1882 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1882 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass looks for equivalent functions that are mergable and folds them.
 | |
| //
 | |
| // Order relation is defined on set of functions. It was made through
 | |
| // special function comparison procedure that returns
 | |
| // 0 when functions are equal,
 | |
| // -1 when Left function is less than right function, and
 | |
| // 1 for opposite case. We need total-ordering, so we need to maintain
 | |
| // four properties on the functions set:
 | |
| // a <= a (reflexivity)
 | |
| // if a <= b and b <= a then a = b (antisymmetry)
 | |
| // if a <= b and b <= c then a <= c (transitivity).
 | |
| // for all a and b: a <= b or b <= a (totality).
 | |
| //
 | |
| // Comparison iterates through each instruction in each basic block.
 | |
| // Functions are kept on binary tree. For each new function F we perform
 | |
| // lookup in binary tree.
 | |
| // In practice it works the following way:
 | |
| // -- We define Function* container class with custom "operator<" (FunctionPtr).
 | |
| // -- "FunctionPtr" instances are stored in std::set collection, so every
 | |
| //    std::set::insert operation will give you result in log(N) time.
 | |
| // 
 | |
| // As an optimization, a hash of the function structure is calculated first, and
 | |
| // two functions are only compared if they have the same hash. This hash is
 | |
| // cheap to compute, and has the property that if function F == G according to
 | |
| // the comparison function, then hash(F) == hash(G). This consistency property
 | |
| // is critical to ensuring all possible merging opportunities are exploited.
 | |
| // Collisions in the hash affect the speed of the pass but not the correctness
 | |
| // or determinism of the resulting transformation.
 | |
| //
 | |
| // When a match is found the functions are folded. If both functions are
 | |
| // overridable, we move the functionality into a new internal function and
 | |
| // leave two overridable thunks to it.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Future work:
 | |
| //
 | |
| // * virtual functions.
 | |
| //
 | |
| // Many functions have their address taken by the virtual function table for
 | |
| // the object they belong to. However, as long as it's only used for a lookup
 | |
| // and call, this is irrelevant, and we'd like to fold such functions.
 | |
| //
 | |
| // * be smarter about bitcasts.
 | |
| //
 | |
| // In order to fold functions, we will sometimes add either bitcast instructions
 | |
| // or bitcast constant expressions. Unfortunately, this can confound further
 | |
| // analysis since the two functions differ where one has a bitcast and the
 | |
| // other doesn't. We should learn to look through bitcasts.
 | |
| //
 | |
| // * Compare complex types with pointer types inside.
 | |
| // * Compare cross-reference cases.
 | |
| // * Compare complex expressions.
 | |
| //
 | |
| // All the three issues above could be described as ability to prove that
 | |
| // fA == fB == fC == fE == fF == fG in example below:
 | |
| //
 | |
| //  void fA() {
 | |
| //    fB();
 | |
| //  }
 | |
| //  void fB() {
 | |
| //    fA();
 | |
| //  }
 | |
| //
 | |
| //  void fE() {
 | |
| //    fF();
 | |
| //  }
 | |
| //  void fF() {
 | |
| //    fG();
 | |
| //  }
 | |
| //  void fG() {
 | |
| //    fE();
 | |
| //  }
 | |
| //
 | |
| // Simplest cross-reference case (fA <--> fB) was implemented in previous
 | |
| // versions of MergeFunctions, though it presented only in two function pairs
 | |
| // in test-suite (that counts >50k functions)
 | |
| // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
 | |
| // could cover much more cases.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/ValueMap.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "mergefunc"
 | |
| 
 | |
| STATISTIC(NumFunctionsMerged, "Number of functions merged");
 | |
| STATISTIC(NumThunksWritten, "Number of thunks generated");
 | |
| STATISTIC(NumAliasesWritten, "Number of aliases generated");
 | |
| STATISTIC(NumDoubleWeak, "Number of new functions created");
 | |
| 
 | |
| static cl::opt<unsigned> NumFunctionsForSanityCheck(
 | |
|     "mergefunc-sanity",
 | |
|     cl::desc("How many functions in module could be used for "
 | |
|              "MergeFunctions pass sanity check. "
 | |
|              "'0' disables this check. Works only with '-debug' key."),
 | |
|     cl::init(0), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// GlobalNumberState assigns an integer to each global value in the program,
 | |
| /// which is used by the comparison routine to order references to globals. This
 | |
| /// state must be preserved throughout the pass, because Functions and other
 | |
| /// globals need to maintain their relative order. Globals are assigned a number
 | |
| /// when they are first visited. This order is deterministic, and so the
 | |
| /// assigned numbers are as well. When two functions are merged, neither number
 | |
| /// is updated. If the symbols are weak, this would be incorrect. If they are
 | |
| /// strong, then one will be replaced at all references to the other, and so
 | |
| /// direct callsites will now see one or the other symbol, and no update is
 | |
| /// necessary. Note that if we were guaranteed unique names, we could just
 | |
| /// compare those, but this would not work for stripped bitcodes or for those
 | |
| /// few symbols without a name.
 | |
| class GlobalNumberState {
 | |
|   struct Config : ValueMapConfig<GlobalValue*> {
 | |
|     enum { FollowRAUW = false };
 | |
|   };
 | |
|   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
 | |
|   // occurs, the mapping does not change. Tracking changes is unnecessary, and
 | |
|   // also problematic for weak symbols (which may be overwritten).
 | |
|   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
 | |
|   ValueNumberMap GlobalNumbers;
 | |
|   // The next unused serial number to assign to a global.
 | |
|   uint64_t NextNumber;
 | |
|   public:
 | |
|     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
 | |
|     uint64_t getNumber(GlobalValue* Global) {
 | |
|       ValueNumberMap::iterator MapIter;
 | |
|       bool Inserted;
 | |
|       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
 | |
|       if (Inserted)
 | |
|         NextNumber++;
 | |
|       return MapIter->second;
 | |
|     }
 | |
|     void clear() {
 | |
|       GlobalNumbers.clear();
 | |
|     }
 | |
| };
 | |
| 
 | |
| /// FunctionComparator - Compares two functions to determine whether or not
 | |
| /// they will generate machine code with the same behaviour. DataLayout is
 | |
| /// used if available. The comparator always fails conservatively (erring on the
 | |
| /// side of claiming that two functions are different).
 | |
| class FunctionComparator {
 | |
| public:
 | |
|   FunctionComparator(const Function *F1, const Function *F2,
 | |
|                      GlobalNumberState* GN)
 | |
|       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
 | |
| 
 | |
|   /// Test whether the two functions have equivalent behaviour.
 | |
|   int compare();
 | |
|   /// Hash a function. Equivalent functions will have the same hash, and unequal
 | |
|   /// functions will have different hashes with high probability.
 | |
|   typedef uint64_t FunctionHash;
 | |
|   static FunctionHash functionHash(Function &);
 | |
| 
 | |
| private:
 | |
|   /// Test whether two basic blocks have equivalent behaviour.
 | |
|   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR);
 | |
| 
 | |
|   /// Constants comparison.
 | |
|   /// Its analog to lexicographical comparison between hypothetical numbers
 | |
|   /// of next format:
 | |
|   /// <bitcastability-trait><raw-bit-contents>
 | |
|   ///
 | |
|   /// 1. Bitcastability.
 | |
|   /// Check whether L's type could be losslessly bitcasted to R's type.
 | |
|   /// On this stage method, in case when lossless bitcast is not possible
 | |
|   /// method returns -1 or 1, thus also defining which type is greater in
 | |
|   /// context of bitcastability.
 | |
|   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
 | |
|   ///          to the contents comparison.
 | |
|   ///          If types differ, remember types comparison result and check
 | |
|   ///          whether we still can bitcast types.
 | |
|   /// Stage 1: Types that satisfies isFirstClassType conditions are always
 | |
|   ///          greater then others.
 | |
|   /// Stage 2: Vector is greater then non-vector.
 | |
|   ///          If both types are vectors, then vector with greater bitwidth is
 | |
|   ///          greater.
 | |
|   ///          If both types are vectors with the same bitwidth, then types
 | |
|   ///          are bitcastable, and we can skip other stages, and go to contents
 | |
|   ///          comparison.
 | |
|   /// Stage 3: Pointer types are greater than non-pointers. If both types are
 | |
|   ///          pointers of the same address space - go to contents comparison.
 | |
|   ///          Different address spaces: pointer with greater address space is
 | |
|   ///          greater.
 | |
|   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
 | |
|   ///          We don't know how to bitcast them. So, we better don't do it,
 | |
|   ///          and return types comparison result (so it determines the
 | |
|   ///          relationship among constants we don't know how to bitcast).
 | |
|   ///
 | |
|   /// Just for clearance, let's see how the set of constants could look
 | |
|   /// on single dimension axis:
 | |
|   ///
 | |
|   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
 | |
|   /// Where: NFCT - Not a FirstClassType
 | |
|   ///        FCT - FirstClassTyp:
 | |
|   ///
 | |
|   /// 2. Compare raw contents.
 | |
|   /// It ignores types on this stage and only compares bits from L and R.
 | |
|   /// Returns 0, if L and R has equivalent contents.
 | |
|   /// -1 or 1 if values are different.
 | |
|   /// Pretty trivial:
 | |
|   /// 2.1. If contents are numbers, compare numbers.
 | |
|   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
 | |
|   ///    compared by their contents.
 | |
|   /// 2.2. "And so on". Just to avoid discrepancies with comments
 | |
|   /// perhaps it would be better to read the implementation itself.
 | |
|   /// 3. And again about overall picture. Let's look back at how the ordered set
 | |
|   /// of constants will look like:
 | |
|   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
 | |
|   ///
 | |
|   /// Now look, what could be inside [FCT, "others"], for example:
 | |
|   /// [FCT, "others"] =
 | |
|   /// [
 | |
|   ///   [double 0.1], [double 1.23],
 | |
|   ///   [i32 1], [i32 2],
 | |
|   ///   { double 1.0 },       ; StructTyID, NumElements = 1
 | |
|   ///   { i32 1 },            ; StructTyID, NumElements = 1
 | |
|   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
 | |
|   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
 | |
|   /// ]
 | |
|   ///
 | |
|   /// Let's explain the order. Float numbers will be less than integers, just
 | |
|   /// because of cmpType terms: FloatTyID < IntegerTyID.
 | |
|   /// Floats (with same fltSemantics) are sorted according to their value.
 | |
|   /// Then you can see integers, and they are, like a floats,
 | |
|   /// could be easy sorted among each others.
 | |
|   /// The structures. Structures are grouped at the tail, again because of their
 | |
|   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
 | |
|   /// Structures with greater number of elements are greater. Structures with
 | |
|   /// greater elements going first are greater.
 | |
|   /// The same logic with vectors, arrays and other possible complex types.
 | |
|   ///
 | |
|   /// Bitcastable constants.
 | |
|   /// Let's assume, that some constant, belongs to some group of
 | |
|   /// "so-called-equal" values with different types, and at the same time
 | |
|   /// belongs to another group of constants with equal types
 | |
|   /// and "really" equal values.
 | |
|   ///
 | |
|   /// Now, prove that this is impossible:
 | |
|   ///
 | |
|   /// If constant A with type TyA is bitcastable to B with type TyB, then:
 | |
|   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
 | |
|   ///    those should be vectors (if TyA is vector), pointers
 | |
|   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
 | |
|   ///    be equal to TyB.
 | |
|   /// 2. All constants with non-equal, but bitcastable types to TyA, are
 | |
|   ///    bitcastable to B.
 | |
|   ///    Once again, just because we allow it to vectors and pointers only.
 | |
|   ///    This statement could be expanded as below:
 | |
|   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
 | |
|   ///      vector B, and thus bitcastable to B as well.
 | |
|   /// 2.2. All pointers of the same address space, no matter what they point to,
 | |
|   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
 | |
|   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
 | |
|   /// QED.
 | |
|   ///
 | |
|   /// In another words, for pointers and vectors, we ignore top-level type and
 | |
|   /// look at their particular properties (bit-width for vectors, and
 | |
|   /// address space for pointers).
 | |
|   /// If these properties are equal - compare their contents.
 | |
|   int cmpConstants(const Constant *L, const Constant *R);
 | |
| 
 | |
|   /// Compares two global values by number. Uses the GlobalNumbersState to
 | |
|   /// identify the same gobals across function calls.
 | |
|   int cmpGlobalValues(GlobalValue *L, GlobalValue *R);
 | |
| 
 | |
|   /// Assign or look up previously assigned numbers for the two values, and
 | |
|   /// return whether the numbers are equal. Numbers are assigned in the order
 | |
|   /// visited.
 | |
|   /// Comparison order:
 | |
|   /// Stage 0: Value that is function itself is always greater then others.
 | |
|   ///          If left and right values are references to their functions, then
 | |
|   ///          they are equal.
 | |
|   /// Stage 1: Constants are greater than non-constants.
 | |
|   ///          If both left and right are constants, then the result of
 | |
|   ///          cmpConstants is used as cmpValues result.
 | |
|   /// Stage 2: InlineAsm instances are greater than others. If both left and
 | |
|   ///          right are InlineAsm instances, InlineAsm* pointers casted to
 | |
|   ///          integers and compared as numbers.
 | |
|   /// Stage 3: For all other cases we compare order we meet these values in
 | |
|   ///          their functions. If right value was met first during scanning,
 | |
|   ///          then left value is greater.
 | |
|   ///          In another words, we compare serial numbers, for more details
 | |
|   ///          see comments for sn_mapL and sn_mapR.
 | |
|   int cmpValues(const Value *L, const Value *R);
 | |
| 
 | |
|   /// Compare two Instructions for equivalence, similar to
 | |
|   /// Instruction::isSameOperationAs but with modifications to the type
 | |
|   /// comparison.
 | |
|   /// Stages are listed in "most significant stage first" order:
 | |
|   /// On each stage below, we do comparison between some left and right
 | |
|   /// operation parts. If parts are non-equal, we assign parts comparison
 | |
|   /// result to the operation comparison result and exit from method.
 | |
|   /// Otherwise we proceed to the next stage.
 | |
|   /// Stages:
 | |
|   /// 1. Operations opcodes. Compared as numbers.
 | |
|   /// 2. Number of operands.
 | |
|   /// 3. Operation types. Compared with cmpType method.
 | |
|   /// 4. Compare operation subclass optional data as stream of bytes:
 | |
|   /// just convert it to integers and call cmpNumbers.
 | |
|   /// 5. Compare in operation operand types with cmpType in
 | |
|   /// most significant operand first order.
 | |
|   /// 6. Last stage. Check operations for some specific attributes.
 | |
|   /// For example, for Load it would be:
 | |
|   /// 6.1.Load: volatile (as boolean flag)
 | |
|   /// 6.2.Load: alignment (as integer numbers)
 | |
|   /// 6.3.Load: synch-scope (as integer numbers)
 | |
|   /// 6.4.Load: range metadata (as integer numbers)
 | |
|   /// On this stage its better to see the code, since its not more than 10-15
 | |
|   /// strings for particular instruction, and could change sometimes.
 | |
|   int cmpOperations(const Instruction *L, const Instruction *R) const;
 | |
| 
 | |
|   /// Compare two GEPs for equivalent pointer arithmetic.
 | |
|   /// Parts to be compared for each comparison stage,
 | |
|   /// most significant stage first:
 | |
|   /// 1. Address space. As numbers.
 | |
|   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
 | |
|   /// 3. Pointer operand type (using cmpType method).
 | |
|   /// 4. Number of operands.
 | |
|   /// 5. Compare operands, using cmpValues method.
 | |
|   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
 | |
|   int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
 | |
|     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
 | |
|   }
 | |
| 
 | |
|   /// cmpType - compares two types,
 | |
|   /// defines total ordering among the types set.
 | |
|   ///
 | |
|   /// Return values:
 | |
|   /// 0 if types are equal,
 | |
|   /// -1 if Left is less than Right,
 | |
|   /// +1 if Left is greater than Right.
 | |
|   ///
 | |
|   /// Description:
 | |
|   /// Comparison is broken onto stages. Like in lexicographical comparison
 | |
|   /// stage coming first has higher priority.
 | |
|   /// On each explanation stage keep in mind total ordering properties.
 | |
|   ///
 | |
|   /// 0. Before comparison we coerce pointer types of 0 address space to
 | |
|   /// integer.
 | |
|   /// We also don't bother with same type at left and right, so
 | |
|   /// just return 0 in this case.
 | |
|   ///
 | |
|   /// 1. If types are of different kind (different type IDs).
 | |
|   ///    Return result of type IDs comparison, treating them as numbers.
 | |
|   /// 2. If types are integers, check that they have the same width. If they
 | |
|   /// are vectors, check that they have the same count and subtype.
 | |
|   /// 3. Types have the same ID, so check whether they are one of:
 | |
|   /// * Void
 | |
|   /// * Float
 | |
|   /// * Double
 | |
|   /// * X86_FP80
 | |
|   /// * FP128
 | |
|   /// * PPC_FP128
 | |
|   /// * Label
 | |
|   /// * Metadata
 | |
|   /// We can treat these types as equal whenever their IDs are same.
 | |
|   /// 4. If Left and Right are pointers, return result of address space
 | |
|   /// comparison (numbers comparison). We can treat pointer types of same
 | |
|   /// address space as equal.
 | |
|   /// 5. If types are complex.
 | |
|   /// Then both Left and Right are to be expanded and their element types will
 | |
|   /// be checked with the same way. If we get Res != 0 on some stage, return it.
 | |
|   /// Otherwise return 0.
 | |
|   /// 6. For all other cases put llvm_unreachable.
 | |
|   int cmpTypes(Type *TyL, Type *TyR) const;
 | |
| 
 | |
|   int cmpNumbers(uint64_t L, uint64_t R) const;
 | |
|   int cmpAPInts(const APInt &L, const APInt &R) const;
 | |
|   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
 | |
|   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
 | |
|   int cmpMem(StringRef L, StringRef R) const;
 | |
|   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
 | |
|   int cmpRangeMetadata(const MDNode* L, const MDNode* R) const;
 | |
|   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
 | |
| 
 | |
|   // The two functions undergoing comparison.
 | |
|   const Function *FnL, *FnR;
 | |
| 
 | |
|   /// Assign serial numbers to values from left function, and values from
 | |
|   /// right function.
 | |
|   /// Explanation:
 | |
|   /// Being comparing functions we need to compare values we meet at left and
 | |
|   /// right sides.
 | |
|   /// Its easy to sort things out for external values. It just should be
 | |
|   /// the same value at left and right.
 | |
|   /// But for local values (those were introduced inside function body)
 | |
|   /// we have to ensure they were introduced at exactly the same place,
 | |
|   /// and plays the same role.
 | |
|   /// Let's assign serial number to each value when we meet it first time.
 | |
|   /// Values that were met at same place will be with same serial numbers.
 | |
|   /// In this case it would be good to explain few points about values assigned
 | |
|   /// to BBs and other ways of implementation (see below).
 | |
|   ///
 | |
|   /// 1. Safety of BB reordering.
 | |
|   /// It's safe to change the order of BasicBlocks in function.
 | |
|   /// Relationship with other functions and serial numbering will not be
 | |
|   /// changed in this case.
 | |
|   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
 | |
|   /// from the entry, and then take each terminator. So it doesn't matter how in
 | |
|   /// fact BBs are ordered in function. And since cmpValues are called during
 | |
|   /// this walk, the numbering depends only on how BBs located inside the CFG.
 | |
|   /// So the answer is - yes. We will get the same numbering.
 | |
|   ///
 | |
|   /// 2. Impossibility to use dominance properties of values.
 | |
|   /// If we compare two instruction operands: first is usage of local
 | |
|   /// variable AL from function FL, and second is usage of local variable AR
 | |
|   /// from FR, we could compare their origins and check whether they are
 | |
|   /// defined at the same place.
 | |
|   /// But, we are still not able to compare operands of PHI nodes, since those
 | |
|   /// could be operands from further BBs we didn't scan yet.
 | |
|   /// So it's impossible to use dominance properties in general.
 | |
|   DenseMap<const Value*, int> sn_mapL, sn_mapR;
 | |
| 
 | |
|   // The global state we will use
 | |
|   GlobalNumberState* GlobalNumbers;
 | |
| };
 | |
| 
 | |
| class FunctionNode {
 | |
|   mutable AssertingVH<Function> F;
 | |
|   FunctionComparator::FunctionHash Hash;
 | |
| public:
 | |
|   // Note the hash is recalculated potentially multiple times, but it is cheap.
 | |
|   FunctionNode(Function *F)
 | |
|     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
 | |
|   Function *getFunc() const { return F; }
 | |
|   FunctionComparator::FunctionHash getHash() const { return Hash; }
 | |
| 
 | |
|   /// Replace the reference to the function F by the function G, assuming their
 | |
|   /// implementations are equal.
 | |
|   void replaceBy(Function *G) const {
 | |
|     F = G;
 | |
|   }
 | |
| 
 | |
|   void release() { F = nullptr; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
 | |
|   if (L < R) return -1;
 | |
|   if (L > R) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
 | |
|   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
 | |
|     return Res;
 | |
|   if (L.ugt(R)) return 1;
 | |
|   if (R.ugt(L)) return -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
 | |
|   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
 | |
|   // then by value interpreted as a bitstring (aka APInt).
 | |
|   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
 | |
|                            APFloat::semanticsPrecision(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
 | |
|                            APFloat::semanticsMaxExponent(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
 | |
|                            APFloat::semanticsMinExponent(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
 | |
|                            APFloat::semanticsSizeInBits(SR)))
 | |
|     return Res;
 | |
|   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
 | |
|   // Prevent heavy comparison, compare sizes first.
 | |
|   if (int Res = cmpNumbers(L.size(), R.size()))
 | |
|     return Res;
 | |
| 
 | |
|   // Compare strings lexicographically only when it is necessary: only when
 | |
|   // strings are equal in size.
 | |
|   return L.compare(R);
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAttrs(const AttributeSet L,
 | |
|                                  const AttributeSet R) const {
 | |
|   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
 | |
|     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
 | |
|                            RE = R.end(i);
 | |
|     for (; LI != LE && RI != RE; ++LI, ++RI) {
 | |
|       Attribute LA = *LI;
 | |
|       Attribute RA = *RI;
 | |
|       if (LA < RA)
 | |
|         return -1;
 | |
|       if (RA < LA)
 | |
|         return 1;
 | |
|     }
 | |
|     if (LI != LE)
 | |
|       return 1;
 | |
|     if (RI != RE)
 | |
|       return -1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpRangeMetadata(const MDNode* L,
 | |
|                                          const MDNode* R) const {
 | |
|   if (L == R)
 | |
|     return 0;
 | |
|   if (!L)
 | |
|     return -1;
 | |
|   if (!R)
 | |
|     return 1;
 | |
|   // Range metadata is a sequence of numbers. Make sure they are the same
 | |
|   // sequence. 
 | |
|   // TODO: Note that as this is metadata, it is possible to drop and/or merge
 | |
|   // this data when considering functions to merge. Thus this comparison would
 | |
|   // return 0 (i.e. equivalent), but merging would become more complicated
 | |
|   // because the ranges would need to be unioned. It is not likely that
 | |
|   // functions differ ONLY in this metadata if they are actually the same
 | |
|   // function semantically.
 | |
|   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
 | |
|     return Res;
 | |
|   for (size_t I = 0; I < L->getNumOperands(); ++I) {
 | |
|     ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
 | |
|     ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
 | |
|     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
 | |
|       return Res;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
 | |
|                                                 const Instruction *R) const {
 | |
|   ImmutableCallSite LCS(L);
 | |
|   ImmutableCallSite RCS(R);
 | |
| 
 | |
|   assert(LCS && RCS && "Must be calls or invokes!");
 | |
|   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
 | |
| 
 | |
|   if (int Res =
 | |
|           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
 | |
|     auto OBL = LCS.getOperandBundleAt(i);
 | |
|     auto OBR = RCS.getOperandBundleAt(i);
 | |
| 
 | |
|     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
 | |
|       return Res;
 | |
| 
 | |
|     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Constants comparison:
 | |
| /// 1. Check whether type of L constant could be losslessly bitcasted to R
 | |
| /// type.
 | |
| /// 2. Compare constant contents.
 | |
| /// For more details see declaration comments.
 | |
| int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
 | |
| 
 | |
|   Type *TyL = L->getType();
 | |
|   Type *TyR = R->getType();
 | |
| 
 | |
|   // Check whether types are bitcastable. This part is just re-factored
 | |
|   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
 | |
|   // we also pack into result which type is "less" for us.
 | |
|   int TypesRes = cmpTypes(TyL, TyR);
 | |
|   if (TypesRes != 0) {
 | |
|     // Types are different, but check whether we can bitcast them.
 | |
|     if (!TyL->isFirstClassType()) {
 | |
|       if (TyR->isFirstClassType())
 | |
|         return -1;
 | |
|       // Neither TyL nor TyR are values of first class type. Return the result
 | |
|       // of comparing the types
 | |
|       return TypesRes;
 | |
|     }
 | |
|     if (!TyR->isFirstClassType()) {
 | |
|       if (TyL->isFirstClassType())
 | |
|         return 1;
 | |
|       return TypesRes;
 | |
|     }
 | |
| 
 | |
|     // Vector -> Vector conversions are always lossless if the two vector types
 | |
|     // have the same size, otherwise not.
 | |
|     unsigned TyLWidth = 0;
 | |
|     unsigned TyRWidth = 0;
 | |
| 
 | |
|     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
 | |
|       TyLWidth = VecTyL->getBitWidth();
 | |
|     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
 | |
|       TyRWidth = VecTyR->getBitWidth();
 | |
| 
 | |
|     if (TyLWidth != TyRWidth)
 | |
|       return cmpNumbers(TyLWidth, TyRWidth);
 | |
| 
 | |
|     // Zero bit-width means neither TyL nor TyR are vectors.
 | |
|     if (!TyLWidth) {
 | |
|       PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | |
|       PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | |
|       if (PTyL && PTyR) {
 | |
|         unsigned AddrSpaceL = PTyL->getAddressSpace();
 | |
|         unsigned AddrSpaceR = PTyR->getAddressSpace();
 | |
|         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
 | |
|           return Res;
 | |
|       }
 | |
|       if (PTyL)
 | |
|         return 1;
 | |
|       if (PTyR)
 | |
|         return -1;
 | |
| 
 | |
|       // TyL and TyR aren't vectors, nor pointers. We don't know how to
 | |
|       // bitcast them.
 | |
|       return TypesRes;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OK, types are bitcastable, now check constant contents.
 | |
| 
 | |
|   if (L->isNullValue() && R->isNullValue())
 | |
|     return TypesRes;
 | |
|   if (L->isNullValue() && !R->isNullValue())
 | |
|     return 1;
 | |
|   if (!L->isNullValue() && R->isNullValue())
 | |
|     return -1;
 | |
| 
 | |
|   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
 | |
|   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
 | |
|   if (GlobalValueL && GlobalValueR) {
 | |
|     return cmpGlobalValues(GlobalValueL, GlobalValueR);
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
 | |
|     return Res;
 | |
| 
 | |
|   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
 | |
|     const auto *SeqR = cast<ConstantDataSequential>(R);
 | |
|     // This handles ConstantDataArray and ConstantDataVector. Note that we
 | |
|     // compare the two raw data arrays, which might differ depending on the host
 | |
|     // endianness. This isn't a problem though, because the endiness of a module
 | |
|     // will affect the order of the constants, but this order is the same
 | |
|     // for a given input module and host platform.
 | |
|     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
 | |
|   }
 | |
| 
 | |
|   switch (L->getValueID()) {
 | |
|   case Value::UndefValueVal:
 | |
|   case Value::ConstantTokenNoneVal:
 | |
|     return TypesRes;
 | |
|   case Value::ConstantIntVal: {
 | |
|     const APInt &LInt = cast<ConstantInt>(L)->getValue();
 | |
|     const APInt &RInt = cast<ConstantInt>(R)->getValue();
 | |
|     return cmpAPInts(LInt, RInt);
 | |
|   }
 | |
|   case Value::ConstantFPVal: {
 | |
|     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
 | |
|     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
 | |
|     return cmpAPFloats(LAPF, RAPF);
 | |
|   }
 | |
|   case Value::ConstantArrayVal: {
 | |
|     const ConstantArray *LA = cast<ConstantArray>(L);
 | |
|     const ConstantArray *RA = cast<ConstantArray>(R);
 | |
|     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
 | |
|     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (uint64_t i = 0; i < NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
 | |
|                                  cast<Constant>(RA->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantStructVal: {
 | |
|     const ConstantStruct *LS = cast<ConstantStruct>(L);
 | |
|     const ConstantStruct *RS = cast<ConstantStruct>(R);
 | |
|     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
 | |
|     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (unsigned i = 0; i != NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
 | |
|                                  cast<Constant>(RS->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantVectorVal: {
 | |
|     const ConstantVector *LV = cast<ConstantVector>(L);
 | |
|     const ConstantVector *RV = cast<ConstantVector>(R);
 | |
|     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
 | |
|     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (uint64_t i = 0; i < NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
 | |
|                                  cast<Constant>(RV->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantExprVal: {
 | |
|     const ConstantExpr *LE = cast<ConstantExpr>(L);
 | |
|     const ConstantExpr *RE = cast<ConstantExpr>(R);
 | |
|     unsigned NumOperandsL = LE->getNumOperands();
 | |
|     unsigned NumOperandsR = RE->getNumOperands();
 | |
|     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
 | |
|       return Res;
 | |
|     for (unsigned i = 0; i < NumOperandsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
 | |
|                                  cast<Constant>(RE->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::BlockAddressVal: {
 | |
|     const BlockAddress *LBA = cast<BlockAddress>(L);
 | |
|     const BlockAddress *RBA = cast<BlockAddress>(R);
 | |
|     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
 | |
|       return Res;
 | |
|     if (LBA->getFunction() == RBA->getFunction()) {
 | |
|       // They are BBs in the same function. Order by which comes first in the
 | |
|       // BB order of the function. This order is deterministic.
 | |
|       Function* F = LBA->getFunction();
 | |
|       BasicBlock *LBB = LBA->getBasicBlock();
 | |
|       BasicBlock *RBB = RBA->getBasicBlock();
 | |
|       if (LBB == RBB)
 | |
|         return 0;
 | |
|       for(BasicBlock &BB : F->getBasicBlockList()) {
 | |
|         if (&BB == LBB) {
 | |
|           assert(&BB != RBB);
 | |
|           return -1;
 | |
|         }
 | |
|         if (&BB == RBB)
 | |
|           return 1;
 | |
|       }
 | |
|       llvm_unreachable("Basic Block Address does not point to a basic block in "
 | |
|                        "its function.");
 | |
|       return -1;
 | |
|     } else {
 | |
|       // cmpValues said the functions are the same. So because they aren't
 | |
|       // literally the same pointer, they must respectively be the left and
 | |
|       // right functions.
 | |
|       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
 | |
|       // cmpValues will tell us if these are equivalent BasicBlocks, in the
 | |
|       // context of their respective functions.
 | |
|       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
 | |
|     }
 | |
|   }
 | |
|   default: // Unknown constant, abort.
 | |
|     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
 | |
|     llvm_unreachable("Constant ValueID not recognized.");
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) {
 | |
|   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
 | |
| }
 | |
| 
 | |
| /// cmpType - compares two types,
 | |
| /// defines total ordering among the types set.
 | |
| /// See method declaration comments for more details.
 | |
| int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
 | |
|   PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | |
|   PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | |
| 
 | |
|   const DataLayout &DL = FnL->getParent()->getDataLayout();
 | |
|   if (PTyL && PTyL->getAddressSpace() == 0)
 | |
|     TyL = DL.getIntPtrType(TyL);
 | |
|   if (PTyR && PTyR->getAddressSpace() == 0)
 | |
|     TyR = DL.getIntPtrType(TyR);
 | |
| 
 | |
|   if (TyL == TyR)
 | |
|     return 0;
 | |
| 
 | |
|   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
 | |
|     return Res;
 | |
| 
 | |
|   switch (TyL->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown type!");
 | |
|     // Fall through in Release mode.
 | |
|   case Type::IntegerTyID:
 | |
|     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
 | |
|                       cast<IntegerType>(TyR)->getBitWidth());
 | |
|   case Type::VectorTyID: {
 | |
|     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
 | |
|     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
 | |
|       return Res;
 | |
|     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
 | |
|   }
 | |
|   // TyL == TyR would have returned true earlier, because types are uniqued.
 | |
|   case Type::VoidTyID:
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::LabelTyID:
 | |
|   case Type::MetadataTyID:
 | |
|   case Type::TokenTyID:
 | |
|     return 0;
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     assert(PTyL && PTyR && "Both types must be pointers here.");
 | |
|     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     StructType *STyL = cast<StructType>(TyL);
 | |
|     StructType *STyR = cast<StructType>(TyR);
 | |
|     if (STyL->getNumElements() != STyR->getNumElements())
 | |
|       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
 | |
| 
 | |
|     if (STyL->isPacked() != STyR->isPacked())
 | |
|       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
 | |
| 
 | |
|     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
 | |
|       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Type::FunctionTyID: {
 | |
|     FunctionType *FTyL = cast<FunctionType>(TyL);
 | |
|     FunctionType *FTyR = cast<FunctionType>(TyR);
 | |
|     if (FTyL->getNumParams() != FTyR->getNumParams())
 | |
|       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
 | |
| 
 | |
|     if (FTyL->isVarArg() != FTyR->isVarArg())
 | |
|       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
 | |
| 
 | |
|     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
 | |
|       return Res;
 | |
| 
 | |
|     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
 | |
|       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     ArrayType *ATyL = cast<ArrayType>(TyL);
 | |
|     ArrayType *ATyR = cast<ArrayType>(TyR);
 | |
|     if (ATyL->getNumElements() != ATyR->getNumElements())
 | |
|       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
 | |
|     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine whether the two operations are the same except that pointer-to-A
 | |
| // and pointer-to-B are equivalent. This should be kept in sync with
 | |
| // Instruction::isSameOperationAs.
 | |
| // Read method declaration comments for more details.
 | |
| int FunctionComparator::cmpOperations(const Instruction *L,
 | |
|                                       const Instruction *R) const {
 | |
|   // Differences from Instruction::isSameOperationAs:
 | |
|   //  * replace type comparison with calls to isEquivalentType.
 | |
|   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
 | |
|   //  * because of the above, we don't test for the tail bit on calls later on
 | |
|   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpTypes(L->getType(), R->getType()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
 | |
|                            R->getRawSubclassOptionalData()))
 | |
|     return Res;
 | |
| 
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
 | |
|     if (int Res = cmpTypes(AI->getAllocatedType(),
 | |
|                            cast<AllocaInst>(R)->getAllocatedType()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   // We have two instructions of identical opcode and #operands.  Check to see
 | |
|   // if all operands are the same type
 | |
|   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
 | |
|     if (int Res =
 | |
|             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   // Check special state that is a part of some instructions.
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
 | |
|     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
 | |
|         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
 | |
|     if (int Res =
 | |
|             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
 | |
|   }
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
 | |
|     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
 | |
|     if (int Res = cmpNumbers(CI->getCallingConv(),
 | |
|                              cast<CallInst>(R)->getCallingConv()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
 | |
|       return Res;
 | |
|     if (int Res = cmpOperandBundlesSchema(CI, R))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(
 | |
|         CI->getMetadata(LLVMContext::MD_range),
 | |
|         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
 | |
|     if (int Res = cmpNumbers(II->getCallingConv(),
 | |
|                              cast<InvokeInst>(R)->getCallingConv()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
 | |
|       return Res;
 | |
|     if (int Res = cmpOperandBundlesSchema(II, R))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(
 | |
|         II->getMetadata(LLVMContext::MD_range),
 | |
|         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
 | |
|     ArrayRef<unsigned> LIndices = IVI->getIndices();
 | |
|     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
 | |
|     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | |
|       return Res;
 | |
|     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | |
|       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | |
|         return Res;
 | |
|     }
 | |
|   }
 | |
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
 | |
|     ArrayRef<unsigned> LIndices = EVI->getIndices();
 | |
|     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
 | |
|     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | |
|       return Res;
 | |
|     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | |
|       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | |
|         return Res;
 | |
|     }
 | |
|   }
 | |
|   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
 | |
|     if (int Res =
 | |
|             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
 | |
|   }
 | |
| 
 | |
|   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
 | |
|     if (int Res = cmpNumbers(CXI->isVolatile(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(CXI->isWeak(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->isWeak()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(CXI->getSynchScope(),
 | |
|                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
 | |
|   }
 | |
|   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
 | |
|     if (int Res = cmpNumbers(RMWI->getOperation(),
 | |
|                              cast<AtomicRMWInst>(R)->getOperation()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(RMWI->isVolatile(),
 | |
|                              cast<AtomicRMWInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(RMWI->getOrdering(),
 | |
|                              cast<AtomicRMWInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(RMWI->getSynchScope(),
 | |
|                       cast<AtomicRMWInst>(R)->getSynchScope());
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Determine whether two GEP operations perform the same underlying arithmetic.
 | |
| // Read method declaration comments for more details.
 | |
| int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
 | |
|                                const GEPOperator *GEPR) {
 | |
| 
 | |
|   unsigned int ASL = GEPL->getPointerAddressSpace();
 | |
|   unsigned int ASR = GEPR->getPointerAddressSpace();
 | |
| 
 | |
|   if (int Res = cmpNumbers(ASL, ASR))
 | |
|     return Res;
 | |
| 
 | |
|   // When we have target data, we can reduce the GEP down to the value in bytes
 | |
|   // added to the address.
 | |
|   const DataLayout &DL = FnL->getParent()->getDataLayout();
 | |
|   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
 | |
|   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
 | |
|   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
 | |
|       GEPR->accumulateConstantOffset(DL, OffsetR))
 | |
|     return cmpAPInts(OffsetL, OffsetR);
 | |
|   if (int Res = cmpTypes(GEPL->getSourceElementType(),
 | |
|                          GEPR->getSourceElementType()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
 | |
|     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
 | |
|                                      const InlineAsm *R) const {
 | |
|   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
 | |
|   // the same, otherwise compare the fields.
 | |
|   if (L == R)
 | |
|     return 0;
 | |
|   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
 | |
|     return Res;
 | |
|   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
 | |
|     return Res;
 | |
|   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
 | |
|     return Res;
 | |
|   llvm_unreachable("InlineAsm blocks were not uniqued.");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Compare two values used by the two functions under pair-wise comparison. If
 | |
| /// this is the first time the values are seen, they're added to the mapping so
 | |
| /// that we will detect mismatches on next use.
 | |
| /// See comments in declaration for more details.
 | |
| int FunctionComparator::cmpValues(const Value *L, const Value *R) {
 | |
|   // Catch self-reference case.
 | |
|   if (L == FnL) {
 | |
|     if (R == FnR)
 | |
|       return 0;
 | |
|     return -1;
 | |
|   }
 | |
|   if (R == FnR) {
 | |
|     if (L == FnL)
 | |
|       return 0;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   const Constant *ConstL = dyn_cast<Constant>(L);
 | |
|   const Constant *ConstR = dyn_cast<Constant>(R);
 | |
|   if (ConstL && ConstR) {
 | |
|     if (L == R)
 | |
|       return 0;
 | |
|     return cmpConstants(ConstL, ConstR);
 | |
|   }
 | |
| 
 | |
|   if (ConstL)
 | |
|     return 1;
 | |
|   if (ConstR)
 | |
|     return -1;
 | |
| 
 | |
|   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
 | |
|   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
 | |
| 
 | |
|   if (InlineAsmL && InlineAsmR)
 | |
|     return cmpInlineAsm(InlineAsmL, InlineAsmR);
 | |
|   if (InlineAsmL)
 | |
|     return 1;
 | |
|   if (InlineAsmR)
 | |
|     return -1;
 | |
| 
 | |
|   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
 | |
|        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
 | |
| 
 | |
|   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
 | |
| }
 | |
| // Test whether two basic blocks have equivalent behaviour.
 | |
| int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
 | |
|                                        const BasicBlock *BBR) {
 | |
|   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
 | |
|   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
 | |
| 
 | |
|   do {
 | |
|     if (int Res = cmpValues(&*InstL, &*InstR))
 | |
|       return Res;
 | |
| 
 | |
|     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
 | |
|     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
 | |
| 
 | |
|     if (GEPL && !GEPR)
 | |
|       return 1;
 | |
|     if (GEPR && !GEPL)
 | |
|       return -1;
 | |
| 
 | |
|     if (GEPL && GEPR) {
 | |
|       if (int Res =
 | |
|               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
 | |
|         return Res;
 | |
|       if (int Res = cmpGEPs(GEPL, GEPR))
 | |
|         return Res;
 | |
|     } else {
 | |
|       if (int Res = cmpOperations(&*InstL, &*InstR))
 | |
|         return Res;
 | |
|       assert(InstL->getNumOperands() == InstR->getNumOperands());
 | |
| 
 | |
|       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
 | |
|         Value *OpL = InstL->getOperand(i);
 | |
|         Value *OpR = InstR->getOperand(i);
 | |
|         if (int Res = cmpValues(OpL, OpR))
 | |
|           return Res;
 | |
|         // cmpValues should ensure this is true.
 | |
|         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ++InstL;
 | |
|     ++InstR;
 | |
|   } while (InstL != InstLE && InstR != InstRE);
 | |
| 
 | |
|   if (InstL != InstLE && InstR == InstRE)
 | |
|     return 1;
 | |
|   if (InstL == InstLE && InstR != InstRE)
 | |
|     return -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Test whether the two functions have equivalent behaviour.
 | |
| int FunctionComparator::compare() {
 | |
|   sn_mapL.clear();
 | |
|   sn_mapR.clear();
 | |
| 
 | |
|   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
 | |
|     return Res;
 | |
| 
 | |
|   if (FnL->hasGC()) {
 | |
|     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
 | |
|     return Res;
 | |
| 
 | |
|   if (FnL->hasSection()) {
 | |
|     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
 | |
|     return Res;
 | |
| 
 | |
|   // TODO: if it's internal and only used in direct calls, we could handle this
 | |
|   // case too.
 | |
|   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
 | |
|     return Res;
 | |
| 
 | |
|   assert(FnL->arg_size() == FnR->arg_size() &&
 | |
|          "Identically typed functions have different numbers of args!");
 | |
| 
 | |
|   // Visit the arguments so that they get enumerated in the order they're
 | |
|   // passed in.
 | |
|   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
 | |
|                                     ArgRI = FnR->arg_begin(),
 | |
|                                     ArgLE = FnL->arg_end();
 | |
|        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
 | |
|     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
 | |
|       llvm_unreachable("Arguments repeat!");
 | |
|   }
 | |
| 
 | |
|   // We do a CFG-ordered walk since the actual ordering of the blocks in the
 | |
|   // linked list is immaterial. Our walk starts at the entry block for both
 | |
|   // functions, then takes each block from each terminator in order. As an
 | |
|   // artifact, this also means that unreachable blocks are ignored.
 | |
|   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
 | |
|   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
 | |
| 
 | |
|   FnLBBs.push_back(&FnL->getEntryBlock());
 | |
|   FnRBBs.push_back(&FnR->getEntryBlock());
 | |
| 
 | |
|   VisitedBBs.insert(FnLBBs[0]);
 | |
|   while (!FnLBBs.empty()) {
 | |
|     const BasicBlock *BBL = FnLBBs.pop_back_val();
 | |
|     const BasicBlock *BBR = FnRBBs.pop_back_val();
 | |
| 
 | |
|     if (int Res = cmpValues(BBL, BBR))
 | |
|       return Res;
 | |
| 
 | |
|     if (int Res = cmpBasicBlocks(BBL, BBR))
 | |
|       return Res;
 | |
| 
 | |
|     const TerminatorInst *TermL = BBL->getTerminator();
 | |
|     const TerminatorInst *TermR = BBR->getTerminator();
 | |
| 
 | |
|     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
 | |
|     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
 | |
|       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
 | |
|         continue;
 | |
| 
 | |
|       FnLBBs.push_back(TermL->getSuccessor(i));
 | |
|       FnRBBs.push_back(TermR->getSuccessor(i));
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
 | |
| // hash of a sequence of 64bit ints, but the entire input does not need to be
 | |
| // available at once. This interface is necessary for functionHash because it
 | |
| // needs to accumulate the hash as the structure of the function is traversed
 | |
| // without saving these values to an intermediate buffer. This form of hashing
 | |
| // is not often needed, as usually the object to hash is just read from a
 | |
| // buffer.
 | |
| class HashAccumulator64 {
 | |
|   uint64_t Hash;
 | |
| public:
 | |
|   // Initialize to random constant, so the state isn't zero.
 | |
|   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
 | |
|   void add(uint64_t V) {
 | |
|      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
 | |
|   }
 | |
|   // No finishing is required, because the entire hash value is used.
 | |
|   uint64_t getHash() { return Hash; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // A function hash is calculated by considering only the number of arguments and
 | |
| // whether a function is varargs, the order of basic blocks (given by the
 | |
| // successors of each basic block in depth first order), and the order of
 | |
| // opcodes of each instruction within each of these basic blocks. This mirrors
 | |
| // the strategy compare() uses to compare functions by walking the BBs in depth
 | |
| // first order and comparing each instruction in sequence. Because this hash
 | |
| // does not look at the operands, it is insensitive to things such as the
 | |
| // target of calls and the constants used in the function, which makes it useful
 | |
| // when possibly merging functions which are the same modulo constants and call
 | |
| // targets.
 | |
| FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
 | |
|   HashAccumulator64 H;
 | |
|   H.add(F.isVarArg());
 | |
|   H.add(F.arg_size());
 | |
|   
 | |
|   SmallVector<const BasicBlock *, 8> BBs;
 | |
|   SmallSet<const BasicBlock *, 16> VisitedBBs;
 | |
| 
 | |
|   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
 | |
|   // accumulating the hash of the function "structure." (BB and opcode sequence)
 | |
|   BBs.push_back(&F.getEntryBlock());
 | |
|   VisitedBBs.insert(BBs[0]);
 | |
|   while (!BBs.empty()) {
 | |
|     const BasicBlock *BB = BBs.pop_back_val();
 | |
|     // This random value acts as a block header, as otherwise the partition of
 | |
|     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
 | |
|     H.add(45798); 
 | |
|     for (auto &Inst : *BB) {
 | |
|       H.add(Inst.getOpcode());
 | |
|     }
 | |
|     const TerminatorInst *Term = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
 | |
|       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
 | |
|         continue;
 | |
|       BBs.push_back(Term->getSuccessor(i));
 | |
|     }
 | |
|   }
 | |
|   return H.getHash();
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// MergeFunctions finds functions which will generate identical machine code,
 | |
| /// by considering all pointer types to be equivalent. Once identified,
 | |
| /// MergeFunctions will fold them by replacing a call to one to a call to a
 | |
| /// bitcast of the other.
 | |
| ///
 | |
| class MergeFunctions : public ModulePass {
 | |
| public:
 | |
|   static char ID;
 | |
|   MergeFunctions()
 | |
|     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
 | |
|       HasGlobalAliases(false) {
 | |
|     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnModule(Module &M) override;
 | |
| 
 | |
| private:
 | |
|   // The function comparison operator is provided here so that FunctionNodes do
 | |
|   // not need to become larger with another pointer.
 | |
|   class FunctionNodeCmp {
 | |
|     GlobalNumberState* GlobalNumbers;
 | |
|   public:
 | |
|     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
 | |
|     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
 | |
|       // Order first by hashes, then full function comparison.
 | |
|       if (LHS.getHash() != RHS.getHash())
 | |
|         return LHS.getHash() < RHS.getHash();
 | |
|       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
 | |
|       return FCmp.compare() == -1;
 | |
|     }
 | |
|   };
 | |
|   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
 | |
| 
 | |
|   GlobalNumberState GlobalNumbers;
 | |
| 
 | |
|   /// A work queue of functions that may have been modified and should be
 | |
|   /// analyzed again.
 | |
|   std::vector<WeakVH> Deferred;
 | |
| 
 | |
|   /// Checks the rules of order relation introduced among functions set.
 | |
|   /// Returns true, if sanity check has been passed, and false if failed.
 | |
|   bool doSanityCheck(std::vector<WeakVH> &Worklist);
 | |
| 
 | |
|   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
 | |
|   /// equal to one that's already present.
 | |
|   bool insert(Function *NewFunction);
 | |
| 
 | |
|   /// Remove a Function from the FnTree and queue it up for a second sweep of
 | |
|   /// analysis.
 | |
|   void remove(Function *F);
 | |
| 
 | |
|   /// Find the functions that use this Value and remove them from FnTree and
 | |
|   /// queue the functions.
 | |
|   void removeUsers(Value *V);
 | |
| 
 | |
|   /// Replace all direct calls of Old with calls of New. Will bitcast New if
 | |
|   /// necessary to make types match.
 | |
|   void replaceDirectCallers(Function *Old, Function *New);
 | |
| 
 | |
|   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
 | |
|   /// be converted into a thunk. In either case, it should never be visited
 | |
|   /// again.
 | |
|   void mergeTwoFunctions(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with a thunk or an alias to F. Deletes G.
 | |
|   void writeThunkOrAlias(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | |
|   /// of G with bitcast(F). Deletes G.
 | |
|   void writeThunk(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with an alias to F. Deletes G.
 | |
|   void writeAlias(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace function F with function G in the function tree.
 | |
|   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
 | |
| 
 | |
|   /// The set of all distinct functions. Use the insert() and remove() methods
 | |
|   /// to modify it. The map allows efficient lookup and deferring of Functions.
 | |
|   FnTreeType FnTree;
 | |
|   // Map functions to the iterators of the FunctionNode which contains them
 | |
|   // in the FnTree. This must be updated carefully whenever the FnTree is
 | |
|   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
 | |
|   // dangling iterators into FnTree. The invariant that preserves this is that
 | |
|   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
 | |
|   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
 | |
| 
 | |
|   /// Whether or not the target supports global aliases.
 | |
|   bool HasGlobalAliases;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MergeFunctions::ID = 0;
 | |
| INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
 | |
| 
 | |
| ModulePass *llvm::createMergeFunctionsPass() {
 | |
|   return new MergeFunctions();
 | |
| }
 | |
| 
 | |
| bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
 | |
|   if (const unsigned Max = NumFunctionsForSanityCheck) {
 | |
|     unsigned TripleNumber = 0;
 | |
|     bool Valid = true;
 | |
| 
 | |
|     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
 | |
| 
 | |
|     unsigned i = 0;
 | |
|     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
 | |
|          I != E && i < Max; ++I, ++i) {
 | |
|       unsigned j = i;
 | |
|       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
 | |
|         Function *F1 = cast<Function>(*I);
 | |
|         Function *F2 = cast<Function>(*J);
 | |
|         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
 | |
|         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
 | |
| 
 | |
|         // If F1 <= F2, then F2 >= F1, otherwise report failure.
 | |
|         if (Res1 != -Res2) {
 | |
|           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
 | |
|                  << "\n";
 | |
|           F1->dump();
 | |
|           F2->dump();
 | |
|           Valid = false;
 | |
|         }
 | |
| 
 | |
|         if (Res1 == 0)
 | |
|           continue;
 | |
| 
 | |
|         unsigned k = j;
 | |
|         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
 | |
|              ++k, ++K, ++TripleNumber) {
 | |
|           if (K == J)
 | |
|             continue;
 | |
| 
 | |
|           Function *F3 = cast<Function>(*K);
 | |
|           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
 | |
|           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
 | |
| 
 | |
|           bool Transitive = true;
 | |
| 
 | |
|           if (Res1 != 0 && Res1 == Res4) {
 | |
|             // F1 > F2, F2 > F3 => F1 > F3
 | |
|             Transitive = Res3 == Res1;
 | |
|           } else if (Res3 != 0 && Res3 == -Res4) {
 | |
|             // F1 > F3, F3 > F2 => F1 > F2
 | |
|             Transitive = Res3 == Res1;
 | |
|           } else if (Res4 != 0 && -Res3 == Res4) {
 | |
|             // F2 > F3, F3 > F1 => F2 > F1
 | |
|             Transitive = Res4 == -Res1;
 | |
|           }
 | |
| 
 | |
|           if (!Transitive) {
 | |
|             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
 | |
|                    << TripleNumber << "\n";
 | |
|             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
 | |
|                    << Res4 << "\n";
 | |
|             F1->dump();
 | |
|             F2->dump();
 | |
|             F3->dump();
 | |
|             Valid = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
 | |
|     return Valid;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MergeFunctions::runOnModule(Module &M) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // All functions in the module, ordered by hash. Functions with a unique
 | |
|   // hash value are easily eliminated.
 | |
|   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
 | |
|     HashedFuncs;
 | |
|   for (Function &Func : M) {
 | |
|     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
 | |
|       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
 | |
|     } 
 | |
|   }
 | |
| 
 | |
|   std::stable_sort(
 | |
|       HashedFuncs.begin(), HashedFuncs.end(),
 | |
|       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
 | |
|          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
 | |
|         return a.first < b.first;
 | |
|       });
 | |
| 
 | |
|   auto S = HashedFuncs.begin();
 | |
|   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
 | |
|     // If the hash value matches the previous value or the next one, we must
 | |
|     // consider merging it. Otherwise it is dropped and never considered again.
 | |
|     if ((I != S && std::prev(I)->first == I->first) ||
 | |
|         (std::next(I) != IE && std::next(I)->first == I->first) ) {
 | |
|       Deferred.push_back(WeakVH(I->second));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   do {
 | |
|     std::vector<WeakVH> Worklist;
 | |
|     Deferred.swap(Worklist);
 | |
| 
 | |
|     DEBUG(doSanityCheck(Worklist));
 | |
| 
 | |
|     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
 | |
|     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
 | |
| 
 | |
|     // Insert only strong functions and merge them. Strong function merging
 | |
|     // always deletes one of them.
 | |
|     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | |
|            E = Worklist.end(); I != E; ++I) {
 | |
|       if (!*I) continue;
 | |
|       Function *F = cast<Function>(*I);
 | |
|       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | |
|           !F->mayBeOverridden()) {
 | |
|         Changed |= insert(F);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Insert only weak functions and merge them. By doing these second we
 | |
|     // create thunks to the strong function when possible. When two weak
 | |
|     // functions are identical, we create a new strong function with two weak
 | |
|     // weak thunks to it which are identical but not mergable.
 | |
|     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | |
|            E = Worklist.end(); I != E; ++I) {
 | |
|       if (!*I) continue;
 | |
|       Function *F = cast<Function>(*I);
 | |
|       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | |
|           F->mayBeOverridden()) {
 | |
|         Changed |= insert(F);
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
 | |
|   } while (!Deferred.empty());
 | |
| 
 | |
|   FnTree.clear();
 | |
|   GlobalNumbers.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Replace direct callers of Old with New.
 | |
| void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
 | |
|   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
 | |
|   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
 | |
|     Use *U = &*UI;
 | |
|     ++UI;
 | |
|     CallSite CS(U->getUser());
 | |
|     if (CS && CS.isCallee(U)) {
 | |
|       // Transfer the called function's attributes to the call site. Due to the
 | |
|       // bitcast we will 'lose' ABI changing attributes because the 'called
 | |
|       // function' is no longer a Function* but the bitcast. Code that looks up
 | |
|       // the attributes from the called function will fail.
 | |
| 
 | |
|       // FIXME: This is not actually true, at least not anymore. The callsite
 | |
|       // will always have the same ABI affecting attributes as the callee,
 | |
|       // because otherwise the original input has UB. Note that Old and New
 | |
|       // always have matching ABI, so no attributes need to be changed.
 | |
|       // Transferring other attributes may help other optimizations, but that
 | |
|       // should be done uniformly and not in this ad-hoc way.
 | |
|       auto &Context = New->getContext();
 | |
|       auto NewFuncAttrs = New->getAttributes();
 | |
|       auto CallSiteAttrs = CS.getAttributes();
 | |
| 
 | |
|       CallSiteAttrs = CallSiteAttrs.addAttributes(
 | |
|           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
 | |
| 
 | |
|       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
 | |
|         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
 | |
|         if (Attrs.getNumSlots())
 | |
|           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
 | |
|       }
 | |
| 
 | |
|       CS.setAttributes(CallSiteAttrs);
 | |
| 
 | |
|       remove(CS.getInstruction()->getParent()->getParent());
 | |
|       U->set(BitcastNew);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
 | |
| void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
 | |
|   if (HasGlobalAliases && G->hasUnnamedAddr()) {
 | |
|     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
 | |
|         G->hasWeakLinkage()) {
 | |
|       writeAlias(F, G);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   writeThunk(F, G);
 | |
| }
 | |
| 
 | |
| // Helper for writeThunk,
 | |
| // Selects proper bitcast operation,
 | |
| // but a bit simpler then CastInst::getCastOpcode.
 | |
| static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   if (SrcTy->isStructTy()) {
 | |
|     assert(DestTy->isStructTy());
 | |
|     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
 | |
|     Value *Result = UndefValue::get(DestTy);
 | |
|     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
 | |
|       Value *Element = createCast(
 | |
|           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
 | |
|           DestTy->getStructElementType(I));
 | |
| 
 | |
|       Result =
 | |
|           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   assert(!DestTy->isStructTy());
 | |
|   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
 | |
|     return Builder.CreateIntToPtr(V, DestTy);
 | |
|   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
 | |
|     return Builder.CreatePtrToInt(V, DestTy);
 | |
|   else
 | |
|     return Builder.CreateBitCast(V, DestTy);
 | |
| }
 | |
| 
 | |
| // Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | |
| // of G with bitcast(F). Deletes G.
 | |
| void MergeFunctions::writeThunk(Function *F, Function *G) {
 | |
|   if (!G->mayBeOverridden()) {
 | |
|     // Redirect direct callers of G to F.
 | |
|     replaceDirectCallers(G, F);
 | |
|   }
 | |
| 
 | |
|   // If G was internal then we may have replaced all uses of G with F. If so,
 | |
|   // stop here and delete G. There's no need for a thunk.
 | |
|   if (G->hasLocalLinkage() && G->use_empty()) {
 | |
|     G->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
 | |
|                                     G->getParent());
 | |
|   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
 | |
|   IRBuilder<> Builder(BB);
 | |
| 
 | |
|   SmallVector<Value *, 16> Args;
 | |
|   unsigned i = 0;
 | |
|   FunctionType *FFTy = F->getFunctionType();
 | |
|   for (Argument & AI : NewG->args()) {
 | |
|     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   CallInst *CI = Builder.CreateCall(F, Args);
 | |
|   CI->setTailCall();
 | |
|   CI->setCallingConv(F->getCallingConv());
 | |
|   CI->setAttributes(F->getAttributes());
 | |
|   if (NewG->getReturnType()->isVoidTy()) {
 | |
|     Builder.CreateRetVoid();
 | |
|   } else {
 | |
|     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
 | |
|   }
 | |
| 
 | |
|   NewG->copyAttributesFrom(G);
 | |
|   NewG->takeName(G);
 | |
|   removeUsers(G);
 | |
|   G->replaceAllUsesWith(NewG);
 | |
|   G->eraseFromParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
 | |
|   ++NumThunksWritten;
 | |
| }
 | |
| 
 | |
| // Replace G with an alias to F and delete G.
 | |
| void MergeFunctions::writeAlias(Function *F, Function *G) {
 | |
|   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
 | |
|   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
 | |
|   GA->takeName(G);
 | |
|   GA->setVisibility(G->getVisibility());
 | |
|   removeUsers(G);
 | |
|   G->replaceAllUsesWith(GA);
 | |
|   G->eraseFromParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
 | |
|   ++NumAliasesWritten;
 | |
| }
 | |
| 
 | |
| // Merge two equivalent functions. Upon completion, Function G is deleted.
 | |
| void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
 | |
|   if (F->mayBeOverridden()) {
 | |
|     assert(G->mayBeOverridden());
 | |
| 
 | |
|     // Make them both thunks to the same internal function.
 | |
|     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
 | |
|                                    F->getParent());
 | |
|     H->copyAttributesFrom(F);
 | |
|     H->takeName(F);
 | |
|     removeUsers(F);
 | |
|     F->replaceAllUsesWith(H);
 | |
| 
 | |
|     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
 | |
| 
 | |
|     if (HasGlobalAliases) {
 | |
|       writeAlias(F, G);
 | |
|       writeAlias(F, H);
 | |
|     } else {
 | |
|       writeThunk(F, G);
 | |
|       writeThunk(F, H);
 | |
|     }
 | |
| 
 | |
|     F->setAlignment(MaxAlignment);
 | |
|     F->setLinkage(GlobalValue::PrivateLinkage);
 | |
|     ++NumDoubleWeak;
 | |
|   } else {
 | |
|     writeThunkOrAlias(F, G);
 | |
|   }
 | |
| 
 | |
|   ++NumFunctionsMerged;
 | |
| }
 | |
| 
 | |
| /// Replace function F by function G.
 | |
| void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
 | |
|                                            Function *G) {
 | |
|   Function *F = FN.getFunc();
 | |
|   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
 | |
|          "The two functions must be equal");
 | |
|   
 | |
|   auto I = FNodesInTree.find(F);
 | |
|   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
 | |
|   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
 | |
|   
 | |
|   FnTreeType::iterator IterToFNInFnTree = I->second;
 | |
|   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
 | |
|   // Remove F -> FN and insert G -> FN
 | |
|   FNodesInTree.erase(I);
 | |
|   FNodesInTree.insert({G, IterToFNInFnTree});
 | |
|   // Replace F with G in FN, which is stored inside the FnTree.
 | |
|   FN.replaceBy(G);
 | |
| }
 | |
| 
 | |
| // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
 | |
| // that was already inserted.
 | |
| bool MergeFunctions::insert(Function *NewFunction) {
 | |
|   std::pair<FnTreeType::iterator, bool> Result =
 | |
|       FnTree.insert(FunctionNode(NewFunction));
 | |
| 
 | |
|   if (Result.second) {
 | |
|     assert(FNodesInTree.count(NewFunction) == 0);
 | |
|     FNodesInTree.insert({NewFunction, Result.first});
 | |
|     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const FunctionNode &OldF = *Result.first;
 | |
| 
 | |
|   // Don't merge tiny functions, since it can just end up making the function
 | |
|   // larger.
 | |
|   // FIXME: Should still merge them if they are unnamed_addr and produce an
 | |
|   // alias.
 | |
|   if (NewFunction->size() == 1) {
 | |
|     if (NewFunction->front().size() <= 2) {
 | |
|       DEBUG(dbgs() << NewFunction->getName()
 | |
|                    << " is to small to bother merging\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Impose a total order (by name) on the replacement of functions. This is
 | |
|   // important when operating on more than one module independently to prevent
 | |
|   // cycles of thunks calling each other when the modules are linked together.
 | |
|   //
 | |
|   // When one function is weak and the other is strong there is an order imposed
 | |
|   // already. We process strong functions before weak functions.
 | |
|   if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
 | |
|       (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
 | |
|     if (OldF.getFunc()->getName() > NewFunction->getName()) {
 | |
|       // Swap the two functions.
 | |
|       Function *F = OldF.getFunc();
 | |
|       replaceFunctionInTree(*Result.first, NewFunction);
 | |
|       NewFunction = F;
 | |
|       assert(OldF.getFunc() != F && "Must have swapped the functions.");
 | |
|     }
 | |
| 
 | |
|   // Never thunk a strong function to a weak function.
 | |
|   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
 | |
| 
 | |
|   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
 | |
|                << " == " << NewFunction->getName() << '\n');
 | |
| 
 | |
|   Function *DeleteF = NewFunction;
 | |
|   mergeTwoFunctions(OldF.getFunc(), DeleteF);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Remove a function from FnTree. If it was already in FnTree, add
 | |
| // it to Deferred so that we'll look at it in the next round.
 | |
| void MergeFunctions::remove(Function *F) {
 | |
|   auto I = FNodesInTree.find(F);
 | |
|   if (I != FNodesInTree.end()) {
 | |
|     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
 | |
|     FnTree.erase(I->second);
 | |
|     // I->second has been invalidated, remove it from the FNodesInTree map to
 | |
|     // preserve the invariant.
 | |
|     FNodesInTree.erase(I);
 | |
|     Deferred.emplace_back(F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For each instruction used by the value, remove() the function that contains
 | |
| // the instruction. This should happen right before a call to RAUW.
 | |
| void MergeFunctions::removeUsers(Value *V) {
 | |
|   std::vector<Value *> Worklist;
 | |
|   Worklist.push_back(V);
 | |
|   SmallSet<Value*, 8> Visited;
 | |
|   Visited.insert(V);
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *V = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     for (User *U : V->users()) {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(U)) {
 | |
|         remove(I->getParent()->getParent());
 | |
|       } else if (isa<GlobalValue>(U)) {
 | |
|         // do nothing
 | |
|       } else if (Constant *C = dyn_cast<Constant>(U)) {
 | |
|         for (User *UU : C->users()) {
 | |
|           if (!Visited.insert(UU).second)
 | |
|             Worklist.push_back(UU);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |