2766 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2766 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineAndOrXor.cpp --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitAnd, visitOr, and visitXor functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   // If this is not(not(x)) don't return that this is a not: we want the two
 | |
|   // not's to be folded first.
 | |
|   if (BinaryOperator::isNot(V)) {
 | |
|     Value *Operand = BinaryOperator::getNotArgument(V);
 | |
|     if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
 | |
|       return Operand;
 | |
|   }
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantInt::get(C->getType(), ~C->getValue());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
 | |
| /// a three bit mask. It also returns whether it is an ordered predicate by
 | |
| /// reference.
 | |
| static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
 | |
|   isOrdered = false;
 | |
|   switch (CC) {
 | |
|   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
 | |
|   case FCmpInst::FCMP_UNO:                   return 0;  // 000
 | |
|   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
 | |
|   case FCmpInst::FCMP_UGT:                   return 1;  // 001
 | |
|   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
 | |
|   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
 | |
|   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
 | |
|   case FCmpInst::FCMP_UGE:                   return 3;  // 011
 | |
|   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
 | |
|   case FCmpInst::FCMP_ULT:                   return 4;  // 100
 | |
|   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
 | |
|   case FCmpInst::FCMP_UNE:                   return 5;  // 101
 | |
|   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
 | |
|   case FCmpInst::FCMP_ULE:                   return 6;  // 110
 | |
|     // True -> 7
 | |
|   default:
 | |
|     // Not expecting FCMP_FALSE and FCMP_TRUE;
 | |
|     llvm_unreachable("Unexpected FCmp predicate!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This is the complement of getICmpCode, which turns an opcode and two
 | |
| /// operands into either a constant true or false, or a brand new ICmp
 | |
| /// instruction. The sign is passed in to determine which kind of predicate to
 | |
| /// use in the new icmp instruction.
 | |
| static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
 | |
|                               InstCombiner::BuilderTy *Builder) {
 | |
|   ICmpInst::Predicate NewPred;
 | |
|   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
 | |
|     return NewConstant;
 | |
|   return Builder->CreateICmp(NewPred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// This is the complement of getFCmpCode, which turns an opcode and two
 | |
| /// operands into either a FCmp instruction. isordered is passed in to determine
 | |
| /// which kind of predicate to use in the new fcmp instruction.
 | |
| static Value *getFCmpValue(bool isordered, unsigned code,
 | |
|                            Value *LHS, Value *RHS,
 | |
|                            InstCombiner::BuilderTy *Builder) {
 | |
|   CmpInst::Predicate Pred;
 | |
|   switch (code) {
 | |
|   default: llvm_unreachable("Illegal FCmp code!");
 | |
|   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
 | |
|   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
 | |
|   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
 | |
|   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
 | |
|   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
 | |
|   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
 | |
|   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
 | |
|   case 7:
 | |
|     if (!isordered)
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
 | |
|     Pred = FCmpInst::FCMP_ORD; break;
 | |
|   }
 | |
|   return Builder->CreateFCmp(Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
 | |
| /// \param I Binary operator to transform.
 | |
| /// \return Pointer to node that must replace the original binary operator, or
 | |
| ///         null pointer if no transformation was made.
 | |
| Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
 | |
|   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
 | |
| 
 | |
|   // Can't do vectors.
 | |
|   if (I.getType()->isVectorTy()) return nullptr;
 | |
| 
 | |
|   // Can only do bitwise ops.
 | |
|   unsigned Op = I.getOpcode();
 | |
|   if (Op != Instruction::And && Op != Instruction::Or &&
 | |
|       Op != Instruction::Xor)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *OldLHS = I.getOperand(0);
 | |
|   Value *OldRHS = I.getOperand(1);
 | |
|   ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
 | |
|   ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
 | |
|   IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
 | |
|   IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
 | |
|   bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
 | |
|   bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
 | |
| 
 | |
|   if (!IsBswapLHS && !IsBswapRHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!IsBswapLHS && !ConstLHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!IsBswapRHS && !ConstRHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
 | |
|   /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
 | |
|   Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
 | |
|                   Builder->getInt(ConstLHS->getValue().byteSwap());
 | |
| 
 | |
|   Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
 | |
|                   Builder->getInt(ConstRHS->getValue().byteSwap());
 | |
| 
 | |
|   Value *BinOp = nullptr;
 | |
|   if (Op == Instruction::And)
 | |
|     BinOp = Builder->CreateAnd(NewLHS, NewRHS);
 | |
|   else if (Op == Instruction::Or)
 | |
|     BinOp = Builder->CreateOr(NewLHS, NewRHS);
 | |
|   else //if (Op == Instruction::Xor)
 | |
|     BinOp = Builder->CreateXor(NewLHS, NewRHS);
 | |
| 
 | |
|   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
 | |
|   return Builder->CreateCall(F, BinOp);
 | |
| }
 | |
| 
 | |
| /// This handles expressions of the form ((val OP C1) & C2).  Where
 | |
| /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | |
| /// guaranteed to be a binary operator.
 | |
| Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | |
|                                     ConstantInt *OpRHS,
 | |
|                                     ConstantInt *AndRHS,
 | |
|                                     BinaryOperator &TheAnd) {
 | |
|   Value *X = Op->getOperand(0);
 | |
|   Constant *Together = nullptr;
 | |
|   if (!Op->isShift())
 | |
|     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Xor:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|       Value *And = Builder->CreateAnd(X, AndRHS);
 | |
|       And->takeName(Op);
 | |
|       return BinaryOperator::CreateXor(And, Together);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     if (Op->hasOneUse()){
 | |
|       if (Together != OpRHS) {
 | |
|         // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|         Value *Or = Builder->CreateOr(X, Together);
 | |
|         Or->takeName(Op);
 | |
|         return BinaryOperator::CreateAnd(Or, AndRHS);
 | |
|       }
 | |
| 
 | |
|       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
 | |
|       if (TogetherCI && !TogetherCI->isZero()){
 | |
|         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
 | |
|         // NOTE: This reduces the number of bits set in the & mask, which
 | |
|         // can expose opportunities for store narrowing.
 | |
|         Together = ConstantExpr::getXor(AndRHS, Together);
 | |
|         Value *And = Builder->CreateAnd(X, Together);
 | |
|         And->takeName(Op);
 | |
|         return BinaryOperator::CreateOr(And, OpRHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // Adding a one to a single bit bit-field should be turned into an XOR
 | |
|       // of the bit.  First thing to check is to see if this AND is with a
 | |
|       // single bit constant.
 | |
|       const APInt &AndRHSV = AndRHS->getValue();
 | |
| 
 | |
|       // If there is only one bit set.
 | |
|       if (AndRHSV.isPowerOf2()) {
 | |
|         // Ok, at this point, we know that we are masking the result of the
 | |
|         // ADD down to exactly one bit.  If the constant we are adding has
 | |
|         // no bits set below this bit, then we can eliminate the ADD.
 | |
|         const APInt& AddRHS = OpRHS->getValue();
 | |
| 
 | |
|         // Check to see if any bits below the one bit set in AndRHSV are set.
 | |
|         if ((AddRHS & (AndRHSV-1)) == 0) {
 | |
|           // If not, the only thing that can effect the output of the AND is
 | |
|           // the bit specified by AndRHSV.  If that bit is set, the effect of
 | |
|           // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | |
|           // no effect.
 | |
|           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | |
|             TheAnd.setOperand(0, X);
 | |
|             return &TheAnd;
 | |
|           } else {
 | |
|             // Pull the XOR out of the AND.
 | |
|             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
 | |
|             NewAnd->takeName(Op);
 | |
|             return BinaryOperator::CreateXor(NewAnd, AndRHS);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
 | |
|     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
 | |
| 
 | |
|     if (CI->getValue() == ShlMask)
 | |
|       // Masking out bits that the shift already masks.
 | |
|       return replaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | |
| 
 | |
|     if (CI != AndRHS) {                  // Reducing bits set in and.
 | |
|       TheAnd.setOperand(1, CI);
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!  This only applies to
 | |
|     // unsigned shifts, because a signed shr may bring in set bits!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
 | |
| 
 | |
|     if (CI->getValue() == ShrMask)
 | |
|       // Masking out bits that the shift already masks.
 | |
|       return replaceInstUsesWith(TheAnd, Op);
 | |
| 
 | |
|     if (CI != AndRHS) {
 | |
|       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::AShr:
 | |
|     // Signed shr.
 | |
|     // See if this is shifting in some sign extension, then masking it out
 | |
|     // with an and.
 | |
|     if (Op->hasOneUse()) {
 | |
|       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
 | |
|       if (C == AndRHS) {          // Masking out bits shifted in.
 | |
|         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
 | |
|         // Make the argument unsigned.
 | |
|         Value *ShVal = Op->getOperand(0);
 | |
|         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
 | |
|         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
 | |
| /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
 | |
| /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
 | |
| /// whether to treat the V, Lo and HI as signed or not. IB is the location to
 | |
| /// insert new instructions.
 | |
| Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                      bool isSigned, bool Inside) {
 | |
|   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
 | |
|             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
 | |
|          "Lo is not <= Hi in range emission code!");
 | |
| 
 | |
|   if (Inside) {
 | |
|     if (Lo == Hi)  // Trivially false.
 | |
|       return Builder->getFalse();
 | |
| 
 | |
|     // V >= Min && V < Hi --> V < Hi
 | |
|     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|       ICmpInst::Predicate pred = (isSigned ?
 | |
|         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
 | |
|       return Builder->CreateICmp(pred, V, Hi);
 | |
|     }
 | |
| 
 | |
|     // Emit V-Lo <u Hi-Lo
 | |
|     Constant *NegLo = ConstantExpr::getNeg(Lo);
 | |
|     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|     return Builder->CreateICmpULT(Add, UpperBound);
 | |
|   }
 | |
| 
 | |
|   if (Lo == Hi)  // Trivially true.
 | |
|     return Builder->getTrue();
 | |
| 
 | |
|   // V < Min || V >= Hi -> V > Hi-1
 | |
|   Hi = SubOne(cast<ConstantInt>(Hi));
 | |
|   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|     ICmpInst::Predicate pred = (isSigned ?
 | |
|         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
 | |
|     return Builder->CreateICmp(pred, V, Hi);
 | |
|   }
 | |
| 
 | |
|   // Emit V-Lo >u Hi-1-Lo
 | |
|   // Note that Hi has already had one subtracted from it, above.
 | |
|   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
 | |
|   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|   return Builder->CreateICmpUGT(Add, LowerBound);
 | |
| }
 | |
| 
 | |
| /// Returns true iff Val consists of one contiguous run of 1s with any number
 | |
| /// of 0s on either side.  The 1s are allowed to wrap from LSB to MSB,
 | |
| /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| /// not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
 | |
|   const APInt& V = Val->getValue();
 | |
|   uint32_t BitWidth = Val->getType()->getBitWidth();
 | |
|   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
 | |
| 
 | |
|   // look for the first zero bit after the run of ones
 | |
|   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
 | |
|   // look for the first non-zero bit
 | |
|   ME = V.getActiveBits();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
 | |
| /// whether the operator is a sub. If we can fold one of the following xforms:
 | |
| ///
 | |
| /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
 | |
| /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| ///
 | |
| /// return (A +/- B).
 | |
| ///
 | |
| Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
 | |
|                                         ConstantInt *Mask, bool isSub,
 | |
|                                         Instruction &I) {
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   if (!LHSI || LHSI->getNumOperands() != 2 ||
 | |
|       !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
 | |
| 
 | |
|   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   default: return nullptr;
 | |
|   case Instruction::And:
 | |
|     if (ConstantExpr::getAnd(N, Mask) == Mask) {
 | |
|       // If the AndRHS is a power of two minus one (0+1+), this is simple.
 | |
|       if ((Mask->getValue().countLeadingZeros() +
 | |
|            Mask->getValue().countPopulation()) ==
 | |
|           Mask->getValue().getBitWidth())
 | |
|         break;
 | |
| 
 | |
|       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
 | |
|       // part, we don't need any explicit masks to take them out of A.  If that
 | |
|       // is all N is, ignore it.
 | |
|       uint32_t MB = 0, ME = 0;
 | |
|       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
 | |
|         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
 | |
|         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
 | |
|         if (MaskedValueIsZero(RHS, Mask, 0, &I))
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
 | |
|     if ((Mask->getValue().countLeadingZeros() +
 | |
|          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
 | |
|         && ConstantExpr::getAnd(N, Mask)->isNullValue())
 | |
|       break;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (isSub)
 | |
|     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
 | |
|   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
 | |
| }
 | |
| 
 | |
| /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
 | |
| /// One of A and B is considered the mask, the other the value. This is
 | |
| /// described as the "AMask" or "BMask" part of the enum. If the enum
 | |
| /// contains only "Mask", then both A and B can be considered masks.
 | |
| /// If A is the mask, then it was proven, that (A & C) == C. This
 | |
| /// is trivial if C == A, or C == 0. If both A and C are constants, this
 | |
| /// proof is also easy.
 | |
| /// For the following explanations we assume that A is the mask.
 | |
| /// The part "AllOnes" declares, that the comparison is true only
 | |
| /// if (A & B) == A, or all bits of A are set in B.
 | |
| ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
 | |
| /// The part "AllZeroes" declares, that the comparison is true only
 | |
| /// if (A & B) == 0, or all bits of A are cleared in B.
 | |
| ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
 | |
| /// The part "Mixed" declares, that (A & B) == C and C might or might not
 | |
| /// contain any number of one bits and zero bits.
 | |
| ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
 | |
| /// The Part "Not" means, that in above descriptions "==" should be replaced
 | |
| /// by "!=".
 | |
| ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
 | |
| /// If the mask A contains a single bit, then the following is equivalent:
 | |
| ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
 | |
| ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
 | |
| enum MaskedICmpType {
 | |
|   FoldMskICmp_AMask_AllOnes           =     1,
 | |
|   FoldMskICmp_AMask_NotAllOnes        =     2,
 | |
|   FoldMskICmp_BMask_AllOnes           =     4,
 | |
|   FoldMskICmp_BMask_NotAllOnes        =     8,
 | |
|   FoldMskICmp_Mask_AllZeroes          =    16,
 | |
|   FoldMskICmp_Mask_NotAllZeroes       =    32,
 | |
|   FoldMskICmp_AMask_Mixed             =    64,
 | |
|   FoldMskICmp_AMask_NotMixed          =   128,
 | |
|   FoldMskICmp_BMask_Mixed             =   256,
 | |
|   FoldMskICmp_BMask_NotMixed          =   512
 | |
| };
 | |
| 
 | |
| /// Return the set of pattern classes (from MaskedICmpType)
 | |
| /// that (icmp SCC (A & B), C) satisfies.
 | |
| static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
 | |
|                                     ICmpInst::Predicate SCC)
 | |
| {
 | |
|   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
 | |
|   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
 | |
|   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
 | |
|   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
 | |
|   bool icmp_abit = (ACst && !ACst->isZero() &&
 | |
|                     ACst->getValue().isPowerOf2());
 | |
|   bool icmp_bbit = (BCst && !BCst->isZero() &&
 | |
|                     BCst->getValue().isPowerOf2());
 | |
|   unsigned result = 0;
 | |
|   if (CCst && CCst->isZero()) {
 | |
|     // if C is zero, then both A and B qualify as mask
 | |
|     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
 | |
|                           FoldMskICmp_Mask_AllZeroes |
 | |
|                           FoldMskICmp_AMask_Mixed |
 | |
|                           FoldMskICmp_BMask_Mixed)
 | |
|                        : (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                           FoldMskICmp_Mask_NotAllZeroes |
 | |
|                           FoldMskICmp_AMask_NotMixed |
 | |
|                           FoldMskICmp_BMask_NotMixed));
 | |
|     if (icmp_abit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
 | |
|                             FoldMskICmp_AMask_NotMixed)
 | |
|                          : (FoldMskICmp_AMask_AllOnes |
 | |
|                             FoldMskICmp_AMask_Mixed));
 | |
|     if (icmp_bbit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
 | |
|                             FoldMskICmp_BMask_NotMixed)
 | |
|                          : (FoldMskICmp_BMask_AllOnes |
 | |
|                             FoldMskICmp_BMask_Mixed));
 | |
|     return result;
 | |
|   }
 | |
|   if (A == C) {
 | |
|     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
 | |
|                           FoldMskICmp_AMask_Mixed)
 | |
|                        : (FoldMskICmp_AMask_NotAllOnes |
 | |
|                           FoldMskICmp_AMask_NotMixed));
 | |
|     if (icmp_abit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                             FoldMskICmp_AMask_NotMixed)
 | |
|                          : (FoldMskICmp_Mask_AllZeroes |
 | |
|                             FoldMskICmp_AMask_Mixed));
 | |
|   } else if (ACst && CCst &&
 | |
|              ConstantExpr::getAnd(ACst, CCst) == CCst) {
 | |
|     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
 | |
|                        : FoldMskICmp_AMask_NotMixed);
 | |
|   }
 | |
|   if (B == C) {
 | |
|     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
 | |
|                           FoldMskICmp_BMask_Mixed)
 | |
|                        : (FoldMskICmp_BMask_NotAllOnes |
 | |
|                           FoldMskICmp_BMask_NotMixed));
 | |
|     if (icmp_bbit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                             FoldMskICmp_BMask_NotMixed)
 | |
|                          : (FoldMskICmp_Mask_AllZeroes |
 | |
|                             FoldMskICmp_BMask_Mixed));
 | |
|   } else if (BCst && CCst &&
 | |
|              ConstantExpr::getAnd(BCst, CCst) == CCst) {
 | |
|     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
 | |
|                        : FoldMskICmp_BMask_NotMixed);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// Convert an analysis of a masked ICmp into its equivalent if all boolean
 | |
| /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
 | |
| /// is adjacent to the corresponding normal flag (recording ==), this just
 | |
| /// involves swapping those bits over.
 | |
| static unsigned conjugateICmpMask(unsigned Mask) {
 | |
|   unsigned NewMask;
 | |
|   NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
 | |
|                      FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
 | |
|                      FoldMskICmp_BMask_Mixed))
 | |
|             << 1;
 | |
| 
 | |
|   NewMask |=
 | |
|       (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
 | |
|                FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
 | |
|                FoldMskICmp_BMask_NotMixed))
 | |
|       >> 1;
 | |
| 
 | |
|   return NewMask;
 | |
| }
 | |
| 
 | |
| /// Decompose an icmp into the form ((X & Y) pred Z) if possible.
 | |
| /// The returned predicate is either == or !=. Returns false if
 | |
| /// decomposition fails.
 | |
| static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
 | |
|                                  Value *&X, Value *&Y, Value *&Z) {
 | |
|   ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   switch (I->getPredicate()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     // X < 0 is equivalent to (X & SignBit) != 0.
 | |
|     if (!C->isZero())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     // X > -1 is equivalent to (X & SignBit) == 0.
 | |
|     if (!C->isAllOnesValue())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
 | |
|     if (!C->getValue().isPowerOf2())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), -C->getValue());
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
 | |
|     if (!(C->getValue() + 1).isPowerOf2())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), ~C->getValue());
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   X = I->getOperand(0);
 | |
|   Z = ConstantInt::getNullValue(C->getType());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
 | |
| /// Return the set of pattern classes (from MaskedICmpType)
 | |
| /// that both LHS and RHS satisfy.
 | |
| static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
 | |
|                                              Value*& B, Value*& C,
 | |
|                                              Value*& D, Value*& E,
 | |
|                                              ICmpInst *LHS, ICmpInst *RHS,
 | |
|                                              ICmpInst::Predicate &LHSCC,
 | |
|                                              ICmpInst::Predicate &RHSCC) {
 | |
|   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
 | |
|   // vectors are not (yet?) supported
 | |
|   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
 | |
| 
 | |
|   // Here comes the tricky part:
 | |
|   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
 | |
|   // and L11 & L12 == L21 & L22. The same goes for RHS.
 | |
|   // Now we must find those components L** and R**, that are equal, so
 | |
|   // that we can extract the parameters A, B, C, D, and E for the canonical
 | |
|   // above.
 | |
|   Value *L1 = LHS->getOperand(0);
 | |
|   Value *L2 = LHS->getOperand(1);
 | |
|   Value *L11,*L12,*L21,*L22;
 | |
|   // Check whether the icmp can be decomposed into a bit test.
 | |
|   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
 | |
|     L21 = L22 = L1 = nullptr;
 | |
|   } else {
 | |
|     // Look for ANDs in the LHS icmp.
 | |
|     if (!L1->getType()->isIntegerTy()) {
 | |
|       // You can icmp pointers, for example. They really aren't masks.
 | |
|       L11 = L12 = nullptr;
 | |
|     } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
 | |
|       // Any icmp can be viewed as being trivially masked; if it allows us to
 | |
|       // remove one, it's worth it.
 | |
|       L11 = L1;
 | |
|       L12 = Constant::getAllOnesValue(L1->getType());
 | |
|     }
 | |
| 
 | |
|     if (!L2->getType()->isIntegerTy()) {
 | |
|       // You can icmp pointers, for example. They really aren't masks.
 | |
|       L21 = L22 = nullptr;
 | |
|     } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
 | |
|       L21 = L2;
 | |
|       L22 = Constant::getAllOnesValue(L2->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Bail if LHS was a icmp that can't be decomposed into an equality.
 | |
|   if (!ICmpInst::isEquality(LHSCC))
 | |
|     return 0;
 | |
| 
 | |
|   Value *R1 = RHS->getOperand(0);
 | |
|   Value *R2 = RHS->getOperand(1);
 | |
|   Value *R11,*R12;
 | |
|   bool ok = false;
 | |
|   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11;
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|     E = R2; R1 = nullptr; ok = true;
 | |
|   } else if (R1->getType()->isIntegerTy()) {
 | |
|     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
 | |
|       // As before, model no mask as a trivial mask if it'll let us do an
 | |
|       // optimization.
 | |
|       R11 = R1;
 | |
|       R12 = Constant::getAllOnesValue(R1->getType());
 | |
|     }
 | |
| 
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12; E = R2; ok = true;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11; E = R2; ok = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Bail if RHS was a icmp that can't be decomposed into an equality.
 | |
|   if (!ICmpInst::isEquality(RHSCC))
 | |
|     return 0;
 | |
| 
 | |
|   // Look for ANDs in on the right side of the RHS icmp.
 | |
|   if (!ok && R2->getType()->isIntegerTy()) {
 | |
|     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
 | |
|       R11 = R2;
 | |
|       R12 = Constant::getAllOnesValue(R2->getType());
 | |
|     }
 | |
| 
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12; E = R1; ok = true;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11; E = R1; ok = true;
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   if (!ok)
 | |
|     return 0;
 | |
| 
 | |
|   if (L11 == A) {
 | |
|     B = L12; C = L2;
 | |
|   } else if (L12 == A) {
 | |
|     B = L11; C = L2;
 | |
|   } else if (L21 == A) {
 | |
|     B = L22; C = L1;
 | |
|   } else if (L22 == A) {
 | |
|     B = L21; C = L1;
 | |
|   }
 | |
| 
 | |
|   unsigned LeftType = getTypeOfMaskedICmp(A, B, C, LHSCC);
 | |
|   unsigned RightType = getTypeOfMaskedICmp(A, D, E, RHSCC);
 | |
|   return LeftType & RightType;
 | |
| }
 | |
| 
 | |
| /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
 | |
| /// into a single (icmp(A & X) ==/!= Y).
 | |
| static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
 | |
|                                      llvm::InstCombiner::BuilderTy *Builder) {
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
|   unsigned Mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
 | |
|                                                LHSCC, RHSCC);
 | |
|   if (Mask == 0) return nullptr;
 | |
|   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
 | |
|          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
 | |
| 
 | |
|   // In full generality:
 | |
|   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
 | |
|   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
 | |
|   //
 | |
|   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
 | |
|   // equivalent to (icmp (A & X) !Op Y).
 | |
|   //
 | |
|   // Therefore, we can pretend for the rest of this function that we're dealing
 | |
|   // with the conjunction, provided we flip the sense of any comparisons (both
 | |
|   // input and output).
 | |
| 
 | |
|   // In most cases we're going to produce an EQ for the "&&" case.
 | |
|   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
 | |
|   if (!IsAnd) {
 | |
|     // Convert the masking analysis into its equivalent with negated
 | |
|     // comparisons.
 | |
|     Mask = conjugateICmpMask(Mask);
 | |
|   }
 | |
| 
 | |
|   if (Mask & FoldMskICmp_Mask_AllZeroes) {
 | |
|     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
 | |
|     // -> (icmp eq (A & (B|D)), 0)
 | |
|     Value *NewOr = Builder->CreateOr(B, D);
 | |
|     Value *NewAnd = Builder->CreateAnd(A, NewOr);
 | |
|     // We can't use C as zero because we might actually handle
 | |
|     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     // with B and D, having a single bit set.
 | |
|     Value *Zero = Constant::getNullValue(A->getType());
 | |
|     return Builder->CreateICmp(NewCC, NewAnd, Zero);
 | |
|   }
 | |
|   if (Mask & FoldMskICmp_BMask_AllOnes) {
 | |
|     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
 | |
|     // -> (icmp eq (A & (B|D)), (B|D))
 | |
|     Value *NewOr = Builder->CreateOr(B, D);
 | |
|     Value *NewAnd = Builder->CreateAnd(A, NewOr);
 | |
|     return Builder->CreateICmp(NewCC, NewAnd, NewOr);
 | |
|   }
 | |
|   if (Mask & FoldMskICmp_AMask_AllOnes) {
 | |
|     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
 | |
|     // -> (icmp eq (A & (B&D)), A)
 | |
|     Value *NewAnd1 = Builder->CreateAnd(B, D);
 | |
|     Value *NewAnd2 = Builder->CreateAnd(A, NewAnd1);
 | |
|     return Builder->CreateICmp(NewCC, NewAnd2, A);
 | |
|   }
 | |
| 
 | |
|   // Remaining cases assume at least that B and D are constant, and depend on
 | |
|   // their actual values. This isn't strictly necessary, just a "handle the
 | |
|   // easy cases for now" decision.
 | |
|   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
 | |
|   if (!BCst) return nullptr;
 | |
|   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
 | |
|   if (!DCst) return nullptr;
 | |
| 
 | |
|   if (Mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
 | |
|     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
 | |
|     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
 | |
|     // Only valid if one of the masks is a superset of the other (check "B&D" is
 | |
|     // the same as either B or D).
 | |
|     APInt NewMask = BCst->getValue() & DCst->getValue();
 | |
| 
 | |
|     if (NewMask == BCst->getValue())
 | |
|       return LHS;
 | |
|     else if (NewMask == DCst->getValue())
 | |
|       return RHS;
 | |
|   }
 | |
|   if (Mask & FoldMskICmp_AMask_NotAllOnes) {
 | |
|     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
 | |
|     // Only valid if one of the masks is a superset of the other (check "B|D" is
 | |
|     // the same as either B or D).
 | |
|     APInt NewMask = BCst->getValue() | DCst->getValue();
 | |
| 
 | |
|     if (NewMask == BCst->getValue())
 | |
|       return LHS;
 | |
|     else if (NewMask == DCst->getValue())
 | |
|       return RHS;
 | |
|   }
 | |
|   if (Mask & FoldMskICmp_BMask_Mixed) {
 | |
|     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
 | |
|     // We already know that B & C == C && D & E == E.
 | |
|     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
 | |
|     // C and E, which are shared by both the mask B and the mask D, don't
 | |
|     // contradict, then we can transform to
 | |
|     // -> (icmp eq (A & (B|D)), (C|E))
 | |
|     // Currently, we only handle the case of B, C, D, and E being constant.
 | |
|     // We can't simply use C and E because we might actually handle
 | |
|     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
 | |
|     // with B and D, having a single bit set.
 | |
|     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
 | |
|     if (!CCst) return nullptr;
 | |
|     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
 | |
|     if (!ECst) return nullptr;
 | |
|     if (LHSCC != NewCC)
 | |
|       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
 | |
|     if (RHSCC != NewCC)
 | |
|       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
 | |
|     // If there is a conflict, we should actually return a false for the
 | |
|     // whole construct.
 | |
|     if (((BCst->getValue() & DCst->getValue()) &
 | |
|          (CCst->getValue() ^ ECst->getValue())) != 0)
 | |
|       return ConstantInt::get(LHS->getType(), !IsAnd);
 | |
|     Value *NewOr1 = Builder->CreateOr(B, D);
 | |
|     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
 | |
|     Value *NewAnd = Builder->CreateAnd(A, NewOr1);
 | |
|     return Builder->CreateICmp(NewCC, NewAnd, NewOr2);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
 | |
| /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
 | |
| /// If \p Inverted is true then the check is for the inverted range, e.g.
 | |
| /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
 | |
| Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
 | |
|                                         bool Inverted) {
 | |
|   // Check the lower range comparison, e.g. x >= 0
 | |
|   // InstCombine already ensured that if there is a constant it's on the RHS.
 | |
|   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
 | |
|   if (!RangeStart)
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
 | |
|                                Cmp0->getPredicate());
 | |
| 
 | |
|   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
 | |
|   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
 | |
|         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
 | |
|                                Cmp1->getPredicate());
 | |
| 
 | |
|   Value *Input = Cmp0->getOperand(0);
 | |
|   Value *RangeEnd;
 | |
|   if (Cmp1->getOperand(0) == Input) {
 | |
|     // For the upper range compare we have: icmp x, n
 | |
|     RangeEnd = Cmp1->getOperand(1);
 | |
|   } else if (Cmp1->getOperand(1) == Input) {
 | |
|     // For the upper range compare we have: icmp n, x
 | |
|     RangeEnd = Cmp1->getOperand(0);
 | |
|     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Check the upper range comparison, e.g. x < n
 | |
|   ICmpInst::Predicate NewPred;
 | |
|   switch (Pred1) {
 | |
|     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
 | |
|     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
 | |
|     default: return nullptr;
 | |
|   }
 | |
| 
 | |
|   // This simplification is only valid if the upper range is not negative.
 | |
|   bool IsNegative, IsNotNegative;
 | |
|   ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
 | |
|   if (!IsNotNegative)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Inverted)
 | |
|     NewPred = ICmpInst::getInversePredicate(NewPred);
 | |
| 
 | |
|   return Builder->CreateICmp(NewPred, Input, RangeEnd);
 | |
| }
 | |
| 
 | |
| /// Fold (icmp)&(icmp) if possible.
 | |
| Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
| 
 | |
|   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (PredicatesFoldable(LHSCC, RHSCC)) {
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(0))
 | |
|       LHS->swapOperands();
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
 | |
|       bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
 | |
|   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
 | |
|     return V;
 | |
| 
 | |
|   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
 | |
|   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
 | |
|     return V;
 | |
| 
 | |
|   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
 | |
|   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
 | |
|     return V;
 | |
| 
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
 | |
|   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
 | |
|   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
 | |
|   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
 | |
|   if (!LHSCst || !RHSCst) return nullptr;
 | |
| 
 | |
|   if (LHSCst == RHSCst && LHSCC == RHSCC) {
 | |
|     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
 | |
|     // where C is a power of 2 or
 | |
|     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
 | |
|     if ((LHSCC == ICmpInst::ICMP_ULT && LHSCst->getValue().isPowerOf2()) ||
 | |
|         (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero())) {
 | |
|       Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
 | |
|   // where CMAX is the all ones value for the truncated type,
 | |
|   // iff the lower bits of C2 and CA are zero.
 | |
|   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
 | |
|       LHS->hasOneUse() && RHS->hasOneUse()) {
 | |
|     Value *V;
 | |
|     ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
 | |
| 
 | |
|     // (trunc x) == C1 & (and x, CA) == C2
 | |
|     // (and x, CA) == C2 & (trunc x) == C1
 | |
|     if (match(Val2, m_Trunc(m_Value(V))) &&
 | |
|         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
 | |
|       SmallCst = RHSCst;
 | |
|       BigCst = LHSCst;
 | |
|     } else if (match(Val, m_Trunc(m_Value(V))) &&
 | |
|                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
 | |
|       SmallCst = LHSCst;
 | |
|       BigCst = RHSCst;
 | |
|     }
 | |
| 
 | |
|     if (SmallCst && BigCst) {
 | |
|       unsigned BigBitSize = BigCst->getType()->getBitWidth();
 | |
|       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
 | |
| 
 | |
|       // Check that the low bits are zero.
 | |
|       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
 | |
|       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
 | |
|         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
 | |
|         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
 | |
|         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
 | |
|         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return nullptr;
 | |
| 
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make a constant range that's the intersection of the two icmp ranges.
 | |
|   // If the intersection is empty, we know that the result is false.
 | |
|   ConstantRange LHSRange =
 | |
|       ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
 | |
|   ConstantRange RHSRange =
 | |
|       ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
 | |
| 
 | |
|   if (LHSRange.intersectWith(RHSRange).isEmptySet())
 | |
|     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
| 
 | |
|   // We can't fold (ugt x, C) & (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (CmpInst::isSigned(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) &&
 | |
|        CmpInst::isSigned(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
| 
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
| 
 | |
|   // At this point, we know we have two icmp instructions
 | |
|   // comparing a value against two constants and and'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
 | |
|   // (from the icmp folding check above), that the two constants
 | |
|   // are not equal and that the larger constant is on the RHS
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
 | |
|       return LHS;
 | |
|     }
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
 | |
|         return Builder->CreateICmpULT(Val, LHSCst);
 | |
|       if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
 | |
|         return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
 | |
|       break;                        // (X != 13 & X u< 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
 | |
|         return Builder->CreateICmpSLT(Val, LHSCst);
 | |
|       break;                        // (X != 13 & X s< 15) -> no change
 | |
|     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       // Special case to get the ordering right when the values wrap around
 | |
|       // zero.
 | |
|       if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
 | |
|         std::swap(LHSCst, RHSCst);
 | |
|       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
 | |
|                                       Val->getName()+".cmp");
 | |
|       }
 | |
|       break;                        // (X != 13 & X != 15) -> no change
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
 | |
|         return Builder->CreateICmp(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X u> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
 | |
|         return Builder->CreateICmp(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X s> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of instcombine, this returns
 | |
| /// a Value which should already be inserted into the function.
 | |
| Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
 | |
|     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
 | |
|       return nullptr;
 | |
| 
 | |
|     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // false.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return Builder->getFalse();
 | |
|         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
| 
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp ord x,x" is "fcmp ord x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
| 
 | |
| 
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
| 
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE)
 | |
|       return RHS;
 | |
|     if (Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return LHS;
 | |
| 
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     // uno && ord -> false
 | |
|     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
 | |
|         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     if (Op1Pred == 0) {
 | |
|       std::swap(LHS, RHS);
 | |
|       std::swap(Op0Pred, Op1Pred);
 | |
|       std::swap(Op0Ordered, Op1Ordered);
 | |
|     }
 | |
|     if (Op0Pred == 0) {
 | |
|       // uno && ueq -> uno && (uno || eq) -> uno
 | |
|       // ord && olt -> ord && (ord && lt) -> olt
 | |
|       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
 | |
|         return LHS;
 | |
|       if (Op0Ordered && (Op0Ordered == Op1Ordered))
 | |
|         return RHS;
 | |
| 
 | |
|       // uno && oeq -> uno && (ord && eq) -> false
 | |
|       if (!Op0Ordered)
 | |
|         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|       // ord && ueq -> ord && (uno || eq) -> oeq
 | |
|       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Match De Morgan's Laws:
 | |
| /// (~A & ~B) == (~(A | B))
 | |
| /// (~A | ~B) == (~(A & B))
 | |
| static Instruction *matchDeMorgansLaws(BinaryOperator &I,
 | |
|                                        InstCombiner::BuilderTy *Builder) {
 | |
|   auto Opcode = I.getOpcode();
 | |
|   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
 | |
|          "Trying to match De Morgan's Laws with something other than and/or");
 | |
|   // Flip the logic operation.
 | |
|   if (Opcode == Instruction::And)
 | |
|     Opcode = Instruction::Or;
 | |
|   else
 | |
|     Opcode = Instruction::And;
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
|   // TODO: Use pattern matchers instead of dyn_cast.
 | |
|   if (Value *Op0NotVal = dyn_castNotVal(Op0))
 | |
|     if (Value *Op1NotVal = dyn_castNotVal(Op1))
 | |
|       if (Op0->hasOneUse() && Op1->hasOneUse()) {
 | |
|         Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
 | |
|                                               I.getName() + ".demorgan");
 | |
|         return BinaryOperator::CreateNot(LogicOp);
 | |
|       }
 | |
| 
 | |
|   // De Morgan's Law in disguise:
 | |
|   // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B))
 | |
|   // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B))
 | |
|   Value *A = nullptr;
 | |
|   Value *B = nullptr;
 | |
|   ConstantInt *C1 = nullptr;
 | |
|   if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) &&
 | |
|       match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) {
 | |
|     // TODO: This check could be loosened to handle different type sizes.
 | |
|     // Alternatively, we could fix the definition of m_Not to recognize a not
 | |
|     // operation hidden by a zext?
 | |
|     if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) &&
 | |
|         C1->isOne()) {
 | |
|       Value *LogicOp = Builder->CreateBinOp(Opcode, A, B,
 | |
|                                             I.getName() + ".demorgan");
 | |
|       Value *Not = Builder->CreateNot(LogicOp);
 | |
|       return CastInst::CreateZExtOrBitCast(Not, I.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
 | |
|   auto LogicOpc = I.getOpcode();
 | |
|   assert((LogicOpc == Instruction::And || LogicOpc == Instruction::Or ||
 | |
|           LogicOpc == Instruction::Xor) &&
 | |
|          "Unexpected opcode for bitwise logic folding");
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
 | |
|   if (!Cast0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // This must be a cast from an integer or integer vector source type to allow
 | |
|   // transformation of the logic operation to the source type.
 | |
|   Type *DestTy = I.getType();
 | |
|   Type *SrcTy = Cast0->getSrcTy();
 | |
|   if (!SrcTy->isIntOrIntVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If one operand is a bitcast and the other is a constant, move the logic
 | |
|   // operation ahead of the bitcast. That is, do the logic operation in the
 | |
|   // original type. This can eliminate useless bitcasts and allow normal
 | |
|   // combines that would otherwise be impeded by the bitcast. Canonicalization
 | |
|   // ensures that if there is a constant operand, it will be the second operand.
 | |
|   Value *BC = nullptr;
 | |
|   Constant *C = nullptr;
 | |
|   if ((match(Op0, m_BitCast(m_Value(BC))) && match(Op1, m_Constant(C)))) {
 | |
|     // A bitcast of a constant will be removed.
 | |
|     Value *NewConstant = Builder->CreateBitCast(C, SrcTy);
 | |
|     Value *NewOp = Builder->CreateBinOp(LogicOpc, BC, NewConstant, I.getName());
 | |
|     return CastInst::CreateBitOrPointerCast(NewOp, DestTy);
 | |
|   }
 | |
| 
 | |
|   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
 | |
|   if (!Cast1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Both operands of the logic operation are casts. The casts must be of the
 | |
|   // same type for reduction.
 | |
|   auto CastOpcode = Cast0->getOpcode();
 | |
|   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Cast0Src = Cast0->getOperand(0);
 | |
|   Value *Cast1Src = Cast1->getOperand(0);
 | |
| 
 | |
|   // fold (logic (cast A), (cast B)) -> (cast (logic A, B))
 | |
| 
 | |
|   // Only do this if the casts both really cause code to be generated.
 | |
|   if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src)) &&
 | |
|       ShouldOptimizeCast(CastOpcode, Cast0Src, DestTy) &&
 | |
|       ShouldOptimizeCast(CastOpcode, Cast1Src, DestTy)) {
 | |
|     Value *NewOp = Builder->CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
 | |
|                                         I.getName());
 | |
|     return CastInst::Create(CastOpcode, NewOp, DestTy);
 | |
|   }
 | |
| 
 | |
|   // For now, only 'and'/'or' have optimizations after this.
 | |
|   if (LogicOpc == Instruction::Xor)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
 | |
|   // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
 | |
|   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
 | |
|   if (ICmp0 && ICmp1) {
 | |
|     Value *Res = LogicOpc == Instruction::And ? FoldAndOfICmps(ICmp0, ICmp1)
 | |
|                                               : FoldOrOfICmps(ICmp0, ICmp1, &I);
 | |
|     if (Res)
 | |
|       return CastInst::Create(CastOpcode, Res, DestTy);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
 | |
|   // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
 | |
|   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
 | |
|   if (FCmp0 && FCmp1) {
 | |
|     Value *Res = LogicOpc == Instruction::And ? FoldAndOfFCmps(FCmp0, FCmp1)
 | |
|                                               : FoldOrOfFCmps(FCmp0, FCmp1);
 | |
|     if (Res)
 | |
|       return CastInst::Create(CastOpcode, Res, DestTy);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A|B)&(A|C) -> A|(B&C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (Value *V = SimplifyBSwap(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     const APInt &AndRHSMask = AndRHS->getValue();
 | |
| 
 | |
|     // Optimize a variety of ((val OP C1) & C2) combinations...
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       Value *Op0LHS = Op0I->getOperand(0);
 | |
|       Value *Op0RHS = Op0I->getOperand(1);
 | |
|       switch (Op0I->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Or: {
 | |
|         // If the mask is only needed on one incoming arm, push it up.
 | |
|         if (!Op0I->hasOneUse()) break;
 | |
| 
 | |
|         APInt NotAndRHS(~AndRHSMask);
 | |
|         if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
 | |
|           // Not masking anything out for the LHS, move to RHS.
 | |
|           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
 | |
|                                              Op0RHS->getName()+".masked");
 | |
|           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
 | |
|         }
 | |
|         if (!isa<Constant>(Op0RHS) &&
 | |
|             MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
 | |
|           // Not masking anything out for the RHS, move to LHS.
 | |
|           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
 | |
|                                              Op0LHS->getName()+".masked");
 | |
|           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Add:
 | |
|         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Sub:
 | |
|         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
| 
 | |
|         // -x & 1 -> x & 1
 | |
|         if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
 | |
|           return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
 | |
| 
 | |
|         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
 | |
|         // has 1's for all bits that the subtraction with A might affect.
 | |
|         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
 | |
|           uint32_t BitWidth = AndRHSMask.getBitWidth();
 | |
|           uint32_t Zeros = AndRHSMask.countLeadingZeros();
 | |
|           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
 | |
| 
 | |
|           if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
 | |
|             Value *NewNeg = Builder->CreateNeg(Op0RHS);
 | |
|             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|         // (1 << x) & 1 --> zext(x == 0)
 | |
|         // (1 >> x) & 1 --> zext(x == 0)
 | |
|         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
 | |
|           Value *NewICmp =
 | |
|             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
 | |
|           return new ZExtInst(NewICmp, I.getType());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | |
|           return Res;
 | |
|     }
 | |
| 
 | |
|     // If this is an integer truncation, and if the source is an 'and' with
 | |
|     // immediate, transform it.  This frequently occurs for bitfield accesses.
 | |
|     {
 | |
|       Value *X = nullptr; ConstantInt *YC = nullptr;
 | |
|       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
 | |
|         // Change: and (trunc (and X, YC) to T), C2
 | |
|         // into  : and (trunc X to T), trunc(YC) & C2
 | |
|         // This will fold the two constants together, which may allow
 | |
|         // other simplifications.
 | |
|         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
 | |
|         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
 | |
|         C3 = ConstantExpr::getAnd(C3, AndRHS);
 | |
|         return BinaryOperator::CreateAnd(NewCast, C3);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
 | |
|     return DeMorgan;
 | |
| 
 | |
|   {
 | |
|     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|     // (A|B) & ~(A&B) -> A^B
 | |
|     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
 | |
|         ((A == C && B == D) || (A == D && B == C)))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|     // ~(A&B) & (A|B) -> A^B
 | |
|     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
 | |
|         ((A == C && B == D) || (A == D && B == C)))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|     // A&(A^B) => A & ~B
 | |
|     {
 | |
|       Value *tmpOp0 = Op0;
 | |
|       Value *tmpOp1 = Op1;
 | |
|       if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) {
 | |
|         if (A == Op1 || B == Op1 ) {
 | |
|           tmpOp1 = Op0;
 | |
|           tmpOp0 = Op1;
 | |
|           // Simplify below
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (match(tmpOp1, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) {
 | |
|         if (B == tmpOp0) {
 | |
|           std::swap(A, B);
 | |
|         }
 | |
|         // Notice that the pattern (A&(~B)) is actually (A&(-1^B)), so if
 | |
|         // A is originally -1 (or a vector of -1 and undefs), then we enter
 | |
|         // an endless loop. By checking that A is non-constant we ensure that
 | |
|         // we will never get to the loop.
 | |
|         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
 | |
|           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (A&((~A)|B)) -> A&B
 | |
|     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
 | |
|         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op1);
 | |
|     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
 | |
|         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op0);
 | |
| 
 | |
|     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
 | |
|     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
 | |
|       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
 | |
|         if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
 | |
|           return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
 | |
| 
 | |
|     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
 | |
|     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
 | |
|       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
 | |
|         if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
 | |
|           return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
 | |
| 
 | |
|     // (A | B) & ((~A) ^ B) -> (A & B)
 | |
|     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
 | |
|       return BinaryOperator::CreateAnd(A, B);
 | |
| 
 | |
|     // ((~A) ^ B) & (A | B) -> (A & B)
 | |
|     if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
 | |
|         match(Op1, m_Or(m_Specific(A), m_Specific(B))))
 | |
|       return BinaryOperator::CreateAnd(A, B);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
 | |
|     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
 | |
|     if (LHS && RHS)
 | |
|       if (Value *Res = FoldAndOfICmps(LHS, RHS))
 | |
|         return replaceInstUsesWith(I, Res);
 | |
| 
 | |
|     // TODO: Make this recursive; it's a little tricky because an arbitrary
 | |
|     // number of 'and' instructions might have to be created.
 | |
|     Value *X, *Y;
 | |
|     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(X))
 | |
|         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
 | |
|           return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
 | |
|         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
 | |
|           return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
 | |
|     }
 | |
|     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(X))
 | |
|         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
 | |
|           return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
 | |
|         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
 | |
|           return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If and'ing two fcmp, try combine them into one.
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
 | |
|         return replaceInstUsesWith(I, Res);
 | |
| 
 | |
|   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
 | |
|     return CastedAnd;
 | |
| 
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     Value *Op0COp = Op0C->getOperand(0);
 | |
|     Type *SrcTy = Op0COp->getType();
 | |
| 
 | |
|     // If we are masking off the sign bit of a floating-point value, convert
 | |
|     // this to the canonical fabs intrinsic call and cast back to integer.
 | |
|     // The backend should know how to optimize fabs().
 | |
|     // TODO: This transform should also apply to vectors.
 | |
|     ConstantInt *CI;
 | |
|     if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() &&
 | |
|         match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) {
 | |
|       Module *M = I.getModule();
 | |
|       Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy);
 | |
|       Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs");
 | |
|       return CastInst::CreateBitOrPointerCast(Call, I.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *X = nullptr;
 | |
|     bool OpsSwapped = false;
 | |
|     // Canonicalize SExt or Not to the LHS
 | |
|     if (match(Op1, m_SExt(m_Value())) ||
 | |
|         match(Op1, m_Not(m_Value()))) {
 | |
|       std::swap(Op0, Op1);
 | |
|       OpsSwapped = true;
 | |
|     }
 | |
| 
 | |
|     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
 | |
|     if (match(Op0, m_SExt(m_Value(X))) &&
 | |
|         X->getType()->getScalarType()->isIntegerTy(1)) {
 | |
|       Value *Zero = Constant::getNullValue(Op1->getType());
 | |
|       return SelectInst::Create(X, Op1, Zero);
 | |
|     }
 | |
| 
 | |
|     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
 | |
|     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
 | |
|         X->getType()->getScalarType()->isIntegerTy(1)) {
 | |
|       Value *Zero = Constant::getNullValue(Op0->getType());
 | |
|       return SelectInst::Create(X, Zero, Op1);
 | |
|     }
 | |
| 
 | |
|     if (OpsSwapped)
 | |
|       std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| /// Given an OR instruction, check to see if this is a bswap or bitreverse
 | |
| /// idiom. If so, insert the new intrinsic and return it.
 | |
| Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
 | |
|   SmallVector<Instruction*, 4> Insts;
 | |
|   if (!recognizeBitReverseOrBSwapIdiom(&I, true, false, Insts))
 | |
|     return nullptr;
 | |
|   Instruction *LastInst = Insts.pop_back_val();
 | |
|   LastInst->removeFromParent();
 | |
| 
 | |
|   for (auto *Inst : Insts)
 | |
|     Worklist.Add(Inst);
 | |
|   return LastInst;
 | |
| }
 | |
| 
 | |
| /// We have an expression of the form (A&C)|(B&D).  Check if A is (cond?-1:0)
 | |
| /// and either B or D is ~(cond?-1,0) or (cond?0,-1), then we can simplify this
 | |
| /// expression to "cond ? C : D or B".
 | |
| static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
 | |
|                                          Value *C, Value *D) {
 | |
|   // If A is not a select of -1/0, this cannot match.
 | |
|   Value *Cond = nullptr;
 | |
|   if (!match(A, m_SExt(m_Value(Cond))) ||
 | |
|       !Cond->getType()->isIntegerTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
 | |
|   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
|   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
| 
 | |
|   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
 | |
|   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold (icmp)|(icmp) if possible.
 | |
| Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
 | |
|                                    Instruction *CxtI) {
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
| 
 | |
|   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
 | |
|   // if K1 and K2 are a one-bit mask.
 | |
|   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
 | |
|   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
 | |
| 
 | |
|   if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
 | |
|       RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
 | |
| 
 | |
|     BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
 | |
|     BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
 | |
|     if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
 | |
|         LAnd->getOpcode() == Instruction::And &&
 | |
|         RAnd->getOpcode() == Instruction::And) {
 | |
| 
 | |
|       Value *Mask = nullptr;
 | |
|       Value *Masked = nullptr;
 | |
|       if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
 | |
|           isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
 | |
|                                  DT) &&
 | |
|           isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
 | |
|                                  DT)) {
 | |
|         Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
 | |
|         Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
 | |
|       } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
 | |
|                  isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
 | |
|                                         CxtI, DT) &&
 | |
|                  isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
 | |
|                                         CxtI, DT)) {
 | |
|         Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
 | |
|         Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
 | |
|       }
 | |
| 
 | |
|       if (Masked)
 | |
|         return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
 | |
|   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
 | |
|   // The original condition actually refers to the following two ranges:
 | |
|   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
 | |
|   // We can fold these two ranges if:
 | |
|   // 1) C1 and C2 is unsigned greater than C3.
 | |
|   // 2) The two ranges are separated.
 | |
|   // 3) C1 ^ C2 is one-bit mask.
 | |
|   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
 | |
|   // This implies all values in the two ranges differ by exactly one bit.
 | |
| 
 | |
|   if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
 | |
|       LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
 | |
|       RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
 | |
|       LHSCst->getValue() == (RHSCst->getValue())) {
 | |
| 
 | |
|     Value *LAdd = LHS->getOperand(0);
 | |
|     Value *RAdd = RHS->getOperand(0);
 | |
| 
 | |
|     Value *LAddOpnd, *RAddOpnd;
 | |
|     ConstantInt *LAddCst, *RAddCst;
 | |
|     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
 | |
|         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
 | |
|         LAddCst->getValue().ugt(LHSCst->getValue()) &&
 | |
|         RAddCst->getValue().ugt(LHSCst->getValue())) {
 | |
| 
 | |
|       APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
 | |
|       if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
 | |
|         ConstantInt *MaxAddCst = nullptr;
 | |
|         if (LAddCst->getValue().ult(RAddCst->getValue()))
 | |
|           MaxAddCst = RAddCst;
 | |
|         else
 | |
|           MaxAddCst = LAddCst;
 | |
| 
 | |
|         APInt RRangeLow = -RAddCst->getValue();
 | |
|         APInt RRangeHigh = RRangeLow + LHSCst->getValue();
 | |
|         APInt LRangeLow = -LAddCst->getValue();
 | |
|         APInt LRangeHigh = LRangeLow + LHSCst->getValue();
 | |
|         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
 | |
|         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
 | |
|         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
 | |
|                                                    : RRangeLow - LRangeLow;
 | |
| 
 | |
|         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
 | |
|             RangeDiff.ugt(LHSCst->getValue())) {
 | |
|           Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
 | |
| 
 | |
|           Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
 | |
|           Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
 | |
|           return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (PredicatesFoldable(LHSCC, RHSCC)) {
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(0))
 | |
|       LHS->swapOperands();
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
 | |
|       bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // handle (roughly):
 | |
|   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
 | |
|   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
 | |
|     return V;
 | |
| 
 | |
|   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
 | |
|   if (LHS->hasOneUse() || RHS->hasOneUse()) {
 | |
|     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
 | |
|     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
 | |
|     Value *A = nullptr, *B = nullptr;
 | |
|     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
 | |
|       B = Val;
 | |
|       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
 | |
|         A = Val2;
 | |
|       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
 | |
|         A = RHS->getOperand(1);
 | |
|     }
 | |
|     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
 | |
|     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
 | |
|     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
 | |
|       B = Val2;
 | |
|       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
 | |
|         A = Val;
 | |
|       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
 | |
|         A = LHS->getOperand(1);
 | |
|     }
 | |
|     if (A && B)
 | |
|       return Builder->CreateICmp(
 | |
|           ICmpInst::ICMP_UGE,
 | |
|           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
 | |
|   }
 | |
| 
 | |
|   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
 | |
|   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
 | |
|     return V;
 | |
| 
 | |
|   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
 | |
|   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
 | |
|     return V;
 | |
|  
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
 | |
|   if (!LHSCst || !RHSCst) return nullptr;
 | |
| 
 | |
|   if (LHSCst == RHSCst && LHSCC == RHSCC) {
 | |
|     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
 | |
|     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
 | |
|       Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
 | |
|   //   iff C2 + CA == C1.
 | |
|   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
 | |
|     ConstantInt *AddCst;
 | |
|     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
 | |
|       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
 | |
|         return Builder->CreateICmpULE(Val, LHSCst);
 | |
|   }
 | |
| 
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return nullptr;
 | |
| 
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We can't fold (ugt x, C) | (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (CmpInst::isSigned(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) &&
 | |
|        CmpInst::isSigned(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
| 
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
| 
 | |
|   // At this point, we know we have two icmp instructions
 | |
|   // comparing a value against two constants and or'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
 | |
|   // icmp folding check above), that the two constants are not
 | |
|   // equal.
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (LHS->getOperand(0) == RHS->getOperand(0)) {
 | |
|         // if LHSCst and RHSCst differ only by one bit:
 | |
|         // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
 | |
|         assert(LHSCst->getValue().ule(LHSCst->getValue()));
 | |
| 
 | |
|         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
 | |
|         if (Xor.isPowerOf2()) {
 | |
|           Value *Cst = Builder->getInt(Xor);
 | |
|           Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
 | |
|           return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (LHSCst == SubOne(RHSCst)) {
 | |
|         // (X == 13 | X == 14) -> X-13 <u 2
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | |
|         return Builder->CreateICmpULT(Add, AddCST);
 | |
|       }
 | |
| 
 | |
|       break;                         // (X == 13 | X == 15) -> no change
 | |
|     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
 | |
|     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
 | |
|     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
 | |
|       return RHS;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
 | |
|     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
 | |
|     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     }
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(false))
 | |
|         return LHS;
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(true))
 | |
|         return LHS;
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of instcombine, this returns
 | |
| /// a Value which should already be inserted into the function.
 | |
| Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
 | |
|       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // true.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return Builder->getTrue();
 | |
| 
 | |
|         // Otherwise, no need to compare the two constants, compare the
 | |
|         // rest.
 | |
|         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
| 
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp uno x,x" is "fcmp uno x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
| 
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE)
 | |
|       return RHS;
 | |
|     if (Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return LHS;
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     if (Op0Ordered == Op1Ordered) {
 | |
|       // If both are ordered or unordered, return a new fcmp with
 | |
|       // or'ed predicates.
 | |
|       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// This helper function folds:
 | |
| ///
 | |
| ///     ((A | B) & C1) | (B & C2)
 | |
| ///
 | |
| /// into:
 | |
| ///
 | |
| ///     (A & C1) | B
 | |
| ///
 | |
| /// when the XOR of the two constants is "all ones" (-1).
 | |
| Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
 | |
|                                                Value *A, Value *B, Value *C) {
 | |
|   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
 | |
|   if (!CI1) return nullptr;
 | |
| 
 | |
|   Value *V1 = nullptr;
 | |
|   ConstantInt *CI2 = nullptr;
 | |
|   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
 | |
| 
 | |
|   APInt Xor = CI1->getValue() ^ CI2->getValue();
 | |
|   if (!Xor.isAllOnesValue()) return nullptr;
 | |
| 
 | |
|   if (V1 == A || V1 == B) {
 | |
|     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
 | |
|     return BinaryOperator::CreateOr(NewOp, V1);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief This helper function folds:
 | |
| ///
 | |
| ///     ((A | B) & C1) ^ (B & C2)
 | |
| ///
 | |
| /// into:
 | |
| ///
 | |
| ///     (A & C1) ^ B
 | |
| ///
 | |
| /// when the XOR of the two constants is "all ones" (-1).
 | |
| Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
 | |
|                                                 Value *A, Value *B, Value *C) {
 | |
|   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
 | |
|   if (!CI1)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V1 = nullptr;
 | |
|   ConstantInt *CI2 = nullptr;
 | |
|   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
 | |
|     return nullptr;
 | |
| 
 | |
|   APInt Xor = CI1->getValue() ^ CI2->getValue();
 | |
|   if (!Xor.isAllOnesValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (V1 == A || V1 == B) {
 | |
|     Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
 | |
|     return BinaryOperator::CreateXor(NewOp, V1);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A&B)|(A&C) -> A&(B|C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (Value *V = SimplifyBSwap(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     ConstantInt *C1 = nullptr; Value *X = nullptr;
 | |
|     // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|     // iff (C1 & C2) == 0.
 | |
|     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         (RHS->getValue() & C1->getValue()) != 0 &&
 | |
|         Op0->hasOneUse()) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateAnd(Or,
 | |
|                              Builder->getInt(RHS->getValue() | C1->getValue()));
 | |
|     }
 | |
| 
 | |
|     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         Op0->hasOneUse()) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateXor(Or,
 | |
|                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   ConstantInt *C1 = nullptr, *C2 = nullptr;
 | |
| 
 | |
|   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
 | |
|   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
 | |
|                  match(Op1, m_Or(m_Value(), m_Value()));
 | |
|   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
 | |
|   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
 | |
|                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
 | |
|   // (A & B) | (C & D)                              -> bswap if possible.
 | |
|   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
 | |
|                   match(Op1, m_And(m_Value(), m_Value()));
 | |
| 
 | |
|   if (OrOfOrs || OrOfShifts || OrOfAnds)
 | |
|     if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
 | |
|       return BSwap;
 | |
| 
 | |
|   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op0->hasOneUse() &&
 | |
|       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op1);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op1->hasOneUse() &&
 | |
|       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op0);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // ((~A & B) | A) -> (A | B)
 | |
|   if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
 | |
|       match(Op1, m_Specific(A)))
 | |
|     return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|   // ((A & B) | ~A) -> (~A | B)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       match(Op1, m_Not(m_Specific(A))))
 | |
|     return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
 | |
| 
 | |
|   // (A & (~B)) | (A ^ B) -> (A ^ B)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
 | |
|       match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
 | |
|     return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|   // (A ^ B) | ( A & (~B)) -> (A ^ B)
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
 | |
|     return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|   // (A & C)|(B & D)
 | |
|   Value *C = nullptr, *D = nullptr;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_Value(D)))) {
 | |
|     Value *V1 = nullptr, *V2 = nullptr;
 | |
|     C1 = dyn_cast<ConstantInt>(C);
 | |
|     C2 = dyn_cast<ConstantInt>(D);
 | |
|     if (C1 && C2) {  // (A & C1)|(B & C2)
 | |
|       if ((C1->getValue() & C2->getValue()) == 0) {
 | |
|         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
 | |
|         // iff (C1&C2) == 0 and (N&~C1) == 0
 | |
|         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
 | |
|             ((V1 == B &&
 | |
|               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
 | |
|              (V2 == B &&
 | |
|               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
 | |
|           return BinaryOperator::CreateAnd(A,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
|         // Or commutes, try both ways.
 | |
|         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
 | |
|             ((V1 == A &&
 | |
|               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
 | |
|              (V2 == A &&
 | |
|               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
 | |
|           return BinaryOperator::CreateAnd(B,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
| 
 | |
|         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
 | |
|         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
 | |
|         ConstantInt *C3 = nullptr, *C4 = nullptr;
 | |
|         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
 | |
|             (C3->getValue() & ~C1->getValue()) == 0 &&
 | |
|             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
 | |
|             (C4->getValue() & ~C2->getValue()) == 0) {
 | |
|           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
 | |
|           return BinaryOperator::CreateAnd(V2,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
 | |
|     // Don't do this for vector select idioms, the code generator doesn't handle
 | |
|     // them well yet.
 | |
|     if (!I.getType()->isVectorTy()) {
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
 | |
|         return Match;
 | |
|     }
 | |
| 
 | |
|     // ((A&~B)|(~A&B)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, D);
 | |
|     // ((~B&A)|(~A&B)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, D);
 | |
|     // ((A&~B)|(B&~A)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     // ((~B&A)|(B&~A)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, B);
 | |
| 
 | |
|     // ((A|B)&1)|(B&-2) -> (A&1) | B
 | |
|     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
 | |
|         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
 | |
|       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|     // (B&-2)|((A|B)&1) -> (A&1) | B
 | |
|     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
 | |
|         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
 | |
|       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|     // ((A^B)&1)|(B&-2) -> (A&1) ^ B
 | |
|     if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
 | |
|         match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
 | |
|       Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|     // (B&-2)|((A^B)&1) -> (A&1) ^ B
 | |
|     if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
 | |
|         match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
 | |
|       Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
 | |
|     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
 | |
|       if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
 | |
|         return BinaryOperator::CreateOr(Op0, C);
 | |
| 
 | |
|   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
 | |
|   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
 | |
|     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
 | |
|       if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
 | |
|         return BinaryOperator::CreateOr(Op1, C);
 | |
| 
 | |
|   // ((B | C) & A) | B -> B | (A & C)
 | |
|   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
 | |
|     return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
 | |
| 
 | |
|   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
 | |
|     return DeMorgan;
 | |
| 
 | |
|   // Canonicalize xor to the RHS.
 | |
|   bool SwappedForXor = false;
 | |
|   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
 | |
|     std::swap(Op0, Op1);
 | |
|     SwappedForXor = true;
 | |
|   }
 | |
| 
 | |
|   // A | ( A ^ B) -> A |  B
 | |
|   // A | (~A ^ B) -> A | ~B
 | |
|   // (A & B) | (A ^ B)
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|     if (Op0 == A || Op0 == B)
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|         match(Op0, m_And(m_Specific(B), m_Specific(A))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
 | |
|       Value *Not = Builder->CreateNot(B, B->getName()+".not");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
 | |
|       Value *Not = Builder->CreateNot(A, A->getName()+".not");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A | ~(A | B) -> A | ~B
 | |
|   // A | ~(A ^ B) -> A | ~B
 | |
|   if (match(Op1, m_Not(m_Value(A))))
 | |
|     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
 | |
|       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
 | |
|           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
 | |
|                                B->getOpcode() == Instruction::Xor)) {
 | |
|         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
 | |
|                                                  B->getOperand(0);
 | |
|         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
 | |
|         return BinaryOperator::CreateOr(Not, Op0);
 | |
|       }
 | |
| 
 | |
|   // (A & B) | ((~A) ^ B) -> (~A ^ B)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
 | |
|     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
 | |
| 
 | |
|   // ((~A) ^ B) | (A & B) -> (~A ^ B)
 | |
|   if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
 | |
|       match(Op1, m_And(m_Specific(A), m_Specific(B))))
 | |
|     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
 | |
| 
 | |
|   if (SwappedForXor)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   {
 | |
|     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
 | |
|     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
 | |
|     if (LHS && RHS)
 | |
|       if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
 | |
|         return replaceInstUsesWith(I, Res);
 | |
| 
 | |
|     // TODO: Make this recursive; it's a little tricky because an arbitrary
 | |
|     // number of 'or' instructions might have to be created.
 | |
|     Value *X, *Y;
 | |
|     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(X))
 | |
|         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
 | |
|           return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
 | |
|         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
 | |
|           return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
 | |
|     }
 | |
|     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(X))
 | |
|         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
 | |
|           return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
 | |
|       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
 | |
|         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
 | |
|           return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
 | |
|         return replaceInstUsesWith(I, Res);
 | |
| 
 | |
|   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
 | |
|     return CastedOr;
 | |
| 
 | |
|   // or(sext(A), B) -> A ? -1 : B where A is an i1
 | |
|   // or(A, sext(B)) -> B ? -1 : A where B is an i1
 | |
|   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
 | |
|     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
 | |
|   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
 | |
|     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
 | |
| 
 | |
|   // Note: If we've gotten to the point of visiting the outer OR, then the
 | |
|   // inner one couldn't be simplified.  If it was a constant, then it won't
 | |
|   // be simplified by a later pass either, so we try swapping the inner/outer
 | |
|   // ORs in the hopes that we'll be able to simplify it this way.
 | |
|   // (X|C) | V --> (X|V) | C
 | |
|   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
 | |
|       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
 | |
|     Value *Inner = Builder->CreateOr(A, Op1);
 | |
|     Inner->takeName(Op0);
 | |
|     return BinaryOperator::CreateOr(Inner, C1);
 | |
|   }
 | |
| 
 | |
|   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
 | |
|   // Since this OR statement hasn't been optimized further yet, we hope
 | |
|   // that this transformation will allow the new ORs to be optimized.
 | |
|   {
 | |
|     Value *X = nullptr, *Y = nullptr;
 | |
|     if (Op0->hasOneUse() && Op1->hasOneUse() &&
 | |
|         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
 | |
|         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
 | |
|       Value *orTrue = Builder->CreateOr(A, C);
 | |
|       Value *orFalse = Builder->CreateOr(B, D);
 | |
|       return SelectInst::Create(X, orTrue, orFalse);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A&B)^(A&C) -> A&(B^C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (Value *V = SimplifyBSwap(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Is this a ~ operation?
 | |
|   if (Value *NotOp = dyn_castNotVal(&I)) {
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
 | |
|       if (Op0I->getOpcode() == Instruction::And ||
 | |
|           Op0I->getOpcode() == Instruction::Or) {
 | |
|         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
 | |
|         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
 | |
|         if (dyn_castNotVal(Op0I->getOperand(1)))
 | |
|           Op0I->swapOperands();
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | |
|           Value *NotY =
 | |
|             Builder->CreateNot(Op0I->getOperand(1),
 | |
|                                Op0I->getOperand(1)->getName()+".not");
 | |
|           if (Op0I->getOpcode() == Instruction::And)
 | |
|             return BinaryOperator::CreateOr(Op0NotVal, NotY);
 | |
|           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
 | |
|         }
 | |
| 
 | |
|         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
 | |
|         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
 | |
|         if (IsFreeToInvert(Op0I->getOperand(0),
 | |
|                            Op0I->getOperand(0)->hasOneUse()) &&
 | |
|             IsFreeToInvert(Op0I->getOperand(1),
 | |
|                            Op0I->getOperand(1)->hasOneUse())) {
 | |
|           Value *NotX =
 | |
|             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
 | |
|           Value *NotY =
 | |
|             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
 | |
|           if (Op0I->getOpcode() == Instruction::And)
 | |
|             return BinaryOperator::CreateOr(NotX, NotY);
 | |
|           return BinaryOperator::CreateAnd(NotX, NotY);
 | |
|         }
 | |
| 
 | |
|       } else if (Op0I->getOpcode() == Instruction::AShr) {
 | |
|         // ~(~X >>s Y) --> (X >>s Y)
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
 | |
|           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
 | |
|     if (RHS->isAllOnesValue() && Op0->hasOneUse())
 | |
|       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
 | |
|         return CmpInst::Create(CI->getOpcode(),
 | |
|                                CI->getInversePredicate(),
 | |
|                                CI->getOperand(0), CI->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
 | |
|     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
 | |
|         if (CI->hasOneUse() && Op0C->hasOneUse()) {
 | |
|           Instruction::CastOps Opcode = Op0C->getOpcode();
 | |
|           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
 | |
|               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
 | |
|                                             Op0C->getDestTy()))) {
 | |
|             CI->setPredicate(CI->getInversePredicate());
 | |
|             return CastInst::Create(Opcode, CI, Op0C->getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // ~(c-X) == X-c-1 == X+(-c-1)
 | |
|       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | |
|         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | |
|           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | |
|           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | |
|                                       ConstantInt::get(I.getType(), 1));
 | |
|           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
 | |
|         }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|         if (Op0I->getOpcode() == Instruction::Add) {
 | |
|           // ~(X-c) --> (-c-1)-X
 | |
|           if (RHS->isAllOnesValue()) {
 | |
|             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | |
|             return BinaryOperator::CreateSub(
 | |
|                            ConstantExpr::getSub(NegOp0CI,
 | |
|                                       ConstantInt::get(I.getType(), 1)),
 | |
|                                       Op0I->getOperand(0));
 | |
|           } else if (RHS->getValue().isSignBit()) {
 | |
|             // (X + C) ^ signbit -> (X + C + signbit)
 | |
|             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
 | |
|             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
 | |
| 
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
 | |
|           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
 | |
|                                 0, &I)) {
 | |
|             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
 | |
|             // Anything in both C1 and C2 is known to be zero, remove it from
 | |
|             // NewRHS.
 | |
|             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
 | |
|             NewRHS = ConstantExpr::getAnd(NewRHS,
 | |
|                                        ConstantExpr::getNot(CommonBits));
 | |
|             Worklist.Add(Op0I);
 | |
|             I.setOperand(0, Op0I->getOperand(0));
 | |
|             I.setOperand(1, NewRHS);
 | |
|             return &I;
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::LShr) {
 | |
|           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
 | |
|           // E1 = "X ^ C1"
 | |
|           BinaryOperator *E1;
 | |
|           ConstantInt *C1;
 | |
|           if (Op0I->hasOneUse() &&
 | |
|               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
 | |
|               E1->getOpcode() == Instruction::Xor &&
 | |
|               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
 | |
|             // fold (C1 >> C2) ^ C3
 | |
|             ConstantInt *C2 = Op0CI, *C3 = RHS;
 | |
|             APInt FoldConst = C1->getValue().lshr(C2->getValue());
 | |
|             FoldConst ^= C3->getValue();
 | |
|             // Prepare the two operands.
 | |
|             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
 | |
|             Opnd0->takeName(Op0I);
 | |
|             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
 | |
|             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
 | |
| 
 | |
|             return BinaryOperator::CreateXor(Opnd0, FoldVal);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
 | |
|   if (Op1I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         Op1I->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
 | |
|                Op1I->hasOneUse()){
 | |
|       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
 | |
|         Op1I->swapOperands();
 | |
|         std::swap(A, B);
 | |
|       }
 | |
|       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
 | |
|   if (Op0I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         Op0I->hasOneUse()) {
 | |
|       if (A == Op1)                                  // (B|A)^B == (A|B)^B
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1)                                  // (A|B)^B == A & ~B
 | |
|         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
 | |
|     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|                Op0I->hasOneUse()){
 | |
|       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1 &&                                      // (B&A)^A == ~B & A
 | |
|           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
 | |
|         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op0I && Op1I) {
 | |
|     Value *A, *B, *C, *D;
 | |
|     // (A & B)^(A | B) -> A ^ B
 | |
|     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C))
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A | B)^(A & B) -> A ^ B
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C))
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A | ~B) ^ (~A | B) -> A ^ B
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
 | |
|         match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (~A | B) ^ (A | ~B) -> A ^ B
 | |
|     if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
 | |
|         match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A & ~B) ^ (~A & B) -> A ^ B
 | |
|     if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
 | |
|         match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (~A & B) ^ (A & ~B) -> A ^ B
 | |
|     if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
 | |
|     if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
 | |
|         match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (D == A)
 | |
|         return BinaryOperator::CreateXor(
 | |
|             Builder->CreateAnd(Builder->CreateNot(A), B), C);
 | |
|       if (D == B)
 | |
|         return BinaryOperator::CreateXor(
 | |
|             Builder->CreateAnd(Builder->CreateNot(B), A), C);
 | |
|     }
 | |
|     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
 | |
|       if (D == A)
 | |
|         return BinaryOperator::CreateXor(
 | |
|             Builder->CreateAnd(Builder->CreateNot(A), B), C);
 | |
|       if (D == B)
 | |
|         return BinaryOperator::CreateXor(
 | |
|             Builder->CreateAnd(Builder->CreateNot(B), A), C);
 | |
|     }
 | |
|     // (A & B) ^ (A ^ B) -> (A | B)
 | |
|     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
|     // (A ^ B) ^ (A & B) -> (A | B)
 | |
|     if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Specific(A), m_Specific(B))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
|   }
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   // (A & ~B) ^ (~A) -> ~(A & B)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
 | |
|       match(Op1, m_Not(m_Specific(A))))
 | |
|     return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
 | |
| 
 | |
|   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
 | |
|       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
 | |
|         if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|             LHS->getOperand(1) == RHS->getOperand(0))
 | |
|           LHS->swapOperands();
 | |
|         if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|             LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
 | |
|           bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|           return replaceInstUsesWith(I,
 | |
|                                getNewICmpValue(isSigned, Code, Op0, Op1,
 | |
|                                                Builder));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
 | |
|     return CastedXor;
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 |