentSCC[i]->Definition;
 | |
|         // Clear out existing readonly/readnone attributes
 | |
|         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
 | |
|         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | |
|         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Tests whether a function is "malloc-like".
 | |
| ///
 | |
| /// A function is "malloc-like" if it returns either null or a pointer that
 | |
| /// doesn't alias any other pointer visible to the caller.
 | |
| static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
 | |
|   SmallSetVector<Value *, 8> FlowsToReturn;
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
 | |
|       FlowsToReturn.insert(Ret->getReturnValue());
 | |
| 
 | |
|   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
 | |
|     Value *RetVal = FlowsToReturn[i];
 | |
| 
 | |
|     if (Constant *C = dyn_cast<Constant>(RetVal)) {
 | |
|       if (!C->isNullValue() && !isa<UndefValue>(C))
 | |
|         return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (isa<Argument>(RetVal))
 | |
|       return false;
 | |
| 
 | |
|     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
 | |
|       switch (RVI->getOpcode()) {
 | |
|       // Extend the analysis by looking upwards.
 | |
|       case Instruction::BitCast:
 | |
|       case Instruction::GetElementPtr:
 | |
|       case Instruction::AddrSpaceCast:
 | |
|         FlowsToReturn.insert(RVI->getOperand(0));
 | |
|         continue;
 | |
|       case Instruction::Select: {
 | |
|         SelectInst *SI = cast<SelectInst>(RVI);
 | |
|         FlowsToReturn.insert(SI->getTrueValue());
 | |
|         FlowsToReturn.insert(SI->getFalseValue());
 | |
|         continue;
 | |
|       }
 | |
|       case Instruction::PHI: {
 | |
|         PHINode *PN = cast<PHINode>(RVI);
 | |
|         for (Value *IncValue : PN->incoming_values())
 | |
|           FlowsToReturn.insert(IncValue);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check whether the pointer came from an allocation.
 | |
|       case Instruction::Alloca:
 | |
|         break;
 | |
|       case Instruction::Call:
 | |
|       case Instruction::Invoke: {
 | |
|         CallSite CS(RVI);
 | |
|         if (CS.paramHasAttr(0, Attribute::NoAlias))
 | |
|           break;
 | |
|         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
 | |
|           break;
 | |
|       } // fall-through
 | |
|       default:
 | |
|         return false; // Did not come from an allocation.
 | |
|       }
 | |
| 
 | |
|     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Deduce noalias attributes for the SCC.
 | |
| static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
 | |
|   // Check each function in turn, determining which functions return noalias
 | |
|   // pointers.
 | |
|   for (Function *F : SCCNodes) {
 | |
|     // Already noalias.
 | |
|     if (F->doesNotAlias(0))
 | |
|       continue;
 | |
| 
 | |
|     // Definitions with weak linkage may be overridden at linktime, so
 | |
|     // treat them like declarations.
 | |
|     if (F->isDeclaration() || F->mayBeOverridden())
 | |
|       return false;
 | |
| 
 | |
|     // We annotate noalias return values, which are only applicable to
 | |
|     // pointer types.
 | |
|     if (!F->getReturnType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     if (!isFunctionMallocLike(F, SCCNodes))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Function *F : SCCNodes) {
 | |
|     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     F->setDoesNotAlias(0);
 | |
|     ++NumNoAlias;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// Tests whether this function is known to not return null.
 | |
| ///
 | |
| /// Requires that the function returns a pointer.
 | |
| ///
 | |
| /// Returns true if it believes the function will not return a null, and sets
 | |
| /// \p Speculative based on whether the returned conclusion is a speculative
 | |
| /// conclusion due to SCC calls.
 | |
| static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
 | |
|                             const TargetLibraryInfo &TLI, bool &Speculative) {
 | |
|   assert(F->getReturnType()->isPointerTy() &&
 | |
|          "nonnull only meaningful on pointer types");
 | |
|   Speculative = false;
 | |
| 
 | |
|   SmallSetVector<Value *, 8> FlowsToReturn;
 | |
|   for (BasicBlock &BB : *F)
 | |
|     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
 | |
|       FlowsToReturn.insert(Ret->getReturnValue());
 | |
| 
 | |
|   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
 | |
|     Value *RetVal = FlowsToReturn[i];
 | |
| 
 | |
|     // If this value is locally known to be non-null, we're good
 | |
|     if (isKnownNonNull(RetVal, &TLI))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, we need to look upwards since we can't make any local
 | |
|     // conclusions.
 | |
|     Instruction *RVI = dyn_cast<Instruction>(RetVal);
 | |
|     if (!RVI)
 | |
|       return false;
 | |
|     switch (RVI->getOpcode()) {
 | |
|     // Extend the analysis by looking upwards.
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::AddrSpaceCast:
 | |
|       FlowsToReturn.insert(RVI->getOperand(0));
 | |
|       continue;
 | |
|     case Instruction::Select: {
 | |
|       SelectInst *SI = cast<SelectInst>(RVI);
 | |
|       FlowsToReturn.insert(SI->getTrueValue());
 | |
|       FlowsToReturn.insert(SI->getFalseValue());
 | |
|       continue;
 | |
|     }
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PN = cast<PHINode>(RVI);
 | |
|       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         FlowsToReturn.insert(PN->getIncomingValue(i));
 | |
|       continue;
 | |
|     }
 | |
|     case Instruction::Call:
 | |
|     case Instruction::Invoke: {
 | |
|       CallSite CS(RVI);
 | |
|       Function *Callee = CS.getCalledFunction();
 | |
|       // A call to a node within the SCC is assumed to return null until
 | |
|       // proven otherwise
 | |
|       if (Callee && SCCNodes.count(Callee)) {
 | |
|         Speculative = true;
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     default:
 | |
|       return false; // Unknown source, may be null
 | |
|     };
 | |
|     llvm_unreachable("should have either continued or returned");
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Deduce nonnull attributes for the SCC.
 | |
| static bool addNonNullAttrs(const SCCNodeSet &SCCNodes,
 | |
|                             const TargetLibraryInfo &TLI) {
 | |
|   // Speculative that all functions in the SCC return only nonnull
 | |
|   // pointers.  We may refute this as we analyze functions.
 | |
|   bool SCCReturnsNonNull = true;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Check each function in turn, determining which functions return nonnull
 | |
|   // pointers.
 | |
|   for (Function *F : SCCNodes) {
 | |
|     // Already nonnull.
 | |
|     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | |
|                                         Attribute::NonNull))
 | |
|       continue;
 | |
| 
 | |
|     // Definitions with weak linkage may be overridden at linktime, so
 | |
|     // treat them like declarations.
 | |
|     if (F->isDeclaration() || F->mayBeOverridden())
 | |
|       return false;
 | |
| 
 | |
|     // We annotate nonnull return values, which are only applicable to
 | |
|     // pointer types.
 | |
|     if (!F->getReturnType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     bool Speculative = false;
 | |
|     if (isReturnNonNull(F, SCCNodes, TLI, Speculative)) {
 | |
|       if (!Speculative) {
 | |
|         // Mark the function eagerly since we may discover a function
 | |
|         // which prevents us from speculating about the entire SCC
 | |
|         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
 | |
|         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
 | |
|         ++NumNonNullReturn;
 | |
|         MadeChange = true;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     // At least one function returns something which could be null, can't
 | |
|     // speculate any more.
 | |
|     SCCReturnsNonNull = false;
 | |
|   }
 | |
| 
 | |
|   if (SCCReturnsNonNull) {
 | |
|     for (Function *F : SCCNodes) {
 | |
|       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | |
|                                           Attribute::NonNull) ||
 | |
|           !F->getReturnType()->isPointerTy())
 | |
|         continue;
 | |
| 
 | |
|       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
 | |
|       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
 | |
|       ++NumNonNullReturn;
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// Remove the convergent attribute from all functions in the SCC if every
 | |
| /// callsite within the SCC is not convergent (except for calls to functions
 | |
| /// within the SCC).  Returns true if changes were made.
 | |
| static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
 | |
|   // For every function in SCC, ensure that either
 | |
|   //  * it is not convergent, or
 | |
|   //  * we can remove its convergent attribute.
 | |
|   bool HasConvergentFn = false;
 | |
|   for (Function *F : SCCNodes) {
 | |
|     if (!F->isConvergent()) continue;
 | |
|     HasConvergentFn = true;
 | |
| 
 | |
|     // Can't remove convergent from function declarations.
 | |
|     if (F->isDeclaration()) return false;
 | |
| 
 | |
|     // Can't remove convergent if any of our functions has a convergent call to a
 | |
|     // function not in the SCC.
 | |
|     for (Instruction &I : instructions(*F)) {
 | |
|       CallSite CS(&I);
 | |
|       // Bail if CS is a convergent call to a function not in the SCC.
 | |
|       if (CS && CS.isConvergent() &&
 | |
|           SCCNodes.count(CS.getCalledFunction()) == 0)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the SCC doesn't have any convergent functions, we have nothing to do.
 | |
|   if (!HasConvergentFn) return false;
 | |
| 
 | |
|   // If we got here, all of the calls the SCC makes to functions not in the SCC
 | |
|   // are non-convergent.  Therefore all of the SCC's functions can also be made
 | |
|   // non-convergent.  We'll remove the attr from the callsites in
 | |
|   // InstCombineCalls.
 | |
|   for (Function *F : SCCNodes) {
 | |
|     if (!F->isConvergent()) continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
 | |
|                  << "\n");
 | |
|     F->setNotConvergent();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool setDoesNotRecurse(Function &F) {
 | |
|   if (F.doesNotRecurse())
 | |
|     return false;
 | |
|   F.setDoesNotRecurse();
 | |
|   ++NumNoRecurse;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
 | |
|   // Try and identify functions that do not recurse.
 | |
| 
 | |
|   // If the SCC contains multiple nodes we know for sure there is recursion.
 | |
|   if (SCCNodes.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   Function *F = *SCCNodes.begin();
 | |
|   if (!F || F->isDeclaration() || F->doesNotRecurse())
 | |
|     return false;
 | |
| 
 | |
|   // If all of the calls in F are identifiable and are to norecurse functions, F
 | |
|   // is norecurse. This check also detects self-recursion as F is not currently
 | |
|   // marked norecurse, so any called from F to F will not be marked norecurse.
 | |
|   for (Instruction &I : instructions(*F))
 | |
|     if (auto CS = CallSite(&I)) {
 | |
|       Function *Callee = CS.getCalledFunction();
 | |
|       if (!Callee || Callee == F || !Callee->doesNotRecurse())
 | |
|         // Function calls a potentially recursive function.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // Every call was to a non-recursive function other than this function, and
 | |
|   // we have no indirect recursion as the SCC size is one. This function cannot
 | |
|   // recurse.
 | |
|   return setDoesNotRecurse(*F);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
 | |
|                                                   CGSCCAnalysisManager &AM) {
 | |
|   Module &M = *C.begin()->getFunction().getParent();
 | |
|   const ModuleAnalysisManager &MAM =
 | |
|       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C).getManager();
 | |
|   FunctionAnalysisManager &FAM =
 | |
|       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
 | |
| 
 | |
|   // FIXME: Need some way to make it more reasonable to assume that this is
 | |
|   // always cached.
 | |
|   TargetLibraryInfo &TLI = *MAM.getCachedResult<TargetLibraryAnalysis>(M);
 | |
| 
 | |
|   // We pass a lambda into functions to wire them up to the analysis manager
 | |
|   // for getting function analyses.
 | |
|   auto AARGetter = [&](Function &F) -> AAResults & {
 | |
|     return FAM.getResult<AAManager>(F);
 | |
|   };
 | |
| 
 | |
|   // Fill SCCNodes with the elements of the SCC. Also track whether there are
 | |
|   // any external or opt-none nodes that will prevent us from optimizing any
 | |
|   // part of the SCC.
 | |
|   SCCNodeSet SCCNodes;
 | |
|   bool HasUnknownCall = false;
 | |
|   for (LazyCallGraph::Node &N : C) {
 | |
|     Function &F = N.getFunction();
 | |
|     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
 | |
|       // Treat any function we're trying not to optimize as if it were an
 | |
|       // indirect call and omit it from the node set used below.
 | |
|       HasUnknownCall = true;
 | |
|       continue;
 | |
|     }
 | |
|     // Track whether any functions in this SCC have an unknown call edge.
 | |
|     // Note: if this is ever a performance hit, we can common it with
 | |
|     // subsequent routines which also do scans over the instructions of the
 | |
|     // function.
 | |
|     if (!HasUnknownCall)
 | |
|       for (Instruction &I : instructions(F))
 | |
|         if (auto CS = CallSite(&I))
 | |
|           if (!CS.getCalledFunction()) {
 | |
|             HasUnknownCall = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|     SCCNodes.insert(&F);
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   Changed |= addReadAttrs(SCCNodes, AARGetter);
 | |
|   Changed |= addArgumentAttrs(SCCNodes);
 | |
| 
 | |
|   // If we have no external nodes participating in the SCC, we can deduce some
 | |
|   // more precise attributes as well.
 | |
|   if (!HasUnknownCall) {
 | |
|     Changed |= addNoAliasAttrs(SCCNodes);
 | |
|     Changed |= addNonNullAttrs(SCCNodes, TLI);
 | |
|     Changed |= removeConvergentAttrs(SCCNodes);
 | |
|     Changed |= addNoRecurseAttrs(SCCNodes);
 | |
|   }
 | |
| 
 | |
|   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
 | |
|     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnSCC(CallGraphSCC &SCC) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     getAAResultsAnalysisUsage(AU);
 | |
|     CallGraphSCCPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   TargetLibraryInfo *TLI;
 | |
| };
 | |
| }
 | |
| 
 | |
| char PostOrderFunctionAttrsLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
 | |
|                       "Deduce function attributes", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
 | |
|                     "Deduce function attributes", false, false)
 | |
| 
 | |
| Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
 | |
| 
 | |
| bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // We compute dedicated AA results for each function in the SCC as needed. We
 | |
|   // use a lambda referencing external objects so that they live long enough to
 | |
|   // be queried, but we re-use them each time.
 | |
|   Optional<BasicAAResult> BAR;
 | |
|   Optional<AAResults> AAR;
 | |
|   auto AARGetter = [&](Function &F) -> AAResults & {
 | |
|     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
 | |
|     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
 | |
|     return *AAR;
 | |
|   };
 | |
| 
 | |
|   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
 | |
|   // whether a given CallGraphNode is in this SCC. Also track whether there are
 | |
|   // any external or opt-none nodes that will prevent us from optimizing any
 | |
|   // part of the SCC.
 | |
|   SCCNodeSet SCCNodes;
 | |
|   bool ExternalNode = false;
 | |
|   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
 | |
|     Function *F = (*I)->getFunction();
 | |
|     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
 | |
|       // External node or function we're trying not to optimize - we both avoid
 | |
|       // transform them and avoid leveraging information they provide.
 | |
|       ExternalNode = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SCCNodes.insert(F);
 | |
|   }
 | |
| 
 | |
|   Changed |= addReadAttrs(SCCNodes, AARGetter);
 | |
|   Changed |= addArgumentAttrs(SCCNodes);
 | |
| 
 | |
|   // If we have no external nodes participating in the SCC, we can deduce some
 | |
|   // more precise attributes as well.
 | |
|   if (!ExternalNode) {
 | |
|     Changed |= addNoAliasAttrs(SCCNodes);
 | |
|     Changed |= addNonNullAttrs(SCCNodes, *TLI);
 | |
|     Changed |= removeConvergentAttrs(SCCNodes);
 | |
|     Changed |= addNoRecurseAttrs(SCCNodes);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A pass to do RPO deduction and propagation of function attributes.
 | |
| ///
 | |
| /// This pass provides a general RPO or "top down" propagation of
 | |
| /// function attributes. For a few (rare) cases, we can deduce significantly
 | |
| /// more about function attributes by working in RPO, so this pass
 | |
| /// provides the compliment to the post-order pass above where the majority of
 | |
| /// deduction is performed.
 | |
| // FIXME: Currently there is no RPO CGSCC pass structure to slide into and so
 | |
| // this is a boring module pass, but eventually it should be an RPO CGSCC pass
 | |
| // when such infrastructure is available.
 | |
| struct ReversePostOrderFunctionAttrs : public ModulePass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   ReversePostOrderFunctionAttrs() : ModulePass(ID) {
 | |
|     initializeReversePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnModule(Module &M) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<CallGraphWrapperPass>();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char ReversePostOrderFunctionAttrs::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
 | |
|                       "Deduce function attributes in RPO", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | |
| INITIALIZE_PASS_END(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
 | |
|                     "Deduce function attributes in RPO", false, false)
 | |
| 
 | |
| Pass *llvm::createReversePostOrderFunctionAttrsPass() {
 | |
|   return new ReversePostOrderFunctionAttrs();
 | |
| }
 | |
| 
 | |
| static bool addNoRecurseAttrsTopDown(Function &F) {
 | |
|   // We check the preconditions for the function prior to calling this to avoid
 | |
|   // the cost of building up a reversible post-order list. We assert them here
 | |
|   // to make sure none of the invariants this relies on were violated.
 | |
|   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
 | |
|   assert(!F.doesNotRecurse() &&
 | |
|          "This function has already been deduced as norecurs!");
 | |
|   assert(F.hasInternalLinkage() &&
 | |
|          "Can only do top-down deduction for internal linkage functions!");
 | |
| 
 | |
|   // If F is internal and all of its uses are calls from a non-recursive
 | |
|   // functions, then none of its calls could in fact recurse without going
 | |
|   // through a function marked norecurse, and so we can mark this function too
 | |
|   // as norecurse. Note that the uses must actually be calls -- otherwise
 | |
|   // a pointer to this function could be returned from a norecurse function but
 | |
|   // this function could be recursively (indirectly) called. Note that this
 | |
|   // also detects if F is directly recursive as F is not yet marked as
 | |
|   // a norecurse function.
 | |
|   for (auto *U : F.users()) {
 | |
|     auto *I = dyn_cast<Instruction>(U);
 | |
|     if (!I)
 | |
|       return false;
 | |
|     CallSite CS(I);
 | |
|     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
 | |
|       return false;
 | |
|   }
 | |
|   return setDoesNotRecurse(F);
 | |
| }
 | |
| 
 | |
| bool ReversePostOrderFunctionAttrs::runOnModule(Module &M) {
 | |
|   // We only have a post-order SCC traversal (because SCCs are inherently
 | |
|   // discovered in post-order), so we accumulate them in a vector and then walk
 | |
|   // it in reverse. This is simpler than using the RPO iterator infrastructure
 | |
|   // because we need to combine SCC detection and the PO walk of the call
 | |
|   // graph. We can also cheat egregiously because we're primarily interested in
 | |
|   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
 | |
|   // with multiple functions in them will clearly be recursive.
 | |
|   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
 | |
|   SmallVector<Function *, 16> Worklist;
 | |
|   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
 | |
|     if (I->size() != 1)
 | |
|       continue;
 | |
| 
 | |
|     Function *F = I->front()->getFunction();
 | |
|     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
 | |
|         F->hasInternalLinkage())
 | |
|       Worklist.push_back(F);
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (auto *F : reverse(Worklist))
 | |
|     Changed |= addNoRecurseAttrsTopDown(*F);
 | |
| 
 | |
|   return Changed;
 | |
| }
 |