1057 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1057 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
 | |
| // See http://llvm.org/docs/LangRef.html#bitsets for more information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO/LowerBitSets.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalObject.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace lowerbitsets;
 | |
| 
 | |
| #define DEBUG_TYPE "lowerbitsets"
 | |
| 
 | |
| STATISTIC(ByteArraySizeBits, "Byte array size in bits");
 | |
| STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
 | |
| STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
 | |
| STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
 | |
| STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
 | |
| 
 | |
| static cl::opt<bool> AvoidReuse(
 | |
|     "lowerbitsets-avoid-reuse",
 | |
|     cl::desc("Try to avoid reuse of byte array addresses using aliases"),
 | |
|     cl::Hidden, cl::init(true));
 | |
| 
 | |
| bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
 | |
|   if (Offset < ByteOffset)
 | |
|     return false;
 | |
| 
 | |
|   if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
 | |
|   if (BitOffset >= BitSize)
 | |
|     return false;
 | |
| 
 | |
|   return Bits.count(BitOffset);
 | |
| }
 | |
| 
 | |
| bool BitSetInfo::containsValue(
 | |
|     const DataLayout &DL,
 | |
|     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
 | |
|     uint64_t COffset) const {
 | |
|   if (auto GV = dyn_cast<GlobalObject>(V)) {
 | |
|     auto I = GlobalLayout.find(GV);
 | |
|     if (I == GlobalLayout.end())
 | |
|       return false;
 | |
|     return containsGlobalOffset(I->second + COffset);
 | |
|   }
 | |
| 
 | |
|   if (auto GEP = dyn_cast<GEPOperator>(V)) {
 | |
|     APInt APOffset(DL.getPointerSizeInBits(0), 0);
 | |
|     bool Result = GEP->accumulateConstantOffset(DL, APOffset);
 | |
|     if (!Result)
 | |
|       return false;
 | |
|     COffset += APOffset.getZExtValue();
 | |
|     return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
 | |
|                          COffset);
 | |
|   }
 | |
| 
 | |
|   if (auto Op = dyn_cast<Operator>(V)) {
 | |
|     if (Op->getOpcode() == Instruction::BitCast)
 | |
|       return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
 | |
| 
 | |
|     if (Op->getOpcode() == Instruction::Select)
 | |
|       return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
 | |
|              containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void BitSetInfo::print(raw_ostream &OS) const {
 | |
|   OS << "offset " << ByteOffset << " size " << BitSize << " align "
 | |
|      << (1 << AlignLog2);
 | |
| 
 | |
|   if (isAllOnes()) {
 | |
|     OS << " all-ones\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   OS << " { ";
 | |
|   for (uint64_t B : Bits)
 | |
|     OS << B << ' ';
 | |
|   OS << "}\n";
 | |
| }
 | |
| 
 | |
| BitSetInfo BitSetBuilder::build() {
 | |
|   if (Min > Max)
 | |
|     Min = 0;
 | |
| 
 | |
|   // Normalize each offset against the minimum observed offset, and compute
 | |
|   // the bitwise OR of each of the offsets. The number of trailing zeros
 | |
|   // in the mask gives us the log2 of the alignment of all offsets, which
 | |
|   // allows us to compress the bitset by only storing one bit per aligned
 | |
|   // address.
 | |
|   uint64_t Mask = 0;
 | |
|   for (uint64_t &Offset : Offsets) {
 | |
|     Offset -= Min;
 | |
|     Mask |= Offset;
 | |
|   }
 | |
| 
 | |
|   BitSetInfo BSI;
 | |
|   BSI.ByteOffset = Min;
 | |
| 
 | |
|   BSI.AlignLog2 = 0;
 | |
|   if (Mask != 0)
 | |
|     BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
 | |
| 
 | |
|   // Build the compressed bitset while normalizing the offsets against the
 | |
|   // computed alignment.
 | |
|   BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
 | |
|   for (uint64_t Offset : Offsets) {
 | |
|     Offset >>= BSI.AlignLog2;
 | |
|     BSI.Bits.insert(Offset);
 | |
|   }
 | |
| 
 | |
|   return BSI;
 | |
| }
 | |
| 
 | |
| void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
 | |
|   // Create a new fragment to hold the layout for F.
 | |
|   Fragments.emplace_back();
 | |
|   std::vector<uint64_t> &Fragment = Fragments.back();
 | |
|   uint64_t FragmentIndex = Fragments.size() - 1;
 | |
| 
 | |
|   for (auto ObjIndex : F) {
 | |
|     uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
 | |
|     if (OldFragmentIndex == 0) {
 | |
|       // We haven't seen this object index before, so just add it to the current
 | |
|       // fragment.
 | |
|       Fragment.push_back(ObjIndex);
 | |
|     } else {
 | |
|       // This index belongs to an existing fragment. Copy the elements of the
 | |
|       // old fragment into this one and clear the old fragment. We don't update
 | |
|       // the fragment map just yet, this ensures that any further references to
 | |
|       // indices from the old fragment in this fragment do not insert any more
 | |
|       // indices.
 | |
|       std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
 | |
|       Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
 | |
|       OldFragment.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update the fragment map to point our object indices to this fragment.
 | |
|   for (uint64_t ObjIndex : Fragment)
 | |
|     FragmentMap[ObjIndex] = FragmentIndex;
 | |
| }
 | |
| 
 | |
| void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
 | |
|                                 uint64_t BitSize, uint64_t &AllocByteOffset,
 | |
|                                 uint8_t &AllocMask) {
 | |
|   // Find the smallest current allocation.
 | |
|   unsigned Bit = 0;
 | |
|   for (unsigned I = 1; I != BitsPerByte; ++I)
 | |
|     if (BitAllocs[I] < BitAllocs[Bit])
 | |
|       Bit = I;
 | |
| 
 | |
|   AllocByteOffset = BitAllocs[Bit];
 | |
| 
 | |
|   // Add our size to it.
 | |
|   unsigned ReqSize = AllocByteOffset + BitSize;
 | |
|   BitAllocs[Bit] = ReqSize;
 | |
|   if (Bytes.size() < ReqSize)
 | |
|     Bytes.resize(ReqSize);
 | |
| 
 | |
|   // Set our bits.
 | |
|   AllocMask = 1 << Bit;
 | |
|   for (uint64_t B : Bits)
 | |
|     Bytes[AllocByteOffset + B] |= AllocMask;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct ByteArrayInfo {
 | |
|   std::set<uint64_t> Bits;
 | |
|   uint64_t BitSize;
 | |
|   GlobalVariable *ByteArray;
 | |
|   Constant *Mask;
 | |
| };
 | |
| 
 | |
| struct LowerBitSets : public ModulePass {
 | |
|   static char ID;
 | |
|   LowerBitSets() : ModulePass(ID) {
 | |
|     initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   Module *M;
 | |
| 
 | |
|   bool LinkerSubsectionsViaSymbols;
 | |
|   Triple::ArchType Arch;
 | |
|   Triple::ObjectFormatType ObjectFormat;
 | |
|   IntegerType *Int1Ty;
 | |
|   IntegerType *Int8Ty;
 | |
|   IntegerType *Int32Ty;
 | |
|   Type *Int32PtrTy;
 | |
|   IntegerType *Int64Ty;
 | |
|   IntegerType *IntPtrTy;
 | |
| 
 | |
|   // The llvm.bitsets named metadata.
 | |
|   NamedMDNode *BitSetNM;
 | |
| 
 | |
|   // Mapping from bitset identifiers to the call sites that test them.
 | |
|   DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;
 | |
| 
 | |
|   std::vector<ByteArrayInfo> ByteArrayInfos;
 | |
| 
 | |
|   BitSetInfo
 | |
|   buildBitSet(Metadata *BitSet,
 | |
|               const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
 | |
|   ByteArrayInfo *createByteArray(BitSetInfo &BSI);
 | |
|   void allocateByteArrays();
 | |
|   Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
 | |
|                           Value *BitOffset);
 | |
|   void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
 | |
|                         Constant *CombinedGlobalAddr,
 | |
|                         const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
 | |
|   Value *
 | |
|   lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
 | |
|                   Constant *CombinedGlobal,
 | |
|                   const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
 | |
|   void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
 | |
|                                        ArrayRef<GlobalVariable *> Globals);
 | |
|   unsigned getJumpTableEntrySize();
 | |
|   Type *getJumpTableEntryType();
 | |
|   Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
 | |
|                                  unsigned Distance);
 | |
|   void verifyBitSetMDNode(MDNode *Op);
 | |
|   void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
 | |
|                                  ArrayRef<Function *> Functions);
 | |
|   void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
 | |
|                                    ArrayRef<GlobalObject *> Globals);
 | |
|   bool buildBitSets();
 | |
|   bool eraseBitSetMetadata();
 | |
| 
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnModule(Module &M) override;
 | |
| };
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
 | |
|                 "Lower bitset metadata", false, false)
 | |
| INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
 | |
|                 "Lower bitset metadata", false, false)
 | |
| char LowerBitSets::ID = 0;
 | |
| 
 | |
| ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
 | |
| 
 | |
| bool LowerBitSets::doInitialization(Module &Mod) {
 | |
|   M = &Mod;
 | |
|   const DataLayout &DL = Mod.getDataLayout();
 | |
| 
 | |
|   Triple TargetTriple(M->getTargetTriple());
 | |
|   LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
 | |
|   Arch = TargetTriple.getArch();
 | |
|   ObjectFormat = TargetTriple.getObjectFormat();
 | |
| 
 | |
|   Int1Ty = Type::getInt1Ty(M->getContext());
 | |
|   Int8Ty = Type::getInt8Ty(M->getContext());
 | |
|   Int32Ty = Type::getInt32Ty(M->getContext());
 | |
|   Int32PtrTy = PointerType::getUnqual(Int32Ty);
 | |
|   Int64Ty = Type::getInt64Ty(M->getContext());
 | |
|   IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
 | |
| 
 | |
|   BitSetNM = M->getNamedMetadata("llvm.bitsets");
 | |
| 
 | |
|   BitSetTestCallSites.clear();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Build a bit set for BitSet using the object layouts in
 | |
| /// GlobalLayout.
 | |
| BitSetInfo LowerBitSets::buildBitSet(
 | |
|     Metadata *BitSet,
 | |
|     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
 | |
|   BitSetBuilder BSB;
 | |
| 
 | |
|   // Compute the byte offset of each element of this bitset.
 | |
|   if (BitSetNM) {
 | |
|     for (MDNode *Op : BitSetNM->operands()) {
 | |
|       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
 | |
|         continue;
 | |
|       Constant *OpConst =
 | |
|           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
 | |
|       if (auto GA = dyn_cast<GlobalAlias>(OpConst))
 | |
|         OpConst = GA->getAliasee();
 | |
|       auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
 | |
|       if (!OpGlobal)
 | |
|         continue;
 | |
|       uint64_t Offset =
 | |
|           cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
 | |
|                                 ->getValue())->getZExtValue();
 | |
| 
 | |
|       Offset += GlobalLayout.find(OpGlobal)->second;
 | |
| 
 | |
|       BSB.addOffset(Offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return BSB.build();
 | |
| }
 | |
| 
 | |
| /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
 | |
| /// Bits. This pattern matches to the bt instruction on x86.
 | |
| static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
 | |
|                                   Value *BitOffset) {
 | |
|   auto BitsType = cast<IntegerType>(Bits->getType());
 | |
|   unsigned BitWidth = BitsType->getBitWidth();
 | |
| 
 | |
|   BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
 | |
|   Value *BitIndex =
 | |
|       B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
 | |
|   Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
 | |
|   Value *MaskedBits = B.CreateAnd(Bits, BitMask);
 | |
|   return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
 | |
| }
 | |
| 
 | |
| ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
 | |
|   // Create globals to stand in for byte arrays and masks. These never actually
 | |
|   // get initialized, we RAUW and erase them later in allocateByteArrays() once
 | |
|   // we know the offset and mask to use.
 | |
|   auto ByteArrayGlobal = new GlobalVariable(
 | |
|       *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
 | |
|   auto MaskGlobal = new GlobalVariable(
 | |
|       *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
 | |
| 
 | |
|   ByteArrayInfos.emplace_back();
 | |
|   ByteArrayInfo *BAI = &ByteArrayInfos.back();
 | |
| 
 | |
|   BAI->Bits = BSI.Bits;
 | |
|   BAI->BitSize = BSI.BitSize;
 | |
|   BAI->ByteArray = ByteArrayGlobal;
 | |
|   BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
 | |
|   return BAI;
 | |
| }
 | |
| 
 | |
| void LowerBitSets::allocateByteArrays() {
 | |
|   std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
 | |
|                    [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
 | |
|                      return BAI1.BitSize > BAI2.BitSize;
 | |
|                    });
 | |
| 
 | |
|   std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
 | |
| 
 | |
|   ByteArrayBuilder BAB;
 | |
|   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
 | |
|     ByteArrayInfo *BAI = &ByteArrayInfos[I];
 | |
| 
 | |
|     uint8_t Mask;
 | |
|     BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
 | |
| 
 | |
|     BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
 | |
|     cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
 | |
|   auto ByteArray =
 | |
|       new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
 | |
|                          GlobalValue::PrivateLinkage, ByteArrayConst);
 | |
| 
 | |
|   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
 | |
|     ByteArrayInfo *BAI = &ByteArrayInfos[I];
 | |
| 
 | |
|     Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
 | |
|                         ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
 | |
|     Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
 | |
|         ByteArrayConst->getType(), ByteArray, Idxs);
 | |
| 
 | |
|     // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
 | |
|     // that the pc-relative displacement is folded into the lea instead of the
 | |
|     // test instruction getting another displacement.
 | |
|     if (LinkerSubsectionsViaSymbols) {
 | |
|       BAI->ByteArray->replaceAllUsesWith(GEP);
 | |
|     } else {
 | |
|       GlobalAlias *Alias = GlobalAlias::create(
 | |
|           Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
 | |
|       BAI->ByteArray->replaceAllUsesWith(Alias);
 | |
|     }
 | |
|     BAI->ByteArray->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
 | |
|                       BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
 | |
|                       BAB.BitAllocs[6] + BAB.BitAllocs[7];
 | |
|   ByteArraySizeBytes = BAB.Bytes.size();
 | |
| }
 | |
| 
 | |
| /// Build a test that bit BitOffset is set in BSI, where
 | |
| /// BitSetGlobal is a global containing the bits in BSI.
 | |
| Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
 | |
|                                       ByteArrayInfo *&BAI, Value *BitOffset) {
 | |
|   if (BSI.BitSize <= 64) {
 | |
|     // If the bit set is sufficiently small, we can avoid a load by bit testing
 | |
|     // a constant.
 | |
|     IntegerType *BitsTy;
 | |
|     if (BSI.BitSize <= 32)
 | |
|       BitsTy = Int32Ty;
 | |
|     else
 | |
|       BitsTy = Int64Ty;
 | |
| 
 | |
|     uint64_t Bits = 0;
 | |
|     for (auto Bit : BSI.Bits)
 | |
|       Bits |= uint64_t(1) << Bit;
 | |
|     Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
 | |
|     return createMaskedBitTest(B, BitsConst, BitOffset);
 | |
|   } else {
 | |
|     if (!BAI) {
 | |
|       ++NumByteArraysCreated;
 | |
|       BAI = createByteArray(BSI);
 | |
|     }
 | |
| 
 | |
|     Constant *ByteArray = BAI->ByteArray;
 | |
|     Type *Ty = BAI->ByteArray->getValueType();
 | |
|     if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
 | |
|       // Each use of the byte array uses a different alias. This makes the
 | |
|       // backend less likely to reuse previously computed byte array addresses,
 | |
|       // improving the security of the CFI mechanism based on this pass.
 | |
|       ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
 | |
|                                       GlobalValue::PrivateLinkage, "bits_use",
 | |
|                                       ByteArray, M);
 | |
|     }
 | |
| 
 | |
|     Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
 | |
|     Value *Byte = B.CreateLoad(ByteAddr);
 | |
| 
 | |
|     Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
 | |
|     return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Lower a llvm.bitset.test call to its implementation. Returns the value to
 | |
| /// replace the call with.
 | |
| Value *LowerBitSets::lowerBitSetCall(
 | |
|     CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
 | |
|     Constant *CombinedGlobalIntAddr,
 | |
|     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
 | |
|   Value *Ptr = CI->getArgOperand(0);
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
| 
 | |
|   if (BSI.containsValue(DL, GlobalLayout, Ptr))
 | |
|     return ConstantInt::getTrue(M->getContext());
 | |
| 
 | |
|   Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
 | |
|       CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
 | |
| 
 | |
|   BasicBlock *InitialBB = CI->getParent();
 | |
| 
 | |
|   IRBuilder<> B(CI);
 | |
| 
 | |
|   Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
 | |
| 
 | |
|   if (BSI.isSingleOffset())
 | |
|     return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
 | |
| 
 | |
|   Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
 | |
| 
 | |
|   Value *BitOffset;
 | |
|   if (BSI.AlignLog2 == 0) {
 | |
|     BitOffset = PtrOffset;
 | |
|   } else {
 | |
|     // We need to check that the offset both falls within our range and is
 | |
|     // suitably aligned. We can check both properties at the same time by
 | |
|     // performing a right rotate by log2(alignment) followed by an integer
 | |
|     // comparison against the bitset size. The rotate will move the lower
 | |
|     // order bits that need to be zero into the higher order bits of the
 | |
|     // result, causing the comparison to fail if they are nonzero. The rotate
 | |
|     // also conveniently gives us a bit offset to use during the load from
 | |
|     // the bitset.
 | |
|     Value *OffsetSHR =
 | |
|         B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
 | |
|     Value *OffsetSHL = B.CreateShl(
 | |
|         PtrOffset,
 | |
|         ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
 | |
|     BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
 | |
|   }
 | |
| 
 | |
|   Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
 | |
|   Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
 | |
| 
 | |
|   // If the bit set is all ones, testing against it is unnecessary.
 | |
|   if (BSI.isAllOnes())
 | |
|     return OffsetInRange;
 | |
| 
 | |
|   TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
 | |
|   IRBuilder<> ThenB(Term);
 | |
| 
 | |
|   // Now that we know that the offset is in range and aligned, load the
 | |
|   // appropriate bit from the bitset.
 | |
|   Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
 | |
| 
 | |
|   // The value we want is 0 if we came directly from the initial block
 | |
|   // (having failed the range or alignment checks), or the loaded bit if
 | |
|   // we came from the block in which we loaded it.
 | |
|   B.SetInsertPoint(CI);
 | |
|   PHINode *P = B.CreatePHI(Int1Ty, 2);
 | |
|   P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
 | |
|   P->addIncoming(Bit, ThenB.GetInsertBlock());
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| /// Given a disjoint set of bitsets and globals, layout the globals, build the
 | |
| /// bit sets and lower the llvm.bitset.test calls.
 | |
| void LowerBitSets::buildBitSetsFromGlobalVariables(
 | |
|     ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
 | |
|   // Build a new global with the combined contents of the referenced globals.
 | |
|   // This global is a struct whose even-indexed elements contain the original
 | |
|   // contents of the referenced globals and whose odd-indexed elements contain
 | |
|   // any padding required to align the next element to the next power of 2.
 | |
|   std::vector<Constant *> GlobalInits;
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
|   for (GlobalVariable *G : Globals) {
 | |
|     GlobalInits.push_back(G->getInitializer());
 | |
|     uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());
 | |
| 
 | |
|     // Compute the amount of padding required.
 | |
|     uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
 | |
| 
 | |
|     // Cap at 128 was found experimentally to have a good data/instruction
 | |
|     // overhead tradeoff.
 | |
|     if (Padding > 128)
 | |
|       Padding = alignTo(InitSize, 128) - InitSize;
 | |
| 
 | |
|     GlobalInits.push_back(
 | |
|         ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
 | |
|   }
 | |
|   if (!GlobalInits.empty())
 | |
|     GlobalInits.pop_back();
 | |
|   Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
 | |
|   auto *CombinedGlobal =
 | |
|       new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
 | |
|                          GlobalValue::PrivateLinkage, NewInit);
 | |
| 
 | |
|   StructType *NewTy = cast<StructType>(NewInit->getType());
 | |
|   const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
 | |
| 
 | |
|   // Compute the offsets of the original globals within the new global.
 | |
|   DenseMap<GlobalObject *, uint64_t> GlobalLayout;
 | |
|   for (unsigned I = 0; I != Globals.size(); ++I)
 | |
|     // Multiply by 2 to account for padding elements.
 | |
|     GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
 | |
| 
 | |
|   lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);
 | |
| 
 | |
|   // Build aliases pointing to offsets into the combined global for each
 | |
|   // global from which we built the combined global, and replace references
 | |
|   // to the original globals with references to the aliases.
 | |
|   for (unsigned I = 0; I != Globals.size(); ++I) {
 | |
|     // Multiply by 2 to account for padding elements.
 | |
|     Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
 | |
|                                       ConstantInt::get(Int32Ty, I * 2)};
 | |
|     Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
 | |
|         NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
 | |
|     if (LinkerSubsectionsViaSymbols) {
 | |
|       Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
 | |
|     } else {
 | |
|       assert(Globals[I]->getType()->getAddressSpace() == 0);
 | |
|       GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
 | |
|                                                 Globals[I]->getLinkage(), "",
 | |
|                                                 CombinedGlobalElemPtr, M);
 | |
|       GAlias->setVisibility(Globals[I]->getVisibility());
 | |
|       GAlias->takeName(Globals[I]);
 | |
|       Globals[I]->replaceAllUsesWith(GAlias);
 | |
|     }
 | |
|     Globals[I]->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LowerBitSets::lowerBitSetCalls(
 | |
|     ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
 | |
|     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
 | |
|   Constant *CombinedGlobalIntAddr =
 | |
|       ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
 | |
| 
 | |
|   // For each bitset in this disjoint set...
 | |
|   for (Metadata *BS : BitSets) {
 | |
|     // Build the bitset.
 | |
|     BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
 | |
|     DEBUG({
 | |
|       if (auto BSS = dyn_cast<MDString>(BS))
 | |
|         dbgs() << BSS->getString() << ": ";
 | |
|       else
 | |
|         dbgs() << "<unnamed>: ";
 | |
|       BSI.print(dbgs());
 | |
|     });
 | |
| 
 | |
|     ByteArrayInfo *BAI = nullptr;
 | |
| 
 | |
|     // Lower each call to llvm.bitset.test for this bitset.
 | |
|     for (CallInst *CI : BitSetTestCallSites[BS]) {
 | |
|       ++NumBitSetCallsLowered;
 | |
|       Value *Lowered =
 | |
|           lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
 | |
|       CI->replaceAllUsesWith(Lowered);
 | |
|       CI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
 | |
|   if (Op->getNumOperands() != 3)
 | |
|     report_fatal_error(
 | |
|         "All operands of llvm.bitsets metadata must have 3 elements");
 | |
|   if (!Op->getOperand(1))
 | |
|     return;
 | |
| 
 | |
|   auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
 | |
|   if (!OpConstMD)
 | |
|     report_fatal_error("Bit set element must be a constant");
 | |
|   auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
 | |
|   if (!OpGlobal)
 | |
|     return;
 | |
| 
 | |
|   if (OpGlobal->isThreadLocal())
 | |
|     report_fatal_error("Bit set element may not be thread-local");
 | |
|   if (OpGlobal->hasSection())
 | |
|     report_fatal_error("Bit set element may not have an explicit section");
 | |
| 
 | |
|   if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
 | |
|     report_fatal_error("Bit set global var element must be a definition");
 | |
| 
 | |
|   auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
 | |
|   if (!OffsetConstMD)
 | |
|     report_fatal_error("Bit set element offset must be a constant");
 | |
|   auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
 | |
|   if (!OffsetInt)
 | |
|     report_fatal_error("Bit set element offset must be an integer constant");
 | |
| }
 | |
| 
 | |
| static const unsigned kX86JumpTableEntrySize = 8;
 | |
| 
 | |
| unsigned LowerBitSets::getJumpTableEntrySize() {
 | |
|   if (Arch != Triple::x86 && Arch != Triple::x86_64)
 | |
|     report_fatal_error("Unsupported architecture for jump tables");
 | |
| 
 | |
|   return kX86JumpTableEntrySize;
 | |
| }
 | |
| 
 | |
| // Create a constant representing a jump table entry for the target. This
 | |
| // consists of an instruction sequence containing a relative branch to Dest. The
 | |
| // constant will be laid out at address Src+(Len*Distance) where Len is the
 | |
| // target-specific jump table entry size.
 | |
| Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
 | |
|                                              unsigned Distance) {
 | |
|   if (Arch != Triple::x86 && Arch != Triple::x86_64)
 | |
|     report_fatal_error("Unsupported architecture for jump tables");
 | |
| 
 | |
|   const unsigned kJmpPCRel32Code = 0xe9;
 | |
|   const unsigned kInt3Code = 0xcc;
 | |
| 
 | |
|   ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
 | |
| 
 | |
|   // Build a constant representing the displacement between the constant's
 | |
|   // address and Dest. This will resolve to a PC32 relocation referring to Dest.
 | |
|   Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
 | |
|   Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
 | |
|   Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
 | |
|   ConstantInt *DispOffset =
 | |
|       ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
 | |
|   Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
 | |
|   OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);
 | |
| 
 | |
|   ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
 | |
| 
 | |
|   Constant *Fields[] = {
 | |
|       Jmp, OffsetedDisp, Int3, Int3, Int3,
 | |
|   };
 | |
|   return ConstantStruct::getAnon(Fields, /*Packed=*/true);
 | |
| }
 | |
| 
 | |
| Type *LowerBitSets::getJumpTableEntryType() {
 | |
|   if (Arch != Triple::x86 && Arch != Triple::x86_64)
 | |
|     report_fatal_error("Unsupported architecture for jump tables");
 | |
| 
 | |
|   return StructType::get(M->getContext(),
 | |
|                          {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
 | |
|                          /*Packed=*/true);
 | |
| }
 | |
| 
 | |
| /// Given a disjoint set of bitsets and functions, build a jump table for the
 | |
| /// functions, build the bit sets and lower the llvm.bitset.test calls.
 | |
| void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
 | |
|                                              ArrayRef<Function *> Functions) {
 | |
|   // Unlike the global bitset builder, the function bitset builder cannot
 | |
|   // re-arrange functions in a particular order and base its calculations on the
 | |
|   // layout of the functions' entry points, as we have no idea how large a
 | |
|   // particular function will end up being (the size could even depend on what
 | |
|   // this pass does!) Instead, we build a jump table, which is a block of code
 | |
|   // consisting of one branch instruction for each of the functions in the bit
 | |
|   // set that branches to the target function, and redirect any taken function
 | |
|   // addresses to the corresponding jump table entry. In the object file's
 | |
|   // symbol table, the symbols for the target functions also refer to the jump
 | |
|   // table entries, so that addresses taken outside the module will pass any
 | |
|   // verification done inside the module.
 | |
|   //
 | |
|   // In more concrete terms, suppose we have three functions f, g, h which are
 | |
|   // members of a single bitset, and a function foo that returns their
 | |
|   // addresses:
 | |
|   //
 | |
|   // f:
 | |
|   // mov 0, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // g:
 | |
|   // mov 1, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // h:
 | |
|   // mov 2, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // foo:
 | |
|   // mov f, %eax
 | |
|   // mov g, %edx
 | |
|   // mov h, %ecx
 | |
|   // ret
 | |
|   //
 | |
|   // To create a jump table for these functions, we instruct the LLVM code
 | |
|   // generator to output a jump table in the .text section. This is done by
 | |
|   // representing the instructions in the jump table as an LLVM constant and
 | |
|   // placing them in a global variable in the .text section. The end result will
 | |
|   // (conceptually) look like this:
 | |
|   //
 | |
|   // f:
 | |
|   // jmp .Ltmp0 ; 5 bytes
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   //
 | |
|   // g:
 | |
|   // jmp .Ltmp1 ; 5 bytes
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   //
 | |
|   // h:
 | |
|   // jmp .Ltmp2 ; 5 bytes
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   // int3       ; 1 byte
 | |
|   //
 | |
|   // .Ltmp0:
 | |
|   // mov 0, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // .Ltmp1:
 | |
|   // mov 1, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // .Ltmp2:
 | |
|   // mov 2, %eax
 | |
|   // ret
 | |
|   //
 | |
|   // foo:
 | |
|   // mov f, %eax
 | |
|   // mov g, %edx
 | |
|   // mov h, %ecx
 | |
|   // ret
 | |
|   //
 | |
|   // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
 | |
|   // normal case the check can be carried out using the same kind of simple
 | |
|   // arithmetic that we normally use for globals.
 | |
| 
 | |
|   assert(!Functions.empty());
 | |
| 
 | |
|   // Build a simple layout based on the regular layout of jump tables.
 | |
|   DenseMap<GlobalObject *, uint64_t> GlobalLayout;
 | |
|   unsigned EntrySize = getJumpTableEntrySize();
 | |
|   for (unsigned I = 0; I != Functions.size(); ++I)
 | |
|     GlobalLayout[Functions[I]] = I * EntrySize;
 | |
| 
 | |
|   // Create a constant to hold the jump table.
 | |
|   ArrayType *JumpTableType =
 | |
|       ArrayType::get(getJumpTableEntryType(), Functions.size());
 | |
|   auto JumpTable = new GlobalVariable(*M, JumpTableType,
 | |
|                                       /*isConstant=*/true,
 | |
|                                       GlobalValue::PrivateLinkage, nullptr);
 | |
|   JumpTable->setSection(ObjectFormat == Triple::MachO
 | |
|                             ? "__TEXT,__text,regular,pure_instructions"
 | |
|                             : ".text");
 | |
|   lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);
 | |
| 
 | |
|   // Build aliases pointing to offsets into the jump table, and replace
 | |
|   // references to the original functions with references to the aliases.
 | |
|   for (unsigned I = 0; I != Functions.size(); ++I) {
 | |
|     Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
 | |
|         ConstantExpr::getGetElementPtr(
 | |
|             JumpTableType, JumpTable,
 | |
|             ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
 | |
|                                  ConstantInt::get(IntPtrTy, I)}),
 | |
|         Functions[I]->getType());
 | |
|     if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
 | |
|       Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
 | |
|     } else {
 | |
|       assert(Functions[I]->getType()->getAddressSpace() == 0);
 | |
|       GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
 | |
|                                                 Functions[I]->getLinkage(), "",
 | |
|                                                 CombinedGlobalElemPtr, M);
 | |
|       GAlias->setVisibility(Functions[I]->getVisibility());
 | |
|       GAlias->takeName(Functions[I]);
 | |
|       Functions[I]->replaceAllUsesWith(GAlias);
 | |
|     }
 | |
|     if (!Functions[I]->isDeclarationForLinker())
 | |
|       Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
 | |
|   }
 | |
| 
 | |
|   // Build and set the jump table's initializer.
 | |
|   std::vector<Constant *> JumpTableEntries;
 | |
|   for (unsigned I = 0; I != Functions.size(); ++I)
 | |
|     JumpTableEntries.push_back(
 | |
|         createJumpTableEntry(JumpTable, Functions[I], I));
 | |
|   JumpTable->setInitializer(
 | |
|       ConstantArray::get(JumpTableType, JumpTableEntries));
 | |
| }
 | |
| 
 | |
| void LowerBitSets::buildBitSetsFromDisjointSet(
 | |
|     ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
 | |
|   llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
 | |
|   llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
 | |
|   for (unsigned I = 0; I != BitSets.size(); ++I)
 | |
|     BitSetIndices[BitSets[I]] = I;
 | |
|   for (unsigned I = 0; I != Globals.size(); ++I)
 | |
|     GlobalIndices[Globals[I]] = I;
 | |
| 
 | |
|   // For each bitset, build a set of indices that refer to globals referenced by
 | |
|   // the bitset.
 | |
|   std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
 | |
|   if (BitSetNM) {
 | |
|     for (MDNode *Op : BitSetNM->operands()) {
 | |
|       // Op = { bitset name, global, offset }
 | |
|       if (!Op->getOperand(1))
 | |
|         continue;
 | |
|       auto I = BitSetIndices.find(Op->getOperand(0));
 | |
|       if (I == BitSetIndices.end())
 | |
|         continue;
 | |
| 
 | |
|       auto OpGlobal = dyn_cast<GlobalObject>(
 | |
|           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
 | |
|       if (!OpGlobal)
 | |
|         continue;
 | |
|       BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Order the sets of indices by size. The GlobalLayoutBuilder works best
 | |
|   // when given small index sets first.
 | |
|   std::stable_sort(
 | |
|       BitSetMembers.begin(), BitSetMembers.end(),
 | |
|       [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
 | |
|         return O1.size() < O2.size();
 | |
|       });
 | |
| 
 | |
|   // Create a GlobalLayoutBuilder and provide it with index sets as layout
 | |
|   // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
 | |
|   // close together as possible.
 | |
|   GlobalLayoutBuilder GLB(Globals.size());
 | |
|   for (auto &&MemSet : BitSetMembers)
 | |
|     GLB.addFragment(MemSet);
 | |
| 
 | |
|   // Build the bitsets from this disjoint set.
 | |
|   if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
 | |
|     // Build a vector of global variables with the computed layout.
 | |
|     std::vector<GlobalVariable *> OrderedGVs(Globals.size());
 | |
|     auto OGI = OrderedGVs.begin();
 | |
|     for (auto &&F : GLB.Fragments) {
 | |
|       for (auto &&Offset : F) {
 | |
|         auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
 | |
|         if (!GV)
 | |
|           report_fatal_error(
 | |
|               "Bit set may not contain both global variables and functions");
 | |
|         *OGI++ = GV;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
 | |
|   } else {
 | |
|     // Build a vector of functions with the computed layout.
 | |
|     std::vector<Function *> OrderedFns(Globals.size());
 | |
|     auto OFI = OrderedFns.begin();
 | |
|     for (auto &&F : GLB.Fragments) {
 | |
|       for (auto &&Offset : F) {
 | |
|         auto Fn = dyn_cast<Function>(Globals[Offset]);
 | |
|         if (!Fn)
 | |
|           report_fatal_error(
 | |
|               "Bit set may not contain both global variables and functions");
 | |
|         *OFI++ = Fn;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     buildBitSetsFromFunctions(BitSets, OrderedFns);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Lower all bit sets in this module.
 | |
| bool LowerBitSets::buildBitSets() {
 | |
|   Function *BitSetTestFunc =
 | |
|       M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
 | |
|   if (!BitSetTestFunc || BitSetTestFunc->use_empty())
 | |
|     return false;
 | |
| 
 | |
|   // Equivalence class set containing bitsets and the globals they reference.
 | |
|   // This is used to partition the set of bitsets in the module into disjoint
 | |
|   // sets.
 | |
|   typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
 | |
|       GlobalClassesTy;
 | |
|   GlobalClassesTy GlobalClasses;
 | |
| 
 | |
|   // Verify the bitset metadata and build a mapping from bitset identifiers to
 | |
|   // their last observed index in BitSetNM. This will used later to
 | |
|   // deterministically order the list of bitset identifiers.
 | |
|   llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
 | |
|   if (BitSetNM) {
 | |
|     for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
 | |
|       MDNode *Op = BitSetNM->getOperand(I);
 | |
|       verifyBitSetMDNode(Op);
 | |
|       BitSetIdIndices[Op->getOperand(0)] = I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const Use &U : BitSetTestFunc->uses()) {
 | |
|     auto CI = cast<CallInst>(U.getUser());
 | |
| 
 | |
|     auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
 | |
|     if (!BitSetMDVal)
 | |
|       report_fatal_error(
 | |
|           "Second argument of llvm.bitset.test must be metadata");
 | |
|     auto BitSet = BitSetMDVal->getMetadata();
 | |
| 
 | |
|     // Add the call site to the list of call sites for this bit set. We also use
 | |
|     // BitSetTestCallSites to keep track of whether we have seen this bit set
 | |
|     // before. If we have, we don't need to re-add the referenced globals to the
 | |
|     // equivalence class.
 | |
|     std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
 | |
|               bool> Ins =
 | |
|         BitSetTestCallSites.insert(
 | |
|             std::make_pair(BitSet, std::vector<CallInst *>()));
 | |
|     Ins.first->second.push_back(CI);
 | |
|     if (!Ins.second)
 | |
|       continue;
 | |
| 
 | |
|     // Add the bitset to the equivalence class.
 | |
|     GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
 | |
|     GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
 | |
| 
 | |
|     if (!BitSetNM)
 | |
|       continue;
 | |
| 
 | |
|     // Add the referenced globals to the bitset's equivalence class.
 | |
|     for (MDNode *Op : BitSetNM->operands()) {
 | |
|       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
 | |
|         continue;
 | |
| 
 | |
|       auto OpGlobal = dyn_cast<GlobalObject>(
 | |
|           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
 | |
|       if (!OpGlobal)
 | |
|         continue;
 | |
| 
 | |
|       CurSet = GlobalClasses.unionSets(
 | |
|           CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GlobalClasses.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Build a list of disjoint sets ordered by their maximum BitSetNM index
 | |
|   // for determinism.
 | |
|   std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
 | |
|   for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
 | |
|                                  E = GlobalClasses.end();
 | |
|        I != E; ++I) {
 | |
|     if (!I->isLeader()) continue;
 | |
|     ++NumBitSetDisjointSets;
 | |
| 
 | |
|     unsigned MaxIndex = 0;
 | |
|     for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
 | |
|          MI != GlobalClasses.member_end(); ++MI) {
 | |
|       if ((*MI).is<Metadata *>())
 | |
|         MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]);
 | |
|     }
 | |
|     Sets.emplace_back(I, MaxIndex);
 | |
|   }
 | |
|   std::sort(Sets.begin(), Sets.end(),
 | |
|             [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
 | |
|                const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
 | |
|               return S1.second < S2.second;
 | |
|             });
 | |
| 
 | |
|   // For each disjoint set we found...
 | |
|   for (const auto &S : Sets) {
 | |
|     // Build the list of bitsets in this disjoint set.
 | |
|     std::vector<Metadata *> BitSets;
 | |
|     std::vector<GlobalObject *> Globals;
 | |
|     for (GlobalClassesTy::member_iterator MI =
 | |
|              GlobalClasses.member_begin(S.first);
 | |
|          MI != GlobalClasses.member_end(); ++MI) {
 | |
|       if ((*MI).is<Metadata *>())
 | |
|         BitSets.push_back(MI->get<Metadata *>());
 | |
|       else
 | |
|         Globals.push_back(MI->get<GlobalObject *>());
 | |
|     }
 | |
| 
 | |
|     // Order bitsets by BitSetNM index for determinism. This ordering is stable
 | |
|     // as there is a one-to-one mapping between metadata and indices.
 | |
|     std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
 | |
|       return BitSetIdIndices[M1] < BitSetIdIndices[M2];
 | |
|     });
 | |
| 
 | |
|     // Lower the bitsets in this disjoint set.
 | |
|     buildBitSetsFromDisjointSet(BitSets, Globals);
 | |
|   }
 | |
| 
 | |
|   allocateByteArrays();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LowerBitSets::eraseBitSetMetadata() {
 | |
|   if (!BitSetNM)
 | |
|     return false;
 | |
| 
 | |
|   M->eraseNamedMetadata(BitSetNM);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LowerBitSets::runOnModule(Module &M) {
 | |
|   bool Changed = buildBitSets();
 | |
|   Changed |= eraseBitSetMetadata();
 | |
|   return Changed;
 | |
| }
 |