729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements whole program optimization of virtual calls in cases
 | |
| // where we know (via bitset information) that the list of callee is fixed. This
 | |
| // includes the following:
 | |
| // - Single implementation devirtualization: if a virtual call has a single
 | |
| //   possible callee, replace all calls with a direct call to that callee.
 | |
| // - Virtual constant propagation: if the virtual function's return type is an
 | |
| //   integer <=64 bits and all possible callees are readnone, for each class and
 | |
| //   each list of constant arguments: evaluate the function, store the return
 | |
| //   value alongside the virtual table, and rewrite each virtual call as a load
 | |
| //   from the virtual table.
 | |
| // - Uniform return value optimization: if the conditions for virtual constant
 | |
| //   propagation hold and each function returns the same constant value, replace
 | |
| //   each virtual call with that constant.
 | |
| // - Unique return value optimization for i1 return values: if the conditions
 | |
| //   for virtual constant propagation hold and a single vtable's function
 | |
| //   returns 0, or a single vtable's function returns 1, replace each virtual
 | |
| //   call with a comparison of the vptr against that vtable's address.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Evaluator.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| #include <set>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace wholeprogramdevirt;
 | |
| 
 | |
| #define DEBUG_TYPE "wholeprogramdevirt"
 | |
| 
 | |
| // Find the minimum offset that we may store a value of size Size bits at. If
 | |
| // IsAfter is set, look for an offset before the object, otherwise look for an
 | |
| // offset after the object.
 | |
| uint64_t
 | |
| wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
 | |
|                                      bool IsAfter, uint64_t Size) {
 | |
|   // Find a minimum offset taking into account only vtable sizes.
 | |
|   uint64_t MinByte = 0;
 | |
|   for (const VirtualCallTarget &Target : Targets) {
 | |
|     if (IsAfter)
 | |
|       MinByte = std::max(MinByte, Target.minAfterBytes());
 | |
|     else
 | |
|       MinByte = std::max(MinByte, Target.minBeforeBytes());
 | |
|   }
 | |
| 
 | |
|   // Build a vector of arrays of bytes covering, for each target, a slice of the
 | |
|   // used region (see AccumBitVector::BytesUsed in
 | |
|   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
 | |
|   // this aligns the used regions to start at MinByte.
 | |
|   //
 | |
|   // In this example, A, B and C are vtables, # is a byte already allocated for
 | |
|   // a virtual function pointer, AAAA... (etc.) are the used regions for the
 | |
|   // vtables and Offset(X) is the value computed for the Offset variable below
 | |
|   // for X.
 | |
|   //
 | |
|   //                    Offset(A)
 | |
|   //                    |       |
 | |
|   //                            |MinByte
 | |
|   // A: ################AAAAAAAA|AAAAAAAA
 | |
|   // B: ########BBBBBBBBBBBBBBBB|BBBB
 | |
|   // C: ########################|CCCCCCCCCCCCCCCC
 | |
|   //            |   Offset(B)   |
 | |
|   //
 | |
|   // This code produces the slices of A, B and C that appear after the divider
 | |
|   // at MinByte.
 | |
|   std::vector<ArrayRef<uint8_t>> Used;
 | |
|   for (const VirtualCallTarget &Target : Targets) {
 | |
|     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
 | |
|                                        : Target.BS->Bits->Before.BytesUsed;
 | |
|     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
 | |
|                               : MinByte - Target.minBeforeBytes();
 | |
| 
 | |
|     // Disregard used regions that are smaller than Offset. These are
 | |
|     // effectively all-free regions that do not need to be checked.
 | |
|     if (VTUsed.size() > Offset)
 | |
|       Used.push_back(VTUsed.slice(Offset));
 | |
|   }
 | |
| 
 | |
|   if (Size == 1) {
 | |
|     // Find a free bit in each member of Used.
 | |
|     for (unsigned I = 0;; ++I) {
 | |
|       uint8_t BitsUsed = 0;
 | |
|       for (auto &&B : Used)
 | |
|         if (I < B.size())
 | |
|           BitsUsed |= B[I];
 | |
|       if (BitsUsed != 0xff)
 | |
|         return (MinByte + I) * 8 +
 | |
|                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
 | |
|     }
 | |
|   } else {
 | |
|     // Find a free (Size/8) byte region in each member of Used.
 | |
|     // FIXME: see if alignment helps.
 | |
|     for (unsigned I = 0;; ++I) {
 | |
|       for (auto &&B : Used) {
 | |
|         unsigned Byte = 0;
 | |
|         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
 | |
|           if (B[I + Byte])
 | |
|             goto NextI;
 | |
|           ++Byte;
 | |
|         }
 | |
|       }
 | |
|       return (MinByte + I) * 8;
 | |
|     NextI:;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void wholeprogramdevirt::setBeforeReturnValues(
 | |
|     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
 | |
|     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
 | |
|   if (BitWidth == 1)
 | |
|     OffsetByte = -(AllocBefore / 8 + 1);
 | |
|   else
 | |
|     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
 | |
|   OffsetBit = AllocBefore % 8;
 | |
| 
 | |
|   for (VirtualCallTarget &Target : Targets) {
 | |
|     if (BitWidth == 1)
 | |
|       Target.setBeforeBit(AllocBefore);
 | |
|     else
 | |
|       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void wholeprogramdevirt::setAfterReturnValues(
 | |
|     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
 | |
|     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
 | |
|   if (BitWidth == 1)
 | |
|     OffsetByte = AllocAfter / 8;
 | |
|   else
 | |
|     OffsetByte = (AllocAfter + 7) / 8;
 | |
|   OffsetBit = AllocAfter % 8;
 | |
| 
 | |
|   for (VirtualCallTarget &Target : Targets) {
 | |
|     if (BitWidth == 1)
 | |
|       Target.setAfterBit(AllocAfter);
 | |
|     else
 | |
|       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
 | |
|   }
 | |
| }
 | |
| 
 | |
| VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
 | |
|     : Fn(Fn), BS(BS),
 | |
|       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // A slot in a set of virtual tables. The BitSetID identifies the set of virtual
 | |
| // tables, and the ByteOffset is the offset in bytes from the address point to
 | |
| // the virtual function pointer.
 | |
| struct VTableSlot {
 | |
|   Metadata *BitSetID;
 | |
|   uint64_t ByteOffset;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template <> struct DenseMapInfo<VTableSlot> {
 | |
|   static VTableSlot getEmptyKey() {
 | |
|     return {DenseMapInfo<Metadata *>::getEmptyKey(),
 | |
|             DenseMapInfo<uint64_t>::getEmptyKey()};
 | |
|   }
 | |
|   static VTableSlot getTombstoneKey() {
 | |
|     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
 | |
|             DenseMapInfo<uint64_t>::getTombstoneKey()};
 | |
|   }
 | |
|   static unsigned getHashValue(const VTableSlot &I) {
 | |
|     return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
 | |
|            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
 | |
|   }
 | |
|   static bool isEqual(const VTableSlot &LHS,
 | |
|                       const VTableSlot &RHS) {
 | |
|     return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // A virtual call site. VTable is the loaded virtual table pointer, and CS is
 | |
| // the indirect virtual call.
 | |
| struct VirtualCallSite {
 | |
|   Value *VTable;
 | |
|   CallSite CS;
 | |
| 
 | |
|   void replaceAndErase(Value *New) {
 | |
|     CS->replaceAllUsesWith(New);
 | |
|     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
 | |
|       II->getUnwindDest()->removePredecessor(II->getParent());
 | |
|     }
 | |
|     CS->eraseFromParent();
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct DevirtModule {
 | |
|   Module &M;
 | |
|   IntegerType *Int8Ty;
 | |
|   PointerType *Int8PtrTy;
 | |
|   IntegerType *Int32Ty;
 | |
| 
 | |
|   MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
 | |
| 
 | |
|   DevirtModule(Module &M)
 | |
|       : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
 | |
|         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
 | |
|         Int32Ty(Type::getInt32Ty(M.getContext())) {}
 | |
|   void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
 | |
|                                      uint64_t Offset, Value *VTable);
 | |
|   void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
 | |
|                                  Value *VTable);
 | |
| 
 | |
|   void buildBitSets(std::vector<VTableBits> &Bits,
 | |
|                     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
 | |
|   bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
 | |
|                                  const std::set<BitSetInfo> &BitSetInfos,
 | |
|                                  uint64_t ByteOffset);
 | |
|   bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|                            MutableArrayRef<VirtualCallSite> CallSites);
 | |
|   bool tryEvaluateFunctionsWithArgs(
 | |
|       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|       ArrayRef<ConstantInt *> Args);
 | |
|   bool tryUniformRetValOpt(IntegerType *RetType,
 | |
|                            ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|                            MutableArrayRef<VirtualCallSite> CallSites);
 | |
|   bool tryUniqueRetValOpt(unsigned BitWidth,
 | |
|                           ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|                           MutableArrayRef<VirtualCallSite> CallSites);
 | |
|   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|                            ArrayRef<VirtualCallSite> CallSites);
 | |
| 
 | |
|   void rebuildGlobal(VTableBits &B);
 | |
| 
 | |
|   bool run();
 | |
| };
 | |
| 
 | |
| struct WholeProgramDevirt : public ModulePass {
 | |
|   static char ID;
 | |
|   WholeProgramDevirt() : ModulePass(ID) {
 | |
|     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   bool runOnModule(Module &M) { return DevirtModule(M).run(); }
 | |
| };
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
 | |
|                 "Whole program devirtualization", false, false)
 | |
| char WholeProgramDevirt::ID = 0;
 | |
| 
 | |
| ModulePass *llvm::createWholeProgramDevirtPass() {
 | |
|   return new WholeProgramDevirt;
 | |
| }
 | |
| 
 | |
| // Search for virtual calls that call FPtr and add them to CallSlots.
 | |
| void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
 | |
|                                              uint64_t Offset, Value *VTable) {
 | |
|   for (const Use &U : FPtr->uses()) {
 | |
|     Value *User = U.getUser();
 | |
|     if (isa<BitCastInst>(User)) {
 | |
|       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
 | |
|     } else if (auto CI = dyn_cast<CallInst>(User)) {
 | |
|       CallSlots[{BitSet, Offset}].push_back({VTable, CI});
 | |
|     } else if (auto II = dyn_cast<InvokeInst>(User)) {
 | |
|       CallSlots[{BitSet, Offset}].push_back({VTable, II});
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Search for virtual calls that load from VPtr and add them to CallSlots.
 | |
| void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
 | |
|                                                  uint64_t Offset,
 | |
|                                                  Value *VTable) {
 | |
|   for (const Use &U : VPtr->uses()) {
 | |
|     Value *User = U.getUser();
 | |
|     if (isa<BitCastInst>(User)) {
 | |
|       findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
 | |
|     } else if (isa<LoadInst>(User)) {
 | |
|       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
 | |
|     } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Take into account the GEP offset.
 | |
|       if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
 | |
|         SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
 | |
|         uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
 | |
|             GEP->getSourceElementType(), Indices);
 | |
|         findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DevirtModule::buildBitSets(
 | |
|     std::vector<VTableBits> &Bits,
 | |
|     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
 | |
|   NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
 | |
|   if (!BitSetNM)
 | |
|     return;
 | |
| 
 | |
|   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
 | |
|   Bits.reserve(BitSetNM->getNumOperands());
 | |
|   for (auto Op : BitSetNM->operands()) {
 | |
|     auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
 | |
|     if (!OpConstMD)
 | |
|       continue;
 | |
|     auto BitSetID = Op->getOperand(0).get();
 | |
| 
 | |
|     Constant *OpConst = OpConstMD->getValue();
 | |
|     if (auto GA = dyn_cast<GlobalAlias>(OpConst))
 | |
|       OpConst = GA->getAliasee();
 | |
|     auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
 | |
|     if (!OpGlobal)
 | |
|       continue;
 | |
| 
 | |
|     uint64_t Offset =
 | |
|         cast<ConstantInt>(
 | |
|             cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
 | |
|             ->getZExtValue();
 | |
| 
 | |
|     VTableBits *&BitsPtr = GVToBits[OpGlobal];
 | |
|     if (!BitsPtr) {
 | |
|       Bits.emplace_back();
 | |
|       Bits.back().GV = OpGlobal;
 | |
|       Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
 | |
|           OpGlobal->getInitializer()->getType());
 | |
|       BitsPtr = &Bits.back();
 | |
|     }
 | |
|     BitSets[BitSetID].insert({BitsPtr, Offset});
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool DevirtModule::tryFindVirtualCallTargets(
 | |
|     std::vector<VirtualCallTarget> &TargetsForSlot,
 | |
|     const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
 | |
|   for (const BitSetInfo &BS : BitSetInfos) {
 | |
|     if (!BS.Bits->GV->isConstant())
 | |
|       return false;
 | |
| 
 | |
|     auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
 | |
|     if (!Init)
 | |
|       return false;
 | |
|     ArrayType *VTableTy = Init->getType();
 | |
| 
 | |
|     uint64_t ElemSize =
 | |
|         M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
 | |
|     uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
 | |
|     if (GlobalSlotOffset % ElemSize != 0)
 | |
|       return false;
 | |
| 
 | |
|     unsigned Op = GlobalSlotOffset / ElemSize;
 | |
|     if (Op >= Init->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
 | |
|     if (!Fn)
 | |
|       return false;
 | |
| 
 | |
|     // We can disregard __cxa_pure_virtual as a possible call target, as
 | |
|     // calls to pure virtuals are UB.
 | |
|     if (Fn->getName() == "__cxa_pure_virtual")
 | |
|       continue;
 | |
| 
 | |
|     TargetsForSlot.push_back({Fn, &BS});
 | |
|   }
 | |
| 
 | |
|   // Give up if we couldn't find any targets.
 | |
|   return !TargetsForSlot.empty();
 | |
| }
 | |
| 
 | |
| bool DevirtModule::trySingleImplDevirt(
 | |
|     ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|     MutableArrayRef<VirtualCallSite> CallSites) {
 | |
|   // See if the program contains a single implementation of this virtual
 | |
|   // function.
 | |
|   Function *TheFn = TargetsForSlot[0].Fn;
 | |
|   for (auto &&Target : TargetsForSlot)
 | |
|     if (TheFn != Target.Fn)
 | |
|       return false;
 | |
| 
 | |
|   // If so, update each call site to call that implementation directly.
 | |
|   for (auto &&VCallSite : CallSites) {
 | |
|     VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
 | |
|         TheFn, VCallSite.CS.getCalledValue()->getType()));
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DevirtModule::tryEvaluateFunctionsWithArgs(
 | |
|     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|     ArrayRef<ConstantInt *> Args) {
 | |
|   // Evaluate each function and store the result in each target's RetVal
 | |
|   // field.
 | |
|   for (VirtualCallTarget &Target : TargetsForSlot) {
 | |
|     if (Target.Fn->arg_size() != Args.size() + 1)
 | |
|       return false;
 | |
|     for (unsigned I = 0; I != Args.size(); ++I)
 | |
|       if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
 | |
|           Args[I]->getType())
 | |
|         return false;
 | |
| 
 | |
|     Evaluator Eval(M.getDataLayout(), nullptr);
 | |
|     SmallVector<Constant *, 2> EvalArgs;
 | |
|     EvalArgs.push_back(
 | |
|         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
 | |
|     EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
 | |
|     Constant *RetVal;
 | |
|     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
 | |
|         !isa<ConstantInt>(RetVal))
 | |
|       return false;
 | |
|     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DevirtModule::tryUniformRetValOpt(
 | |
|     IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|     MutableArrayRef<VirtualCallSite> CallSites) {
 | |
|   // Uniform return value optimization. If all functions return the same
 | |
|   // constant, replace all calls with that constant.
 | |
|   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
 | |
|   for (const VirtualCallTarget &Target : TargetsForSlot)
 | |
|     if (Target.RetVal != TheRetVal)
 | |
|       return false;
 | |
| 
 | |
|   auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
 | |
|   for (auto Call : CallSites)
 | |
|     Call.replaceAndErase(TheRetValConst);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DevirtModule::tryUniqueRetValOpt(
 | |
|     unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|     MutableArrayRef<VirtualCallSite> CallSites) {
 | |
|   // IsOne controls whether we look for a 0 or a 1.
 | |
|   auto tryUniqueRetValOptFor = [&](bool IsOne) {
 | |
|     const BitSetInfo *UniqueBitSet = 0;
 | |
|     for (const VirtualCallTarget &Target : TargetsForSlot) {
 | |
|       if (Target.RetVal == (IsOne ? 1 : 0)) {
 | |
|         if (UniqueBitSet)
 | |
|           return false;
 | |
|         UniqueBitSet = Target.BS;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We should have found a unique bit set or bailed out by now. We already
 | |
|     // checked for a uniform return value in tryUniformRetValOpt.
 | |
|     assert(UniqueBitSet);
 | |
| 
 | |
|     // Replace each call with the comparison.
 | |
|     for (auto &&Call : CallSites) {
 | |
|       IRBuilder<> B(Call.CS.getInstruction());
 | |
|       Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
 | |
|       OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
 | |
|       Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
 | |
|                                 Call.VTable, OneAddr);
 | |
|       Call.replaceAndErase(Cmp);
 | |
|     }
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   if (BitWidth == 1) {
 | |
|     if (tryUniqueRetValOptFor(true))
 | |
|       return true;
 | |
|     if (tryUniqueRetValOptFor(false))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool DevirtModule::tryVirtualConstProp(
 | |
|     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | |
|     ArrayRef<VirtualCallSite> CallSites) {
 | |
|   // This only works if the function returns an integer.
 | |
|   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
 | |
|   if (!RetType)
 | |
|     return false;
 | |
|   unsigned BitWidth = RetType->getBitWidth();
 | |
|   if (BitWidth > 64)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that each function does not access memory, takes at least one
 | |
|   // argument, does not use its first argument (which we assume is 'this'),
 | |
|   // and has the same return type.
 | |
|   for (VirtualCallTarget &Target : TargetsForSlot) {
 | |
|     if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
 | |
|         !Target.Fn->arg_begin()->use_empty() ||
 | |
|         Target.Fn->getReturnType() != RetType)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Group call sites by the list of constant arguments they pass.
 | |
|   // The comparator ensures deterministic ordering.
 | |
|   struct ByAPIntValue {
 | |
|     bool operator()(const std::vector<ConstantInt *> &A,
 | |
|                     const std::vector<ConstantInt *> &B) const {
 | |
|       return std::lexicographical_compare(
 | |
|           A.begin(), A.end(), B.begin(), B.end(),
 | |
|           [](ConstantInt *AI, ConstantInt *BI) {
 | |
|             return AI->getValue().ult(BI->getValue());
 | |
|           });
 | |
|     }
 | |
|   };
 | |
|   std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
 | |
|            ByAPIntValue>
 | |
|       VCallSitesByConstantArg;
 | |
|   for (auto &&VCallSite : CallSites) {
 | |
|     std::vector<ConstantInt *> Args;
 | |
|     if (VCallSite.CS.getType() != RetType)
 | |
|       continue;
 | |
|     for (auto &&Arg :
 | |
|          make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
 | |
|       if (!isa<ConstantInt>(Arg))
 | |
|         break;
 | |
|       Args.push_back(cast<ConstantInt>(&Arg));
 | |
|     }
 | |
|     if (Args.size() + 1 != VCallSite.CS.arg_size())
 | |
|       continue;
 | |
| 
 | |
|     VCallSitesByConstantArg[Args].push_back(VCallSite);
 | |
|   }
 | |
| 
 | |
|   for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
 | |
|     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
 | |
|       continue;
 | |
| 
 | |
|     if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
 | |
|       continue;
 | |
| 
 | |
|     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
 | |
|       continue;
 | |
| 
 | |
|     // Find an allocation offset in bits in all vtables in the bitset.
 | |
|     uint64_t AllocBefore =
 | |
|         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
 | |
|     uint64_t AllocAfter =
 | |
|         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
 | |
| 
 | |
|     // Calculate the total amount of padding needed to store a value at both
 | |
|     // ends of the object.
 | |
|     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
 | |
|     for (auto &&Target : TargetsForSlot) {
 | |
|       TotalPaddingBefore += std::max<int64_t>(
 | |
|           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
 | |
|       TotalPaddingAfter += std::max<int64_t>(
 | |
|           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
 | |
|     }
 | |
| 
 | |
|     // If the amount of padding is too large, give up.
 | |
|     // FIXME: do something smarter here.
 | |
|     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
 | |
|       continue;
 | |
| 
 | |
|     // Calculate the offset to the value as a (possibly negative) byte offset
 | |
|     // and (if applicable) a bit offset, and store the values in the targets.
 | |
|     int64_t OffsetByte;
 | |
|     uint64_t OffsetBit;
 | |
|     if (TotalPaddingBefore <= TotalPaddingAfter)
 | |
|       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
 | |
|                             OffsetBit);
 | |
|     else
 | |
|       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
 | |
|                            OffsetBit);
 | |
| 
 | |
|     // Rewrite each call to a load from OffsetByte/OffsetBit.
 | |
|     for (auto Call : CSByConstantArg.second) {
 | |
|       IRBuilder<> B(Call.CS.getInstruction());
 | |
|       Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
 | |
|       if (BitWidth == 1) {
 | |
|         Value *Bits = B.CreateLoad(Addr);
 | |
|         Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
 | |
|         Value *BitsAndBit = B.CreateAnd(Bits, Bit);
 | |
|         auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
 | |
|         Call.replaceAndErase(IsBitSet);
 | |
|       } else {
 | |
|         Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
 | |
|         Value *Val = B.CreateLoad(RetType, ValAddr);
 | |
|         Call.replaceAndErase(Val);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void DevirtModule::rebuildGlobal(VTableBits &B) {
 | |
|   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
 | |
|     return;
 | |
| 
 | |
|   // Align each byte array to pointer width.
 | |
|   unsigned PointerSize = M.getDataLayout().getPointerSize();
 | |
|   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
 | |
|   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
 | |
| 
 | |
|   // Before was stored in reverse order; flip it now.
 | |
|   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
 | |
|     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
 | |
| 
 | |
|   // Build an anonymous global containing the before bytes, followed by the
 | |
|   // original initializer, followed by the after bytes.
 | |
|   auto NewInit = ConstantStruct::getAnon(
 | |
|       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
 | |
|        B.GV->getInitializer(),
 | |
|        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
 | |
|   auto NewGV =
 | |
|       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
 | |
|                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
 | |
|   NewGV->setSection(B.GV->getSection());
 | |
|   NewGV->setComdat(B.GV->getComdat());
 | |
| 
 | |
|   // Build an alias named after the original global, pointing at the second
 | |
|   // element (the original initializer).
 | |
|   auto Alias = GlobalAlias::create(
 | |
|       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
 | |
|       ConstantExpr::getGetElementPtr(
 | |
|           NewInit->getType(), NewGV,
 | |
|           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
 | |
|                                ConstantInt::get(Int32Ty, 1)}),
 | |
|       &M);
 | |
|   Alias->setVisibility(B.GV->getVisibility());
 | |
|   Alias->takeName(B.GV);
 | |
| 
 | |
|   B.GV->replaceAllUsesWith(Alias);
 | |
|   B.GV->eraseFromParent();
 | |
| }
 | |
| 
 | |
| bool DevirtModule::run() {
 | |
|   Function *BitSetTestFunc =
 | |
|       M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
 | |
|   if (!BitSetTestFunc || BitSetTestFunc->use_empty())
 | |
|     return false;
 | |
| 
 | |
|   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
 | |
|   if (!AssumeFunc || AssumeFunc->use_empty())
 | |
|     return false;
 | |
| 
 | |
|   // Find all virtual calls via a virtual table pointer %p under an assumption
 | |
|   // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
 | |
|   // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
 | |
|   // (effectively the identity of the virtual function) and store to CallSlots.
 | |
|   DenseSet<Value *> SeenPtrs;
 | |
|   for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
 | |
|        I != E;) {
 | |
|     auto CI = dyn_cast<CallInst>(I->getUser());
 | |
|     ++I;
 | |
|     if (!CI)
 | |
|       continue;
 | |
| 
 | |
|     // Find llvm.assume intrinsics for this llvm.bitset.test call.
 | |
|     SmallVector<CallInst *, 1> Assumes;
 | |
|     for (const Use &CIU : CI->uses()) {
 | |
|       auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
 | |
|       if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
 | |
|         Assumes.push_back(AssumeCI);
 | |
|     }
 | |
| 
 | |
|     // If we found any, search for virtual calls based on %p and add them to
 | |
|     // CallSlots.
 | |
|     if (!Assumes.empty()) {
 | |
|       Metadata *BitSet =
 | |
|           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
 | |
|       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
 | |
|       if (SeenPtrs.insert(Ptr).second)
 | |
|         findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
 | |
|     }
 | |
| 
 | |
|     // We no longer need the assumes or the bitset test.
 | |
|     for (auto Assume : Assumes)
 | |
|       Assume->eraseFromParent();
 | |
|     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
 | |
|     // may use the vtable argument later.
 | |
|     if (CI->use_empty())
 | |
|       CI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Rebuild llvm.bitsets metadata into a map for easy lookup.
 | |
|   std::vector<VTableBits> Bits;
 | |
|   DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
 | |
|   buildBitSets(Bits, BitSets);
 | |
|   if (BitSets.empty())
 | |
|     return true;
 | |
| 
 | |
|   // For each (bitset, offset) pair:
 | |
|   bool DidVirtualConstProp = false;
 | |
|   for (auto &S : CallSlots) {
 | |
|     // Search each of the vtables in the bitset for the virtual function
 | |
|     // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
 | |
|     std::vector<VirtualCallTarget> TargetsForSlot;
 | |
|     if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
 | |
|                                    S.first.ByteOffset))
 | |
|       continue;
 | |
| 
 | |
|     if (trySingleImplDevirt(TargetsForSlot, S.second))
 | |
|       continue;
 | |
| 
 | |
|     DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
 | |
|   }
 | |
| 
 | |
|   // Rebuild each global we touched as part of virtual constant propagation to
 | |
|   // include the before and after bytes.
 | |
|   if (DidVirtualConstProp)
 | |
|     for (VTableBits &B : Bits)
 | |
|       rebuildGlobal(B);
 | |
| 
 | |
|   return true;
 | |
| }
 |