694 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			694 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities. It does not define any
 | 
						|
// actual pass or policy, but provides a single function to perform loop
 | 
						|
// unrolling.
 | 
						|
//
 | 
						|
// The process of unrolling can produce extraneous basic blocks linked with
 | 
						|
// unconditional branches.  This will be corrected in the future.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
// TODO: Should these be here or in LoopUnroll?
 | 
						|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | 
						|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
 | 
						|
 | 
						|
/// Convert the instruction operands from referencing the current values into
 | 
						|
/// those specified by VMap.
 | 
						|
static inline void remapInstruction(Instruction *I,
 | 
						|
                                    ValueToValueMapTy &VMap) {
 | 
						|
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | 
						|
    Value *Op = I->getOperand(op);
 | 
						|
    ValueToValueMapTy::iterator It = VMap.find(Op);
 | 
						|
    if (It != VMap.end())
 | 
						|
      I->setOperand(op, It->second);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
 | 
						|
      if (It != VMap.end())
 | 
						|
        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Folds a basic block into its predecessor if it only has one predecessor, and
 | 
						|
/// that predecessor only has one successor.
 | 
						|
/// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
 | 
						|
/// successful references to the containing loop must be removed from
 | 
						|
/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
 | 
						|
/// references to the eliminated BB.  The argument ForgottenLoops contains a set
 | 
						|
/// of loops that have already been forgotten to prevent redundant, expensive
 | 
						|
/// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
 | 
						|
static BasicBlock *
 | 
						|
foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
 | 
						|
                         SmallPtrSetImpl<Loop *> &ForgottenLoops,
 | 
						|
                         DominatorTree *DT) {
 | 
						|
  // Merge basic blocks into their predecessor if there is only one distinct
 | 
						|
  // pred, and if there is only one distinct successor of the predecessor, and
 | 
						|
  // if there are no PHI nodes.
 | 
						|
  BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | 
						|
  if (!OnlyPred) return nullptr;
 | 
						|
 | 
						|
  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
 | 
						|
 | 
						|
  // Resolve any PHI nodes at the start of the block.  They are all
 | 
						|
  // guaranteed to have exactly one entry if they exist, unless there are
 | 
						|
  // multiple duplicate (but guaranteed to be equal) entries for the
 | 
						|
  // incoming edges.  This occurs when there are multiple edges from
 | 
						|
  // OnlyPred to OnlySucc.
 | 
						|
  FoldSingleEntryPHINodes(BB);
 | 
						|
 | 
						|
  // Delete the unconditional branch from the predecessor...
 | 
						|
  OnlyPred->getInstList().pop_back();
 | 
						|
 | 
						|
  // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
  // source...
 | 
						|
  BB->replaceAllUsesWith(OnlyPred);
 | 
						|
 | 
						|
  // Move all definitions in the successor to the predecessor...
 | 
						|
  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | 
						|
 | 
						|
  // OldName will be valid until erased.
 | 
						|
  StringRef OldName = BB->getName();
 | 
						|
 | 
						|
  // Erase the old block and update dominator info.
 | 
						|
  if (DT)
 | 
						|
    if (DomTreeNode *DTN = DT->getNode(BB)) {
 | 
						|
      DomTreeNode *PredDTN = DT->getNode(OnlyPred);
 | 
						|
      SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
 | 
						|
      for (auto *DI : Children)
 | 
						|
        DT->changeImmediateDominator(DI, PredDTN);
 | 
						|
 | 
						|
      DT->eraseNode(BB);
 | 
						|
    }
 | 
						|
 | 
						|
  // ScalarEvolution holds references to loop exit blocks.
 | 
						|
  if (SE) {
 | 
						|
    if (Loop *L = LI->getLoopFor(BB)) {
 | 
						|
      if (ForgottenLoops.insert(L).second)
 | 
						|
        SE->forgetLoop(L);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LI->removeBlock(BB);
 | 
						|
 | 
						|
  // Inherit predecessor's name if it exists...
 | 
						|
  if (!OldName.empty() && !OnlyPred->hasName())
 | 
						|
    OnlyPred->setName(OldName);
 | 
						|
 | 
						|
  BB->eraseFromParent();
 | 
						|
 | 
						|
  return OnlyPred;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if unrolling created a situation where we need to insert phi nodes to
 | 
						|
/// preserve LCSSA form.
 | 
						|
/// \param Blocks is a vector of basic blocks representing unrolled loop.
 | 
						|
/// \param L is the outer loop.
 | 
						|
/// It's possible that some of the blocks are in L, and some are not. In this
 | 
						|
/// case, if there is a use is outside L, and definition is inside L, we need to
 | 
						|
/// insert a phi-node, otherwise LCSSA will be broken.
 | 
						|
/// The function is just a helper function for llvm::UnrollLoop that returns
 | 
						|
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
 | 
						|
static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
 | 
						|
                                     LoopInfo *LI) {
 | 
						|
  for (BasicBlock *BB : Blocks) {
 | 
						|
    if (LI->getLoopFor(BB) == L)
 | 
						|
      continue;
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      for (Use &U : I.operands()) {
 | 
						|
        if (auto Def = dyn_cast<Instruction>(U)) {
 | 
						|
          Loop *DefLoop = LI->getLoopFor(Def->getParent());
 | 
						|
          if (!DefLoop)
 | 
						|
            continue;
 | 
						|
          if (DefLoop->contains(L))
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
 | 
						|
/// if unrolling was successful, or false if the loop was unmodified. Unrolling
 | 
						|
/// can only fail when the loop's latch block is not terminated by a conditional
 | 
						|
/// branch instruction. However, if the trip count (and multiple) are not known,
 | 
						|
/// loop unrolling will mostly produce more code that is no faster.
 | 
						|
///
 | 
						|
/// TripCount is generally defined as the number of times the loop header
 | 
						|
/// executes. UnrollLoop relaxes the definition to permit early exits: here
 | 
						|
/// TripCount is the iteration on which control exits LatchBlock if no early
 | 
						|
/// exits were taken. Note that UnrollLoop assumes that the loop counter test
 | 
						|
/// terminates LatchBlock in order to remove unnecesssary instances of the
 | 
						|
/// test. In other words, control may exit the loop prior to TripCount
 | 
						|
/// iterations via an early branch, but control may not exit the loop from the
 | 
						|
/// LatchBlock's terminator prior to TripCount iterations.
 | 
						|
///
 | 
						|
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
 | 
						|
/// execute without exiting the loop.
 | 
						|
///
 | 
						|
/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
 | 
						|
/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
 | 
						|
/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
 | 
						|
/// iterations before branching into the unrolled loop.  UnrollLoop will not
 | 
						|
/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
 | 
						|
/// AllowExpensiveTripCount is false.
 | 
						|
///
 | 
						|
/// The LoopInfo Analysis that is passed will be kept consistent.
 | 
						|
///
 | 
						|
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
 | 
						|
/// DominatorTree if they are non-null.
 | 
						|
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
 | 
						|
                      bool AllowRuntime, bool AllowExpensiveTripCount,
 | 
						|
                      unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
 | 
						|
                      DominatorTree *DT, AssumptionCache *AC,
 | 
						|
                      bool PreserveLCSSA) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  if (!LatchBlock) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loops with indirectbr cannot be cloned.
 | 
						|
  if (!L->isSafeToClone()) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | 
						|
 | 
						|
  if (!BI || BI->isUnconditional()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    DEBUG(dbgs() <<
 | 
						|
             "  Can't unroll; loop not terminated by a conditional branch.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Header->hasAddressTaken()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    DEBUG(dbgs() <<
 | 
						|
          "  Won't unroll loop: address of header block is taken.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TripCount != 0)
 | 
						|
    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
 | 
						|
  if (TripMultiple != 1)
 | 
						|
    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
 | 
						|
 | 
						|
  // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | 
						|
  // and will never be executed.
 | 
						|
  if (TripCount != 0 && Count > TripCount)
 | 
						|
    Count = TripCount;
 | 
						|
 | 
						|
  // Don't enter the unroll code if there is nothing to do. This way we don't
 | 
						|
  // need to support "partial unrolling by 1".
 | 
						|
  if (TripCount == 0 && Count < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Count > 0);
 | 
						|
  assert(TripMultiple > 0);
 | 
						|
  assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | 
						|
 | 
						|
  // Are we eliminating the loop control altogether?
 | 
						|
  bool CompletelyUnroll = Count == TripCount;
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Go through all exits of L and see if there are any phi-nodes there. We just
 | 
						|
  // conservatively assume that they're inserted to preserve LCSSA form, which
 | 
						|
  // means that complete unrolling might break this form. We need to either fix
 | 
						|
  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
 | 
						|
  // now we just recompute LCSSA for the outer loop, but it should be possible
 | 
						|
  // to fix it in-place.
 | 
						|
  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
 | 
						|
      std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
 | 
						|
                  [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
 | 
						|
 | 
						|
  // We assume a run-time trip count if the compiler cannot
 | 
						|
  // figure out the loop trip count and the unroll-runtime
 | 
						|
  // flag is specified.
 | 
						|
  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
 | 
						|
 | 
						|
  // Loops containing convergent instructions must have a count that divides
 | 
						|
  // their TripMultiple.
 | 
						|
  DEBUG(
 | 
						|
      {
 | 
						|
        bool HasConvergent = false;
 | 
						|
        for (auto &BB
 | 
						|
             : L->blocks())
 | 
						|
          for (auto &I : *BB)
 | 
						|
            if (auto CS = CallSite(&I))
 | 
						|
              HasConvergent |= CS.isConvergent();
 | 
						|
        assert((!HasConvergent || TripMultiple % Count == 0) &&
 | 
						|
               "Unroll count must divide trip multiple if loop contains a "
 | 
						|
               "convergent "
 | 
						|
               "operation.");
 | 
						|
      });
 | 
						|
  // Don't output the runtime loop prolog if Count is a multiple of
 | 
						|
  // TripMultiple.  Such a prolog is never needed, and is unsafe if the loop
 | 
						|
  // contains a convergent instruction.
 | 
						|
  if (RuntimeTripCount && TripMultiple % Count != 0 &&
 | 
						|
      !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT,
 | 
						|
                               PreserveLCSSA))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Notify ScalarEvolution that the loop will be substantially changed,
 | 
						|
  // if not outright eliminated.
 | 
						|
  if (SE)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  // If we know the trip count, we know the multiple...
 | 
						|
  unsigned BreakoutTrip = 0;
 | 
						|
  if (TripCount != 0) {
 | 
						|
    BreakoutTrip = TripCount % Count;
 | 
						|
    TripMultiple = 0;
 | 
						|
  } else {
 | 
						|
    // Figure out what multiple to use.
 | 
						|
    BreakoutTrip = TripMultiple =
 | 
						|
      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | 
						|
  }
 | 
						|
 | 
						|
  // Report the unrolling decision.
 | 
						|
  DebugLoc LoopLoc = L->getStartLoc();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  if (CompletelyUnroll) {
 | 
						|
    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
 | 
						|
          << " with trip count " << TripCount << "!\n");
 | 
						|
    emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
 | 
						|
                           Twine("completely unrolled loop with ") +
 | 
						|
                               Twine(TripCount) + " iterations");
 | 
						|
  } else {
 | 
						|
    auto EmitDiag = [&](const Twine &T) {
 | 
						|
      emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
 | 
						|
                             "unrolled loop by a factor of " + Twine(Count) +
 | 
						|
                                 T);
 | 
						|
    };
 | 
						|
 | 
						|
    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
 | 
						|
          << " by " << Count);
 | 
						|
    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | 
						|
      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
 | 
						|
      EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
 | 
						|
    } else if (TripMultiple != 1) {
 | 
						|
      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
 | 
						|
      EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
 | 
						|
    } else if (RuntimeTripCount) {
 | 
						|
      DEBUG(dbgs() << " with run-time trip count");
 | 
						|
      EmitDiag(" with run-time trip count");
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "!\n");
 | 
						|
  }
 | 
						|
 | 
						|
  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | 
						|
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | 
						|
 | 
						|
  // For the first iteration of the loop, we should use the precloned values for
 | 
						|
  // PHI nodes.  Insert associations now.
 | 
						|
  ValueToValueMapTy LastValueMap;
 | 
						|
  std::vector<PHINode*> OrigPHINode;
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    OrigPHINode.push_back(cast<PHINode>(I));
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<BasicBlock*> Headers;
 | 
						|
  std::vector<BasicBlock*> Latches;
 | 
						|
  Headers.push_back(Header);
 | 
						|
  Latches.push_back(LatchBlock);
 | 
						|
 | 
						|
  // The current on-the-fly SSA update requires blocks to be processed in
 | 
						|
  // reverse postorder so that LastValueMap contains the correct value at each
 | 
						|
  // exit.
 | 
						|
  LoopBlocksDFS DFS(L);
 | 
						|
  DFS.perform(LI);
 | 
						|
 | 
						|
  // Stash the DFS iterators before adding blocks to the loop.
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | 
						|
 | 
						|
  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
 | 
						|
  for (unsigned It = 1; It != Count; ++It) {
 | 
						|
    std::vector<BasicBlock*> NewBlocks;
 | 
						|
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
 | 
						|
    NewLoops[L] = L;
 | 
						|
 | 
						|
    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
      ValueToValueMapTy VMap;
 | 
						|
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | 
						|
      Header->getParent()->getBasicBlockList().push_back(New);
 | 
						|
 | 
						|
      // Tell LI about New.
 | 
						|
      if (*BB == Header) {
 | 
						|
        assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
 | 
						|
        L->addBasicBlockToLoop(New, *LI);
 | 
						|
      } else {
 | 
						|
        // Figure out which loop New is in.
 | 
						|
        const Loop *OldLoop = LI->getLoopFor(*BB);
 | 
						|
        assert(OldLoop && "Should (at least) be in the loop being unrolled!");
 | 
						|
 | 
						|
        Loop *&NewLoop = NewLoops[OldLoop];
 | 
						|
        if (!NewLoop) {
 | 
						|
          // Found a new sub-loop.
 | 
						|
          assert(*BB == OldLoop->getHeader() &&
 | 
						|
                 "Header should be first in RPO");
 | 
						|
 | 
						|
          Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
 | 
						|
          assert(NewLoopParent &&
 | 
						|
                 "Expected parent loop before sub-loop in RPO");
 | 
						|
          NewLoop = new Loop;
 | 
						|
          NewLoopParent->addChildLoop(NewLoop);
 | 
						|
 | 
						|
          // Forget the old loop, since its inputs may have changed.
 | 
						|
          if (SE)
 | 
						|
            SE->forgetLoop(OldLoop);
 | 
						|
        }
 | 
						|
        NewLoop->addBasicBlockToLoop(New, *LI);
 | 
						|
      }
 | 
						|
 | 
						|
      if (*BB == Header)
 | 
						|
        // Loop over all of the PHI nodes in the block, changing them to use
 | 
						|
        // the incoming values from the previous block.
 | 
						|
        for (PHINode *OrigPHI : OrigPHINode) {
 | 
						|
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
 | 
						|
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | 
						|
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | 
						|
            if (It > 1 && L->contains(InValI))
 | 
						|
              InVal = LastValueMap[InValI];
 | 
						|
          VMap[OrigPHI] = InVal;
 | 
						|
          New->getInstList().erase(NewPHI);
 | 
						|
        }
 | 
						|
 | 
						|
      // Update our running map of newest clones
 | 
						|
      LastValueMap[*BB] = New;
 | 
						|
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | 
						|
           VI != VE; ++VI)
 | 
						|
        LastValueMap[VI->first] = VI->second;
 | 
						|
 | 
						|
      // Add phi entries for newly created values to all exit blocks.
 | 
						|
      for (BasicBlock *Succ : successors(*BB)) {
 | 
						|
        if (L->contains(Succ))
 | 
						|
          continue;
 | 
						|
        for (BasicBlock::iterator BBI = Succ->begin();
 | 
						|
             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
          Value *Incoming = phi->getIncomingValueForBlock(*BB);
 | 
						|
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
 | 
						|
          if (It != LastValueMap.end())
 | 
						|
            Incoming = It->second;
 | 
						|
          phi->addIncoming(Incoming, New);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Keep track of new headers and latches as we create them, so that
 | 
						|
      // we can insert the proper branches later.
 | 
						|
      if (*BB == Header)
 | 
						|
        Headers.push_back(New);
 | 
						|
      if (*BB == LatchBlock)
 | 
						|
        Latches.push_back(New);
 | 
						|
 | 
						|
      NewBlocks.push_back(New);
 | 
						|
      UnrolledLoopBlocks.push_back(New);
 | 
						|
 | 
						|
      // Update DomTree: since we just copy the loop body, and each copy has a
 | 
						|
      // dedicated entry block (copy of the header block), this header's copy
 | 
						|
      // dominates all copied blocks. That means, dominance relations in the
 | 
						|
      // copied body are the same as in the original body.
 | 
						|
      if (DT) {
 | 
						|
        if (*BB == Header)
 | 
						|
          DT->addNewBlock(New, Latches[It - 1]);
 | 
						|
        else {
 | 
						|
          auto BBDomNode = DT->getNode(*BB);
 | 
						|
          auto BBIDom = BBDomNode->getIDom();
 | 
						|
          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
 | 
						|
          DT->addNewBlock(
 | 
						|
              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Remap all instructions in the most recent iteration
 | 
						|
    for (BasicBlock *NewBlock : NewBlocks)
 | 
						|
      for (Instruction &I : *NewBlock)
 | 
						|
        ::remapInstruction(&I, LastValueMap);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the PHI nodes in the original block, setting incoming values.
 | 
						|
  for (PHINode *PN : OrigPHINode) {
 | 
						|
    if (CompletelyUnroll) {
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | 
						|
      Header->getInstList().erase(PN);
 | 
						|
    }
 | 
						|
    else if (Count > 1) {
 | 
						|
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | 
						|
      // If this value was defined in the loop, take the value defined by the
 | 
						|
      // last iteration of the loop.
 | 
						|
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | 
						|
        if (L->contains(InValI))
 | 
						|
          InVal = LastValueMap[InVal];
 | 
						|
      }
 | 
						|
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
 | 
						|
      PN->addIncoming(InVal, Latches.back());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all the basic blocks for the unrolled iterations are in place,
 | 
						|
  // set up the branches to connect them.
 | 
						|
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | 
						|
    // The original branch was replicated in each unrolled iteration.
 | 
						|
    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | 
						|
 | 
						|
    // The branch destination.
 | 
						|
    unsigned j = (i + 1) % e;
 | 
						|
    BasicBlock *Dest = Headers[j];
 | 
						|
    bool NeedConditional = true;
 | 
						|
 | 
						|
    if (RuntimeTripCount && j != 0) {
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // For a complete unroll, make the last iteration end with a branch
 | 
						|
    // to the exit block.
 | 
						|
    if (CompletelyUnroll) {
 | 
						|
      if (j == 0)
 | 
						|
        Dest = LoopExit;
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know the trip count or a multiple of it, we can safely use an
 | 
						|
    // unconditional branch for some iterations.
 | 
						|
    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedConditional) {
 | 
						|
      // Update the conditional branch's successor for the following
 | 
						|
      // iteration.
 | 
						|
      Term->setSuccessor(!ContinueOnTrue, Dest);
 | 
						|
    } else {
 | 
						|
      // Remove phi operands at this loop exit
 | 
						|
      if (Dest != LoopExit) {
 | 
						|
        BasicBlock *BB = Latches[i];
 | 
						|
        for (BasicBlock *Succ: successors(BB)) {
 | 
						|
          if (Succ == Headers[i])
 | 
						|
            continue;
 | 
						|
          for (BasicBlock::iterator BBI = Succ->begin();
 | 
						|
               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
            Phi->removeIncomingValue(BB, false);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      BranchInst::Create(Dest, Term);
 | 
						|
      Term->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Update dominators of loop exit blocks.
 | 
						|
  // Immediate dominator of an exit block might change, because we add more
 | 
						|
  // routes which can lead to the exit: we can now reach it from the copied
 | 
						|
  // iterations too. Thus, the new idom of the exit block will be the nearest
 | 
						|
  // common dominator of the previous idom and common dominator of all copies of
 | 
						|
  // the exiting block. This is equivalent to the nearest common dominator of
 | 
						|
  // the previous idom and the first latch, which dominates all copies of the
 | 
						|
  // exiting block.
 | 
						|
  if (DT && Count > 1) {
 | 
						|
    for (auto Exit : ExitBlocks) {
 | 
						|
      BasicBlock *PrevIDom = DT->getNode(Exit)->getIDom()->getBlock();
 | 
						|
      BasicBlock *NewIDom =
 | 
						|
          DT->findNearestCommonDominator(PrevIDom, Latches[0]);
 | 
						|
      DT->changeImmediateDominator(Exit, NewIDom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge adjacent basic blocks, if possible.
 | 
						|
  SmallPtrSet<Loop *, 4> ForgottenLoops;
 | 
						|
  for (BasicBlock *Latch : Latches) {
 | 
						|
    BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
 | 
						|
    if (Term->isUnconditional()) {
 | 
						|
      BasicBlock *Dest = Term->getSuccessor(0);
 | 
						|
      if (BasicBlock *Fold =
 | 
						|
              foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
 | 
						|
        // Dest has been folded into Fold. Update our worklists accordingly.
 | 
						|
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | 
						|
        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
 | 
						|
                                             UnrolledLoopBlocks.end(), Dest),
 | 
						|
                                 UnrolledLoopBlocks.end());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We could register any cloned assumptions instead of clearing the
 | 
						|
  // whole function's cache.
 | 
						|
  AC->clear();
 | 
						|
 | 
						|
  // FIXME: We only preserve DT info for complete unrolling now. Incrementally
 | 
						|
  // updating domtree after partial loop unrolling should also be easy.
 | 
						|
  if (DT && !CompletelyUnroll)
 | 
						|
    DT->recalculate(*L->getHeader()->getParent());
 | 
						|
  else
 | 
						|
    DEBUG(DT->verifyDomTree());
 | 
						|
 | 
						|
  // Simplify any new induction variables in the partially unrolled loop.
 | 
						|
  if (SE && !CompletelyUnroll) {
 | 
						|
    SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
    simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
 | 
						|
 | 
						|
    // Aggressively clean up dead instructions that simplifyLoopIVs already
 | 
						|
    // identified. Any remaining should be cleaned up below.
 | 
						|
    while (!DeadInsts.empty())
 | 
						|
      if (Instruction *Inst =
 | 
						|
              dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, the code is well formed.  We now do a quick sweep over the
 | 
						|
  // inserted code, doing constant propagation and dead code elimination as we
 | 
						|
  // go.
 | 
						|
  const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
 | 
						|
  for (BasicBlock *BB : NewLoopBlocks)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | 
						|
      Instruction *Inst = &*I++;
 | 
						|
 | 
						|
      if (isInstructionTriviallyDead(Inst))
 | 
						|
        BB->getInstList().erase(Inst);
 | 
						|
      else if (Value *V = SimplifyInstruction(Inst, DL))
 | 
						|
        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
 | 
						|
          Inst->replaceAllUsesWith(V);
 | 
						|
          BB->getInstList().erase(Inst);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  NumCompletelyUnrolled += CompletelyUnroll;
 | 
						|
  ++NumUnrolled;
 | 
						|
 | 
						|
  Loop *OuterL = L->getParentLoop();
 | 
						|
  // Update LoopInfo if the loop is completely removed.
 | 
						|
  if (CompletelyUnroll)
 | 
						|
    LI->markAsRemoved(L);
 | 
						|
 | 
						|
  // After complete unrolling most of the blocks should be contained in OuterL.
 | 
						|
  // However, some of them might happen to be out of OuterL (e.g. if they
 | 
						|
  // precede a loop exit). In this case we might need to insert PHI nodes in
 | 
						|
  // order to preserve LCSSA form.
 | 
						|
  // We don't need to check this if we already know that we need to fix LCSSA
 | 
						|
  // form.
 | 
						|
  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
 | 
						|
  // it should be possible to fix it in-place.
 | 
						|
  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
 | 
						|
    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
 | 
						|
 | 
						|
  // If we have a pass and a DominatorTree we should re-simplify impacted loops
 | 
						|
  // to ensure subsequent analyses can rely on this form. We want to simplify
 | 
						|
  // at least one layer outside of the loop that was unrolled so that any
 | 
						|
  // changes to the parent loop exposed by the unrolling are considered.
 | 
						|
  if (DT) {
 | 
						|
    if (!OuterL && !CompletelyUnroll)
 | 
						|
      OuterL = L;
 | 
						|
    if (OuterL) {
 | 
						|
      simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
 | 
						|
 | 
						|
      // LCSSA must be performed on the outermost affected loop. The unrolled
 | 
						|
      // loop's last loop latch is guaranteed to be in the outermost loop after
 | 
						|
      // LoopInfo's been updated by markAsRemoved.
 | 
						|
      Loop *LatchLoop = LI->getLoopFor(Latches.back());
 | 
						|
      if (!OuterL->contains(LatchLoop))
 | 
						|
        while (OuterL->getParentLoop() != LatchLoop)
 | 
						|
          OuterL = OuterL->getParentLoop();
 | 
						|
 | 
						|
      if (NeedToFixLCSSA)
 | 
						|
        formLCSSARecursively(*OuterL, *DT, LI, SE);
 | 
						|
      else
 | 
						|
        assert(OuterL->isLCSSAForm(*DT) &&
 | 
						|
               "Loops should be in LCSSA form after loop-unroll.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
 | 
						|
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
 | 
						|
/// such metadata node exists, then nullptr is returned.
 | 
						|
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
 | 
						|
  // First operand should refer to the loop id itself.
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | 
						|
 | 
						|
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | 
						|
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
    if (!MD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Name.equals(S->getString()))
 | 
						|
      return MD;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 |