962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			962 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a trivial dead store elimination that only considers
 | 
						|
// basic-block local redundant stores.
 | 
						|
//
 | 
						|
// FIXME: This should eventually be extended to be a post-dominator tree
 | 
						|
// traversal.  Doing so would be pretty trivial.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dse"
 | 
						|
 | 
						|
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
 | 
						|
STATISTIC(NumFastStores, "Number of stores deleted");
 | 
						|
STATISTIC(NumFastOther , "Number of other instrs removed");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct DSE : public FunctionPass {
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    MemoryDependenceResults *MD;
 | 
						|
    DominatorTree *DT;
 | 
						|
    const TargetLibraryInfo *TLI;
 | 
						|
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    DSE() : FunctionPass(ID), AA(nullptr), MD(nullptr), DT(nullptr) {
 | 
						|
      initializeDSEPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override {
 | 
						|
      if (skipOptnoneFunction(F))
 | 
						|
        return false;
 | 
						|
 | 
						|
      AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
      MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | 
						|
      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
      TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
 | 
						|
      bool Changed = false;
 | 
						|
      for (BasicBlock &I : F)
 | 
						|
        // Only check non-dead blocks.  Dead blocks may have strange pointer
 | 
						|
        // cycles that will confuse alias analysis.
 | 
						|
        if (DT->isReachableFromEntry(&I))
 | 
						|
          Changed |= runOnBasicBlock(I);
 | 
						|
 | 
						|
      AA = nullptr; MD = nullptr; DT = nullptr;
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnBasicBlock(BasicBlock &BB);
 | 
						|
    bool MemoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI);
 | 
						|
    bool HandleFree(CallInst *F);
 | 
						|
    bool handleEndBlock(BasicBlock &BB);
 | 
						|
    void RemoveAccessedObjects(const MemoryLocation &LoadedLoc,
 | 
						|
                               SmallSetVector<Value *, 16> &DeadStackObjects,
 | 
						|
                               const DataLayout &DL);
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<AAResultsWrapperPass>();
 | 
						|
      AU.addRequired<MemoryDependenceWrapperPass>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
      AU.addPreserved<MemoryDependenceWrapperPass>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char DSE::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
 | 
						|
/// and zero out all the operands of this instruction.  If any of them become
 | 
						|
/// dead, delete them and the computation tree that feeds them.
 | 
						|
///
 | 
						|
/// If ValueSet is non-null, remove any deleted instructions from it as well.
 | 
						|
///
 | 
						|
static void DeleteDeadInstruction(Instruction *I,
 | 
						|
                               MemoryDependenceResults &MD,
 | 
						|
                               const TargetLibraryInfo &TLI,
 | 
						|
                               SmallSetVector<Value*, 16> *ValueSet = nullptr) {
 | 
						|
  SmallVector<Instruction*, 32> NowDeadInsts;
 | 
						|
 | 
						|
  NowDeadInsts.push_back(I);
 | 
						|
  --NumFastOther;
 | 
						|
 | 
						|
  // Before we touch this instruction, remove it from memdep!
 | 
						|
  do {
 | 
						|
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
 | 
						|
    ++NumFastOther;
 | 
						|
 | 
						|
    // This instruction is dead, zap it, in stages.  Start by removing it from
 | 
						|
    // MemDep, which needs to know the operands and needs it to be in the
 | 
						|
    // function.
 | 
						|
    MD.removeInstruction(DeadInst);
 | 
						|
 | 
						|
    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
 | 
						|
      Value *Op = DeadInst->getOperand(op);
 | 
						|
      DeadInst->setOperand(op, nullptr);
 | 
						|
 | 
						|
      // If this operand just became dead, add it to the NowDeadInsts list.
 | 
						|
      if (!Op->use_empty()) continue;
 | 
						|
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(Op))
 | 
						|
        if (isInstructionTriviallyDead(OpI, &TLI))
 | 
						|
          NowDeadInsts.push_back(OpI);
 | 
						|
    }
 | 
						|
 | 
						|
    DeadInst->eraseFromParent();
 | 
						|
 | 
						|
    if (ValueSet) ValueSet->remove(DeadInst);
 | 
						|
  } while (!NowDeadInsts.empty());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// hasMemoryWrite - Does this instruction write some memory?  This only returns
 | 
						|
/// true for things that we can analyze with other helpers below.
 | 
						|
static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo &TLI) {
 | 
						|
  if (isa<StoreInst>(I))
 | 
						|
    return true;
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Intrinsic::memset:
 | 
						|
    case Intrinsic::memmove:
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::init_trampoline:
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto CS = CallSite(I)) {
 | 
						|
    if (Function *F = CS.getCalledFunction()) {
 | 
						|
      if (TLI.has(LibFunc::strcpy) &&
 | 
						|
          F->getName() == TLI.getName(LibFunc::strcpy)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (TLI.has(LibFunc::strncpy) &&
 | 
						|
          F->getName() == TLI.getName(LibFunc::strncpy)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (TLI.has(LibFunc::strcat) &&
 | 
						|
          F->getName() == TLI.getName(LibFunc::strcat)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (TLI.has(LibFunc::strncat) &&
 | 
						|
          F->getName() == TLI.getName(LibFunc::strncat)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getLocForWrite - Return a Location stored to by the specified instruction.
 | 
						|
/// If isRemovable returns true, this function and getLocForRead completely
 | 
						|
/// describe the memory operations for this instruction.
 | 
						|
static MemoryLocation getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    return MemoryLocation::get(SI);
 | 
						|
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
 | 
						|
    // memcpy/memmove/memset.
 | 
						|
    MemoryLocation Loc = MemoryLocation::getForDest(MI);
 | 
						|
    return Loc;
 | 
						|
  }
 | 
						|
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
 | 
						|
  if (!II)
 | 
						|
    return MemoryLocation();
 | 
						|
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  default:
 | 
						|
    return MemoryLocation(); // Unhandled intrinsic.
 | 
						|
  case Intrinsic::init_trampoline:
 | 
						|
    // FIXME: We don't know the size of the trampoline, so we can't really
 | 
						|
    // handle it here.
 | 
						|
    return MemoryLocation(II->getArgOperand(0));
 | 
						|
  case Intrinsic::lifetime_end: {
 | 
						|
    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
 | 
						|
    return MemoryLocation(II->getArgOperand(1), Len);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
 | 
						|
/// instruction if any.
 | 
						|
static MemoryLocation getLocForRead(Instruction *Inst,
 | 
						|
                                    const TargetLibraryInfo &TLI) {
 | 
						|
  assert(hasMemoryWrite(Inst, TLI) && "Unknown instruction case");
 | 
						|
 | 
						|
  // The only instructions that both read and write are the mem transfer
 | 
						|
  // instructions (memcpy/memmove).
 | 
						|
  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
 | 
						|
    return MemoryLocation::getForSource(MTI);
 | 
						|
  return MemoryLocation();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isRemovable - If the value of this instruction and the memory it writes to
 | 
						|
/// is unused, may we delete this instruction?
 | 
						|
static bool isRemovable(Instruction *I) {
 | 
						|
  // Don't remove volatile/atomic stores.
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isUnordered();
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
      // Never remove dead lifetime_end's, e.g. because it is followed by a
 | 
						|
      // free.
 | 
						|
      return false;
 | 
						|
    case Intrinsic::init_trampoline:
 | 
						|
      // Always safe to remove init_trampoline.
 | 
						|
      return true;
 | 
						|
 | 
						|
    case Intrinsic::memset:
 | 
						|
    case Intrinsic::memmove:
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
      // Don't remove volatile memory intrinsics.
 | 
						|
      return !cast<MemIntrinsic>(II)->isVolatile();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto CS = CallSite(I))
 | 
						|
    return CS.getInstruction()->use_empty();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isShortenable - Returns true if this instruction can be safely shortened in
 | 
						|
/// length.
 | 
						|
static bool isShortenable(Instruction *I) {
 | 
						|
  // Don't shorten stores for now
 | 
						|
  if (isa<StoreInst>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
      default: return false;
 | 
						|
      case Intrinsic::memset:
 | 
						|
      case Intrinsic::memcpy:
 | 
						|
        // Do shorten memory intrinsics.
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't shorten libcalls calls for now.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getStoredPointerOperand - Return the pointer that is being written to.
 | 
						|
static Value *getStoredPointerOperand(Instruction *I) {
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->getPointerOperand();
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
    return MI->getDest();
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: llvm_unreachable("Unexpected intrinsic!");
 | 
						|
    case Intrinsic::init_trampoline:
 | 
						|
      return II->getArgOperand(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CallSite CS(I);
 | 
						|
  // All the supported functions so far happen to have dest as their first
 | 
						|
  // argument.
 | 
						|
  return CS.getArgument(0);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
 | 
						|
                               const TargetLibraryInfo &TLI) {
 | 
						|
  uint64_t Size;
 | 
						|
  if (getObjectSize(V, Size, DL, &TLI))
 | 
						|
    return Size;
 | 
						|
  return MemoryLocation::UnknownSize;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  enum OverwriteResult
 | 
						|
  {
 | 
						|
    OverwriteComplete,
 | 
						|
    OverwriteEnd,
 | 
						|
    OverwriteUnknown
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
 | 
						|
/// completely overwrites a store to the 'Earlier' location.
 | 
						|
/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
 | 
						|
/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
 | 
						|
static OverwriteResult isOverwrite(const MemoryLocation &Later,
 | 
						|
                                   const MemoryLocation &Earlier,
 | 
						|
                                   const DataLayout &DL,
 | 
						|
                                   const TargetLibraryInfo &TLI,
 | 
						|
                                   int64_t &EarlierOff, int64_t &LaterOff) {
 | 
						|
  const Value *P1 = Earlier.Ptr->stripPointerCasts();
 | 
						|
  const Value *P2 = Later.Ptr->stripPointerCasts();
 | 
						|
 | 
						|
  // If the start pointers are the same, we just have to compare sizes to see if
 | 
						|
  // the later store was larger than the earlier store.
 | 
						|
  if (P1 == P2) {
 | 
						|
    // If we don't know the sizes of either access, then we can't do a
 | 
						|
    // comparison.
 | 
						|
    if (Later.Size == MemoryLocation::UnknownSize ||
 | 
						|
        Earlier.Size == MemoryLocation::UnknownSize)
 | 
						|
      return OverwriteUnknown;
 | 
						|
 | 
						|
    // Make sure that the Later size is >= the Earlier size.
 | 
						|
    if (Later.Size >= Earlier.Size)
 | 
						|
      return OverwriteComplete;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have to have size information, and the later store has to be
 | 
						|
  // larger than the earlier one.
 | 
						|
  if (Later.Size == MemoryLocation::UnknownSize ||
 | 
						|
      Earlier.Size == MemoryLocation::UnknownSize)
 | 
						|
    return OverwriteUnknown;
 | 
						|
 | 
						|
  // Check to see if the later store is to the entire object (either a global,
 | 
						|
  // an alloca, or a byval/inalloca argument).  If so, then it clearly
 | 
						|
  // overwrites any other store to the same object.
 | 
						|
  const Value *UO1 = GetUnderlyingObject(P1, DL),
 | 
						|
              *UO2 = GetUnderlyingObject(P2, DL);
 | 
						|
 | 
						|
  // If we can't resolve the same pointers to the same object, then we can't
 | 
						|
  // analyze them at all.
 | 
						|
  if (UO1 != UO2)
 | 
						|
    return OverwriteUnknown;
 | 
						|
 | 
						|
  // If the "Later" store is to a recognizable object, get its size.
 | 
						|
  uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
 | 
						|
  if (ObjectSize != MemoryLocation::UnknownSize)
 | 
						|
    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
 | 
						|
      return OverwriteComplete;
 | 
						|
 | 
						|
  // Okay, we have stores to two completely different pointers.  Try to
 | 
						|
  // decompose the pointer into a "base + constant_offset" form.  If the base
 | 
						|
  // pointers are equal, then we can reason about the two stores.
 | 
						|
  EarlierOff = 0;
 | 
						|
  LaterOff = 0;
 | 
						|
  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
 | 
						|
  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
 | 
						|
 | 
						|
  // If the base pointers still differ, we have two completely different stores.
 | 
						|
  if (BP1 != BP2)
 | 
						|
    return OverwriteUnknown;
 | 
						|
 | 
						|
  // The later store completely overlaps the earlier store if:
 | 
						|
  //
 | 
						|
  // 1. Both start at the same offset and the later one's size is greater than
 | 
						|
  //    or equal to the earlier one's, or
 | 
						|
  //
 | 
						|
  //      |--earlier--|
 | 
						|
  //      |--   later   --|
 | 
						|
  //
 | 
						|
  // 2. The earlier store has an offset greater than the later offset, but which
 | 
						|
  //    still lies completely within the later store.
 | 
						|
  //
 | 
						|
  //        |--earlier--|
 | 
						|
  //    |-----  later  ------|
 | 
						|
  //
 | 
						|
  // We have to be careful here as *Off is signed while *.Size is unsigned.
 | 
						|
  if (EarlierOff >= LaterOff &&
 | 
						|
      Later.Size >= Earlier.Size &&
 | 
						|
      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
 | 
						|
    return OverwriteComplete;
 | 
						|
 | 
						|
  // The other interesting case is if the later store overwrites the end of
 | 
						|
  // the earlier store
 | 
						|
  //
 | 
						|
  //      |--earlier--|
 | 
						|
  //                |--   later   --|
 | 
						|
  //
 | 
						|
  // In this case we may want to trim the size of earlier to avoid generating
 | 
						|
  // writes to addresses which will definitely be overwritten later
 | 
						|
  if (LaterOff > EarlierOff &&
 | 
						|
      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
 | 
						|
      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
 | 
						|
    return OverwriteEnd;
 | 
						|
 | 
						|
  // Otherwise, they don't completely overlap.
 | 
						|
  return OverwriteUnknown;
 | 
						|
}
 | 
						|
 | 
						|
/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
 | 
						|
/// memory region into an identical pointer) then it doesn't actually make its
 | 
						|
/// input dead in the traditional sense.  Consider this case:
 | 
						|
///
 | 
						|
///   memcpy(A <- B)
 | 
						|
///   memcpy(A <- A)
 | 
						|
///
 | 
						|
/// In this case, the second store to A does not make the first store to A dead.
 | 
						|
/// The usual situation isn't an explicit A<-A store like this (which can be
 | 
						|
/// trivially removed) but a case where two pointers may alias.
 | 
						|
///
 | 
						|
/// This function detects when it is unsafe to remove a dependent instruction
 | 
						|
/// because the DSE inducing instruction may be a self-read.
 | 
						|
static bool isPossibleSelfRead(Instruction *Inst,
 | 
						|
                               const MemoryLocation &InstStoreLoc,
 | 
						|
                               Instruction *DepWrite,
 | 
						|
                               const TargetLibraryInfo &TLI,
 | 
						|
                               AliasAnalysis &AA) {
 | 
						|
  // Self reads can only happen for instructions that read memory.  Get the
 | 
						|
  // location read.
 | 
						|
  MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
 | 
						|
  if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
 | 
						|
 | 
						|
  // If the read and written loc obviously don't alias, it isn't a read.
 | 
						|
  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
 | 
						|
 | 
						|
  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
 | 
						|
  // DepWrite instruction if we can prove that it reads from the same location
 | 
						|
  // as Inst.  This handles useful cases like:
 | 
						|
  //   memcpy(A <- B)
 | 
						|
  //   memcpy(A <- B)
 | 
						|
  // Here we don't know if A/B may alias, but we do know that B/B are must
 | 
						|
  // aliases, so removing the first memcpy is safe (assuming it writes <= #
 | 
						|
  // bytes as the second one.
 | 
						|
  MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
 | 
						|
 | 
						|
  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
 | 
						|
  // then it can't be considered dead.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// DSE Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool DSE::runOnBasicBlock(BasicBlock &BB) {
 | 
						|
  const DataLayout &DL = BB.getModule()->getDataLayout();
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Do a top-down walk on the BB.
 | 
						|
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
 | 
						|
    Instruction *Inst = &*BBI++;
 | 
						|
 | 
						|
    // Handle 'free' calls specially.
 | 
						|
    if (CallInst *F = isFreeCall(Inst, TLI)) {
 | 
						|
      MadeChange |= HandleFree(F);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we find something that writes memory, get its memory dependence.
 | 
						|
    if (!hasMemoryWrite(Inst, *TLI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we're storing the same value back to a pointer that we just
 | 
						|
    // loaded from, then the store can be removed.
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
 | 
						|
      auto RemoveDeadInstAndUpdateBBI = [&](Instruction *DeadInst) {
 | 
						|
        // DeleteDeadInstruction can delete the current instruction.  Save BBI
 | 
						|
        // in case we need it.
 | 
						|
        WeakVH NextInst(&*BBI);
 | 
						|
 | 
						|
        DeleteDeadInstruction(DeadInst, *MD, *TLI);
 | 
						|
 | 
						|
        if (!NextInst) // Next instruction deleted.
 | 
						|
          BBI = BB.begin();
 | 
						|
        else if (BBI != BB.begin()) // Revisit this instruction if possible.
 | 
						|
          --BBI;
 | 
						|
        ++NumRedundantStores;
 | 
						|
        MadeChange = true;
 | 
						|
      };
 | 
						|
 | 
						|
      if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
 | 
						|
        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
 | 
						|
            isRemovable(SI) &&
 | 
						|
            MemoryIsNotModifiedBetween(DepLoad, SI)) {
 | 
						|
 | 
						|
          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
 | 
						|
                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
 | 
						|
 | 
						|
          RemoveDeadInstAndUpdateBBI(SI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove null stores into the calloc'ed objects
 | 
						|
      Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
 | 
						|
 | 
						|
      if (StoredConstant && StoredConstant->isNullValue() &&
 | 
						|
          isRemovable(SI)) {
 | 
						|
        Instruction *UnderlyingPointer = dyn_cast<Instruction>(
 | 
						|
            GetUnderlyingObject(SI->getPointerOperand(), DL));
 | 
						|
 | 
						|
        if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
 | 
						|
            MemoryIsNotModifiedBetween(UnderlyingPointer, SI)) {
 | 
						|
          DEBUG(dbgs()
 | 
						|
                << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
 | 
						|
                << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
 | 
						|
 | 
						|
          RemoveDeadInstAndUpdateBBI(SI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MemDepResult InstDep = MD->getDependency(Inst);
 | 
						|
 | 
						|
    // Ignore any store where we can't find a local dependence.
 | 
						|
    // FIXME: cross-block DSE would be fun. :)
 | 
						|
    if (!InstDep.isDef() && !InstDep.isClobber())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Figure out what location is being stored to.
 | 
						|
    MemoryLocation Loc = getLocForWrite(Inst, *AA);
 | 
						|
 | 
						|
    // If we didn't get a useful location, fail.
 | 
						|
    if (!Loc.Ptr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    while (InstDep.isDef() || InstDep.isClobber()) {
 | 
						|
      // Get the memory clobbered by the instruction we depend on.  MemDep will
 | 
						|
      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
 | 
						|
      // end up depending on a may- or must-aliased load, then we can't optimize
 | 
						|
      // away the store and we bail out.  However, if we depend on on something
 | 
						|
      // that overwrites the memory location we *can* potentially optimize it.
 | 
						|
      //
 | 
						|
      // Find out what memory location the dependent instruction stores.
 | 
						|
      Instruction *DepWrite = InstDep.getInst();
 | 
						|
      MemoryLocation DepLoc = getLocForWrite(DepWrite, *AA);
 | 
						|
      // If we didn't get a useful location, or if it isn't a size, bail out.
 | 
						|
      if (!DepLoc.Ptr)
 | 
						|
        break;
 | 
						|
 | 
						|
      // If we find a write that is a) removable (i.e., non-volatile), b) is
 | 
						|
      // completely obliterated by the store to 'Loc', and c) which we know that
 | 
						|
      // 'Inst' doesn't load from, then we can remove it.
 | 
						|
      if (isRemovable(DepWrite) &&
 | 
						|
          !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
 | 
						|
        int64_t InstWriteOffset, DepWriteOffset;
 | 
						|
        OverwriteResult OR =
 | 
						|
            isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset);
 | 
						|
        if (OR == OverwriteComplete) {
 | 
						|
          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
 | 
						|
                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
 | 
						|
 | 
						|
          // Delete the store and now-dead instructions that feed it.
 | 
						|
          DeleteDeadInstruction(DepWrite, *MD, *TLI);
 | 
						|
          ++NumFastStores;
 | 
						|
          MadeChange = true;
 | 
						|
 | 
						|
          // DeleteDeadInstruction can delete the current instruction in loop
 | 
						|
          // cases, reset BBI.
 | 
						|
          BBI = Inst->getIterator();
 | 
						|
          if (BBI != BB.begin())
 | 
						|
            --BBI;
 | 
						|
          break;
 | 
						|
        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
 | 
						|
          // TODO: base this on the target vector size so that if the earlier
 | 
						|
          // store was too small to get vector writes anyway then its likely
 | 
						|
          // a good idea to shorten it
 | 
						|
          // Power of 2 vector writes are probably always a bad idea to optimize
 | 
						|
          // as any store/memset/memcpy is likely using vector instructions so
 | 
						|
          // shortening it to not vector size is likely to be slower
 | 
						|
          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
 | 
						|
          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
 | 
						|
          if (llvm::isPowerOf2_64(InstWriteOffset) ||
 | 
						|
              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
 | 
						|
 | 
						|
            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
 | 
						|
                  << *DepWrite << "\n  KILLER (offset "
 | 
						|
                  << InstWriteOffset << ", "
 | 
						|
                  << DepLoc.Size << ")"
 | 
						|
                  << *Inst << '\n');
 | 
						|
 | 
						|
            Value* DepWriteLength = DepIntrinsic->getLength();
 | 
						|
            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
 | 
						|
                                                    InstWriteOffset -
 | 
						|
                                                    DepWriteOffset);
 | 
						|
            DepIntrinsic->setLength(TrimmedLength);
 | 
						|
            MadeChange = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a may-aliased store that is clobbering the store value, we
 | 
						|
      // can keep searching past it for another must-aliased pointer that stores
 | 
						|
      // to the same location.  For example, in:
 | 
						|
      //   store -> P
 | 
						|
      //   store -> Q
 | 
						|
      //   store -> P
 | 
						|
      // we can remove the first store to P even though we don't know if P and Q
 | 
						|
      // alias.
 | 
						|
      if (DepWrite == &BB.front()) break;
 | 
						|
 | 
						|
      // Can't look past this instruction if it might read 'Loc'.
 | 
						|
      if (AA->getModRefInfo(DepWrite, Loc) & MRI_Ref)
 | 
						|
        break;
 | 
						|
 | 
						|
      InstDep = MD->getPointerDependencyFrom(Loc, false,
 | 
						|
                                             DepWrite->getIterator(), &BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this block ends in a return, unwind, or unreachable, all allocas are
 | 
						|
  // dead at its end, which means stores to them are also dead.
 | 
						|
  if (BB.getTerminator()->getNumSuccessors() == 0)
 | 
						|
    MadeChange |= handleEndBlock(BB);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the memory which is accessed by the second instruction is not
 | 
						|
/// modified between the first and the second instruction.
 | 
						|
/// Precondition: Second instruction must be dominated by the first
 | 
						|
/// instruction.
 | 
						|
bool DSE::MemoryIsNotModifiedBetween(Instruction *FirstI,
 | 
						|
                                     Instruction *SecondI) {
 | 
						|
  SmallVector<BasicBlock *, 16> WorkList;
 | 
						|
  SmallPtrSet<BasicBlock *, 8> Visited;
 | 
						|
  BasicBlock::iterator FirstBBI(FirstI);
 | 
						|
  ++FirstBBI;
 | 
						|
  BasicBlock::iterator SecondBBI(SecondI);
 | 
						|
  BasicBlock *FirstBB = FirstI->getParent();
 | 
						|
  BasicBlock *SecondBB = SecondI->getParent();
 | 
						|
  MemoryLocation MemLoc = MemoryLocation::get(SecondI);
 | 
						|
 | 
						|
  // Start checking the store-block.
 | 
						|
  WorkList.push_back(SecondBB);
 | 
						|
  bool isFirstBlock = true;
 | 
						|
 | 
						|
  // Check all blocks going backward until we reach the load-block.
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    BasicBlock *B = WorkList.pop_back_val();
 | 
						|
 | 
						|
    // Ignore instructions before LI if this is the FirstBB.
 | 
						|
    BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
 | 
						|
 | 
						|
    BasicBlock::iterator EI;
 | 
						|
    if (isFirstBlock) {
 | 
						|
      // Ignore instructions after SI if this is the first visit of SecondBB.
 | 
						|
      assert(B == SecondBB && "first block is not the store block");
 | 
						|
      EI = SecondBBI;
 | 
						|
      isFirstBlock = false;
 | 
						|
    } else {
 | 
						|
      // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
 | 
						|
      // In this case we also have to look at instructions after SI.
 | 
						|
      EI = B->end();
 | 
						|
    }
 | 
						|
    for (; BI != EI; ++BI) {
 | 
						|
      Instruction *I = &*BI;
 | 
						|
      if (I->mayWriteToMemory() && I != SecondI) {
 | 
						|
        auto Res = AA->getModRefInfo(I, MemLoc);
 | 
						|
        if (Res != MRI_NoModRef)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (B != FirstBB) {
 | 
						|
      assert(B != &FirstBB->getParent()->getEntryBlock() &&
 | 
						|
          "Should not hit the entry block because SI must be dominated by LI");
 | 
						|
      for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
 | 
						|
        if (!Visited.insert(*PredI).second)
 | 
						|
          continue;
 | 
						|
        WorkList.push_back(*PredI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Find all blocks that will unconditionally lead to the block BB and append
 | 
						|
/// them to F.
 | 
						|
static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
 | 
						|
                                   BasicBlock *BB, DominatorTree *DT) {
 | 
						|
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | 
						|
    BasicBlock *Pred = *I;
 | 
						|
    if (Pred == BB) continue;
 | 
						|
    TerminatorInst *PredTI = Pred->getTerminator();
 | 
						|
    if (PredTI->getNumSuccessors() != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (DT->isReachableFromEntry(Pred))
 | 
						|
      Blocks.push_back(Pred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleFree - Handle frees of entire structures whose dependency is a store
 | 
						|
/// to a field of that structure.
 | 
						|
bool DSE::HandleFree(CallInst *F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  MemoryLocation Loc = MemoryLocation(F->getOperand(0));
 | 
						|
  SmallVector<BasicBlock *, 16> Blocks;
 | 
						|
  Blocks.push_back(F->getParent());
 | 
						|
  const DataLayout &DL = F->getModule()->getDataLayout();
 | 
						|
 | 
						|
  while (!Blocks.empty()) {
 | 
						|
    BasicBlock *BB = Blocks.pop_back_val();
 | 
						|
    Instruction *InstPt = BB->getTerminator();
 | 
						|
    if (BB == F->getParent()) InstPt = F;
 | 
						|
 | 
						|
    MemDepResult Dep =
 | 
						|
        MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
 | 
						|
    while (Dep.isDef() || Dep.isClobber()) {
 | 
						|
      Instruction *Dependency = Dep.getInst();
 | 
						|
      if (!hasMemoryWrite(Dependency, *TLI) || !isRemovable(Dependency))
 | 
						|
        break;
 | 
						|
 | 
						|
      Value *DepPointer =
 | 
						|
          GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
 | 
						|
 | 
						|
      // Check for aliasing.
 | 
						|
      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
 | 
						|
        break;
 | 
						|
 | 
						|
      auto Next = ++Dependency->getIterator();
 | 
						|
 | 
						|
      // DCE instructions only used to calculate that store
 | 
						|
      DeleteDeadInstruction(Dependency, *MD, *TLI);
 | 
						|
      ++NumFastStores;
 | 
						|
      MadeChange = true;
 | 
						|
 | 
						|
      // Inst's old Dependency is now deleted. Compute the next dependency,
 | 
						|
      // which may also be dead, as in
 | 
						|
      //    s[0] = 0;
 | 
						|
      //    s[1] = 0; // This has just been deleted.
 | 
						|
      //    free(s);
 | 
						|
      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Dep.isNonLocal())
 | 
						|
      FindUnconditionalPreds(Blocks, BB, DT);
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
 | 
						|
/// function end block.  Ex:
 | 
						|
/// %A = alloca i32
 | 
						|
/// ...
 | 
						|
/// store i32 1, i32* %A
 | 
						|
/// ret void
 | 
						|
bool DSE::handleEndBlock(BasicBlock &BB) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Keep track of all of the stack objects that are dead at the end of the
 | 
						|
  // function.
 | 
						|
  SmallSetVector<Value*, 16> DeadStackObjects;
 | 
						|
 | 
						|
  // Find all of the alloca'd pointers in the entry block.
 | 
						|
  BasicBlock &Entry = BB.getParent()->front();
 | 
						|
  for (Instruction &I : Entry) {
 | 
						|
    if (isa<AllocaInst>(&I))
 | 
						|
      DeadStackObjects.insert(&I);
 | 
						|
 | 
						|
    // Okay, so these are dead heap objects, but if the pointer never escapes
 | 
						|
    // then it's leaked by this function anyways.
 | 
						|
    else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
 | 
						|
      DeadStackObjects.insert(&I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat byval or inalloca arguments the same, stores to them are dead at the
 | 
						|
  // end of the function.
 | 
						|
  for (Argument &AI : BB.getParent()->args())
 | 
						|
    if (AI.hasByValOrInAllocaAttr())
 | 
						|
      DeadStackObjects.insert(&AI);
 | 
						|
 | 
						|
  const DataLayout &DL = BB.getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Scan the basic block backwards
 | 
						|
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
 | 
						|
    --BBI;
 | 
						|
 | 
						|
    // If we find a store, check to see if it points into a dead stack value.
 | 
						|
    if (hasMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
 | 
						|
      // See through pointer-to-pointer bitcasts
 | 
						|
      SmallVector<Value *, 4> Pointers;
 | 
						|
      GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
 | 
						|
 | 
						|
      // Stores to stack values are valid candidates for removal.
 | 
						|
      bool AllDead = true;
 | 
						|
      for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
 | 
						|
           E = Pointers.end(); I != E; ++I)
 | 
						|
        if (!DeadStackObjects.count(*I)) {
 | 
						|
          AllDead = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (AllDead) {
 | 
						|
        Instruction *Dead = &*BBI++;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
 | 
						|
                     << *Dead << "\n  Objects: ";
 | 
						|
              for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
 | 
						|
                   E = Pointers.end(); I != E; ++I) {
 | 
						|
                dbgs() << **I;
 | 
						|
                if (std::next(I) != E)
 | 
						|
                  dbgs() << ", ";
 | 
						|
              }
 | 
						|
              dbgs() << '\n');
 | 
						|
 | 
						|
        // DCE instructions only used to calculate that store.
 | 
						|
        DeleteDeadInstruction(Dead, *MD, *TLI, &DeadStackObjects);
 | 
						|
        ++NumFastStores;
 | 
						|
        MadeChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove any dead non-memory-mutating instructions.
 | 
						|
    if (isInstructionTriviallyDead(&*BBI, TLI)) {
 | 
						|
      Instruction *Inst = &*BBI++;
 | 
						|
      DeleteDeadInstruction(Inst, *MD, *TLI, &DeadStackObjects);
 | 
						|
      ++NumFastOther;
 | 
						|
      MadeChange = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<AllocaInst>(BBI)) {
 | 
						|
      // Remove allocas from the list of dead stack objects; there can't be
 | 
						|
      // any references before the definition.
 | 
						|
      DeadStackObjects.remove(&*BBI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto CS = CallSite(&*BBI)) {
 | 
						|
      // Remove allocation function calls from the list of dead stack objects; 
 | 
						|
      // there can't be any references before the definition.
 | 
						|
      if (isAllocLikeFn(&*BBI, TLI))
 | 
						|
        DeadStackObjects.remove(&*BBI);
 | 
						|
 | 
						|
      // If this call does not access memory, it can't be loading any of our
 | 
						|
      // pointers.
 | 
						|
      if (AA->doesNotAccessMemory(CS))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the call might load from any of our allocas, then any store above
 | 
						|
      // the call is live.
 | 
						|
      DeadStackObjects.remove_if([&](Value *I) {
 | 
						|
        // See if the call site touches the value.
 | 
						|
        ModRefInfo A = AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI));
 | 
						|
 | 
						|
        return A == MRI_ModRef || A == MRI_Ref;
 | 
						|
      });
 | 
						|
 | 
						|
      // If all of the allocas were clobbered by the call then we're not going
 | 
						|
      // to find anything else to process.
 | 
						|
      if (DeadStackObjects.empty())
 | 
						|
        break;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    MemoryLocation LoadedLoc;
 | 
						|
 | 
						|
    // If we encounter a use of the pointer, it is no longer considered dead
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (!L->isUnordered()) // Be conservative with atomic/volatile load
 | 
						|
        break;
 | 
						|
      LoadedLoc = MemoryLocation::get(L);
 | 
						|
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
 | 
						|
      LoadedLoc = MemoryLocation::get(V);
 | 
						|
    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
 | 
						|
      LoadedLoc = MemoryLocation::getForSource(MTI);
 | 
						|
    } else if (!BBI->mayReadFromMemory()) {
 | 
						|
      // Instruction doesn't read memory.  Note that stores that weren't removed
 | 
						|
      // above will hit this case.
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      // Unknown inst; assume it clobbers everything.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove any allocas from the DeadPointer set that are loaded, as this
 | 
						|
    // makes any stores above the access live.
 | 
						|
    RemoveAccessedObjects(LoadedLoc, DeadStackObjects, DL);
 | 
						|
 | 
						|
    // If all of the allocas were clobbered by the access then we're not going
 | 
						|
    // to find anything else to process.
 | 
						|
    if (DeadStackObjects.empty())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveAccessedObjects - Check to see if the specified location may alias any
 | 
						|
/// of the stack objects in the DeadStackObjects set.  If so, they become live
 | 
						|
/// because the location is being loaded.
 | 
						|
void DSE::RemoveAccessedObjects(const MemoryLocation &LoadedLoc,
 | 
						|
                                SmallSetVector<Value *, 16> &DeadStackObjects,
 | 
						|
                                const DataLayout &DL) {
 | 
						|
  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
 | 
						|
 | 
						|
  // A constant can't be in the dead pointer set.
 | 
						|
  if (isa<Constant>(UnderlyingPointer))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the kill pointer can be easily reduced to an alloca, don't bother doing
 | 
						|
  // extraneous AA queries.
 | 
						|
  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
 | 
						|
    DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove objects that could alias LoadedLoc.
 | 
						|
  DeadStackObjects.remove_if([&](Value *I) {
 | 
						|
    // See if the loaded location could alias the stack location.
 | 
						|
    MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI));
 | 
						|
    return !AA->isNoAlias(StackLoc, LoadedLoc);
 | 
						|
  });
 | 
						|
}
 |