1100 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the MemorySSA class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------===//
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/PHITransAddr.h"
 | 
						|
#include "llvm/IR/AssemblyAnnotationWriter.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/MemorySSA.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#define DEBUG_TYPE "memoryssa"
 | 
						|
using namespace llvm;
 | 
						|
STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups");
 | 
						|
STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits");
 | 
						|
STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts");
 | 
						|
INITIALIZE_PASS_WITH_OPTIONS_BEGIN(MemorySSAPrinterPass, "print-memoryssa",
 | 
						|
                                   "Memory SSA", true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MemorySSAPrinterPass, "print-memoryssa", "Memory SSA", true,
 | 
						|
                    true)
 | 
						|
INITIALIZE_PASS(MemorySSALazy, "memoryssalazy", "Memory SSA", true, true)
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// \brief An assembly annotator class to print Memory SSA information in
 | 
						|
/// comments.
 | 
						|
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
 | 
						|
  friend class MemorySSA;
 | 
						|
  const MemorySSA *MSSA;
 | 
						|
 | 
						|
public:
 | 
						|
  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
 | 
						|
 | 
						|
  virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
 | 
						|
                                        formatted_raw_ostream &OS) {
 | 
						|
    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
 | 
						|
      OS << "; " << *MA << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void emitInstructionAnnot(const Instruction *I,
 | 
						|
                                    formatted_raw_ostream &OS) {
 | 
						|
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
 | 
						|
      OS << "; " << *MA << "\n";
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct RenamePassData {
 | 
						|
  DomTreeNode *DTN;
 | 
						|
  DomTreeNode::const_iterator ChildIt;
 | 
						|
  MemoryAccess *IncomingVal;
 | 
						|
 | 
						|
  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
 | 
						|
                 MemoryAccess *M)
 | 
						|
      : DTN(D), ChildIt(It), IncomingVal(M) {}
 | 
						|
  void swap(RenamePassData &RHS) {
 | 
						|
    std::swap(DTN, RHS.DTN);
 | 
						|
    std::swap(ChildIt, RHS.ChildIt);
 | 
						|
    std::swap(IncomingVal, RHS.IncomingVal);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
/// \brief Rename a single basic block into MemorySSA form.
 | 
						|
/// Uses the standard SSA renaming algorithm.
 | 
						|
/// \returns The new incoming value.
 | 
						|
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB,
 | 
						|
                                     MemoryAccess *IncomingVal) {
 | 
						|
  auto It = PerBlockAccesses.find(BB);
 | 
						|
  // Skip most processing if the list is empty.
 | 
						|
  if (It != PerBlockAccesses.end()) {
 | 
						|
    AccessListType *Accesses = It->second.get();
 | 
						|
    for (MemoryAccess &L : *Accesses) {
 | 
						|
      switch (L.getValueID()) {
 | 
						|
      case Value::MemoryUseVal:
 | 
						|
        cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal);
 | 
						|
        break;
 | 
						|
      case Value::MemoryDefVal:
 | 
						|
        // We can't legally optimize defs, because we only allow single
 | 
						|
        // memory phis/uses on operations, and if we optimize these, we can
 | 
						|
        // end up with multiple reaching defs. Uses do not have this
 | 
						|
        // problem, since they do not produce a value
 | 
						|
        cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal);
 | 
						|
        IncomingVal = &L;
 | 
						|
        break;
 | 
						|
      case Value::MemoryPhiVal:
 | 
						|
        IncomingVal = &L;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Pass through values to our successors
 | 
						|
  for (const BasicBlock *S : successors(BB)) {
 | 
						|
    auto It = PerBlockAccesses.find(S);
 | 
						|
    // Rename the phi nodes in our successor block
 | 
						|
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
 | 
						|
      continue;
 | 
						|
    AccessListType *Accesses = It->second.get();
 | 
						|
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
 | 
						|
    assert(std::find(succ_begin(BB), succ_end(BB), S) != succ_end(BB) &&
 | 
						|
           "Must be at least one edge from Succ to BB!");
 | 
						|
    Phi->addIncoming(IncomingVal, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  return IncomingVal;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief This is the standard SSA renaming algorithm.
 | 
						|
///
 | 
						|
/// We walk the dominator tree in preorder, renaming accesses, and then filling
 | 
						|
/// in phi nodes in our successors.
 | 
						|
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
 | 
						|
                           SmallPtrSet<BasicBlock *, 16> &Visited) {
 | 
						|
  SmallVector<RenamePassData, 32> WorkStack;
 | 
						|
  IncomingVal = renameBlock(Root->getBlock(), IncomingVal);
 | 
						|
  WorkStack.push_back({Root, Root->begin(), IncomingVal});
 | 
						|
  Visited.insert(Root->getBlock());
 | 
						|
 | 
						|
  while (!WorkStack.empty()) {
 | 
						|
    DomTreeNode *Node = WorkStack.back().DTN;
 | 
						|
    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
 | 
						|
    IncomingVal = WorkStack.back().IncomingVal;
 | 
						|
 | 
						|
    if (ChildIt == Node->end()) {
 | 
						|
      WorkStack.pop_back();
 | 
						|
    } else {
 | 
						|
      DomTreeNode *Child = *ChildIt;
 | 
						|
      ++WorkStack.back().ChildIt;
 | 
						|
      BasicBlock *BB = Child->getBlock();
 | 
						|
      Visited.insert(BB);
 | 
						|
      IncomingVal = renameBlock(BB, IncomingVal);
 | 
						|
      WorkStack.push_back({Child, Child->begin(), IncomingVal});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute dominator levels, used by the phi insertion algorithm above.
 | 
						|
void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) {
 | 
						|
  for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode());
 | 
						|
       DFI != DFE; ++DFI)
 | 
						|
    DomLevels[*DFI] = DFI.getPathLength() - 1;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief This handles unreachable block acccesses by deleting phi nodes in
 | 
						|
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
 | 
						|
/// being uses of the live on entry definition.
 | 
						|
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
 | 
						|
  assert(!DT->isReachableFromEntry(BB) &&
 | 
						|
         "Reachable block found while handling unreachable blocks");
 | 
						|
 | 
						|
  auto It = PerBlockAccesses.find(BB);
 | 
						|
  if (It == PerBlockAccesses.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &Accesses = It->second;
 | 
						|
  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
 | 
						|
    auto Next = std::next(AI);
 | 
						|
    // If we have a phi, just remove it. We are going to replace all
 | 
						|
    // users with live on entry.
 | 
						|
    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
 | 
						|
      UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
 | 
						|
    else
 | 
						|
      Accesses->erase(AI);
 | 
						|
    AI = Next;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemorySSA::MemorySSA(Function &Func)
 | 
						|
    : AA(nullptr), DT(nullptr), F(Func), LiveOnEntryDef(nullptr),
 | 
						|
      Walker(nullptr), NextID(0) {}
 | 
						|
 | 
						|
MemorySSA::~MemorySSA() {
 | 
						|
  // Drop all our references
 | 
						|
  for (const auto &Pair : PerBlockAccesses)
 | 
						|
    for (MemoryAccess &MA : *Pair.second)
 | 
						|
      MA.dropAllReferences();
 | 
						|
}
 | 
						|
 | 
						|
MemorySSA::AccessListType *MemorySSA::getOrCreateAccessList(BasicBlock *BB) {
 | 
						|
  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
 | 
						|
 | 
						|
  if (Res.second)
 | 
						|
    Res.first->second = make_unique<AccessListType>();
 | 
						|
  return Res.first->second.get();
 | 
						|
}
 | 
						|
 | 
						|
MemorySSAWalker *MemorySSA::buildMemorySSA(AliasAnalysis *AA,
 | 
						|
                                           DominatorTree *DT) {
 | 
						|
  if (Walker)
 | 
						|
    return Walker;
 | 
						|
 | 
						|
  assert(!this->AA && !this->DT &&
 | 
						|
         "MemorySSA without a walker already has AA or DT?");
 | 
						|
 | 
						|
  Walker = new CachingMemorySSAWalker(this, AA, DT);
 | 
						|
  this->AA = AA;
 | 
						|
  this->DT = DT;
 | 
						|
 | 
						|
  // We create an access to represent "live on entry", for things like
 | 
						|
  // arguments or users of globals, where the memory they use is defined before
 | 
						|
  // the beginning of the function. We do not actually insert it into the IR.
 | 
						|
  // We do not define a live on exit for the immediate uses, and thus our
 | 
						|
  // semantics do *not* imply that something with no immediate uses can simply
 | 
						|
  // be removed.
 | 
						|
  BasicBlock &StartingPoint = F.getEntryBlock();
 | 
						|
  LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
 | 
						|
                                          &StartingPoint, NextID++);
 | 
						|
 | 
						|
  // We maintain lists of memory accesses per-block, trading memory for time. We
 | 
						|
  // could just look up the memory access for every possible instruction in the
 | 
						|
  // stream.
 | 
						|
  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
 | 
						|
  SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
 | 
						|
  // Go through each block, figure out where defs occur, and chain together all
 | 
						|
  // the accesses.
 | 
						|
  for (BasicBlock &B : F) {
 | 
						|
    bool InsertIntoDef = false;
 | 
						|
    AccessListType *Accesses = nullptr;
 | 
						|
    for (Instruction &I : B) {
 | 
						|
      MemoryUseOrDef *MUD = createNewAccess(&I, true);
 | 
						|
      if (!MUD)
 | 
						|
        continue;
 | 
						|
      InsertIntoDef |= isa<MemoryDef>(MUD);
 | 
						|
 | 
						|
      if (!Accesses)
 | 
						|
        Accesses = getOrCreateAccessList(&B);
 | 
						|
      Accesses->push_back(MUD);
 | 
						|
    }
 | 
						|
    if (InsertIntoDef)
 | 
						|
      DefiningBlocks.insert(&B);
 | 
						|
    if (Accesses)
 | 
						|
      DefUseBlocks.insert(&B);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute live-in.
 | 
						|
  // Live in is normally defined as "all the blocks on the path from each def to
 | 
						|
  // each of it's uses".
 | 
						|
  // MemoryDef's are implicit uses of previous state, so they are also uses.
 | 
						|
  // This means we don't really have def-only instructions.  The only
 | 
						|
  // MemoryDef's that are not really uses are those that are of the LiveOnEntry
 | 
						|
  // variable (because LiveOnEntry can reach anywhere, and every def is a
 | 
						|
  // must-kill of LiveOnEntry).
 | 
						|
  // In theory, you could precisely compute live-in by using alias-analysis to
 | 
						|
  // disambiguate defs and uses to see which really pair up with which.
 | 
						|
  // In practice, this would be really expensive and difficult. So we simply
 | 
						|
  // assume all defs are also uses that need to be kept live.
 | 
						|
  // Because of this, the end result of this live-in computation will be "the
 | 
						|
  // entire set of basic blocks that reach any use".
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
 | 
						|
  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(),
 | 
						|
                                                    DefUseBlocks.end());
 | 
						|
  // Now that we have a set of blocks where a value is live-in, recursively add
 | 
						|
  // predecessors until we find the full region the value is live.
 | 
						|
  while (!LiveInBlockWorklist.empty()) {
 | 
						|
    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
 | 
						|
 | 
						|
    // The block really is live in here, insert it into the set.  If already in
 | 
						|
    // the set, then it has already been processed.
 | 
						|
    if (!LiveInBlocks.insert(BB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Since the value is live into BB, it is either defined in a predecessor or
 | 
						|
    // live into it to.
 | 
						|
    LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine where our MemoryPhi's should go
 | 
						|
  IDFCalculator IDFs(*DT);
 | 
						|
  IDFs.setDefiningBlocks(DefiningBlocks);
 | 
						|
  IDFs.setLiveInBlocks(LiveInBlocks);
 | 
						|
  SmallVector<BasicBlock *, 32> IDFBlocks;
 | 
						|
  IDFs.calculate(IDFBlocks);
 | 
						|
 | 
						|
  // Now place MemoryPhi nodes.
 | 
						|
  for (auto &BB : IDFBlocks) {
 | 
						|
    // Insert phi node
 | 
						|
    AccessListType *Accesses = getOrCreateAccessList(BB);
 | 
						|
    MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++);
 | 
						|
    ValueToMemoryAccess.insert(std::make_pair(BB, Phi));
 | 
						|
    // Phi's always are placed at the front of the block.
 | 
						|
    Accesses->push_front(Phi);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
 | 
						|
  // filled in with all blocks.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Visited;
 | 
						|
  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
 | 
						|
 | 
						|
  // Now optimize the MemoryUse's defining access to point to the nearest
 | 
						|
  // dominating clobbering def.
 | 
						|
  // This ensures that MemoryUse's that are killed by the same store are
 | 
						|
  // immediate users of that store, one of the invariants we guarantee.
 | 
						|
  for (auto DomNode : depth_first(DT)) {
 | 
						|
    BasicBlock *BB = DomNode->getBlock();
 | 
						|
    auto AI = PerBlockAccesses.find(BB);
 | 
						|
    if (AI == PerBlockAccesses.end())
 | 
						|
      continue;
 | 
						|
    AccessListType *Accesses = AI->second.get();
 | 
						|
    for (auto &MA : *Accesses) {
 | 
						|
      if (auto *MU = dyn_cast<MemoryUse>(&MA)) {
 | 
						|
        Instruction *Inst = MU->getMemoryInst();
 | 
						|
        MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark the uses in unreachable blocks as live on entry, so that they go
 | 
						|
  // somewhere.
 | 
						|
  for (auto &BB : F)
 | 
						|
    if (!Visited.count(&BB))
 | 
						|
      markUnreachableAsLiveOnEntry(&BB);
 | 
						|
 | 
						|
  return Walker;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function to create new memory accesses
 | 
						|
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
 | 
						|
                                           bool IgnoreNonMemory) {
 | 
						|
  // Find out what affect this instruction has on memory.
 | 
						|
  ModRefInfo ModRef = AA->getModRefInfo(I);
 | 
						|
  bool Def = bool(ModRef & MRI_Mod);
 | 
						|
  bool Use = bool(ModRef & MRI_Ref);
 | 
						|
 | 
						|
  // It's possible for an instruction to not modify memory at all. During
 | 
						|
  // construction, we ignore them.
 | 
						|
  if (IgnoreNonMemory && !Def && !Use)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert((Def || Use) &&
 | 
						|
         "Trying to create a memory access with a non-memory instruction");
 | 
						|
 | 
						|
  MemoryUseOrDef *MUD;
 | 
						|
  if (Def)
 | 
						|
    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
 | 
						|
  else
 | 
						|
    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
 | 
						|
  ValueToMemoryAccess.insert(std::make_pair(I, MUD));
 | 
						|
  return MUD;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock,
 | 
						|
                                           enum InsertionPlace Where) {
 | 
						|
  // Handle the initial case
 | 
						|
  if (Where == Beginning)
 | 
						|
    // The only thing that could define us at the beginning is a phi node
 | 
						|
    if (MemoryPhi *Phi = getMemoryAccess(UseBlock))
 | 
						|
      return Phi;
 | 
						|
 | 
						|
  DomTreeNode *CurrNode = DT->getNode(UseBlock);
 | 
						|
  // Need to be defined by our dominator
 | 
						|
  if (Where == Beginning)
 | 
						|
    CurrNode = CurrNode->getIDom();
 | 
						|
  Where = End;
 | 
						|
  while (CurrNode) {
 | 
						|
    auto It = PerBlockAccesses.find(CurrNode->getBlock());
 | 
						|
    if (It != PerBlockAccesses.end()) {
 | 
						|
      auto &Accesses = It->second;
 | 
						|
      for (auto RAI = Accesses->rbegin(), RAE = Accesses->rend(); RAI != RAE;
 | 
						|
           ++RAI) {
 | 
						|
        if (isa<MemoryDef>(*RAI) || isa<MemoryPhi>(*RAI))
 | 
						|
          return &*RAI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CurrNode = CurrNode->getIDom();
 | 
						|
  }
 | 
						|
  return LiveOnEntryDef.get();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns true if \p Replacer dominates \p Replacee .
 | 
						|
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
 | 
						|
                             const MemoryAccess *Replacee) const {
 | 
						|
  if (isa<MemoryUseOrDef>(Replacee))
 | 
						|
    return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
 | 
						|
  const auto *MP = cast<MemoryPhi>(Replacee);
 | 
						|
  // For a phi node, the use occurs in the predecessor block of the phi node.
 | 
						|
  // Since we may occur multiple times in the phi node, we have to check each
 | 
						|
  // operand to ensure Replacer dominates each operand where Replacee occurs.
 | 
						|
  for (const Use &Arg : MP->operands()) {
 | 
						|
    if (Arg.get() != Replacee &&
 | 
						|
        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If all arguments of a MemoryPHI are defined by the same incoming
 | 
						|
/// argument, return that argument.
 | 
						|
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
 | 
						|
  MemoryAccess *MA = nullptr;
 | 
						|
 | 
						|
  for (auto &Arg : MP->operands()) {
 | 
						|
    if (!MA)
 | 
						|
      MA = cast<MemoryAccess>(Arg);
 | 
						|
    else if (MA != Arg)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return MA;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
 | 
						|
///
 | 
						|
/// Because of the way the intrusive list and use lists work, it is important to
 | 
						|
/// do removal in the right order.
 | 
						|
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
 | 
						|
  assert(MA->use_empty() &&
 | 
						|
         "Trying to remove memory access that still has uses");
 | 
						|
  if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
 | 
						|
    MUD->setDefiningAccess(nullptr);
 | 
						|
  // Invalidate our walker's cache if necessary
 | 
						|
  if (!isa<MemoryUse>(MA))
 | 
						|
    Walker->invalidateInfo(MA);
 | 
						|
  // The call below to erase will destroy MA, so we can't change the order we
 | 
						|
  // are doing things here
 | 
						|
  Value *MemoryInst;
 | 
						|
  if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
 | 
						|
    MemoryInst = MUD->getMemoryInst();
 | 
						|
  } else {
 | 
						|
    MemoryInst = MA->getBlock();
 | 
						|
  }
 | 
						|
  ValueToMemoryAccess.erase(MemoryInst);
 | 
						|
 | 
						|
  auto AccessIt = PerBlockAccesses.find(MA->getBlock());
 | 
						|
  std::unique_ptr<AccessListType> &Accesses = AccessIt->second;
 | 
						|
  Accesses->erase(MA);
 | 
						|
  if (Accesses->empty())
 | 
						|
    PerBlockAccesses.erase(AccessIt);
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
 | 
						|
  assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def");
 | 
						|
  // We can only delete phi nodes if they have no uses, or we can replace all
 | 
						|
  // uses with a single definition.
 | 
						|
  MemoryAccess *NewDefTarget = nullptr;
 | 
						|
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
 | 
						|
    // Note that it is sufficient to know that all edges of the phi node have
 | 
						|
    // the same argument.  If they do, by the definition of dominance frontiers
 | 
						|
    // (which we used to place this phi), that argument must dominate this phi,
 | 
						|
    // and thus, must dominate the phi's uses, and so we will not hit the assert
 | 
						|
    // below.
 | 
						|
    NewDefTarget = onlySingleValue(MP);
 | 
						|
    assert((NewDefTarget || MP->use_empty()) &&
 | 
						|
           "We can't delete this memory phi");
 | 
						|
  } else {
 | 
						|
    NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
 | 
						|
  }
 | 
						|
 | 
						|
  // Re-point the uses at our defining access
 | 
						|
  if (!MA->use_empty())
 | 
						|
    MA->replaceAllUsesWith(NewDefTarget);
 | 
						|
 | 
						|
  // The call below to erase will destroy MA, so we can't change the order we
 | 
						|
  // are doing things here
 | 
						|
  removeFromLookups(MA);
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSA::print(raw_ostream &OS) const {
 | 
						|
  MemorySSAAnnotatedWriter Writer(this);
 | 
						|
  F.print(OS, &Writer);
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSA::dump() const {
 | 
						|
  MemorySSAAnnotatedWriter Writer(this);
 | 
						|
  F.print(dbgs(), &Writer);
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSA::verifyMemorySSA() const {
 | 
						|
  verifyDefUses(F);
 | 
						|
  verifyDomination(F);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify the domination properties of MemorySSA by checking that each
 | 
						|
/// definition dominates all of its uses.
 | 
						|
void MemorySSA::verifyDomination(Function &F) const {
 | 
						|
  for (BasicBlock &B : F) {
 | 
						|
    // Phi nodes are attached to basic blocks
 | 
						|
    if (MemoryPhi *MP = getMemoryAccess(&B)) {
 | 
						|
      for (User *U : MP->users()) {
 | 
						|
        BasicBlock *UseBlock;
 | 
						|
        // Phi operands are used on edges, we simulate the right domination by
 | 
						|
        // acting as if the use occurred at the end of the predecessor block.
 | 
						|
        if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) {
 | 
						|
          for (const auto &Arg : P->operands()) {
 | 
						|
            if (Arg == MP) {
 | 
						|
              UseBlock = P->getIncomingBlock(Arg);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          UseBlock = cast<MemoryAccess>(U)->getBlock();
 | 
						|
        }
 | 
						|
        (void)UseBlock;
 | 
						|
        assert(DT->dominates(MP->getBlock(), UseBlock) &&
 | 
						|
               "Memory PHI does not dominate it's uses");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (Instruction &I : B) {
 | 
						|
      MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
 | 
						|
      if (!MD)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (User *U : MD->users()) {
 | 
						|
        BasicBlock *UseBlock; (void)UseBlock;
 | 
						|
        // Things are allowed to flow to phi nodes over their predecessor edge.
 | 
						|
        if (auto *P = dyn_cast<MemoryPhi>(U)) {
 | 
						|
          for (const auto &Arg : P->operands()) {
 | 
						|
            if (Arg == MD) {
 | 
						|
              UseBlock = P->getIncomingBlock(Arg);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          UseBlock = cast<MemoryAccess>(U)->getBlock();
 | 
						|
        }
 | 
						|
        assert(DT->dominates(MD->getBlock(), UseBlock) &&
 | 
						|
               "Memory Def does not dominate it's uses");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
 | 
						|
/// appears in the use list of \p Def.
 | 
						|
///
 | 
						|
/// llvm_unreachable is used instead of asserts because this may be called in
 | 
						|
/// a build without asserts. In that case, we don't want this to turn into a
 | 
						|
/// nop.
 | 
						|
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
 | 
						|
  // The live on entry use may cause us to get a NULL def here
 | 
						|
  if (!Def) {
 | 
						|
    if (!isLiveOnEntryDef(Use))
 | 
						|
      llvm_unreachable("Null def but use not point to live on entry def");
 | 
						|
  } else if (std::find(Def->user_begin(), Def->user_end(), Use) ==
 | 
						|
             Def->user_end()) {
 | 
						|
    llvm_unreachable("Did not find use in def's use list");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify the immediate use information, by walking all the memory
 | 
						|
/// accesses and verifying that, for each use, it appears in the
 | 
						|
/// appropriate def's use list
 | 
						|
void MemorySSA::verifyDefUses(Function &F) const {
 | 
						|
  for (BasicBlock &B : F) {
 | 
						|
    // Phi nodes are attached to basic blocks
 | 
						|
    if (MemoryPhi *Phi = getMemoryAccess(&B))
 | 
						|
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
 | 
						|
        verifyUseInDefs(Phi->getIncomingValue(I), Phi);
 | 
						|
 | 
						|
    for (Instruction &I : B) {
 | 
						|
      if (MemoryAccess *MA = getMemoryAccess(&I)) {
 | 
						|
        assert(isa<MemoryUseOrDef>(MA) &&
 | 
						|
               "Found a phi node not attached to a bb");
 | 
						|
        verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const {
 | 
						|
  return ValueToMemoryAccess.lookup(I);
 | 
						|
}
 | 
						|
 | 
						|
MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
 | 
						|
  return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine, for two memory accesses in the same block,
 | 
						|
/// whether \p Dominator dominates \p Dominatee.
 | 
						|
/// \returns True if \p Dominator dominates \p Dominatee.
 | 
						|
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
 | 
						|
                                 const MemoryAccess *Dominatee) const {
 | 
						|
 | 
						|
  assert((Dominator->getBlock() == Dominatee->getBlock()) &&
 | 
						|
         "Asking for local domination when accesses are in different blocks!");
 | 
						|
  // Get the access list for the block
 | 
						|
  const AccessListType *AccessList = getBlockAccesses(Dominator->getBlock());
 | 
						|
  AccessListType::const_reverse_iterator It(Dominator->getIterator());
 | 
						|
 | 
						|
  // If we hit the beginning of the access list before we hit dominatee, we must
 | 
						|
  // dominate it
 | 
						|
  return std::none_of(It, AccessList->rend(),
 | 
						|
                      [&](const MemoryAccess &MA) { return &MA == Dominatee; });
 | 
						|
}
 | 
						|
 | 
						|
const static char LiveOnEntryStr[] = "liveOnEntry";
 | 
						|
 | 
						|
void MemoryDef::print(raw_ostream &OS) const {
 | 
						|
  MemoryAccess *UO = getDefiningAccess();
 | 
						|
 | 
						|
  OS << getID() << " = MemoryDef(";
 | 
						|
  if (UO && UO->getID())
 | 
						|
    OS << UO->getID();
 | 
						|
  else
 | 
						|
    OS << LiveOnEntryStr;
 | 
						|
  OS << ')';
 | 
						|
}
 | 
						|
 | 
						|
void MemoryPhi::print(raw_ostream &OS) const {
 | 
						|
  bool First = true;
 | 
						|
  OS << getID() << " = MemoryPhi(";
 | 
						|
  for (const auto &Op : operands()) {
 | 
						|
    BasicBlock *BB = getIncomingBlock(Op);
 | 
						|
    MemoryAccess *MA = cast<MemoryAccess>(Op);
 | 
						|
    if (!First)
 | 
						|
      OS << ',';
 | 
						|
    else
 | 
						|
      First = false;
 | 
						|
 | 
						|
    OS << '{';
 | 
						|
    if (BB->hasName())
 | 
						|
      OS << BB->getName();
 | 
						|
    else
 | 
						|
      BB->printAsOperand(OS, false);
 | 
						|
    OS << ',';
 | 
						|
    if (unsigned ID = MA->getID())
 | 
						|
      OS << ID;
 | 
						|
    else
 | 
						|
      OS << LiveOnEntryStr;
 | 
						|
    OS << '}';
 | 
						|
  }
 | 
						|
  OS << ')';
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess::~MemoryAccess() {}
 | 
						|
 | 
						|
void MemoryUse::print(raw_ostream &OS) const {
 | 
						|
  MemoryAccess *UO = getDefiningAccess();
 | 
						|
  OS << "MemoryUse(";
 | 
						|
  if (UO && UO->getID())
 | 
						|
    OS << UO->getID();
 | 
						|
  else
 | 
						|
    OS << LiveOnEntryStr;
 | 
						|
  OS << ')';
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
char MemorySSAPrinterPass::ID = 0;
 | 
						|
 | 
						|
MemorySSAPrinterPass::MemorySSAPrinterPass() : FunctionPass(ID) {
 | 
						|
  initializeMemorySSAPrinterPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSAPrinterPass::releaseMemory() {
 | 
						|
  // Subtlety: Be sure to delete the walker before MSSA, because the walker's
 | 
						|
  // dtor may try to access MemorySSA.
 | 
						|
  Walker.reset();
 | 
						|
  MSSA.reset();
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSAPrinterPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
bool MemorySSAPrinterPass::doInitialization(Module &M) {
 | 
						|
  VerifyMemorySSA = M.getContext()
 | 
						|
                        .getOption<bool, MemorySSAPrinterPass,
 | 
						|
                                   &MemorySSAPrinterPass::VerifyMemorySSA>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSAPrinterPass::registerOptions() {
 | 
						|
  OptionRegistry::registerOption<bool, MemorySSAPrinterPass,
 | 
						|
                                 &MemorySSAPrinterPass::VerifyMemorySSA>(
 | 
						|
      "verify-memoryssa", "Run the Memory SSA verifier", false);
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSAPrinterPass::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  MSSA->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
bool MemorySSAPrinterPass::runOnFunction(Function &F) {
 | 
						|
  this->F = &F;
 | 
						|
  MSSA.reset(new MemorySSA(F));
 | 
						|
  AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  Walker.reset(MSSA->buildMemorySSA(AA, DT));
 | 
						|
 | 
						|
  if (VerifyMemorySSA) {
 | 
						|
    MSSA->verifyMemorySSA();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
char MemorySSALazy::ID = 0;
 | 
						|
 | 
						|
MemorySSALazy::MemorySSALazy() : FunctionPass(ID) {
 | 
						|
  initializeMemorySSALazyPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void MemorySSALazy::releaseMemory() { MSSA.reset(); }
 | 
						|
 | 
						|
bool MemorySSALazy::runOnFunction(Function &F) {
 | 
						|
  MSSA.reset(new MemorySSA(F));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
 | 
						|
 | 
						|
CachingMemorySSAWalker::CachingMemorySSAWalker(MemorySSA *M, AliasAnalysis *A,
 | 
						|
                                               DominatorTree *D)
 | 
						|
    : MemorySSAWalker(M), AA(A), DT(D) {}
 | 
						|
 | 
						|
CachingMemorySSAWalker::~CachingMemorySSAWalker() {}
 | 
						|
 | 
						|
struct CachingMemorySSAWalker::UpwardsMemoryQuery {
 | 
						|
  // True if we saw a phi whose predecessor was a backedge
 | 
						|
  bool SawBackedgePhi;
 | 
						|
  // True if our original query started off as a call
 | 
						|
  bool IsCall;
 | 
						|
  // The pointer location we started the query with. This will be empty if
 | 
						|
  // IsCall is true.
 | 
						|
  MemoryLocation StartingLoc;
 | 
						|
  // This is the instruction we were querying about.
 | 
						|
  const Instruction *Inst;
 | 
						|
  // Set of visited Instructions for this query.
 | 
						|
  DenseSet<MemoryAccessPair> Visited;
 | 
						|
  // Vector of visited call accesses for this query. This is separated out
 | 
						|
  // because you can always cache and lookup the result of call queries (IE when
 | 
						|
  // IsCall == true) for every call in the chain. The calls have no AA location
 | 
						|
  // associated with them with them, and thus, no context dependence.
 | 
						|
  SmallVector<const MemoryAccess *, 32> VisitedCalls;
 | 
						|
  // The MemoryAccess we actually got called with, used to test local domination
 | 
						|
  const MemoryAccess *OriginalAccess;
 | 
						|
  // The Datalayout for the module we started in
 | 
						|
  const DataLayout *DL;
 | 
						|
 | 
						|
  UpwardsMemoryQuery()
 | 
						|
      : SawBackedgePhi(false), IsCall(false), Inst(nullptr),
 | 
						|
        OriginalAccess(nullptr), DL(nullptr) {}
 | 
						|
};
 | 
						|
 | 
						|
void CachingMemorySSAWalker::invalidateInfo(MemoryAccess *MA) {
 | 
						|
 | 
						|
  // TODO: We can do much better cache invalidation with differently stored
 | 
						|
  // caches.  For now, for MemoryUses, we simply remove them
 | 
						|
  // from the cache, and kill the entire call/non-call cache for everything
 | 
						|
  // else.  The problem is for phis or defs, currently we'd need to follow use
 | 
						|
  // chains down and invalidate anything below us in the chain that currently
 | 
						|
  // terminates at this access.
 | 
						|
 | 
						|
  // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse
 | 
						|
  // is by definition never a barrier, so nothing in the cache could point to
 | 
						|
  // this use. In that case, we only need invalidate the info for the use
 | 
						|
  // itself.
 | 
						|
 | 
						|
  if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) {
 | 
						|
    UpwardsMemoryQuery Q;
 | 
						|
    Instruction *I = MU->getMemoryInst();
 | 
						|
    Q.IsCall = bool(ImmutableCallSite(I));
 | 
						|
    Q.Inst = I;
 | 
						|
    if (!Q.IsCall)
 | 
						|
      Q.StartingLoc = MemoryLocation::get(I);
 | 
						|
    doCacheRemove(MA, Q, Q.StartingLoc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // If it is not a use, the best we can do right now is destroy the cache.
 | 
						|
  bool IsCall = false;
 | 
						|
 | 
						|
  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
 | 
						|
    Instruction *I = MUD->getMemoryInst();
 | 
						|
    IsCall = bool(ImmutableCallSite(I));
 | 
						|
  }
 | 
						|
  if (IsCall)
 | 
						|
    CachedUpwardsClobberingCall.clear();
 | 
						|
  else
 | 
						|
    CachedUpwardsClobberingAccess.clear();
 | 
						|
}
 | 
						|
 | 
						|
void CachingMemorySSAWalker::doCacheRemove(const MemoryAccess *M,
 | 
						|
                                           const UpwardsMemoryQuery &Q,
 | 
						|
                                           const MemoryLocation &Loc) {
 | 
						|
  if (Q.IsCall)
 | 
						|
    CachedUpwardsClobberingCall.erase(M);
 | 
						|
  else
 | 
						|
    CachedUpwardsClobberingAccess.erase({M, Loc});
 | 
						|
}
 | 
						|
 | 
						|
void CachingMemorySSAWalker::doCacheInsert(const MemoryAccess *M,
 | 
						|
                                           MemoryAccess *Result,
 | 
						|
                                           const UpwardsMemoryQuery &Q,
 | 
						|
                                           const MemoryLocation &Loc) {
 | 
						|
  ++NumClobberCacheInserts;
 | 
						|
  if (Q.IsCall)
 | 
						|
    CachedUpwardsClobberingCall[M] = Result;
 | 
						|
  else
 | 
						|
    CachedUpwardsClobberingAccess[{M, Loc}] = Result;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *CachingMemorySSAWalker::doCacheLookup(const MemoryAccess *M,
 | 
						|
                                                    const UpwardsMemoryQuery &Q,
 | 
						|
                                                    const MemoryLocation &Loc) {
 | 
						|
  ++NumClobberCacheLookups;
 | 
						|
  MemoryAccess *Result = nullptr;
 | 
						|
 | 
						|
  if (Q.IsCall)
 | 
						|
    Result = CachedUpwardsClobberingCall.lookup(M);
 | 
						|
  else
 | 
						|
    Result = CachedUpwardsClobberingAccess.lookup({M, Loc});
 | 
						|
 | 
						|
  if (Result)
 | 
						|
    ++NumClobberCacheHits;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool CachingMemorySSAWalker::instructionClobbersQuery(
 | 
						|
    const MemoryDef *MD, UpwardsMemoryQuery &Q,
 | 
						|
    const MemoryLocation &Loc) const {
 | 
						|
  Instruction *DefMemoryInst = MD->getMemoryInst();
 | 
						|
  assert(DefMemoryInst && "Defining instruction not actually an instruction");
 | 
						|
 | 
						|
  if (!Q.IsCall)
 | 
						|
    return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod;
 | 
						|
 | 
						|
  // If this is a call, mark it for caching
 | 
						|
  if (ImmutableCallSite(DefMemoryInst))
 | 
						|
    Q.VisitedCalls.push_back(MD);
 | 
						|
  ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst));
 | 
						|
  return I != MRI_NoModRef;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccessPair CachingMemorySSAWalker::UpwardsDFSWalk(
 | 
						|
    MemoryAccess *StartingAccess, const MemoryLocation &Loc,
 | 
						|
    UpwardsMemoryQuery &Q, bool FollowingBackedge) {
 | 
						|
  MemoryAccess *ModifyingAccess = nullptr;
 | 
						|
 | 
						|
  auto DFI = df_begin(StartingAccess);
 | 
						|
  for (auto DFE = df_end(StartingAccess); DFI != DFE;) {
 | 
						|
    MemoryAccess *CurrAccess = *DFI;
 | 
						|
    if (MSSA->isLiveOnEntryDef(CurrAccess))
 | 
						|
      return {CurrAccess, Loc};
 | 
						|
    if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc))
 | 
						|
      return {CacheResult, Loc};
 | 
						|
    // If this is a MemoryDef, check whether it clobbers our current query.
 | 
						|
    if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) {
 | 
						|
      // If we hit the top, stop following this path.
 | 
						|
      // While we can do lookups, we can't sanely do inserts here unless we were
 | 
						|
      // to track everything we saw along the way, since we don't know where we
 | 
						|
      // will stop.
 | 
						|
      if (instructionClobbersQuery(MD, Q, Loc)) {
 | 
						|
        ModifyingAccess = CurrAccess;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to know whether it is a phi so we can track backedges.
 | 
						|
    // Otherwise, walk all upward defs.
 | 
						|
    if (!isa<MemoryPhi>(CurrAccess)) {
 | 
						|
      ++DFI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    // The loop below visits the phi's children for us. Because phis are the
 | 
						|
    // only things with multiple edges, skipping the children should always lead
 | 
						|
    // us to the end of the loop.
 | 
						|
    //
 | 
						|
    // Use a copy of DFI because skipChildren would kill our search stack, which
 | 
						|
    // would make caching anything on the way back impossible.
 | 
						|
    auto DFICopy = DFI;
 | 
						|
    assert(DFICopy.skipChildren() == DFE &&
 | 
						|
           "Skipping phi's children doesn't end the DFS?");
 | 
						|
#endif
 | 
						|
 | 
						|
    const MemoryAccessPair PHIPair(CurrAccess, Loc);
 | 
						|
 | 
						|
    // Don't try to optimize this phi again if we've already tried to do so.
 | 
						|
    if (!Q.Visited.insert(PHIPair).second) {
 | 
						|
      ModifyingAccess = CurrAccess;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    std::size_t InitialVisitedCallSize = Q.VisitedCalls.size();
 | 
						|
 | 
						|
    // Recurse on PHI nodes, since we need to change locations.
 | 
						|
    // TODO: Allow graphtraits on pairs, which would turn this whole function
 | 
						|
    // into a normal single depth first walk.
 | 
						|
    MemoryAccess *FirstDef = nullptr;
 | 
						|
    for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end();
 | 
						|
         MPI != MPE; ++MPI) {
 | 
						|
      bool Backedge =
 | 
						|
          !FollowingBackedge &&
 | 
						|
          DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock());
 | 
						|
 | 
						|
      MemoryAccessPair CurrentPair =
 | 
						|
          UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge);
 | 
						|
      // All the phi arguments should reach the same point if we can bypass
 | 
						|
      // this phi. The alternative is that they hit this phi node, which
 | 
						|
      // means we can skip this argument.
 | 
						|
      if (FirstDef && CurrentPair.first != PHIPair.first &&
 | 
						|
          CurrentPair.first != FirstDef) {
 | 
						|
        ModifyingAccess = CurrAccess;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!FirstDef)
 | 
						|
        FirstDef = CurrentPair.first;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we exited the loop early, go with the result it gave us.
 | 
						|
    if (!ModifyingAccess) {
 | 
						|
      assert(FirstDef && "Found a Phi with no upward defs?");
 | 
						|
      ModifyingAccess = FirstDef;
 | 
						|
    } else {
 | 
						|
      // If we can't optimize this Phi, then we can't safely cache any of the
 | 
						|
      // calls we visited when trying to optimize it. Wipe them out now.
 | 
						|
      Q.VisitedCalls.resize(InitialVisitedCallSize);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ModifyingAccess)
 | 
						|
    return {MSSA->getLiveOnEntryDef(), Q.StartingLoc};
 | 
						|
 | 
						|
  const BasicBlock *OriginalBlock = StartingAccess->getBlock();
 | 
						|
  unsigned N = DFI.getPathLength();
 | 
						|
  for (; N != 0; --N) {
 | 
						|
    MemoryAccess *CacheAccess = DFI.getPath(N - 1);
 | 
						|
    BasicBlock *CurrBlock = CacheAccess->getBlock();
 | 
						|
    if (!FollowingBackedge)
 | 
						|
      doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
 | 
						|
    if (DT->dominates(CurrBlock, OriginalBlock) &&
 | 
						|
        (CurrBlock != OriginalBlock || !FollowingBackedge ||
 | 
						|
         MSSA->locallyDominates(CacheAccess, StartingAccess)))
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cache everything else on the way back. The caller should cache
 | 
						|
  // Q.OriginalAccess for us.
 | 
						|
  for (; N != 0; --N) {
 | 
						|
    MemoryAccess *CacheAccess = DFI.getPath(N - 1);
 | 
						|
    doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
 | 
						|
  }
 | 
						|
  assert(Q.Visited.size() < 1000 && "Visited too much");
 | 
						|
 | 
						|
  return {ModifyingAccess, Loc};
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Walk the use-def chains starting at \p MA and find
 | 
						|
/// the MemoryAccess that actually clobbers Loc.
 | 
						|
///
 | 
						|
/// \returns our clobbering memory access
 | 
						|
MemoryAccess *
 | 
						|
CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
 | 
						|
                                                  UpwardsMemoryQuery &Q) {
 | 
						|
  return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *
 | 
						|
CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
 | 
						|
                                                  MemoryLocation &Loc) {
 | 
						|
  if (isa<MemoryPhi>(StartingAccess))
 | 
						|
    return StartingAccess;
 | 
						|
 | 
						|
  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
 | 
						|
  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
 | 
						|
    return StartingUseOrDef;
 | 
						|
 | 
						|
  Instruction *I = StartingUseOrDef->getMemoryInst();
 | 
						|
 | 
						|
  // Conservatively, fences are always clobbers, so don't perform the walk if we
 | 
						|
  // hit a fence.
 | 
						|
  if (isa<FenceInst>(I))
 | 
						|
    return StartingUseOrDef;
 | 
						|
 | 
						|
  UpwardsMemoryQuery Q;
 | 
						|
  Q.OriginalAccess = StartingUseOrDef;
 | 
						|
  Q.StartingLoc = Loc;
 | 
						|
  Q.Inst = StartingUseOrDef->getMemoryInst();
 | 
						|
  Q.IsCall = false;
 | 
						|
  Q.DL = &Q.Inst->getModule()->getDataLayout();
 | 
						|
 | 
						|
  if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc))
 | 
						|
    return CacheResult;
 | 
						|
 | 
						|
  // Unlike the other function, do not walk to the def of a def, because we are
 | 
						|
  // handed something we already believe is the clobbering access.
 | 
						|
  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
 | 
						|
                                     ? StartingUseOrDef->getDefiningAccess()
 | 
						|
                                     : StartingUseOrDef;
 | 
						|
 | 
						|
  MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
 | 
						|
  doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc);
 | 
						|
  DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
 | 
						|
  DEBUG(dbgs() << *StartingUseOrDef << "\n");
 | 
						|
  DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
 | 
						|
  DEBUG(dbgs() << *Clobber << "\n");
 | 
						|
  return Clobber;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *
 | 
						|
CachingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
 | 
						|
  // There should be no way to lookup an instruction and get a phi as the
 | 
						|
  // access, since we only map BB's to PHI's. So, this must be a use or def.
 | 
						|
  auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I));
 | 
						|
 | 
						|
  // We can't sanely do anything with a FenceInst, they conservatively
 | 
						|
  // clobber all memory, and have no locations to get pointers from to
 | 
						|
  // try to disambiguate
 | 
						|
  if (isa<FenceInst>(I))
 | 
						|
    return StartingAccess;
 | 
						|
 | 
						|
  UpwardsMemoryQuery Q;
 | 
						|
  Q.OriginalAccess = StartingAccess;
 | 
						|
  Q.IsCall = bool(ImmutableCallSite(I));
 | 
						|
  if (!Q.IsCall)
 | 
						|
    Q.StartingLoc = MemoryLocation::get(I);
 | 
						|
  Q.Inst = I;
 | 
						|
  Q.DL = &Q.Inst->getModule()->getDataLayout();
 | 
						|
  if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc))
 | 
						|
    return CacheResult;
 | 
						|
 | 
						|
  // Start with the thing we already think clobbers this location
 | 
						|
  MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
 | 
						|
 | 
						|
  // At this point, DefiningAccess may be the live on entry def.
 | 
						|
  // If it is, we will not get a better result.
 | 
						|
  if (MSSA->isLiveOnEntryDef(DefiningAccess))
 | 
						|
    return DefiningAccess;
 | 
						|
 | 
						|
  MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
 | 
						|
  doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc);
 | 
						|
  // TODO: When this implementation is more mature, we may want to figure out
 | 
						|
  // what this additional caching buys us. It's most likely A Good Thing.
 | 
						|
  if (Q.IsCall)
 | 
						|
    for (const MemoryAccess *MA : Q.VisitedCalls)
 | 
						|
      doCacheInsert(MA, Result, Q, Q.StartingLoc);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
 | 
						|
  DEBUG(dbgs() << *DefiningAccess << "\n");
 | 
						|
  DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
 | 
						|
  DEBUG(dbgs() << *Result << "\n");
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *
 | 
						|
DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
 | 
						|
  MemoryAccess *MA = MSSA->getMemoryAccess(I);
 | 
						|
  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
 | 
						|
    return Use->getDefiningAccess();
 | 
						|
  return MA;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
 | 
						|
    MemoryAccess *StartingAccess, MemoryLocation &) {
 | 
						|
  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
 | 
						|
    return Use->getDefiningAccess();
 | 
						|
  return StartingAccess;
 | 
						|
}
 | 
						|
}
 |