655 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements induction variable simplification. It does
 | 
						|
// not define any actual pass or policy, but provides a single function to
 | 
						|
// simplify a loop's induction variables based on ScalarEvolution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "indvars"
 | 
						|
 | 
						|
STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
 | 
						|
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
 | 
						|
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
 | 
						|
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// This is a utility for simplifying induction variables
 | 
						|
  /// based on ScalarEvolution. It is the primary instrument of the
 | 
						|
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
 | 
						|
  /// other loop passes that preserve SCEV.
 | 
						|
  class SimplifyIndvar {
 | 
						|
    Loop             *L;
 | 
						|
    LoopInfo         *LI;
 | 
						|
    ScalarEvolution  *SE;
 | 
						|
    DominatorTree    *DT;
 | 
						|
 | 
						|
    SmallVectorImpl<WeakVH> &DeadInsts;
 | 
						|
 | 
						|
    bool Changed;
 | 
						|
 | 
						|
  public:
 | 
						|
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                   LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead)
 | 
						|
        : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
 | 
						|
      assert(LI && "IV simplification requires LoopInfo");
 | 
						|
    }
 | 
						|
 | 
						|
    bool hasChanged() const { return Changed; }
 | 
						|
 | 
						|
    /// Iteratively perform simplification on a worklist of users of the
 | 
						|
    /// specified induction variable. This is the top-level driver that applies
 | 
						|
    /// all simplifications to users of an IV.
 | 
						|
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
 | 
						|
 | 
						|
    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
 | 
						|
    bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
 | 
						|
    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
    void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
 | 
						|
    void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
 | 
						|
                              bool IsSigned);
 | 
						|
    bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
 | 
						|
 | 
						|
    Instruction *splitOverflowIntrinsic(Instruction *IVUser,
 | 
						|
                                        const DominatorTree *DT);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an IV operand into its use.  This removes increments of an
 | 
						|
/// aligned IV when used by a instruction that ignores the low bits.
 | 
						|
///
 | 
						|
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
 | 
						|
///
 | 
						|
/// Return the operand of IVOperand for this induction variable if IVOperand can
 | 
						|
/// be folded (in case more folding opportunities have been exposed).
 | 
						|
/// Otherwise return null.
 | 
						|
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
 | 
						|
  Value *IVSrc = nullptr;
 | 
						|
  unsigned OperIdx = 0;
 | 
						|
  const SCEV *FoldedExpr = nullptr;
 | 
						|
  switch (UseInst->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::LShr:
 | 
						|
    // We're only interested in the case where we know something about
 | 
						|
    // the numerator and have a constant denominator.
 | 
						|
    if (IVOperand != UseInst->getOperand(OperIdx) ||
 | 
						|
        !isa<ConstantInt>(UseInst->getOperand(1)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Attempt to fold a binary operator with constant operand.
 | 
						|
    // e.g. ((I + 1) >> 2) => I >> 2
 | 
						|
    if (!isa<BinaryOperator>(IVOperand)
 | 
						|
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    IVSrc = IVOperand->getOperand(0);
 | 
						|
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
 | 
						|
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
 | 
						|
 | 
						|
    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
 | 
						|
    if (UseInst->getOpcode() == Instruction::LShr) {
 | 
						|
      // Get a constant for the divisor. See createSCEV.
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
 | 
						|
      if (D->getValue().uge(BitWidth))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      D = ConstantInt::get(UseInst->getContext(),
 | 
						|
                           APInt::getOneBitSet(BitWidth, D->getZExtValue()));
 | 
						|
    }
 | 
						|
    FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
 | 
						|
  }
 | 
						|
  // We have something that might fold it's operand. Compare SCEVs.
 | 
						|
  if (!SE->isSCEVable(UseInst->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Bypass the operand if SCEV can prove it has no effect.
 | 
						|
  if (SE->getSCEV(UseInst) != FoldedExpr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
 | 
						|
        << " -> " << *UseInst << '\n');
 | 
						|
 | 
						|
  UseInst->setOperand(OperIdx, IVSrc);
 | 
						|
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
 | 
						|
 | 
						|
  ++NumElimOperand;
 | 
						|
  Changed = true;
 | 
						|
  if (IVOperand->use_empty())
 | 
						|
    DeadInsts.emplace_back(IVOperand);
 | 
						|
  return IVSrc;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyIVUsers helper for eliminating useless
 | 
						|
/// comparisons against an induction variable.
 | 
						|
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
 | 
						|
  unsigned IVOperIdx = 0;
 | 
						|
  ICmpInst::Predicate Pred = ICmp->getPredicate();
 | 
						|
  if (IVOperand != ICmp->getOperand(0)) {
 | 
						|
    // Swapped
 | 
						|
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
 | 
						|
    IVOperIdx = 1;
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the SCEVs for the ICmp operands.
 | 
						|
  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
 | 
						|
  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
 | 
						|
 | 
						|
  // Simplify unnecessary loops away.
 | 
						|
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | 
						|
  S = SE->getSCEVAtScope(S, ICmpLoop);
 | 
						|
  X = SE->getSCEVAtScope(X, ICmpLoop);
 | 
						|
 | 
						|
  ICmpInst::Predicate InvariantPredicate;
 | 
						|
  const SCEV *InvariantLHS, *InvariantRHS;
 | 
						|
 | 
						|
  // If the condition is always true or always false, replace it with
 | 
						|
  // a constant value.
 | 
						|
  if (SE->isKnownPredicate(Pred, S, X)) {
 | 
						|
    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
 | 
						|
    DeadInsts.emplace_back(ICmp);
 | 
						|
    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | 
						|
  } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
 | 
						|
    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
 | 
						|
    DeadInsts.emplace_back(ICmp);
 | 
						|
    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | 
						|
  } else if (isa<PHINode>(IVOperand) &&
 | 
						|
             SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
 | 
						|
                                          InvariantLHS, InvariantRHS)) {
 | 
						|
 | 
						|
    // Rewrite the comparison to a loop invariant comparison if it can be done
 | 
						|
    // cheaply, where cheaply means "we don't need to emit any new
 | 
						|
    // instructions".
 | 
						|
 | 
						|
    Value *NewLHS = nullptr, *NewRHS = nullptr;
 | 
						|
 | 
						|
    if (S == InvariantLHS || X == InvariantLHS)
 | 
						|
      NewLHS =
 | 
						|
          ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));
 | 
						|
 | 
						|
    if (S == InvariantRHS || X == InvariantRHS)
 | 
						|
      NewRHS =
 | 
						|
          ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));
 | 
						|
 | 
						|
    auto *PN = cast<PHINode>(IVOperand);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues();
 | 
						|
         i != e && (!NewLHS || !NewRHS);
 | 
						|
         ++i) {
 | 
						|
 | 
						|
      // If this is a value incoming from the backedge, then it cannot be a loop
 | 
						|
      // invariant value (since we know that IVOperand is an induction variable).
 | 
						|
      if (L->contains(PN->getIncomingBlock(i)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // NB! This following assert does not fundamentally have to be true, but
 | 
						|
      // it is true today given how SCEV analyzes induction variables.
 | 
						|
      // Specifically, today SCEV will *not* recognize %iv as an induction
 | 
						|
      // variable in the following case:
 | 
						|
      //
 | 
						|
      // define void @f(i32 %k) {
 | 
						|
      // entry:
 | 
						|
      //   br i1 undef, label %r, label %l
 | 
						|
      //
 | 
						|
      // l:
 | 
						|
      //   %k.inc.l = add i32 %k, 1
 | 
						|
      //   br label %loop
 | 
						|
      //
 | 
						|
      // r:
 | 
						|
      //   %k.inc.r = add i32 %k, 1
 | 
						|
      //   br label %loop
 | 
						|
      //
 | 
						|
      // loop:
 | 
						|
      //   %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
 | 
						|
      //   %iv.inc = add i32 %iv, 1
 | 
						|
      //   br label %loop
 | 
						|
      // }
 | 
						|
      //
 | 
						|
      // but if it starts to, at some point, then the assertion below will have
 | 
						|
      // to be changed to a runtime check.
 | 
						|
 | 
						|
      Value *Incoming = PN->getIncomingValue(i);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
      if (auto *I = dyn_cast<Instruction>(Incoming))
 | 
						|
        assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
 | 
						|
#endif
 | 
						|
 | 
						|
      const SCEV *IncomingS = SE->getSCEV(Incoming);
 | 
						|
 | 
						|
      if (!NewLHS && IncomingS == InvariantLHS)
 | 
						|
        NewLHS = Incoming;
 | 
						|
      if (!NewRHS && IncomingS == InvariantRHS)
 | 
						|
        NewRHS = Incoming;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!NewLHS || !NewRHS)
 | 
						|
      // We could not find an existing value to replace either LHS or RHS.
 | 
						|
      // Generating new instructions has subtler tradeoffs, so avoid doing that
 | 
						|
      // for now.
 | 
						|
      return;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
 | 
						|
    ICmp->setPredicate(InvariantPredicate);
 | 
						|
    ICmp->setOperand(0, NewLHS);
 | 
						|
    ICmp->setOperand(1, NewRHS);
 | 
						|
  } else
 | 
						|
    return;
 | 
						|
 | 
						|
  ++NumElimCmp;
 | 
						|
  Changed = true;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyIVUsers helper for eliminating useless
 | 
						|
/// remainder operations operating on an induction variable.
 | 
						|
void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
 | 
						|
                                      Value *IVOperand,
 | 
						|
                                      bool IsSigned) {
 | 
						|
  // We're only interested in the case where we know something about
 | 
						|
  // the numerator.
 | 
						|
  if (IVOperand != Rem->getOperand(0))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the SCEVs for the ICmp operands.
 | 
						|
  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
 | 
						|
  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
 | 
						|
 | 
						|
  // Simplify unnecessary loops away.
 | 
						|
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
 | 
						|
  S = SE->getSCEVAtScope(S, ICmpLoop);
 | 
						|
  X = SE->getSCEVAtScope(X, ICmpLoop);
 | 
						|
 | 
						|
  // i % n  -->  i  if i is in [0,n).
 | 
						|
  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
 | 
						|
      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | 
						|
                           S, X))
 | 
						|
    Rem->replaceAllUsesWith(Rem->getOperand(0));
 | 
						|
  else {
 | 
						|
    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
 | 
						|
    const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
 | 
						|
    if (IsSigned && !SE->isKnownNonNegative(LessOne))
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!SE->isKnownPredicate(IsSigned ?
 | 
						|
                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | 
						|
                              LessOne, X))
 | 
						|
      return;
 | 
						|
 | 
						|
    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
 | 
						|
                                  Rem->getOperand(0), Rem->getOperand(1));
 | 
						|
    SelectInst *Sel =
 | 
						|
      SelectInst::Create(ICmp,
 | 
						|
                         ConstantInt::get(Rem->getType(), 0),
 | 
						|
                         Rem->getOperand(0), "tmp", Rem);
 | 
						|
    Rem->replaceAllUsesWith(Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | 
						|
  ++NumElimRem;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(Rem);
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate an operation that consumes a simple IV and has no observable
 | 
						|
/// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
 | 
						|
/// but UseInst may not be.
 | 
						|
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
 | 
						|
                                     Instruction *IVOperand) {
 | 
						|
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
 | 
						|
    eliminateIVComparison(ICmp, IVOperand);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
 | 
						|
    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
 | 
						|
    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
 | 
						|
      eliminateIVRemainder(Rem, IVOperand, IsSigned);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (eliminateIdentitySCEV(UseInst, IVOperand))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate any operation that SCEV can prove is an identity function.
 | 
						|
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
 | 
						|
                                           Instruction *IVOperand) {
 | 
						|
  if (!SE->isSCEVable(UseInst->getType()) ||
 | 
						|
      (UseInst->getType() != IVOperand->getType()) ||
 | 
						|
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
 | 
						|
  // dominator tree, even if X is an operand to Y.  For instance, in
 | 
						|
  //
 | 
						|
  //     %iv = phi i32 {0,+,1}
 | 
						|
  //     br %cond, label %left, label %merge
 | 
						|
  //
 | 
						|
  //   left:
 | 
						|
  //     %X = add i32 %iv, 0
 | 
						|
  //     br label %merge
 | 
						|
  //
 | 
						|
  //   merge:
 | 
						|
  //     %M = phi (%X, %iv)
 | 
						|
  //
 | 
						|
  // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
 | 
						|
  // %M.replaceAllUsesWith(%X) would be incorrect.
 | 
						|
 | 
						|
  if (isa<PHINode>(UseInst))
 | 
						|
    // If UseInst is not a PHI node then we know that IVOperand dominates
 | 
						|
    // UseInst directly from the legality of SSA.
 | 
						|
    if (!DT || !DT->dominates(IVOperand, UseInst))
 | 
						|
      return false;
 | 
						|
 | 
						|
  if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
 | 
						|
 | 
						|
  UseInst->replaceAllUsesWith(IVOperand);
 | 
						|
  ++NumElimIdentity;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(UseInst);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
 | 
						|
/// unsigned-overflow.  Returns true if anything changed, false otherwise.
 | 
						|
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
 | 
						|
                                                    Value *IVOperand) {
 | 
						|
 | 
						|
  // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
 | 
						|
  if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
 | 
						|
                                               SCEV::NoWrapFlags);
 | 
						|
 | 
						|
  switch (BO->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::Add:
 | 
						|
    GetExprForBO = &ScalarEvolution::getAddExpr;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Sub:
 | 
						|
    GetExprForBO = &ScalarEvolution::getMinusSCEV;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Mul:
 | 
						|
    GetExprForBO = &ScalarEvolution::getMulExpr;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
 | 
						|
  Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
 | 
						|
  const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
 | 
						|
  const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (!BO->hasNoUnsignedWrap()) {
 | 
						|
    const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
 | 
						|
    const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | 
						|
      SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
 | 
						|
      SCEV::FlagAnyWrap);
 | 
						|
    if (ExtendAfterOp == OpAfterExtend) {
 | 
						|
      BO->setHasNoUnsignedWrap();
 | 
						|
      SE->forgetValue(BO);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BO->hasNoSignedWrap()) {
 | 
						|
    const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
 | 
						|
    const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | 
						|
      SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
 | 
						|
      SCEV::FlagAnyWrap);
 | 
						|
    if (ExtendAfterOp == OpAfterExtend) {
 | 
						|
      BO->setHasNoSignedWrap();
 | 
						|
      SE->forgetValue(BO);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
 | 
						|
/// analysis and optimization.
 | 
						|
///
 | 
						|
/// \return A new value representing the non-overflowing add if possible,
 | 
						|
/// otherwise return the original value.
 | 
						|
Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
 | 
						|
                                                    const DominatorTree *DT) {
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser);
 | 
						|
  if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow)
 | 
						|
    return IVUser;
 | 
						|
 | 
						|
  // Find a branch guarded by the overflow check.
 | 
						|
  BranchInst *Branch = nullptr;
 | 
						|
  Instruction *AddVal = nullptr;
 | 
						|
  for (User *U : II->users()) {
 | 
						|
    if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) {
 | 
						|
      if (ExtractInst->getNumIndices() != 1)
 | 
						|
        continue;
 | 
						|
      if (ExtractInst->getIndices()[0] == 0)
 | 
						|
        AddVal = ExtractInst;
 | 
						|
      else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse())
 | 
						|
        Branch = dyn_cast<BranchInst>(ExtractInst->user_back());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!AddVal || !Branch)
 | 
						|
    return IVUser;
 | 
						|
 | 
						|
  BasicBlock *ContinueBB = Branch->getSuccessor(1);
 | 
						|
  if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB))
 | 
						|
    return IVUser;
 | 
						|
 | 
						|
  // Check if all users of the add are provably NSW.
 | 
						|
  bool AllNSW = true;
 | 
						|
  for (Use &U : AddVal->uses()) {
 | 
						|
    if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) {
 | 
						|
      BasicBlock *UseBB = UseInst->getParent();
 | 
						|
      if (PHINode *PHI = dyn_cast<PHINode>(UseInst))
 | 
						|
        UseBB = PHI->getIncomingBlock(U);
 | 
						|
      if (!DT->dominates(ContinueBB, UseBB)) {
 | 
						|
        AllNSW = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!AllNSW)
 | 
						|
    return IVUser;
 | 
						|
 | 
						|
  // Go for it...
 | 
						|
  IRBuilder<> Builder(IVUser);
 | 
						|
  Instruction *AddInst = dyn_cast<Instruction>(
 | 
						|
    Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1)));
 | 
						|
 | 
						|
  // The caller expects the new add to have the same form as the intrinsic. The
 | 
						|
  // IV operand position must be the same.
 | 
						|
  assert((AddInst->getOpcode() == Instruction::Add &&
 | 
						|
          AddInst->getOperand(0) == II->getOperand(0)) &&
 | 
						|
         "Bad add instruction created from overflow intrinsic.");
 | 
						|
 | 
						|
  AddVal->replaceAllUsesWith(AddInst);
 | 
						|
  DeadInsts.emplace_back(AddVal);
 | 
						|
  return AddInst;
 | 
						|
}
 | 
						|
 | 
						|
/// Add all uses of Def to the current IV's worklist.
 | 
						|
static void pushIVUsers(
 | 
						|
  Instruction *Def,
 | 
						|
  SmallPtrSet<Instruction*,16> &Simplified,
 | 
						|
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
 | 
						|
 | 
						|
  for (User *U : Def->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Avoid infinite or exponential worklist processing.
 | 
						|
    // Also ensure unique worklist users.
 | 
						|
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
 | 
						|
    // self edges first.
 | 
						|
    if (UI != Def && Simplified.insert(UI).second)
 | 
						|
      SimpleIVUsers.push_back(std::make_pair(UI, Def));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if this instruction generates a simple SCEV
 | 
						|
/// expression in terms of that IV.
 | 
						|
///
 | 
						|
/// This is similar to IVUsers' isInteresting() but processes each instruction
 | 
						|
/// non-recursively when the operand is already known to be a simpleIVUser.
 | 
						|
///
 | 
						|
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
 | 
						|
  if (!SE->isSCEVable(I->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  const SCEV *S = SE->getSCEV(I);
 | 
						|
 | 
						|
  // Only consider affine recurrences.
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
 | 
						|
  if (AR && AR->getLoop() == L)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Iteratively perform simplification on a worklist of users
 | 
						|
/// of the specified induction variable. Each successive simplification may push
 | 
						|
/// more users which may themselves be candidates for simplification.
 | 
						|
///
 | 
						|
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
 | 
						|
/// instructions in-place during analysis. Rather than rewriting induction
 | 
						|
/// variables bottom-up from their users, it transforms a chain of IVUsers
 | 
						|
/// top-down, updating the IR only when it encounters a clear optimization
 | 
						|
/// opportunity.
 | 
						|
///
 | 
						|
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
 | 
						|
///
 | 
						|
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
 | 
						|
  if (!SE->isSCEVable(CurrIV->getType()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Instructions processed by SimplifyIndvar for CurrIV.
 | 
						|
  SmallPtrSet<Instruction*,16> Simplified;
 | 
						|
 | 
						|
  // Use-def pairs if IV users waiting to be processed for CurrIV.
 | 
						|
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
 | 
						|
 | 
						|
  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
 | 
						|
  // called multiple times for the same LoopPhi. This is the proper thing to
 | 
						|
  // do for loop header phis that use each other.
 | 
						|
  pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
 | 
						|
 | 
						|
  while (!SimpleIVUsers.empty()) {
 | 
						|
    std::pair<Instruction*, Instruction*> UseOper =
 | 
						|
      SimpleIVUsers.pop_back_val();
 | 
						|
    Instruction *UseInst = UseOper.first;
 | 
						|
 | 
						|
    // Bypass back edges to avoid extra work.
 | 
						|
    if (UseInst == CurrIV) continue;
 | 
						|
 | 
						|
    if (V && V->shouldSplitOverflowInstrinsics()) {
 | 
						|
      UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree());
 | 
						|
      if (!UseInst)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *IVOperand = UseOper.second;
 | 
						|
    for (unsigned N = 0; IVOperand; ++N) {
 | 
						|
      assert(N <= Simplified.size() && "runaway iteration");
 | 
						|
 | 
						|
      Value *NewOper = foldIVUser(UseOper.first, IVOperand);
 | 
						|
      if (!NewOper)
 | 
						|
        break; // done folding
 | 
						|
      IVOperand = dyn_cast<Instruction>(NewOper);
 | 
						|
    }
 | 
						|
    if (!IVOperand)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (eliminateIVUser(UseOper.first, IVOperand)) {
 | 
						|
      pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
 | 
						|
      if (isa<OverflowingBinaryOperator>(BO) &&
 | 
						|
          strengthenOverflowingOperation(BO, IVOperand)) {
 | 
						|
        // re-queue uses of the now modified binary operator and fall
 | 
						|
        // through to the checks that remain.
 | 
						|
        pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
 | 
						|
    if (V && Cast) {
 | 
						|
      V->visitCast(Cast);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isSimpleIVUser(UseOper.first, L, SE)) {
 | 
						|
      pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void IVVisitor::anchor() { }
 | 
						|
 | 
						|
/// Simplify instructions that use this induction variable
 | 
						|
/// by using ScalarEvolution to analyze the IV's recurrence.
 | 
						|
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                       LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
 | 
						|
                       IVVisitor *V) {
 | 
						|
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
 | 
						|
  SIV.simplifyUsers(CurrIV, V);
 | 
						|
  return SIV.hasChanged();
 | 
						|
}
 | 
						|
 | 
						|
/// Simplify users of induction variables within this
 | 
						|
/// loop. This does not actually change or add IVs.
 | 
						|
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                     LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 |