464 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			464 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Correlated Value Propagation pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "correlated-value-propagation"
 | |
| 
 | |
| STATISTIC(NumPhis,      "Number of phis propagated");
 | |
| STATISTIC(NumSelects,   "Number of selects propagated");
 | |
| STATISTIC(NumMemAccess, "Number of memory access targets propagated");
 | |
| STATISTIC(NumCmps,      "Number of comparisons propagated");
 | |
| STATISTIC(NumReturns,   "Number of return values propagated");
 | |
| STATISTIC(NumDeadCases, "Number of switch cases removed");
 | |
| STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
 | |
| 
 | |
| namespace {
 | |
|   class CorrelatedValuePropagation : public FunctionPass {
 | |
|     LazyValueInfo *LVI;
 | |
| 
 | |
|     bool processSelect(SelectInst *SI);
 | |
|     bool processPHI(PHINode *P);
 | |
|     bool processMemAccess(Instruction *I);
 | |
|     bool processCmp(CmpInst *C);
 | |
|     bool processSwitch(SwitchInst *SI);
 | |
|     bool processCallSite(CallSite CS);
 | |
|     bool processSDiv(BinaryOperator *SDI);
 | |
| 
 | |
|     /// Return a constant value for V usable at At and everything it
 | |
|     /// dominates.  If no such Constant can be found, return nullptr.
 | |
|     Constant *getConstantAt(Value *V, Instruction *At);
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     CorrelatedValuePropagation(): FunctionPass(ID) {
 | |
|      initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<LazyValueInfo>();
 | |
|       AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CorrelatedValuePropagation::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
 | |
|                 "Value Propagation", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
 | |
| INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
 | |
|                 "Value Propagation", false, false)
 | |
| 
 | |
| // Public interface to the Value Propagation pass
 | |
| Pass *llvm::createCorrelatedValuePropagationPass() {
 | |
|   return new CorrelatedValuePropagation();
 | |
| }
 | |
| 
 | |
| bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
 | |
|   if (S->getType()->isVectorTy()) return false;
 | |
|   if (isa<Constant>(S->getOperand(0))) return false;
 | |
| 
 | |
|   Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
 | |
|   if (!C) return false;
 | |
| 
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | |
|   if (!CI) return false;
 | |
| 
 | |
|   Value *ReplaceWith = S->getOperand(1);
 | |
|   Value *Other = S->getOperand(2);
 | |
|   if (!CI->isOne()) std::swap(ReplaceWith, Other);
 | |
|   if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
 | |
| 
 | |
|   S->replaceAllUsesWith(ReplaceWith);
 | |
|   S->eraseFromParent();
 | |
| 
 | |
|   ++NumSelects;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CorrelatedValuePropagation::processPHI(PHINode *P) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   BasicBlock *BB = P->getParent();
 | |
|   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
 | |
|     Value *Incoming = P->getIncomingValue(i);
 | |
|     if (isa<Constant>(Incoming)) continue;
 | |
| 
 | |
|     Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
 | |
| 
 | |
|     // Look if the incoming value is a select with a scalar condition for which
 | |
|     // LVI can tells us the value. In that case replace the incoming value with
 | |
|     // the appropriate value of the select. This often allows us to remove the
 | |
|     // select later.
 | |
|     if (!V) {
 | |
|       SelectInst *SI = dyn_cast<SelectInst>(Incoming);
 | |
|       if (!SI) continue;
 | |
| 
 | |
|       Value *Condition = SI->getCondition();
 | |
|       if (!Condition->getType()->isVectorTy()) {
 | |
|         if (Constant *C = LVI->getConstantOnEdge(
 | |
|                 Condition, P->getIncomingBlock(i), BB, P)) {
 | |
|           if (C->isOneValue()) {
 | |
|             V = SI->getTrueValue();
 | |
|           } else if (C->isZeroValue()) {
 | |
|             V = SI->getFalseValue();
 | |
|           }
 | |
|           // Once LVI learns to handle vector types, we could also add support
 | |
|           // for vector type constants that are not all zeroes or all ones.
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Look if the select has a constant but LVI tells us that the incoming
 | |
|       // value can never be that constant. In that case replace the incoming
 | |
|       // value with the other value of the select. This often allows us to
 | |
|       // remove the select later.
 | |
|       if (!V) {
 | |
|         Constant *C = dyn_cast<Constant>(SI->getFalseValue());
 | |
|         if (!C) continue;
 | |
| 
 | |
|         if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
 | |
|               P->getIncomingBlock(i), BB, P) !=
 | |
|             LazyValueInfo::False)
 | |
|           continue;
 | |
|         V = SI->getTrueValue();
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
 | |
|     }
 | |
| 
 | |
|     P->setIncomingValue(i, V);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Provide TLI, DT, AT to SimplifyInstruction.
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   if (Value *V = SimplifyInstruction(P, DL)) {
 | |
|     P->replaceAllUsesWith(V);
 | |
|     P->eraseFromParent();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   if (Changed)
 | |
|     ++NumPhis;
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
 | |
|   Value *Pointer = nullptr;
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I))
 | |
|     Pointer = L->getPointerOperand();
 | |
|   else
 | |
|     Pointer = cast<StoreInst>(I)->getPointerOperand();
 | |
| 
 | |
|   if (isa<Constant>(Pointer)) return false;
 | |
| 
 | |
|   Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
 | |
|   if (!C) return false;
 | |
| 
 | |
|   ++NumMemAccess;
 | |
|   I->replaceUsesOfWith(Pointer, C);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processCmp - See if LazyValueInfo's ability to exploit edge conditions,
 | |
| /// or range information is sufficient to prove this comparison.  Even for
 | |
| /// local conditions, this can sometimes prove conditions instcombine can't by
 | |
| /// exploiting range information.
 | |
| bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
 | |
|   Value *Op0 = C->getOperand(0);
 | |
|   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
 | |
|   if (!Op1) return false;
 | |
| 
 | |
|   // As a policy choice, we choose not to waste compile time on anything where
 | |
|   // the comparison is testing local values.  While LVI can sometimes reason
 | |
|   // about such cases, it's not its primary purpose.  We do make sure to do
 | |
|   // the block local query for uses from terminator instructions, but that's
 | |
|   // handled in the code for each terminator.
 | |
|   auto *I = dyn_cast<Instruction>(Op0);
 | |
|   if (I && I->getParent() == C->getParent())
 | |
|     return false;
 | |
| 
 | |
|   LazyValueInfo::Tristate Result =
 | |
|     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C);
 | |
|   if (Result == LazyValueInfo::Unknown) return false;
 | |
| 
 | |
|   ++NumCmps;
 | |
|   if (Result == LazyValueInfo::True)
 | |
|     C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
 | |
|   else
 | |
|     C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
 | |
|   C->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processSwitch - Simplify a switch instruction by removing cases which can
 | |
| /// never fire.  If the uselessness of a case could be determined locally then
 | |
| /// constant propagation would already have figured it out.  Instead, walk the
 | |
| /// predecessors and statically evaluate cases based on information available
 | |
| /// on that edge.  Cases that cannot fire no matter what the incoming edge can
 | |
| /// safely be removed.  If a case fires on every incoming edge then the entire
 | |
| /// switch can be removed and replaced with a branch to the case destination.
 | |
| bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
 | |
|   Value *Cond = SI->getCondition();
 | |
|   BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|   // If the condition was defined in same block as the switch then LazyValueInfo
 | |
|   // currently won't say anything useful about it, though in theory it could.
 | |
|   if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
 | |
|     return false;
 | |
| 
 | |
|   // If the switch is unreachable then trying to improve it is a waste of time.
 | |
|   pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
 | |
|   if (PB == PE) return false;
 | |
| 
 | |
|   // Analyse each switch case in turn.  This is done in reverse order so that
 | |
|   // removing a case doesn't cause trouble for the iteration.
 | |
|   bool Changed = false;
 | |
|   for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
 | |
|        ) {
 | |
|     ConstantInt *Case = CI.getCaseValue();
 | |
| 
 | |
|     // Check to see if the switch condition is equal to/not equal to the case
 | |
|     // value on every incoming edge, equal/not equal being the same each time.
 | |
|     LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
 | |
|     for (pred_iterator PI = PB; PI != PE; ++PI) {
 | |
|       // Is the switch condition equal to the case value?
 | |
|       LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
 | |
|                                                               Cond, Case, *PI,
 | |
|                                                               BB, SI);
 | |
|       // Give up on this case if nothing is known.
 | |
|       if (Value == LazyValueInfo::Unknown) {
 | |
|         State = LazyValueInfo::Unknown;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If this was the first edge to be visited, record that all other edges
 | |
|       // need to give the same result.
 | |
|       if (PI == PB) {
 | |
|         State = Value;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this case is known to fire for some edges and known not to fire for
 | |
|       // others then there is nothing we can do - give up.
 | |
|       if (Value != State) {
 | |
|         State = LazyValueInfo::Unknown;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (State == LazyValueInfo::False) {
 | |
|       // This case never fires - remove it.
 | |
|       CI.getCaseSuccessor()->removePredecessor(BB);
 | |
|       SI->removeCase(CI); // Does not invalidate the iterator.
 | |
| 
 | |
|       // The condition can be modified by removePredecessor's PHI simplification
 | |
|       // logic.
 | |
|       Cond = SI->getCondition();
 | |
| 
 | |
|       ++NumDeadCases;
 | |
|       Changed = true;
 | |
|     } else if (State == LazyValueInfo::True) {
 | |
|       // This case always fires.  Arrange for the switch to be turned into an
 | |
|       // unconditional branch by replacing the switch condition with the case
 | |
|       // value.
 | |
|       SI->setCondition(Case);
 | |
|       NumDeadCases += SI->getNumCases();
 | |
|       Changed = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Changed)
 | |
|     // If the switch has been simplified to the point where it can be replaced
 | |
|     // by a branch then do so now.
 | |
|     ConstantFoldTerminator(BB);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// processCallSite - Infer nonnull attributes for the arguments at the
 | |
| /// specified callsite.
 | |
| bool CorrelatedValuePropagation::processCallSite(CallSite CS) {
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   unsigned ArgNo = 0;
 | |
| 
 | |
|   for (Value *V : CS.args()) {
 | |
|     PointerType *Type = dyn_cast<PointerType>(V->getType());
 | |
|     // Try to mark pointer typed parameters as non-null.  We skip the
 | |
|     // relatively expensive analysis for constants which are obviously either
 | |
|     // null or non-null to start with.
 | |
|     if (Type && !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
 | |
|         !isa<Constant>(V) && 
 | |
|         LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
 | |
|                             ConstantPointerNull::get(Type),
 | |
|                             CS.getInstruction()) == LazyValueInfo::False)
 | |
|       Indices.push_back(ArgNo + 1);
 | |
|     ArgNo++;
 | |
|   }
 | |
| 
 | |
|   assert(ArgNo == CS.arg_size() && "sanity check");
 | |
| 
 | |
|   if (Indices.empty())
 | |
|     return false;
 | |
| 
 | |
|   AttributeSet AS = CS.getAttributes();
 | |
|   LLVMContext &Ctx = CS.getInstruction()->getContext();
 | |
|   AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull));
 | |
|   CS.setAttributes(AS);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// See if LazyValueInfo's ability to exploit edge conditions, or range
 | |
| /// information is sufficient to prove the both operands of this SDiv are
 | |
| /// positive.  If this is the case, replace the SDiv with a UDiv. Even for local
 | |
| /// conditions, this can sometimes prove conditions instcombine can't by
 | |
| /// exploiting range information.
 | |
| bool CorrelatedValuePropagation::processSDiv(BinaryOperator *SDI) {
 | |
|   if (SDI->getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   for (Value *O : SDI->operands()) {
 | |
|     // As a policy choice, we choose not to waste compile time on anything where
 | |
|     // the operands are local defs.  While LVI can sometimes reason about such
 | |
|     // cases, it's not its primary purpose.
 | |
|     auto *I = dyn_cast<Instruction>(O);
 | |
|     if (I && I->getParent() == SDI->getParent())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   Constant *Zero = ConstantInt::get(SDI->getType(), 0);
 | |
|   for (Value *O : SDI->operands()) {
 | |
|     LazyValueInfo::Tristate Result =
 | |
|         LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI);
 | |
|     if (Result != LazyValueInfo::True)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   ++NumSDivs;
 | |
|   auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1),
 | |
|                                         SDI->getName(), SDI);
 | |
|   BO->setIsExact(SDI->isExact());
 | |
|   SDI->replaceAllUsesWith(BO);
 | |
|   SDI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Constant *CorrelatedValuePropagation::getConstantAt(Value *V, Instruction *At) {
 | |
|   if (Constant *C = LVI->getConstant(V, At->getParent(), At))
 | |
|     return C;
 | |
| 
 | |
|   // TODO: The following really should be sunk inside LVI's core algorithm, or
 | |
|   // at least the outer shims around such.
 | |
|   auto *C = dyn_cast<CmpInst>(V);
 | |
|   if (!C) return nullptr;
 | |
| 
 | |
|   Value *Op0 = C->getOperand(0);
 | |
|   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
 | |
|   if (!Op1) return nullptr;
 | |
|   
 | |
|   LazyValueInfo::Tristate Result =
 | |
|     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
 | |
|   if (Result == LazyValueInfo::Unknown)
 | |
|     return nullptr;
 | |
|   
 | |
|   return (Result == LazyValueInfo::True) ?
 | |
|     ConstantInt::getTrue(C->getContext()) :
 | |
|     ConstantInt::getFalse(C->getContext());
 | |
| }
 | |
| 
 | |
| bool CorrelatedValuePropagation::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   LVI = &getAnalysis<LazyValueInfo>();
 | |
| 
 | |
|   bool FnChanged = false;
 | |
| 
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | |
|     bool BBChanged = false;
 | |
|     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
 | |
|       Instruction *II = &*BI++;
 | |
|       switch (II->getOpcode()) {
 | |
|       case Instruction::Select:
 | |
|         BBChanged |= processSelect(cast<SelectInst>(II));
 | |
|         break;
 | |
|       case Instruction::PHI:
 | |
|         BBChanged |= processPHI(cast<PHINode>(II));
 | |
|         break;
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp:
 | |
|         BBChanged |= processCmp(cast<CmpInst>(II));
 | |
|         break;
 | |
|       case Instruction::Load:
 | |
|       case Instruction::Store:
 | |
|         BBChanged |= processMemAccess(II);
 | |
|         break;
 | |
|       case Instruction::Call:
 | |
|       case Instruction::Invoke:
 | |
|         BBChanged |= processCallSite(CallSite(II));
 | |
|         break;
 | |
|       case Instruction::SDiv:
 | |
|         BBChanged |= processSDiv(cast<BinaryOperator>(II));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Instruction *Term = FI->getTerminator();
 | |
|     switch (Term->getOpcode()) {
 | |
|     case Instruction::Switch:
 | |
|       BBChanged |= processSwitch(cast<SwitchInst>(Term));
 | |
|       break;
 | |
|     case Instruction::Ret: {
 | |
|       auto *RI = cast<ReturnInst>(Term);
 | |
|       // Try to determine the return value if we can.  This is mainly here to
 | |
|       // simplify the writing of unit tests, but also helps to enable IPO by
 | |
|       // constant folding the return values of callees.
 | |
|       auto *RetVal = RI->getReturnValue();
 | |
|       if (!RetVal) break; // handle "ret void"
 | |
|       if (isa<Constant>(RetVal)) break; // nothing to do
 | |
|       if (auto *C = getConstantAt(RetVal, RI)) {
 | |
|         ++NumReturns;
 | |
|         RI->replaceUsesOfWith(RetVal, C);
 | |
|         BBChanged = true;        
 | |
|       }
 | |
|     }
 | |
|     };
 | |
| 
 | |
|     FnChanged |= BBChanged;
 | |
|   }
 | |
| 
 | |
|   return FnChanged;
 | |
| }
 |