1241 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1241 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements an idiom recognizer that transforms simple loops into a
 | |
| // non-loop form.  In cases that this kicks in, it can be a significant
 | |
| // performance win.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // TODO List:
 | |
| //
 | |
| // Future loop memory idioms to recognize:
 | |
| //   memcmp, memmove, strlen, etc.
 | |
| // Future floating point idioms to recognize in -ffast-math mode:
 | |
| //   fpowi
 | |
| // Future integer operation idioms to recognize:
 | |
| //   ctpop, ctlz, cttz
 | |
| //
 | |
| // Beware that isel's default lowering for ctpop is highly inefficient for
 | |
| // i64 and larger types when i64 is legal and the value has few bits set.  It
 | |
| // would be good to enhance isel to emit a loop for ctpop in this case.
 | |
| //
 | |
| // This could recognize common matrix multiplies and dot product idioms and
 | |
| // replace them with calls to BLAS (if linked in??).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-idiom"
 | |
| 
 | |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
 | |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class LoopIdiomRecognize : public LoopPass {
 | |
|   Loop *CurLoop;
 | |
|   AliasAnalysis *AA;
 | |
|   DominatorTree *DT;
 | |
|   LoopInfo *LI;
 | |
|   ScalarEvolution *SE;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   const TargetTransformInfo *TTI;
 | |
|   const DataLayout *DL;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   explicit LoopIdiomRecognize() : LoopPass(ID) {
 | |
|     initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|   /// This transformation requires natural loop information & requires that
 | |
|   /// loop preheaders be inserted into the CFG.
 | |
|   ///
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     getLoopAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
|   typedef MapVector<Value *, StoreList> StoreListMap;
 | |
|   StoreListMap StoreRefsForMemset;
 | |
|   StoreListMap StoreRefsForMemsetPattern;
 | |
|   StoreList StoreRefsForMemcpy;
 | |
|   bool HasMemset;
 | |
|   bool HasMemsetPattern;
 | |
|   bool HasMemcpy;
 | |
| 
 | |
|   /// \name Countable Loop Idiom Handling
 | |
|   /// @{
 | |
| 
 | |
|   bool runOnCountableLoop();
 | |
|   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
 | |
|                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
 | |
| 
 | |
|   void collectStores(BasicBlock *BB);
 | |
|   bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern,
 | |
|                     bool &ForMemcpy);
 | |
|   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
 | |
|                          bool ForMemset);
 | |
|   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
 | |
| 
 | |
|   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
 | |
|                                unsigned StoreAlignment, Value *StoredVal,
 | |
|                                Instruction *TheStore,
 | |
|                                SmallPtrSetImpl<Instruction *> &Stores,
 | |
|                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
 | |
|                                bool NegStride);
 | |
|   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Noncountable Loop Idiom Handling
 | |
|   /// @{
 | |
| 
 | |
|   bool runOnNoncountableLoop();
 | |
| 
 | |
|   bool recognizePopcount();
 | |
|   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
 | |
|                                PHINode *CntPhi, Value *Var);
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| char LoopIdiomRecognize::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
 | |
|                     false, false)
 | |
| 
 | |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
 | |
| 
 | |
| /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
 | |
| /// and zero out all the operands of this instruction.  If any of them become
 | |
| /// dead, delete them and the computation tree that feeds them.
 | |
| ///
 | |
| static void deleteDeadInstruction(Instruction *I,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end());
 | |
|   I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|   I->eraseFromParent();
 | |
|   for (Value *Op : Operands)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Op, TLI);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //          Implementation of LoopIdiomRecognize
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   CurLoop = L;
 | |
|   // If the loop could not be converted to canonical form, it must have an
 | |
|   // indirectbr in it, just give up.
 | |
|   if (!L->getLoopPreheader())
 | |
|     return false;
 | |
| 
 | |
|   // Disable loop idiom recognition if the function's name is a common idiom.
 | |
|   StringRef Name = L->getHeader()->getParent()->getName();
 | |
|   if (Name == "memset" || Name == "memcpy")
 | |
|     return false;
 | |
| 
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | |
|       *CurLoop->getHeader()->getParent());
 | |
|   DL = &CurLoop->getHeader()->getModule()->getDataLayout();
 | |
| 
 | |
|   HasMemset = TLI->has(LibFunc::memset);
 | |
|   HasMemsetPattern = TLI->has(LibFunc::memset_pattern16);
 | |
|   HasMemcpy = TLI->has(LibFunc::memcpy);
 | |
| 
 | |
|   if (HasMemset || HasMemsetPattern || HasMemcpy)
 | |
|     if (SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|       return runOnCountableLoop();
 | |
| 
 | |
|   return runOnNoncountableLoop();
 | |
| }
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnCountableLoop() {
 | |
|   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
 | |
|   assert(!isa<SCEVCouldNotCompute>(BECount) &&
 | |
|          "runOnCountableLoop() called on a loop without a predictable"
 | |
|          "backedge-taken count");
 | |
| 
 | |
|   // If this loop executes exactly one time, then it should be peeled, not
 | |
|   // optimized by this pass.
 | |
|   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | |
|     if (BECst->getAPInt() == 0)
 | |
|       return false;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   DEBUG(dbgs() << "loop-idiom Scanning: F["
 | |
|                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
 | |
|                << CurLoop->getHeader()->getName() << "\n");
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   // Scan all the blocks in the loop that are not in subloops.
 | |
|   for (auto *BB : CurLoop->getBlocks()) {
 | |
|     // Ignore blocks in subloops.
 | |
|     if (LI->getLoopFor(BB) != CurLoop)
 | |
|       continue;
 | |
| 
 | |
|     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
 | |
|   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
 | |
|   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
 | |
|          "Don't overflow unsigned.");
 | |
|   return (unsigned)SizeInBits >> 3;
 | |
| }
 | |
| 
 | |
| static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
 | |
|   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
 | |
|   return ConstStride->getAPInt();
 | |
| }
 | |
| 
 | |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to
 | |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
 | |
| /// be passed in.  Otherwise, return null.
 | |
| ///
 | |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
 | |
| /// just replicate their input array and then pass on to memset_pattern16.
 | |
| static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
 | |
|   // If the value isn't a constant, we can't promote it to being in a constant
 | |
|   // array.  We could theoretically do a store to an alloca or something, but
 | |
|   // that doesn't seem worthwhile.
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Only handle simple values that are a power of two bytes in size.
 | |
|   uint64_t Size = DL->getTypeSizeInBits(V->getType());
 | |
|   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't care enough about darwin/ppc to implement this.
 | |
|   if (DL->isBigEndian())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Convert to size in bytes.
 | |
|   Size /= 8;
 | |
| 
 | |
|   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
 | |
|   // if the top and bottom are the same (e.g. for vectors and large integers).
 | |
|   if (Size > 16)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the constant is exactly 16 bytes, just use it.
 | |
|   if (Size == 16)
 | |
|     return C;
 | |
| 
 | |
|   // Otherwise, we'll use an array of the constants.
 | |
|   unsigned ArraySize = 16 / Size;
 | |
|   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
 | |
|   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
 | |
| }
 | |
| 
 | |
| bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
 | |
|                                       bool &ForMemsetPattern, bool &ForMemcpy) {
 | |
|   // Don't touch volatile stores.
 | |
|   if (!SI->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   // Avoid merging nontemporal stores.
 | |
|   if (SI->getMetadata(LLVMContext::MD_nontemporal))
 | |
|     return false;
 | |
| 
 | |
|   Value *StoredVal = SI->getValueOperand();
 | |
|   Value *StorePtr = SI->getPointerOperand();
 | |
| 
 | |
|   // Reject stores that are so large that they overflow an unsigned.
 | |
|   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
 | |
|   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided store.  If we have something else, it's a
 | |
|   // random store we can't handle.
 | |
|   const SCEVAddRecExpr *StoreEv =
 | |
|       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if we have a constant stride.
 | |
|   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
 | |
|     return false;
 | |
| 
 | |
|   // See if the store can be turned into a memset.
 | |
| 
 | |
|   // If the stored value is a byte-wise value (like i32 -1), then it may be
 | |
|   // turned into a memset of i8 -1, assuming that all the consecutive bytes
 | |
|   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
 | |
|   // but it can be turned into memset_pattern if the target supports it.
 | |
|   Value *SplatValue = isBytewiseValue(StoredVal);
 | |
|   Constant *PatternValue = nullptr;
 | |
| 
 | |
|   // If we're allowed to form a memset, and the stored value would be
 | |
|   // acceptable for memset, use it.
 | |
|   if (HasMemset && SplatValue &&
 | |
|       // Verify that the stored value is loop invariant.  If not, we can't
 | |
|       // promote the memset.
 | |
|       CurLoop->isLoopInvariant(SplatValue)) {
 | |
|     // It looks like we can use SplatValue.
 | |
|     ForMemset = true;
 | |
|     return true;
 | |
|   } else if (HasMemsetPattern &&
 | |
|              // Don't create memset_pattern16s with address spaces.
 | |
|              StorePtr->getType()->getPointerAddressSpace() == 0 &&
 | |
|              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
 | |
|     // It looks like we can use PatternValue!
 | |
|     ForMemsetPattern = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, see if the store can be turned into a memcpy.
 | |
|   if (HasMemcpy) {
 | |
|     // Check to see if the stride matches the size of the store.  If so, then we
 | |
|     // know that every byte is touched in the loop.
 | |
|     APInt Stride = getStoreStride(StoreEv);
 | |
|     unsigned StoreSize = getStoreSizeInBytes(SI, DL);
 | |
|     if (StoreSize != Stride && StoreSize != -Stride)
 | |
|       return false;
 | |
| 
 | |
|     // The store must be feeding a non-volatile load.
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
 | |
|     if (!LI || !LI->isSimple())
 | |
|       return false;
 | |
| 
 | |
|     // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|     // loop, which indicates a strided load.  If we have something else, it's a
 | |
|     // random load we can't handle.
 | |
|     const SCEVAddRecExpr *LoadEv =
 | |
|         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
 | |
|     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
 | |
|       return false;
 | |
| 
 | |
|     // The store and load must share the same stride.
 | |
|     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
 | |
|       return false;
 | |
| 
 | |
|     // Success.  This store can be converted into a memcpy.
 | |
|     ForMemcpy = true;
 | |
|     return true;
 | |
|   }
 | |
|   // This store can't be transformed into a memset/memcpy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
 | |
|   StoreRefsForMemset.clear();
 | |
|   StoreRefsForMemsetPattern.clear();
 | |
|   StoreRefsForMemcpy.clear();
 | |
|   for (Instruction &I : *BB) {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(&I);
 | |
|     if (!SI)
 | |
|       continue;
 | |
| 
 | |
|     bool ForMemset = false;
 | |
|     bool ForMemsetPattern = false;
 | |
|     bool ForMemcpy = false;
 | |
|     // Make sure this is a strided store with a constant stride.
 | |
|     if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy))
 | |
|       continue;
 | |
| 
 | |
|     // Save the store locations.
 | |
|     if (ForMemset) {
 | |
|       // Find the base pointer.
 | |
|       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
 | |
|       StoreRefsForMemset[Ptr].push_back(SI);
 | |
|     } else if (ForMemsetPattern) {
 | |
|       // Find the base pointer.
 | |
|       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
 | |
|       StoreRefsForMemsetPattern[Ptr].push_back(SI);
 | |
|     } else if (ForMemcpy)
 | |
|       StoreRefsForMemcpy.push_back(SI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop
 | |
| /// with the specified backedge count.  This block is known to be in the current
 | |
| /// loop and not in any subloops.
 | |
| bool LoopIdiomRecognize::runOnLoopBlock(
 | |
|     BasicBlock *BB, const SCEV *BECount,
 | |
|     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | |
|   // We can only promote stores in this block if they are unconditionally
 | |
|   // executed in the loop.  For a block to be unconditionally executed, it has
 | |
|   // to dominate all the exit blocks of the loop.  Verify this now.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (!DT->dominates(BB, ExitBlocks[i]))
 | |
|       return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   // Look for store instructions, which may be optimized to memset/memcpy.
 | |
|   collectStores(BB);
 | |
| 
 | |
|   // Look for a single store or sets of stores with a common base, which can be
 | |
|   // optimized into a memset (memset_pattern).  The latter most commonly happens
 | |
|   // with structs and handunrolled loops.
 | |
|   for (auto &SL : StoreRefsForMemset)
 | |
|     MadeChange |= processLoopStores(SL.second, BECount, true);
 | |
| 
 | |
|   for (auto &SL : StoreRefsForMemsetPattern)
 | |
|     MadeChange |= processLoopStores(SL.second, BECount, false);
 | |
| 
 | |
|   // Optimize the store into a memcpy, if it feeds an similarly strided load.
 | |
|   for (auto &SI : StoreRefsForMemcpy)
 | |
|     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
 | |
| 
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     // Look for memset instructions, which may be optimized to a larger memset.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
 | |
|       WeakVH InstPtr(&*I);
 | |
|       if (!processLoopMemSet(MSI, BECount))
 | |
|         continue;
 | |
|       MadeChange = true;
 | |
| 
 | |
|       // If processing the memset invalidated our iterator, start over from the
 | |
|       // top of the block.
 | |
|       if (!InstPtr)
 | |
|         I = BB->begin();
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// processLoopStores - See if this store(s) can be promoted to a memset.
 | |
| bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
 | |
|                                            const SCEV *BECount,
 | |
|                                            bool ForMemset) {
 | |
|   // Try to find consecutive stores that can be transformed into memsets.
 | |
|   SetVector<StoreInst *> Heads, Tails;
 | |
|   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
 | |
| 
 | |
|   // Do a quadratic search on all of the given stores and find
 | |
|   // all of the pairs of stores that follow each other.
 | |
|   SmallVector<unsigned, 16> IndexQueue;
 | |
|   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
 | |
|     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
 | |
| 
 | |
|     Value *FirstStoredVal = SL[i]->getValueOperand();
 | |
|     Value *FirstStorePtr = SL[i]->getPointerOperand();
 | |
|     const SCEVAddRecExpr *FirstStoreEv =
 | |
|         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
 | |
|     APInt FirstStride = getStoreStride(FirstStoreEv);
 | |
|     unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
 | |
| 
 | |
|     // See if we can optimize just this store in isolation.
 | |
|     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
 | |
|       Heads.insert(SL[i]);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Value *FirstSplatValue = nullptr;
 | |
|     Constant *FirstPatternValue = nullptr;
 | |
| 
 | |
|     if (ForMemset)
 | |
|       FirstSplatValue = isBytewiseValue(FirstStoredVal);
 | |
|     else
 | |
|       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
 | |
| 
 | |
|     assert((FirstSplatValue || FirstPatternValue) &&
 | |
|            "Expected either splat value or pattern value.");
 | |
| 
 | |
|     IndexQueue.clear();
 | |
|     // If a store has multiple consecutive store candidates, search Stores
 | |
|     // array according to the sequence: from i+1 to e, then from i-1 to 0.
 | |
|     // This is because usually pairing with immediate succeeding or preceding
 | |
|     // candidate create the best chance to find memset opportunity.
 | |
|     unsigned j = 0;
 | |
|     for (j = i + 1; j < e; ++j)
 | |
|       IndexQueue.push_back(j);
 | |
|     for (j = i; j > 0; --j)
 | |
|       IndexQueue.push_back(j - 1);
 | |
| 
 | |
|     for (auto &k : IndexQueue) {
 | |
|       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
 | |
|       Value *SecondStorePtr = SL[k]->getPointerOperand();
 | |
|       const SCEVAddRecExpr *SecondStoreEv =
 | |
|           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
 | |
|       APInt SecondStride = getStoreStride(SecondStoreEv);
 | |
| 
 | |
|       if (FirstStride != SecondStride)
 | |
|         continue;
 | |
| 
 | |
|       Value *SecondStoredVal = SL[k]->getValueOperand();
 | |
|       Value *SecondSplatValue = nullptr;
 | |
|       Constant *SecondPatternValue = nullptr;
 | |
| 
 | |
|       if (ForMemset)
 | |
|         SecondSplatValue = isBytewiseValue(SecondStoredVal);
 | |
|       else
 | |
|         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
 | |
| 
 | |
|       assert((SecondSplatValue || SecondPatternValue) &&
 | |
|              "Expected either splat value or pattern value.");
 | |
| 
 | |
|       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
 | |
|         if (ForMemset) {
 | |
|           if (FirstSplatValue != SecondSplatValue)
 | |
|             continue;
 | |
|         } else {
 | |
|           if (FirstPatternValue != SecondPatternValue)
 | |
|             continue;
 | |
|         }
 | |
|         Tails.insert(SL[k]);
 | |
|         Heads.insert(SL[i]);
 | |
|         ConsecutiveChain[SL[i]] = SL[k];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We may run into multiple chains that merge into a single chain. We mark the
 | |
|   // stores that we transformed so that we don't visit the same store twice.
 | |
|   SmallPtrSet<Value *, 16> TransformedStores;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // For stores that start but don't end a link in the chain:
 | |
|   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
 | |
|        it != e; ++it) {
 | |
|     if (Tails.count(*it))
 | |
|       continue;
 | |
| 
 | |
|     // We found a store instr that starts a chain. Now follow the chain and try
 | |
|     // to transform it.
 | |
|     SmallPtrSet<Instruction *, 8> AdjacentStores;
 | |
|     StoreInst *I = *it;
 | |
| 
 | |
|     StoreInst *HeadStore = I;
 | |
|     unsigned StoreSize = 0;
 | |
| 
 | |
|     // Collect the chain into a list.
 | |
|     while (Tails.count(I) || Heads.count(I)) {
 | |
|       if (TransformedStores.count(I))
 | |
|         break;
 | |
|       AdjacentStores.insert(I);
 | |
| 
 | |
|       StoreSize += getStoreSizeInBytes(I, DL);
 | |
|       // Move to the next value in the chain.
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     Value *StoredVal = HeadStore->getValueOperand();
 | |
|     Value *StorePtr = HeadStore->getPointerOperand();
 | |
|     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|     APInt Stride = getStoreStride(StoreEv);
 | |
| 
 | |
|     // Check to see if the stride matches the size of the stores.  If so, then
 | |
|     // we know that every byte is touched in the loop.
 | |
|     if (StoreSize != Stride && StoreSize != -Stride)
 | |
|       continue;
 | |
| 
 | |
|     bool NegStride = StoreSize == -Stride;
 | |
| 
 | |
|     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
 | |
|                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
 | |
|                                 BECount, NegStride)) {
 | |
|       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// processLoopMemSet - See if this memset can be promoted to a large memset.
 | |
| bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
 | |
|                                            const SCEV *BECount) {
 | |
|   // We can only handle non-volatile memsets with a constant size.
 | |
|   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
 | |
|     return false;
 | |
| 
 | |
|   // If we're not allowed to hack on memset, we fail.
 | |
|   if (!TLI->has(LibFunc::memset))
 | |
|     return false;
 | |
| 
 | |
|   Value *Pointer = MSI->getDest();
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided store.  If we have something else, it's a
 | |
|   // random store we can't handle.
 | |
|   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
 | |
|   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // Reject memsets that are so large that they overflow an unsigned.
 | |
|   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|   if ((SizeInBytes >> 32) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if the stride matches the size of the memset.  If so, then we
 | |
|   // know that every byte is touched in the loop.
 | |
|   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
 | |
|   if (!ConstStride)
 | |
|     return false;
 | |
| 
 | |
|   APInt Stride = ConstStride->getAPInt();
 | |
|   if (SizeInBytes != Stride && SizeInBytes != -Stride)
 | |
|     return false;
 | |
| 
 | |
|   // Verify that the memset value is loop invariant.  If not, we can't promote
 | |
|   // the memset.
 | |
|   Value *SplatValue = MSI->getValue();
 | |
|   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 1> MSIs;
 | |
|   MSIs.insert(MSI);
 | |
|   bool NegStride = SizeInBytes == -Stride;
 | |
|   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
 | |
|                                  MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
 | |
|                                  BECount, NegStride);
 | |
| }
 | |
| 
 | |
| /// mayLoopAccessLocation - Return true if the specified loop might access the
 | |
| /// specified pointer location, which is a loop-strided access.  The 'Access'
 | |
| /// argument specifies what the verboten forms of access are (read or write).
 | |
| static bool
 | |
| mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
 | |
|                       const SCEV *BECount, unsigned StoreSize,
 | |
|                       AliasAnalysis &AA,
 | |
|                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
 | |
|   // Get the location that may be stored across the loop.  Since the access is
 | |
|   // strided positively through memory, we say that the modified location starts
 | |
|   // at the pointer and has infinite size.
 | |
|   uint64_t AccessSize = MemoryLocation::UnknownSize;
 | |
| 
 | |
|   // If the loop iterates a fixed number of times, we can refine the access size
 | |
|   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
 | |
|   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | |
|     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
 | |
| 
 | |
|   // TODO: For this to be really effective, we have to dive into the pointer
 | |
|   // operand in the store.  Store to &A[i] of 100 will always return may alias
 | |
|   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
 | |
|   // which will then no-alias a store to &A[100].
 | |
|   MemoryLocation StoreLoc(Ptr, AccessSize);
 | |
| 
 | |
|   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
 | |
|        ++BI)
 | |
|     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
 | |
|       if (IgnoredStores.count(&*I) == 0 &&
 | |
|           (AA.getModRefInfo(&*I, StoreLoc) & Access))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If we have a negative stride, Start refers to the end of the memory location
 | |
| // we're trying to memset.  Therefore, we need to recompute the base pointer,
 | |
| // which is just Start - BECount*Size.
 | |
| static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
 | |
|                                         Type *IntPtr, unsigned StoreSize,
 | |
|                                         ScalarEvolution *SE) {
 | |
|   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
 | |
|   if (StoreSize != 1)
 | |
|     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
 | |
|                            SCEV::FlagNUW);
 | |
|   return SE->getMinusSCEV(Start, Index);
 | |
| }
 | |
| 
 | |
| /// processLoopStridedStore - We see a strided store of some value.  If we can
 | |
| /// transform this into a memset or memset_pattern in the loop preheader, do so.
 | |
| bool LoopIdiomRecognize::processLoopStridedStore(
 | |
|     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
 | |
|     Value *StoredVal, Instruction *TheStore,
 | |
|     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
 | |
|     const SCEV *BECount, bool NegStride) {
 | |
|   Value *SplatValue = isBytewiseValue(StoredVal);
 | |
|   Constant *PatternValue = nullptr;
 | |
| 
 | |
|   if (!SplatValue)
 | |
|     PatternValue = getMemSetPatternValue(StoredVal, DL);
 | |
| 
 | |
|   assert((SplatValue || PatternValue) &&
 | |
|          "Expected either splat value or pattern value.");
 | |
| 
 | |
|   // The trip count of the loop and the base pointer of the addrec SCEV is
 | |
|   // guaranteed to be loop invariant, which means that it should dominate the
 | |
|   // header.  This allows us to insert code for it in the preheader.
 | |
|   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
|   IRBuilder<> Builder(Preheader->getTerminator());
 | |
|   SCEVExpander Expander(*SE, *DL, "loop-idiom");
 | |
| 
 | |
|   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
 | |
|   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
 | |
| 
 | |
|   const SCEV *Start = Ev->getStart();
 | |
|   // Handle negative strided loops.
 | |
|   if (NegStride)
 | |
|     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
 | |
| 
 | |
|   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
 | |
|   // this into a memset in the loop preheader now if we want.  However, this
 | |
|   // would be unsafe to do if there is anything else in the loop that may read
 | |
|   // or write to the aliased location.  Check for any overlap by generating the
 | |
|   // base pointer and checking the region.
 | |
|   Value *BasePtr =
 | |
|       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
 | |
|   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
 | |
|                             *AA, Stores)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything looks good, insert the memset.
 | |
| 
 | |
|   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | |
|   // pointer size if it isn't already.
 | |
|   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
 | |
| 
 | |
|   const SCEV *NumBytesS =
 | |
|       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
 | |
|   if (StoreSize != 1) {
 | |
|     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
 | |
|                                SCEV::FlagNUW);
 | |
|   }
 | |
| 
 | |
|   Value *NumBytes =
 | |
|       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
 | |
| 
 | |
|   CallInst *NewCall;
 | |
|   if (SplatValue) {
 | |
|     NewCall =
 | |
|         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
 | |
|   } else {
 | |
|     // Everything is emitted in default address space
 | |
|     Type *Int8PtrTy = DestInt8PtrTy;
 | |
| 
 | |
|     Module *M = TheStore->getModule();
 | |
|     Value *MSP =
 | |
|         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
 | |
|                                Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
 | |
| 
 | |
|     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
 | |
|     // an constant array of 16-bytes.  Plop the value into a mergable global.
 | |
|     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
 | |
|                                             GlobalValue::PrivateLinkage,
 | |
|                                             PatternValue, ".memset_pattern");
 | |
|     GV->setUnnamedAddr(true); // Ok to merge these.
 | |
|     GV->setAlignment(16);
 | |
|     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
 | |
|     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
 | |
|                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
 | |
|   NewCall->setDebugLoc(TheStore->getDebugLoc());
 | |
| 
 | |
|   // Okay, the memset has been formed.  Zap the original store and anything that
 | |
|   // feeds into it.
 | |
|   for (auto *I : Stores)
 | |
|     deleteDeadInstruction(I, TLI);
 | |
|   ++NumMemSet;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If the stored value is a strided load in the same loop with the same stride
 | |
| /// this may be transformable into a memcpy.  This kicks in for stuff like
 | |
| ///   for (i) A[i] = B[i];
 | |
| bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
 | |
|                                                     const SCEV *BECount) {
 | |
|   assert(SI->isSimple() && "Expected only non-volatile stores.");
 | |
| 
 | |
|   Value *StorePtr = SI->getPointerOperand();
 | |
|   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|   APInt Stride = getStoreStride(StoreEv);
 | |
|   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
 | |
|   bool NegStride = StoreSize == -Stride;
 | |
| 
 | |
|   // The store must be feeding a non-volatile load.
 | |
|   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
 | |
|   assert(LI->isSimple() && "Expected only non-volatile stores.");
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided load.  If we have something else, it's a
 | |
|   // random load we can't handle.
 | |
|   const SCEVAddRecExpr *LoadEv =
 | |
|       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
 | |
| 
 | |
|   // The trip count of the loop and the base pointer of the addrec SCEV is
 | |
|   // guaranteed to be loop invariant, which means that it should dominate the
 | |
|   // header.  This allows us to insert code for it in the preheader.
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
|   IRBuilder<> Builder(Preheader->getTerminator());
 | |
|   SCEVExpander Expander(*SE, *DL, "loop-idiom");
 | |
| 
 | |
|   const SCEV *StrStart = StoreEv->getStart();
 | |
|   unsigned StrAS = SI->getPointerAddressSpace();
 | |
|   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
 | |
| 
 | |
|   // Handle negative strided loops.
 | |
|   if (NegStride)
 | |
|     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
 | |
| 
 | |
|   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
 | |
|   // this into a memcpy in the loop preheader now if we want.  However, this
 | |
|   // would be unsafe to do if there is anything else in the loop that may read
 | |
|   // or write the memory region we're storing to.  This includes the load that
 | |
|   // feeds the stores.  Check for an alias by generating the base address and
 | |
|   // checking everything.
 | |
|   Value *StoreBasePtr = Expander.expandCodeFor(
 | |
|       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 1> Stores;
 | |
|   Stores.insert(SI);
 | |
|   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
 | |
|                             StoreSize, *AA, Stores)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const SCEV *LdStart = LoadEv->getStart();
 | |
|   unsigned LdAS = LI->getPointerAddressSpace();
 | |
| 
 | |
|   // Handle negative strided loops.
 | |
|   if (NegStride)
 | |
|     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
 | |
| 
 | |
|   // For a memcpy, we have to make sure that the input array is not being
 | |
|   // mutated by the loop.
 | |
|   Value *LoadBasePtr = Expander.expandCodeFor(
 | |
|       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
 | |
| 
 | |
|   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
 | |
|                             *AA, Stores)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything is safe, we can transform this!
 | |
| 
 | |
|   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | |
|   // pointer size if it isn't already.
 | |
|   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
 | |
| 
 | |
|   const SCEV *NumBytesS =
 | |
|       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
 | |
|   if (StoreSize != 1)
 | |
|     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
 | |
|                                SCEV::FlagNUW);
 | |
| 
 | |
|   Value *NumBytes =
 | |
|       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
 | |
| 
 | |
|   CallInst *NewCall =
 | |
|       Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
 | |
|                            std::min(SI->getAlignment(), LI->getAlignment()));
 | |
|   NewCall->setDebugLoc(SI->getDebugLoc());
 | |
| 
 | |
|   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
 | |
|                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
 | |
|                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
 | |
| 
 | |
|   // Okay, the memcpy has been formed.  Zap the original store and anything that
 | |
|   // feeds into it.
 | |
|   deleteDeadInstruction(SI, TLI);
 | |
|   ++NumMemCpy;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnNoncountableLoop() {
 | |
|   return recognizePopcount();
 | |
| }
 | |
| 
 | |
| /// Check if the given conditional branch is based on the comparison between
 | |
| /// a variable and zero, and if the variable is non-zero, the control yields to
 | |
| /// the loop entry. If the branch matches the behavior, the variable involved
 | |
| /// in the comparion is returned. This function will be called to see if the
 | |
| /// precondition and postcondition of the loop are in desirable form.
 | |
| static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|   if (!Cond)
 | |
|     return nullptr;
 | |
| 
 | |
|   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
 | |
|   if (!CmpZero || !CmpZero->isZero())
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = Cond->getPredicate();
 | |
|   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
 | |
|       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
 | |
|     return Cond->getOperand(0);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true iff the idiom is detected in the loop.
 | |
| ///
 | |
| /// Additionally:
 | |
| /// 1) \p CntInst is set to the instruction counting the population bit.
 | |
| /// 2) \p CntPhi is set to the corresponding phi node.
 | |
| /// 3) \p Var is set to the value whose population bits are being counted.
 | |
| ///
 | |
| /// The core idiom we are trying to detect is:
 | |
| /// \code
 | |
| ///    if (x0 != 0)
 | |
| ///      goto loop-exit // the precondition of the loop
 | |
| ///    cnt0 = init-val;
 | |
| ///    do {
 | |
| ///       x1 = phi (x0, x2);
 | |
| ///       cnt1 = phi(cnt0, cnt2);
 | |
| ///
 | |
| ///       cnt2 = cnt1 + 1;
 | |
| ///        ...
 | |
| ///       x2 = x1 & (x1 - 1);
 | |
| ///        ...
 | |
| ///    } while(x != 0);
 | |
| ///
 | |
| /// loop-exit:
 | |
| /// \endcode
 | |
| static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
 | |
|                                 Instruction *&CntInst, PHINode *&CntPhi,
 | |
|                                 Value *&Var) {
 | |
|   // step 1: Check to see if the look-back branch match this pattern:
 | |
|   //    "if (a!=0) goto loop-entry".
 | |
|   BasicBlock *LoopEntry;
 | |
|   Instruction *DefX2, *CountInst;
 | |
|   Value *VarX1, *VarX0;
 | |
|   PHINode *PhiX, *CountPhi;
 | |
| 
 | |
|   DefX2 = CountInst = nullptr;
 | |
|   VarX1 = VarX0 = nullptr;
 | |
|   PhiX = CountPhi = nullptr;
 | |
|   LoopEntry = *(CurLoop->block_begin());
 | |
| 
 | |
|   // step 1: Check if the loop-back branch is in desirable form.
 | |
|   {
 | |
|     if (Value *T = matchCondition(
 | |
|             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
 | |
|       DefX2 = dyn_cast<Instruction>(T);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
 | |
|   {
 | |
|     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
 | |
|       return false;
 | |
| 
 | |
|     BinaryOperator *SubOneOp;
 | |
| 
 | |
|     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
 | |
|       VarX1 = DefX2->getOperand(1);
 | |
|     else {
 | |
|       VarX1 = DefX2->getOperand(0);
 | |
|       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
 | |
|     }
 | |
|     if (!SubOneOp)
 | |
|       return false;
 | |
| 
 | |
|     Instruction *SubInst = cast<Instruction>(SubOneOp);
 | |
|     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
 | |
|     if (!Dec ||
 | |
|         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
 | |
|           (SubInst->getOpcode() == Instruction::Add &&
 | |
|            Dec->isAllOnesValue()))) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // step 3: Check the recurrence of variable X
 | |
|   {
 | |
|     PhiX = dyn_cast<PHINode>(VarX1);
 | |
|     if (!PhiX ||
 | |
|         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
 | |
|   {
 | |
|     CountInst = nullptr;
 | |
|     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
 | |
|                               IterE = LoopEntry->end();
 | |
|          Iter != IterE; Iter++) {
 | |
|       Instruction *Inst = &*Iter;
 | |
|       if (Inst->getOpcode() != Instruction::Add)
 | |
|         continue;
 | |
| 
 | |
|       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
 | |
|       if (!Inc || !Inc->isOne())
 | |
|         continue;
 | |
| 
 | |
|       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
 | |
|       if (!Phi || Phi->getParent() != LoopEntry)
 | |
|         continue;
 | |
| 
 | |
|       // Check if the result of the instruction is live of the loop.
 | |
|       bool LiveOutLoop = false;
 | |
|       for (User *U : Inst->users()) {
 | |
|         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
 | |
|           LiveOutLoop = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (LiveOutLoop) {
 | |
|         CountInst = Inst;
 | |
|         CountPhi = Phi;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!CountInst)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // step 5: check if the precondition is in this form:
 | |
|   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
 | |
|   {
 | |
|     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | |
|     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
 | |
|     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
 | |
|       return false;
 | |
| 
 | |
|     CntInst = CountInst;
 | |
|     CntPhi = CountPhi;
 | |
|     Var = T;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Recognizes a population count idiom in a non-countable loop.
 | |
| ///
 | |
| /// If detected, transforms the relevant code to issue the popcount intrinsic
 | |
| /// function call, and returns true; otherwise, returns false.
 | |
| bool LoopIdiomRecognize::recognizePopcount() {
 | |
|   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
 | |
|     return false;
 | |
| 
 | |
|   // Counting population are usually conducted by few arithmetic instructions.
 | |
|   // Such instructions can be easily "absorbed" by vacant slots in a
 | |
|   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
 | |
|   // in a compact loop.
 | |
| 
 | |
|   // Give up if the loop has multiple blocks or multiple backedges.
 | |
|   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *LoopBody = *(CurLoop->block_begin());
 | |
|   if (LoopBody->size() >= 20) {
 | |
|     // The loop is too big, bail out.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // It should have a preheader containing nothing but an unconditional branch.
 | |
|   BasicBlock *PH = CurLoop->getLoopPreheader();
 | |
|   if (!PH)
 | |
|     return false;
 | |
|   if (&PH->front() != PH->getTerminator())
 | |
|     return false;
 | |
|   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
 | |
|   if (!EntryBI || EntryBI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   // It should have a precondition block where the generated popcount instrinsic
 | |
|   // function can be inserted.
 | |
|   auto *PreCondBB = PH->getSinglePredecessor();
 | |
|   if (!PreCondBB)
 | |
|     return false;
 | |
|   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | |
|   if (!PreCondBI || PreCondBI->isUnconditional())
 | |
|     return false;
 | |
| 
 | |
|   Instruction *CntInst;
 | |
|   PHINode *CntPhi;
 | |
|   Value *Val;
 | |
|   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
 | |
|     return false;
 | |
| 
 | |
|   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
 | |
|                                        DebugLoc DL) {
 | |
|   Value *Ops[] = {Val};
 | |
|   Type *Tys[] = {Val->getType()};
 | |
| 
 | |
|   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
 | |
|   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
 | |
|   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
 | |
|   CI->setDebugLoc(DL);
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
 | |
|                                                  Instruction *CntInst,
 | |
|                                                  PHINode *CntPhi, Value *Var) {
 | |
|   BasicBlock *PreHead = CurLoop->getLoopPreheader();
 | |
|   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | |
|   const DebugLoc DL = CntInst->getDebugLoc();
 | |
| 
 | |
|   // Assuming before transformation, the loop is following:
 | |
|   //  if (x) // the precondition
 | |
|   //     do { cnt++; x &= x - 1; } while(x);
 | |
| 
 | |
|   // Step 1: Insert the ctpop instruction at the end of the precondition block
 | |
|   IRBuilder<> Builder(PreCondBr);
 | |
|   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
 | |
|   {
 | |
|     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
 | |
|     NewCount = PopCntZext =
 | |
|         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
 | |
| 
 | |
|     if (NewCount != PopCnt)
 | |
|       (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | |
| 
 | |
|     // TripCnt is exactly the number of iterations the loop has
 | |
|     TripCnt = NewCount;
 | |
| 
 | |
|     // If the population counter's initial value is not zero, insert Add Inst.
 | |
|     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
 | |
|     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
 | |
|     if (!InitConst || !InitConst->isZero()) {
 | |
|       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
 | |
|       (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
 | |
|   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
 | |
|   //   function would be partial dead code, and downstream passes will drag
 | |
|   //   it back from the precondition block to the preheader.
 | |
|   {
 | |
|     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
 | |
| 
 | |
|     Value *Opnd0 = PopCntZext;
 | |
|     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
 | |
|     if (PreCond->getOperand(0) != Var)
 | |
|       std::swap(Opnd0, Opnd1);
 | |
| 
 | |
|     ICmpInst *NewPreCond = cast<ICmpInst>(
 | |
|         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
 | |
|     PreCondBr->setCondition(NewPreCond);
 | |
| 
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
 | |
|   }
 | |
| 
 | |
|   // Step 3: Note that the population count is exactly the trip count of the
 | |
|   // loop in question, which enable us to to convert the loop from noncountable
 | |
|   // loop into a countable one. The benefit is twofold:
 | |
|   //
 | |
|   //  - If the loop only counts population, the entire loop becomes dead after
 | |
|   //    the transformation. It is a lot easier to prove a countable loop dead
 | |
|   //    than to prove a noncountable one. (In some C dialects, an infinite loop
 | |
|   //    isn't dead even if it computes nothing useful. In general, DCE needs
 | |
|   //    to prove a noncountable loop finite before safely delete it.)
 | |
|   //
 | |
|   //  - If the loop also performs something else, it remains alive.
 | |
|   //    Since it is transformed to countable form, it can be aggressively
 | |
|   //    optimized by some optimizations which are in general not applicable
 | |
|   //    to a noncountable loop.
 | |
|   //
 | |
|   // After this step, this loop (conceptually) would look like following:
 | |
|   //   newcnt = __builtin_ctpop(x);
 | |
|   //   t = newcnt;
 | |
|   //   if (x)
 | |
|   //     do { cnt++; x &= x-1; t--) } while (t > 0);
 | |
|   BasicBlock *Body = *(CurLoop->block_begin());
 | |
|   {
 | |
|     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
 | |
|     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
 | |
|     Type *Ty = TripCnt->getType();
 | |
| 
 | |
|     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
 | |
| 
 | |
|     Builder.SetInsertPoint(LbCond);
 | |
|     Instruction *TcDec = cast<Instruction>(
 | |
|         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
 | |
|                           "tcdec", false, true));
 | |
| 
 | |
|     TcPhi->addIncoming(TripCnt, PreHead);
 | |
|     TcPhi->addIncoming(TcDec, Body);
 | |
| 
 | |
|     CmpInst::Predicate Pred =
 | |
|         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
 | |
|     LbCond->setPredicate(Pred);
 | |
|     LbCond->setOperand(0, TcDec);
 | |
|     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
 | |
|   }
 | |
| 
 | |
|   // Step 4: All the references to the original population counter outside
 | |
|   //  the loop are replaced with the NewCount -- the value returned from
 | |
|   //  __builtin_ctpop().
 | |
|   CntInst->replaceUsesOutsideBlock(NewCount, Body);
 | |
| 
 | |
|   // step 5: Forget the "non-computable" trip-count SCEV associated with the
 | |
|   //   loop. The loop would otherwise not be deleted even if it becomes empty.
 | |
|   SE->forgetLoop(CurLoop);
 | |
| }
 |