17813 lines
		
	
	
		
			699 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			17813 lines
		
	
	
		
			699 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the PPCISelLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCCCState.h"
 | 
						|
#include "PPCCallingConv.h"
 | 
						|
#include "PPCFrameLowering.h"
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCPerfectShuffle.h"
 | 
						|
#include "PPCRegisterInfo.h"
 | 
						|
#include "PPCSubtarget.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/ISDOpcodes.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RuntimeLibcalls.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicsPowerPC.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSectionXCOFF.h"
 | 
						|
#include "llvm/MC/MCSymbolXCOFF.h"
 | 
						|
#include "llvm/Support/AtomicOrdering.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <list>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-lowering"
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
 | 
						|
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
 | 
						|
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
 | 
						|
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisableSCO("disable-ppc-sco",
 | 
						|
cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
 | 
						|
cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
 | 
						|
cl::desc("use absolute jump tables on ppc"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> EnableQuadwordAtomics(
 | 
						|
    "ppc-quadword-atomics",
 | 
						|
    cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumTailCalls, "Number of tail calls");
 | 
						|
STATISTIC(NumSiblingCalls, "Number of sibling calls");
 | 
						|
STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
 | 
						|
STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
 | 
						|
 | 
						|
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
 | 
						|
 | 
						|
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
 | 
						|
 | 
						|
static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
 | 
						|
 | 
						|
// FIXME: Remove this once the bug has been fixed!
 | 
						|
extern cl::opt<bool> ANDIGlueBug;
 | 
						|
 | 
						|
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
 | 
						|
                                     const PPCSubtarget &STI)
 | 
						|
    : TargetLowering(TM), Subtarget(STI) {
 | 
						|
  // Initialize map that relates the PPC addressing modes to the computed flags
 | 
						|
  // of a load/store instruction. The map is used to determine the optimal
 | 
						|
  // addressing mode when selecting load and stores.
 | 
						|
  initializeAddrModeMap();
 | 
						|
  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
 | 
						|
  // arguments are at least 4/8 bytes aligned.
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
 | 
						|
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
 | 
						|
  if (!useSoftFloat()) {
 | 
						|
    if (hasSPE()) {
 | 
						|
      addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
 | 
						|
      // EFPU2 APU only supports f32
 | 
						|
      if (!Subtarget.hasEFPU2())
 | 
						|
        addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
 | 
						|
    } else {
 | 
						|
      addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
 | 
						|
      addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Match BITREVERSE to customized fast code sequence in the td file.
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
 | 
						|
 | 
						|
  // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
 | 
						|
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
 | 
						|
 | 
						|
  // Custom lower inline assembly to check for special registers.
 | 
						|
  setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
 | 
						|
 | 
						|
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isISA3_0()) {
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
 | 
						|
    setTruncStoreAction(MVT::f64, MVT::f16, Legal);
 | 
						|
    setTruncStoreAction(MVT::f32, MVT::f16, Legal);
 | 
						|
  } else {
 | 
						|
    // No extending loads from f16 or HW conversions back and forth.
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
 | 
						|
    setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
 | 
						|
    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
 | 
						|
    setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | 
						|
    setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  // PowerPC has pre-inc load and store's.
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
  if (!Subtarget.hasSPE()) {
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
 | 
						|
  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
 | 
						|
  for (MVT VT : ScalarIntVTs) {
 | 
						|
    setOperationAction(ISD::ADDC, VT, Legal);
 | 
						|
    setOperationAction(ISD::ADDE, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBC, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBE, VT, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
    if (isPPC64 || Subtarget.hasFPCVT()) {
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
 | 
						|
                         isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // PowerPC does not support direct load/store of condition registers.
 | 
						|
    setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | 
						|
    setOperationAction(ISD::STORE, MVT::i1, Custom);
 | 
						|
 | 
						|
    // FIXME: Remove this once the ANDI glue bug is fixed:
 | 
						|
    if (ANDIGlueBug)
 | 
						|
      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
 | 
						|
 | 
						|
    for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
      setTruncStoreAction(VT, MVT::i1, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | 
						|
  // PPC (the libcall is not available).
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
 | 
						|
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
 | 
						|
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
 | 
						|
 | 
						|
  // We do not currently implement these libm ops for PowerPC.
 | 
						|
  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
 | 
						|
 | 
						|
  // PowerPC has no SREM/UREM instructions unless we are on P9
 | 
						|
  // On P9 we may use a hardware instruction to compute the remainder.
 | 
						|
  // When the result of both the remainder and the division is required it is
 | 
						|
  // more efficient to compute the remainder from the result of the division
 | 
						|
  // rather than use the remainder instruction. The instructions are legalized
 | 
						|
  // directly because the DivRemPairsPass performs the transformation at the IR
 | 
						|
  // level.
 | 
						|
  if (Subtarget.isISA3_0()) {
 | 
						|
    setOperationAction(ISD::SREM, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::SREM, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i64, Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Handle constrained floating-point operations of scalar.
 | 
						|
  // TODO: Handle SPE specific operation.
 | 
						|
  setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
 | 
						|
 | 
						|
  if (!Subtarget.hasSPE()) {
 | 
						|
    setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX()) {
 | 
						|
    setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasFSQRT()) {
 | 
						|
    setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasFPRND()) {
 | 
						|
    setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't support sin/cos/sqrt/fmod/pow
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f32, Expand);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f32, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasSPE())
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | 
						|
 | 
						|
  // If we're enabling GP optimizations, use hardware square root
 | 
						|
  if (!Subtarget.hasFSQRT() &&
 | 
						|
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
 | 
						|
        Subtarget.hasFRE()))
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | 
						|
 | 
						|
  if (!Subtarget.hasFSQRT() &&
 | 
						|
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
 | 
						|
        Subtarget.hasFRES()))
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasFCPSGN()) {
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasFPRND()) {
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
 | 
						|
  // to speed up scalar BSWAP64.
 | 
						|
  // CTPOP or CTTZ were introduced in P8/P9 respectively
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | 
						|
  if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
 | 
						|
    setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | 
						|
  if (Subtarget.isISA3_0()) {
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC does not have ROTR
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | 
						|
 | 
						|
  if (!Subtarget.useCRBits()) {
 | 
						|
    // PowerPC does not have Select
 | 
						|
    setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC wants to turn select_cc of FP into fsel when possible.
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
 | 
						|
  // PowerPC wants to optimize integer setcc a bit
 | 
						|
  if (!Subtarget.useCRBits())
 | 
						|
    setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | 
						|
 | 
						|
  if (Subtarget.hasFPU()) {
 | 
						|
    setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC does not have BRCOND which requires SetCC
 | 
						|
  if (!Subtarget.useCRBits())
 | 
						|
    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    // SPE has built-in conversions
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
 | 
						|
 | 
						|
    // SPE supports signaling compare of f32/f64.
 | 
						|
    setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
 | 
						|
  } else {
 | 
						|
    // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
 | 
						|
    // PowerPC does not have [U|S]INT_TO_FP
 | 
						|
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasDirectMove() && isPPC64) {
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f64, Legal);
 | 
						|
    if (TM.Options.UnsafeFPMath) {
 | 
						|
      setOperationAction(ISD::LRINT, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::LRINT, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::LLRINT, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::LLRINT, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::LROUND, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::LROUND, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::LLROUND, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::LLROUND, MVT::f32, Legal);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // We cannot sextinreg(i1).  Expand to shifts.
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
 | 
						|
  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
 | 
						|
  // support continuation, user-level threading, and etc.. As a result, no
 | 
						|
  // other SjLj exception interfaces are implemented and please don't build
 | 
						|
  // your own exception handling based on them.
 | 
						|
  // LLVM/Clang supports zero-cost DWARF exception handling.
 | 
						|
  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | 
						|
 | 
						|
  // We want to legalize GlobalAddress and ConstantPool nodes into the
 | 
						|
  // appropriate instructions to materialize the address.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | 
						|
 | 
						|
  // TRAP is legal.
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
 | 
						|
  // TRAMPOLINE is custom lowered.
 | 
						|
  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | 
						|
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | 
						|
 | 
						|
  if (Subtarget.is64BitELFABI()) {
 | 
						|
    // VAARG always uses double-word chunks, so promote anything smaller.
 | 
						|
    setOperationAction(ISD::VAARG, MVT::i1, Promote);
 | 
						|
    AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
 | 
						|
    setOperationAction(ISD::VAARG, MVT::i8, Promote);
 | 
						|
    AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
 | 
						|
    setOperationAction(ISD::VAARG, MVT::i16, Promote);
 | 
						|
    AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
 | 
						|
    setOperationAction(ISD::VAARG, MVT::i32, Promote);
 | 
						|
    AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
  } else if (Subtarget.is32BitELFABI()) {
 | 
						|
    // VAARG is custom lowered with the 32-bit SVR4 ABI.
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | 
						|
    setOperationAction(ISD::VAARG, MVT::i64, Custom);
 | 
						|
  } else
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
 | 
						|
  // VACOPY is custom lowered with the 32-bit SVR4 ABI.
 | 
						|
  if (Subtarget.is32BitELFABI())
 | 
						|
    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | 
						|
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | 
						|
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
 | 
						|
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
 | 
						|
  // To handle counter-based loop conditions.
 | 
						|
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | 
						|
 | 
						|
  // Comparisons that require checking two conditions.
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
 | 
						|
 | 
						|
  if (Subtarget.has64BitSupport()) {
 | 
						|
    // They also have instructions for converting between i64 and fp.
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | 
						|
    // This is just the low 32 bits of a (signed) fp->i64 conversion.
 | 
						|
    // We cannot do this with Promote because i64 is not a legal type.
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
 | 
						|
    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | 
						|
    if (Subtarget.hasSPE()) {
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // With the instructions enabled under FPCVT, we can do everything.
 | 
						|
  if (Subtarget.hasFPCVT()) {
 | 
						|
    if (Subtarget.has64BitSupport()) {
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.use64BitRegs()) {
 | 
						|
    // 64-bit PowerPC implementations can support i64 types directly
 | 
						|
    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
 | 
						|
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | 
						|
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | 
						|
    // 64-bit PowerPC wants to expand i128 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | 
						|
  } else {
 | 
						|
    // 32-bit PowerPC wants to expand i64 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC has better expansions for funnel shifts than the generic
 | 
						|
  // TargetLowering::expandFunnelShift.
 | 
						|
  if (Subtarget.has64BitSupport()) {
 | 
						|
    setOperationAction(ISD::FSHL, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FSHR, MVT::i64, Custom);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::FSHL, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::FSHR, MVT::i32, Custom);
 | 
						|
 | 
						|
  if (Subtarget.hasVSX()) {
 | 
						|
    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasAltivec()) {
 | 
						|
    for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
 | 
						|
      setOperationAction(ISD::SADDSAT, VT, Legal);
 | 
						|
      setOperationAction(ISD::SSUBSAT, VT, Legal);
 | 
						|
      setOperationAction(ISD::UADDSAT, VT, Legal);
 | 
						|
      setOperationAction(ISD::USUBSAT, VT, Legal);
 | 
						|
    }
 | 
						|
    // First set operation action for all vector types to expand. Then we
 | 
						|
    // will selectively turn on ones that can be effectively codegen'd.
 | 
						|
    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
 | 
						|
      // add/sub are legal for all supported vector VT's.
 | 
						|
      setOperationAction(ISD::ADD, VT, Legal);
 | 
						|
      setOperationAction(ISD::SUB, VT, Legal);
 | 
						|
 | 
						|
      // For v2i64, these are only valid with P8Vector. This is corrected after
 | 
						|
      // the loop.
 | 
						|
      if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
 | 
						|
        setOperationAction(ISD::SMAX, VT, Legal);
 | 
						|
        setOperationAction(ISD::SMIN, VT, Legal);
 | 
						|
        setOperationAction(ISD::UMAX, VT, Legal);
 | 
						|
        setOperationAction(ISD::UMIN, VT, Legal);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setOperationAction(ISD::SMAX, VT, Expand);
 | 
						|
        setOperationAction(ISD::SMIN, VT, Expand);
 | 
						|
        setOperationAction(ISD::UMAX, VT, Expand);
 | 
						|
        setOperationAction(ISD::UMIN, VT, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Subtarget.hasVSX()) {
 | 
						|
        setOperationAction(ISD::FMAXNUM, VT, Legal);
 | 
						|
        setOperationAction(ISD::FMINNUM, VT, Legal);
 | 
						|
      }
 | 
						|
 | 
						|
      // Vector instructions introduced in P8
 | 
						|
      if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
 | 
						|
        setOperationAction(ISD::CTPOP, VT, Legal);
 | 
						|
        setOperationAction(ISD::CTLZ, VT, Legal);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
        setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      // Vector instructions introduced in P9
 | 
						|
      if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
 | 
						|
        setOperationAction(ISD::CTTZ, VT, Legal);
 | 
						|
      else
 | 
						|
        setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
 | 
						|
      // We promote all shuffles to v16i8.
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | 
						|
 | 
						|
      // We promote all non-typed operations to v4i32.
 | 
						|
      setOperationAction(ISD::AND   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::OR    , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::XOR   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::LOAD  , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::SELECT, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::VSELECT, VT, Legal);
 | 
						|
      setOperationAction(ISD::SELECT_CC, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::STORE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | 
						|
 | 
						|
      // No other operations are legal.
 | 
						|
      setOperationAction(ISD::MUL , VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::FDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::FREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::FNEG, VT, Expand);
 | 
						|
      setOperationAction(ISD::FSQRT, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG10, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG2, VT, Expand);
 | 
						|
      setOperationAction(ISD::FEXP, VT, Expand);
 | 
						|
      setOperationAction(ISD::FEXP2, VT, Expand);
 | 
						|
      setOperationAction(ISD::FSIN, VT, Expand);
 | 
						|
      setOperationAction(ISD::FCOS, VT, Expand);
 | 
						|
      setOperationAction(ISD::FABS, VT, Expand);
 | 
						|
      setOperationAction(ISD::FFLOOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::FCEIL,  VT, Expand);
 | 
						|
      setOperationAction(ISD::FTRUNC, VT, Expand);
 | 
						|
      setOperationAction(ISD::FRINT,  VT, Expand);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
      setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::FPOW, VT, Expand);
 | 
						|
      setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | 
						|
      setOperationAction(ISD::ROTL, VT, Expand);
 | 
						|
      setOperationAction(ISD::ROTR, VT, Expand);
 | 
						|
 | 
						|
      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
 | 
						|
        setTruncStoreAction(VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
 | 
						|
    if (!Subtarget.hasP8Vector()) {
 | 
						|
      setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
 | 
						|
      setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
 | 
						|
      setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
 | 
						|
      setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | 
						|
    // with merges, splats, etc.
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    // Vector truncates to sub-word integer that fit in an Altivec/VSX register
 | 
						|
    // are cheap, so handle them before they get expanded to scalar.
 | 
						|
    setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::v4i32,
 | 
						|
                       Subtarget.useCRBits() ? Legal : Expand);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
 | 
						|
    setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
 | 
						|
    // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
 | 
						|
    if (Subtarget.hasAltivec())
 | 
						|
      for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
 | 
						|
        setOperationAction(ISD::ROTL, VT, Legal);
 | 
						|
    // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
 | 
						|
    else
 | 
						|
      setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
 | 
						|
    if (Subtarget.isISA3_1()) {
 | 
						|
      setOperationAction(ISD::MUL, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::UREM, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::SREM, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::UREM, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::SREM, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::UREM, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SREM, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | 
						|
 | 
						|
    // Altivec does not contain unordered floating-point compare instructions
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | 
						|
      if (Subtarget.hasP8Vector()) {
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
 | 
						|
      }
 | 
						|
      if (Subtarget.hasDirectMove() && isPPC64) {
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
 | 
						|
      }
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      // The nearbyint variants are not allowed to raise the inexact exception
 | 
						|
      // so we can only code-gen them with unsafe math.
 | 
						|
      if (TM.Options.UnsafeFPMath) {
 | 
						|
        setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
 | 
						|
        setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
 | 
						|
      }
 | 
						|
 | 
						|
      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, MVT::f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, MVT::f32, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      // Share the Altivec comparison restrictions.
 | 
						|
      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      if (Subtarget.hasP8Vector())
 | 
						|
        addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
 | 
						|
 | 
						|
      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
 | 
						|
 | 
						|
      addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
 | 
						|
      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
 | 
						|
      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
 | 
						|
 | 
						|
      if (Subtarget.hasP8Altivec()) {
 | 
						|
        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v2i64, Legal);
 | 
						|
 | 
						|
        // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | 
						|
        // SRL, but not for SRA because of the instructions available:
 | 
						|
        // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
 | 
						|
        // doing
 | 
						|
        setOperationAction(ISD::SHL, MVT::v1i128, Expand);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v1i128, Expand);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | 
						|
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v2i64, Expand);
 | 
						|
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
 | 
						|
 | 
						|
        // VSX v2i64 only supports non-arithmetic operations.
 | 
						|
        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Subtarget.isISA3_1())
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
 | 
						|
      else
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
 | 
						|
      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
 | 
						|
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
 | 
						|
 | 
						|
      // Custom handling for partial vectors of integers converted to
 | 
						|
      // floating point. We already have optimal handling for v2i32 through
 | 
						|
      // the DAG combine, so those aren't necessary.
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
 | 
						|
      setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FABS, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FABS, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
 | 
						|
 | 
						|
      // Handle constrained floating-point operations of vector.
 | 
						|
      // The predictor is `hasVSX` because altivec instruction has
 | 
						|
      // no exception but VSX vector instruction has.
 | 
						|
      setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
 | 
						|
      addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
 | 
						|
 | 
						|
      for (MVT FPT : MVT::fp_valuetypes())
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
 | 
						|
 | 
						|
      // Expand the SELECT to SELECT_CC
 | 
						|
      setOperationAction(ISD::SELECT, MVT::f128, Expand);
 | 
						|
 | 
						|
      setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | 
						|
      setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | 
						|
 | 
						|
      // No implementation for these ops for PowerPC.
 | 
						|
      setOperationAction(ISD::FSIN, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FCOS, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FPOW, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FPOWI, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FREM, MVT::f128, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP8Altivec()) {
 | 
						|
      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
 | 
						|
      addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP9Vector()) {
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
 | 
						|
 | 
						|
      // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | 
						|
      // SRL, but not for SRA because of the instructions available:
 | 
						|
      // VS{RL} and VS{RL}O.
 | 
						|
      setOperationAction(ISD::SHL, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SRL, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::FADD, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FSUB, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FDIV, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FMUL, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FMA, MVT::f128, Legal);
 | 
						|
      setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
 | 
						|
      setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
 | 
						|
      setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
 | 
						|
      setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
 | 
						|
      setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
 | 
						|
      setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::f128, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::BITCAST, MVT::i128, Custom);
 | 
						|
 | 
						|
      // Handle constrained floating-point operations of fp128
 | 
						|
      setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
 | 
						|
      setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
 | 
						|
      setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
 | 
						|
      setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
 | 
						|
    } else if (Subtarget.hasVSX()) {
 | 
						|
      setOperationAction(ISD::LOAD, MVT::f128, Promote);
 | 
						|
      setOperationAction(ISD::STORE, MVT::f128, Promote);
 | 
						|
 | 
						|
      AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
 | 
						|
      AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
 | 
						|
 | 
						|
      // Set FADD/FSUB as libcall to avoid the legalizer to expand the
 | 
						|
      // fp_to_uint and int_to_fp.
 | 
						|
      setOperationAction(ISD::FADD, MVT::f128, LibCall);
 | 
						|
      setOperationAction(ISD::FSUB, MVT::f128, LibCall);
 | 
						|
 | 
						|
      setOperationAction(ISD::FMUL, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FDIV, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FNEG, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FABS, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FMA, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
 | 
						|
 | 
						|
      // Expand the fp_extend if the target type is fp128.
 | 
						|
      setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
 | 
						|
      setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
 | 
						|
 | 
						|
      // Expand the fp_round if the source type is fp128.
 | 
						|
      for (MVT VT : {MVT::f32, MVT::f64}) {
 | 
						|
        setOperationAction(ISD::FP_ROUND, VT, Custom);
 | 
						|
        setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
 | 
						|
      }
 | 
						|
 | 
						|
      setOperationAction(ISD::SETCC, MVT::f128, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
 | 
						|
      setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
 | 
						|
      setOperationAction(ISD::BR_CC, MVT::f128, Expand);
 | 
						|
 | 
						|
      // Lower following f128 select_cc pattern:
 | 
						|
      // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
 | 
						|
      setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
 | 
						|
 | 
						|
      // We need to handle f128 SELECT_CC with integer result type.
 | 
						|
      setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | 
						|
      setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP9Altivec()) {
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
 | 
						|
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.isISA3_1())
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.pairedVectorMemops()) {
 | 
						|
    addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
 | 
						|
    setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
 | 
						|
    setOperationAction(ISD::STORE, MVT::v256i1, Custom);
 | 
						|
  }
 | 
						|
  if (Subtarget.hasMMA()) {
 | 
						|
    addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
 | 
						|
    setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
 | 
						|
    setOperationAction(ISD::STORE, MVT::v512i1, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.has64BitSupport())
 | 
						|
    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
 | 
						|
 | 
						|
  if (Subtarget.isISA3_1())
 | 
						|
    setOperationAction(ISD::SRA, MVT::v1i128, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
 | 
						|
 | 
						|
  if (!isPPC64) {
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
 | 
						|
    setMaxAtomicSizeInBitsSupported(128);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  setBooleanContents(ZeroOrOneBooleanContent);
 | 
						|
 | 
						|
  if (Subtarget.hasAltivec()) {
 | 
						|
    // Altivec instructions set fields to all zeros or all ones.
 | 
						|
    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isPPC64) {
 | 
						|
    // These libcalls are not available in 32-bit.
 | 
						|
    setLibcallName(RTLIB::SHL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRA_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::MULO_I64, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isPPC64)
 | 
						|
    setMaxAtomicSizeInBitsSupported(32);
 | 
						|
 | 
						|
  setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
 | 
						|
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  setTargetDAGCombine(ISD::ADD);
 | 
						|
  setTargetDAGCombine(ISD::SHL);
 | 
						|
  setTargetDAGCombine(ISD::SRA);
 | 
						|
  setTargetDAGCombine(ISD::SRL);
 | 
						|
  setTargetDAGCombine(ISD::MUL);
 | 
						|
  setTargetDAGCombine(ISD::FMA);
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::BUILD_VECTOR);
 | 
						|
  if (Subtarget.hasFPCVT())
 | 
						|
    setTargetDAGCombine(ISD::UINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::LOAD);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::BR_CC);
 | 
						|
  if (Subtarget.useCRBits())
 | 
						|
    setTargetDAGCombine(ISD::BRCOND);
 | 
						|
  setTargetDAGCombine(ISD::BSWAP);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::SIGN_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ZERO_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ANY_EXTEND);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | 
						|
 | 
						|
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
    setTargetDAGCombine(ISD::SETCC);
 | 
						|
    setTargetDAGCombine(ISD::SELECT_CC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Altivec()) {
 | 
						|
    setTargetDAGCombine(ISD::ABS);
 | 
						|
    setTargetDAGCombine(ISD::VSELECT);
 | 
						|
  }
 | 
						|
 | 
						|
  setLibcallName(RTLIB::LOG_F128, "logf128");
 | 
						|
  setLibcallName(RTLIB::LOG2_F128, "log2f128");
 | 
						|
  setLibcallName(RTLIB::LOG10_F128, "log10f128");
 | 
						|
  setLibcallName(RTLIB::EXP_F128, "expf128");
 | 
						|
  setLibcallName(RTLIB::EXP2_F128, "exp2f128");
 | 
						|
  setLibcallName(RTLIB::SIN_F128, "sinf128");
 | 
						|
  setLibcallName(RTLIB::COS_F128, "cosf128");
 | 
						|
  setLibcallName(RTLIB::POW_F128, "powf128");
 | 
						|
  setLibcallName(RTLIB::FMIN_F128, "fminf128");
 | 
						|
  setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
 | 
						|
  setLibcallName(RTLIB::REM_F128, "fmodf128");
 | 
						|
  setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
 | 
						|
  setLibcallName(RTLIB::CEIL_F128, "ceilf128");
 | 
						|
  setLibcallName(RTLIB::FLOOR_F128, "floorf128");
 | 
						|
  setLibcallName(RTLIB::TRUNC_F128, "truncf128");
 | 
						|
  setLibcallName(RTLIB::ROUND_F128, "roundf128");
 | 
						|
  setLibcallName(RTLIB::LROUND_F128, "lroundf128");
 | 
						|
  setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
 | 
						|
  setLibcallName(RTLIB::RINT_F128, "rintf128");
 | 
						|
  setLibcallName(RTLIB::LRINT_F128, "lrintf128");
 | 
						|
  setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
 | 
						|
  setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
 | 
						|
  setLibcallName(RTLIB::FMA_F128, "fmaf128");
 | 
						|
 | 
						|
  // With 32 condition bits, we don't need to sink (and duplicate) compares
 | 
						|
  // aggressively in CodeGenPrep.
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setHasMultipleConditionRegisters();
 | 
						|
    setJumpIsExpensive();
 | 
						|
  }
 | 
						|
 | 
						|
  setMinFunctionAlignment(Align(4));
 | 
						|
 | 
						|
  switch (Subtarget.getCPUDirective()) {
 | 
						|
  default: break;
 | 
						|
  case PPC::DIR_970:
 | 
						|
  case PPC::DIR_A2:
 | 
						|
  case PPC::DIR_E500:
 | 
						|
  case PPC::DIR_E500mc:
 | 
						|
  case PPC::DIR_E5500:
 | 
						|
  case PPC::DIR_PWR4:
 | 
						|
  case PPC::DIR_PWR5:
 | 
						|
  case PPC::DIR_PWR5X:
 | 
						|
  case PPC::DIR_PWR6:
 | 
						|
  case PPC::DIR_PWR6X:
 | 
						|
  case PPC::DIR_PWR7:
 | 
						|
  case PPC::DIR_PWR8:
 | 
						|
  case PPC::DIR_PWR9:
 | 
						|
  case PPC::DIR_PWR10:
 | 
						|
  case PPC::DIR_PWR_FUTURE:
 | 
						|
    setPrefLoopAlignment(Align(16));
 | 
						|
    setPrefFunctionAlignment(Align(16));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.enableMachineScheduler())
 | 
						|
    setSchedulingPreference(Sched::Source);
 | 
						|
  else
 | 
						|
    setSchedulingPreference(Sched::Hybrid);
 | 
						|
 | 
						|
  computeRegisterProperties(STI.getRegisterInfo());
 | 
						|
 | 
						|
  // The Freescale cores do better with aggressive inlining of memcpy and
 | 
						|
  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
 | 
						|
  if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
 | 
						|
      Subtarget.getCPUDirective() == PPC::DIR_E5500) {
 | 
						|
    MaxStoresPerMemset = 32;
 | 
						|
    MaxStoresPerMemsetOptSize = 16;
 | 
						|
    MaxStoresPerMemcpy = 32;
 | 
						|
    MaxStoresPerMemcpyOptSize = 8;
 | 
						|
    MaxStoresPerMemmove = 32;
 | 
						|
    MaxStoresPerMemmoveOptSize = 8;
 | 
						|
  } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
 | 
						|
    // The A2 also benefits from (very) aggressive inlining of memcpy and
 | 
						|
    // friends. The overhead of a the function call, even when warm, can be
 | 
						|
    // over one hundred cycles.
 | 
						|
    MaxStoresPerMemset = 128;
 | 
						|
    MaxStoresPerMemcpy = 128;
 | 
						|
    MaxStoresPerMemmove = 128;
 | 
						|
    MaxLoadsPerMemcmp = 128;
 | 
						|
  } else {
 | 
						|
    MaxLoadsPerMemcmp = 8;
 | 
						|
    MaxLoadsPerMemcmpOptSize = 4;
 | 
						|
  }
 | 
						|
 | 
						|
  IsStrictFPEnabled = true;
 | 
						|
 | 
						|
  // Let the subtarget (CPU) decide if a predictable select is more expensive
 | 
						|
  // than the corresponding branch. This information is used in CGP to decide
 | 
						|
  // when to convert selects into branches.
 | 
						|
  PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
 | 
						|
}
 | 
						|
 | 
						|
// *********************************** NOTE ************************************
 | 
						|
// For selecting load and store instructions, the addressing modes are defined
 | 
						|
// as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
 | 
						|
// patterns to match the load the store instructions.
 | 
						|
//
 | 
						|
// The TD definitions for the addressing modes correspond to their respective
 | 
						|
// Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
 | 
						|
// on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
 | 
						|
// address mode flags of a particular node. Afterwards, the computed address
 | 
						|
// flags are passed into getAddrModeForFlags() in order to retrieve the optimal
 | 
						|
// addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
 | 
						|
// accordingly, based on the preferred addressing mode.
 | 
						|
//
 | 
						|
// Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
 | 
						|
// MemOpFlags contains all the possible flags that can be used to compute the
 | 
						|
// optimal addressing mode for load and store instructions.
 | 
						|
// AddrMode contains all the possible load and store addressing modes available
 | 
						|
// on Power (such as DForm, DSForm, DQForm, XForm, etc.)
 | 
						|
//
 | 
						|
// When adding new load and store instructions, it is possible that new address
 | 
						|
// flags may need to be added into MemOpFlags, and a new addressing mode will
 | 
						|
// need to be added to AddrMode. An entry of the new addressing mode (consisting
 | 
						|
// of the minimal and main distinguishing address flags for the new load/store
 | 
						|
// instructions) will need to be added into initializeAddrModeMap() below.
 | 
						|
// Finally, when adding new addressing modes, the getAddrModeForFlags() will
 | 
						|
// need to be updated to account for selecting the optimal addressing mode.
 | 
						|
// *****************************************************************************
 | 
						|
/// Initialize the map that relates the different addressing modes of the load
 | 
						|
/// and store instructions to a set of flags. This ensures the load/store
 | 
						|
/// instruction is correctly matched during instruction selection.
 | 
						|
void PPCTargetLowering::initializeAddrModeMap() {
 | 
						|
  AddrModesMap[PPC::AM_DForm] = {
 | 
						|
      // LWZ, STW
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
 | 
						|
      // LBZ, LHZ, STB, STH
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
 | 
						|
      // LHA
 | 
						|
      PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
 | 
						|
      PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
 | 
						|
      // LFS, LFD, STFS, STFD
 | 
						|
      PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
 | 
						|
      PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
 | 
						|
      PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
 | 
						|
      PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
 | 
						|
  };
 | 
						|
  AddrModesMap[PPC::AM_DSForm] = {
 | 
						|
      // LWA
 | 
						|
      PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
 | 
						|
      PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
 | 
						|
      PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
 | 
						|
      // LD, STD
 | 
						|
      PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
 | 
						|
      PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
 | 
						|
      PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
 | 
						|
      // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
 | 
						|
      PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
 | 
						|
      PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
 | 
						|
      PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
 | 
						|
  };
 | 
						|
  AddrModesMap[PPC::AM_DQForm] = {
 | 
						|
      // LXV, STXV
 | 
						|
      PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
 | 
						|
      PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
 | 
						|
      PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
 | 
						|
  };
 | 
						|
  AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
 | 
						|
                                       PPC::MOF_SubtargetP10};
 | 
						|
  // TODO: Add mapping for quadword load/store.
 | 
						|
}
 | 
						|
 | 
						|
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | 
						|
/// the desired ByVal argument alignment.
 | 
						|
static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
 | 
						|
  if (MaxAlign == MaxMaxAlign)
 | 
						|
    return;
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | 
						|
    if (MaxMaxAlign >= 32 &&
 | 
						|
        VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
 | 
						|
      MaxAlign = Align(32);
 | 
						|
    else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
 | 
						|
             MaxAlign < 16)
 | 
						|
      MaxAlign = Align(16);
 | 
						|
  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Align EltAlign;
 | 
						|
    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
 | 
						|
    if (EltAlign > MaxAlign)
 | 
						|
      MaxAlign = EltAlign;
 | 
						|
  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (auto *EltTy : STy->elements()) {
 | 
						|
      Align EltAlign;
 | 
						|
      getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
 | 
						|
      if (EltAlign > MaxAlign)
 | 
						|
        MaxAlign = EltAlign;
 | 
						|
      if (MaxAlign == MaxMaxAlign)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | 
						|
/// function arguments in the caller parameter area.
 | 
						|
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
 | 
						|
                                                  const DataLayout &DL) const {
 | 
						|
  // 16byte and wider vectors are passed on 16byte boundary.
 | 
						|
  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
 | 
						|
  Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
 | 
						|
  if (Subtarget.hasAltivec())
 | 
						|
    getMaxByValAlign(Ty, Alignment, Align(16));
 | 
						|
  return Alignment.value();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::useSoftFloat() const {
 | 
						|
  return Subtarget.useSoftFloat();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::hasSPE() const {
 | 
						|
  return Subtarget.hasSPE();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
 | 
						|
  return VT.isScalarInteger();
 | 
						|
}
 | 
						|
 | 
						|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((PPCISD::NodeType)Opcode) {
 | 
						|
  case PPCISD::FIRST_NUMBER:    break;
 | 
						|
  case PPCISD::FSEL:            return "PPCISD::FSEL";
 | 
						|
  case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
 | 
						|
  case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
 | 
						|
  case PPCISD::FCFID:           return "PPCISD::FCFID";
 | 
						|
  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
 | 
						|
  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
 | 
						|
  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
 | 
						|
  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | 
						|
  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | 
						|
  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
 | 
						|
  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
 | 
						|
  case PPCISD::FP_TO_UINT_IN_VSR:
 | 
						|
                                return "PPCISD::FP_TO_UINT_IN_VSR,";
 | 
						|
  case PPCISD::FP_TO_SINT_IN_VSR:
 | 
						|
                                return "PPCISD::FP_TO_SINT_IN_VSR";
 | 
						|
  case PPCISD::FRE:             return "PPCISD::FRE";
 | 
						|
  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
 | 
						|
  case PPCISD::FTSQRT:
 | 
						|
    return "PPCISD::FTSQRT";
 | 
						|
  case PPCISD::FSQRT:
 | 
						|
    return "PPCISD::FSQRT";
 | 
						|
  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | 
						|
  case PPCISD::VPERM:           return "PPCISD::VPERM";
 | 
						|
  case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
 | 
						|
  case PPCISD::XXSPLTI_SP_TO_DP:
 | 
						|
    return "PPCISD::XXSPLTI_SP_TO_DP";
 | 
						|
  case PPCISD::XXSPLTI32DX:
 | 
						|
    return "PPCISD::XXSPLTI32DX";
 | 
						|
  case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
 | 
						|
  case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
 | 
						|
  case PPCISD::VECSHL:          return "PPCISD::VECSHL";
 | 
						|
  case PPCISD::CMPB:            return "PPCISD::CMPB";
 | 
						|
  case PPCISD::Hi:              return "PPCISD::Hi";
 | 
						|
  case PPCISD::Lo:              return "PPCISD::Lo";
 | 
						|
  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
 | 
						|
  case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
 | 
						|
  case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
 | 
						|
  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | 
						|
  case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
 | 
						|
  case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
 | 
						|
  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | 
						|
  case PPCISD::SRL:             return "PPCISD::SRL";
 | 
						|
  case PPCISD::SRA:             return "PPCISD::SRA";
 | 
						|
  case PPCISD::SHL:             return "PPCISD::SHL";
 | 
						|
  case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
 | 
						|
  case PPCISD::CALL:            return "PPCISD::CALL";
 | 
						|
  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
 | 
						|
  case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
 | 
						|
  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | 
						|
  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
 | 
						|
  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
 | 
						|
  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | 
						|
  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
 | 
						|
  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
 | 
						|
  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
 | 
						|
  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
 | 
						|
  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
 | 
						|
  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
 | 
						|
  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
 | 
						|
  case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
 | 
						|
  case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
 | 
						|
  case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
 | 
						|
    return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
 | 
						|
  case PPCISD::ANDI_rec_1_EQ_BIT:
 | 
						|
    return "PPCISD::ANDI_rec_1_EQ_BIT";
 | 
						|
  case PPCISD::ANDI_rec_1_GT_BIT:
 | 
						|
    return "PPCISD::ANDI_rec_1_GT_BIT";
 | 
						|
  case PPCISD::VCMP:            return "PPCISD::VCMP";
 | 
						|
  case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
 | 
						|
  case PPCISD::LBRX:            return "PPCISD::LBRX";
 | 
						|
  case PPCISD::STBRX:           return "PPCISD::STBRX";
 | 
						|
  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
 | 
						|
  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
 | 
						|
  case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
 | 
						|
  case PPCISD::STXSIX:          return "PPCISD::STXSIX";
 | 
						|
  case PPCISD::VEXTS:           return "PPCISD::VEXTS";
 | 
						|
  case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
 | 
						|
  case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
 | 
						|
  case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
 | 
						|
  case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
 | 
						|
  case PPCISD::ST_VSR_SCAL_INT:
 | 
						|
                                return "PPCISD::ST_VSR_SCAL_INT";
 | 
						|
  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | 
						|
  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
 | 
						|
  case PPCISD::BDZ:             return "PPCISD::BDZ";
 | 
						|
  case PPCISD::MFFS:            return "PPCISD::MFFS";
 | 
						|
  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | 
						|
  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | 
						|
  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
 | 
						|
  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
 | 
						|
  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
 | 
						|
  case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
 | 
						|
  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
 | 
						|
  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
 | 
						|
  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
 | 
						|
  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
 | 
						|
  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
 | 
						|
  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
 | 
						|
  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
 | 
						|
  case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
 | 
						|
  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
 | 
						|
  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
 | 
						|
  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
 | 
						|
  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
 | 
						|
  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
 | 
						|
  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
 | 
						|
  case PPCISD::PADDI_DTPREL:
 | 
						|
    return "PPCISD::PADDI_DTPREL";
 | 
						|
  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
 | 
						|
  case PPCISD::SC:              return "PPCISD::SC";
 | 
						|
  case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
 | 
						|
  case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
 | 
						|
  case PPCISD::RFEBB:           return "PPCISD::RFEBB";
 | 
						|
  case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
 | 
						|
  case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
 | 
						|
  case PPCISD::VABSD:           return "PPCISD::VABSD";
 | 
						|
  case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
 | 
						|
  case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
 | 
						|
  case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
 | 
						|
  case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
 | 
						|
  case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
 | 
						|
  case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
 | 
						|
  case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
 | 
						|
  case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
 | 
						|
    return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
 | 
						|
  case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
 | 
						|
    return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
 | 
						|
  case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
 | 
						|
  case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
 | 
						|
  case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
 | 
						|
  case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
 | 
						|
  case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
 | 
						|
  case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
 | 
						|
  case PPCISD::STRICT_FADDRTZ:
 | 
						|
    return "PPCISD::STRICT_FADDRTZ";
 | 
						|
  case PPCISD::STRICT_FCTIDZ:
 | 
						|
    return "PPCISD::STRICT_FCTIDZ";
 | 
						|
  case PPCISD::STRICT_FCTIWZ:
 | 
						|
    return "PPCISD::STRICT_FCTIWZ";
 | 
						|
  case PPCISD::STRICT_FCTIDUZ:
 | 
						|
    return "PPCISD::STRICT_FCTIDUZ";
 | 
						|
  case PPCISD::STRICT_FCTIWUZ:
 | 
						|
    return "PPCISD::STRICT_FCTIWUZ";
 | 
						|
  case PPCISD::STRICT_FCFID:
 | 
						|
    return "PPCISD::STRICT_FCFID";
 | 
						|
  case PPCISD::STRICT_FCFIDU:
 | 
						|
    return "PPCISD::STRICT_FCFIDU";
 | 
						|
  case PPCISD::STRICT_FCFIDS:
 | 
						|
    return "PPCISD::STRICT_FCFIDS";
 | 
						|
  case PPCISD::STRICT_FCFIDUS:
 | 
						|
    return "PPCISD::STRICT_FCFIDUS";
 | 
						|
  case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
 | 
						|
                                          EVT VT) const {
 | 
						|
  if (!VT.isVector())
 | 
						|
    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
 | 
						|
 | 
						|
  return VT.changeVectorElementTypeToInteger();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | 
						|
  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node matching predicates, for use by the tblgen matching code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | 
						|
static bool isFloatingPointZero(SDValue Op) {
 | 
						|
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | 
						|
    return CFP->getValueAPF().isZero();
 | 
						|
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | 
						|
    // Maybe this has already been legalized into the constant pool?
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | 
						|
        return CFP->getValueAPF().isZero();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | 
						|
/// true if Op is undef or if it matches the specified value.
 | 
						|
static bool isConstantOrUndef(int Op, int Val) {
 | 
						|
  return Op < 0 || Op == Val;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUHUM instruction.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 1;
 | 
						|
    for (unsigned i = 0; i != 8; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUWUM instruction.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 2;
 | 
						|
    for (unsigned i = 0; i != 8; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
 | 
						|
/// current subtarget.
 | 
						|
///
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  const PPCSubtarget& Subtarget =
 | 
						|
      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
 | 
						|
  if (!Subtarget.hasP8Vector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 4;
 | 
						|
    for (unsigned i = 0; i != 8; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMerge - Common function, used to match vmrg* shuffles.
 | 
						|
///
 | 
						|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                     unsigned LHSStart, unsigned RHSStart) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return false;
 | 
						|
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | 
						|
         "Unsupported merge size!");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | 
						|
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
 | 
						|
                             LHSStart+j+i*UnitSize) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
 | 
						|
                             RHSStart+j+i*UnitSize))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
/// The ShuffleKind distinguishes between big-endian merges with two
 | 
						|
/// different inputs (0), either-endian merges with two identical inputs (1),
 | 
						|
/// and little-endian merges with two different inputs (2).  For the latter,
 | 
						|
/// the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                             unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 0, 0);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, UnitSize, 0, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 8, 8);
 | 
						|
    else if (ShuffleKind == 0) // normal
 | 
						|
      return isVMerge(N, UnitSize, 8, 24);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
/// The ShuffleKind distinguishes between big-endian merges with two
 | 
						|
/// different inputs (0), either-endian merges with two identical inputs (1),
 | 
						|
/// and little-endian merges with two different inputs (2).  For the latter,
 | 
						|
/// the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                             unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 8, 8);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, UnitSize, 8, 24);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 0, 0);
 | 
						|
    else if (ShuffleKind == 0) // normal
 | 
						|
      return isVMerge(N, UnitSize, 0, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Common function used to match vmrgew and vmrgow shuffles
 | 
						|
 *
 | 
						|
 * The indexOffset determines whether to look for even or odd words in
 | 
						|
 * the shuffle mask. This is based on the of the endianness of the target
 | 
						|
 * machine.
 | 
						|
 *   - Little Endian:
 | 
						|
 *     - Use offset of 0 to check for odd elements
 | 
						|
 *     - Use offset of 4 to check for even elements
 | 
						|
 *   - Big Endian:
 | 
						|
 *     - Use offset of 0 to check for even elements
 | 
						|
 *     - Use offset of 4 to check for odd elements
 | 
						|
 * A detailed description of the vector element ordering for little endian and
 | 
						|
 * big endian can be found at
 | 
						|
 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
 | 
						|
 * Targeting your applications - what little endian and big endian IBM XL C/C++
 | 
						|
 * compiler differences mean to you
 | 
						|
 *
 | 
						|
 * The mask to the shuffle vector instruction specifies the indices of the
 | 
						|
 * elements from the two input vectors to place in the result. The elements are
 | 
						|
 * numbered in array-access order, starting with the first vector. These vectors
 | 
						|
 * are always of type v16i8, thus each vector will contain 16 elements of size
 | 
						|
 * 8. More info on the shuffle vector can be found in the
 | 
						|
 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
 | 
						|
 * Language Reference.
 | 
						|
 *
 | 
						|
 * The RHSStartValue indicates whether the same input vectors are used (unary)
 | 
						|
 * or two different input vectors are used, based on the following:
 | 
						|
 *   - If the instruction uses the same vector for both inputs, the range of the
 | 
						|
 *     indices will be 0 to 15. In this case, the RHSStart value passed should
 | 
						|
 *     be 0.
 | 
						|
 *   - If the instruction has two different vectors then the range of the
 | 
						|
 *     indices will be 0 to 31. In this case, the RHSStart value passed should
 | 
						|
 *     be 16 (indices 0-15 specify elements in the first vector while indices 16
 | 
						|
 *     to 31 specify elements in the second vector).
 | 
						|
 *
 | 
						|
 * \param[in] N The shuffle vector SD Node to analyze
 | 
						|
 * \param[in] IndexOffset Specifies whether to look for even or odd elements
 | 
						|
 * \param[in] RHSStartValue Specifies the starting index for the righthand input
 | 
						|
 * vector to the shuffle_vector instruction
 | 
						|
 * \return true iff this shuffle vector represents an even or odd word merge
 | 
						|
 */
 | 
						|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
 | 
						|
                     unsigned RHSStartValue) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i)
 | 
						|
    for (unsigned j = 0; j < 4; ++j)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
 | 
						|
                             i*RHSStartValue+j+IndexOffset) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
 | 
						|
                             i*RHSStartValue+j+IndexOffset+8))
 | 
						|
        return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Determine if the specified shuffle mask is suitable for the vmrgew or
 | 
						|
 * vmrgow instructions.
 | 
						|
 *
 | 
						|
 * \param[in] N The shuffle vector SD Node to analyze
 | 
						|
 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
 | 
						|
 * \param[in] ShuffleKind Identify the type of merge:
 | 
						|
 *   - 0 = big-endian merge with two different inputs;
 | 
						|
 *   - 1 = either-endian merge with two identical inputs;
 | 
						|
 *   - 2 = little-endian merge with two different inputs (inputs are swapped for
 | 
						|
 *     little-endian merges).
 | 
						|
 * \param[in] DAG The current SelectionDAG
 | 
						|
 * \return true iff this shuffle mask
 | 
						|
 */
 | 
						|
bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
 | 
						|
                              unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    unsigned indexOffset = CheckEven ? 4 : 0;
 | 
						|
    if (ShuffleKind == 1) // Unary
 | 
						|
      return isVMerge(N, indexOffset, 0);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, indexOffset, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    unsigned indexOffset = CheckEven ? 0 : 4;
 | 
						|
    if (ShuffleKind == 1) // Unary
 | 
						|
      return isVMerge(N, indexOffset, 0);
 | 
						|
    else if (ShuffleKind == 0) // Normal
 | 
						|
      return isVMerge(N, indexOffset, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | 
						|
/// amount, otherwise return -1.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with two
 | 
						|
/// different inputs (0), either-endian operations with two identical inputs
 | 
						|
/// (1), and little-endian operations with two different inputs (2).  For the
 | 
						|
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
 | 
						|
  // Find the first non-undef value in the shuffle mask.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
 | 
						|
    /*search*/;
 | 
						|
 | 
						|
  if (i == 16) return -1;  // all undef.
 | 
						|
 | 
						|
  // Otherwise, check to see if the rest of the elements are consecutively
 | 
						|
  // numbered from this value.
 | 
						|
  unsigned ShiftAmt = SVOp->getMaskElt(i);
 | 
						|
  if (ShiftAmt < i) return -1;
 | 
						|
 | 
						|
  ShiftAmt -= i;
 | 
						|
  bool isLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
 | 
						|
  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
 | 
						|
    // Check the rest of the elements to see if they are consecutive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | 
						|
        return -1;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    // Check the rest of the elements to see if they are consecutive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
 | 
						|
        return -1;
 | 
						|
  } else
 | 
						|
    return -1;
 | 
						|
 | 
						|
  if (isLE)
 | 
						|
    ShiftAmt = 16 - ShiftAmt;
 | 
						|
 | 
						|
  return ShiftAmt;
 | 
						|
}
 | 
						|
 | 
						|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | 
						|
/// specifies a splat of a single element that is suitable for input to
 | 
						|
/// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
 | 
						|
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
 | 
						|
         EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
 | 
						|
 | 
						|
  // The consecutive indices need to specify an element, not part of two
 | 
						|
  // different elements.  So abandon ship early if this isn't the case.
 | 
						|
  if (N->getMaskElt(0) % EltSize != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This is a splat operation if each element of the permute is the same, and
 | 
						|
  // if the value doesn't reference the second vector.
 | 
						|
  unsigned ElementBase = N->getMaskElt(0);
 | 
						|
 | 
						|
  // FIXME: Handle UNDEF elements too!
 | 
						|
  if (ElementBase >= 16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the indices are consecutive, in the case of a multi-byte element
 | 
						|
  // splatted with a v16i8 mask.
 | 
						|
  for (unsigned i = 1; i != EltSize; ++i)
 | 
						|
    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
 | 
						|
      return false;
 | 
						|
 | 
						|
  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | 
						|
    if (N->getMaskElt(i) < 0) continue;
 | 
						|
    for (unsigned j = 0; j != EltSize; ++j)
 | 
						|
      if (N->getMaskElt(i+j) != N->getMaskElt(j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the mask is shuffling N byte elements. Within each N byte
 | 
						|
/// element of the mask, the indices could be either in increasing or
 | 
						|
/// decreasing order as long as they are consecutive.
 | 
						|
/// \param[in] N the shuffle vector SD Node to analyze
 | 
						|
/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
 | 
						|
/// Word/DoubleWord/QuadWord).
 | 
						|
/// \param[in] StepLen the delta indices number among the N byte element, if
 | 
						|
/// the mask is in increasing/decreasing order then it is 1/-1.
 | 
						|
/// \return true iff the mask is shuffling N byte elements.
 | 
						|
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
 | 
						|
                                   int StepLen) {
 | 
						|
  assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
 | 
						|
         "Unexpected element width.");
 | 
						|
  assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
 | 
						|
 | 
						|
  unsigned NumOfElem = 16 / Width;
 | 
						|
  unsigned MaskVal[16]; //  Width is never greater than 16
 | 
						|
  for (unsigned i = 0; i < NumOfElem; ++i) {
 | 
						|
    MaskVal[0] = N->getMaskElt(i * Width);
 | 
						|
    if ((StepLen == 1) && (MaskVal[0] % Width)) {
 | 
						|
      return false;
 | 
						|
    } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned int j = 1; j < Width; ++j) {
 | 
						|
      MaskVal[j] = N->getMaskElt(i * Width + j);
 | 
						|
      if (MaskVal[j] != MaskVal[j-1] + StepLen) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | 
						|
                          unsigned &InsertAtByte, bool &Swap, bool IsLE) {
 | 
						|
  if (!isNByteElemShuffleMask(N, 4, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now we look at mask elements 0,4,8,12
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 4;
 | 
						|
  unsigned M1 = N->getMaskElt(4) / 4;
 | 
						|
  unsigned M2 = N->getMaskElt(8) / 4;
 | 
						|
  unsigned M3 = N->getMaskElt(12) / 4;
 | 
						|
  unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
 | 
						|
  unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
 | 
						|
 | 
						|
  // Below, let H and L be arbitrary elements of the shuffle mask
 | 
						|
  // where H is in the range [4,7] and L is in the range [0,3].
 | 
						|
  // H, 1, 2, 3 or L, 5, 6, 7
 | 
						|
  if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
 | 
						|
      (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 12 : 0;
 | 
						|
    Swap = M0 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, H, 2, 3 or 4, L, 6, 7
 | 
						|
  if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
 | 
						|
      (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 8 : 4;
 | 
						|
    Swap = M1 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, 1, H, 3 or 4, 5, L, 7
 | 
						|
  if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
 | 
						|
      (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 4 : 8;
 | 
						|
    Swap = M2 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, 1, 2, H or 4, 5, 6, L
 | 
						|
  if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
 | 
						|
      (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 0 : 12;
 | 
						|
    Swap = M3 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    ShiftElts = 0;
 | 
						|
    Swap = true;
 | 
						|
    unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
 | 
						|
    if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 12 : 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 8 : 4;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 4 : 8;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
 | 
						|
      InsertAtByte = IsLE ? 0 : 12;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | 
						|
                               bool &Swap, bool IsLE) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
  // Ensure each byte index of the word is consecutive.
 | 
						|
  if (!isNByteElemShuffleMask(N, 4, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now we look at mask elements 0,4,8,12, which are the beginning of words.
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 4;
 | 
						|
  unsigned M1 = N->getMaskElt(4) / 4;
 | 
						|
  unsigned M2 = N->getMaskElt(8) / 4;
 | 
						|
  unsigned M3 = N->getMaskElt(12) / 4;
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    assert(M0 < 4 && "Indexing into an undef vector?");
 | 
						|
    if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ShiftElts = IsLE ? (4 - M0) % 4 : M0;
 | 
						|
    Swap = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure each word index of the ShuffleVector Mask is consecutive.
 | 
						|
  if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IsLE) {
 | 
						|
    if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
 | 
						|
      // Input vectors don't need to be swapped if the leading element
 | 
						|
      // of the result is one of the 3 left elements of the second vector
 | 
						|
      // (or if there is no shift to be done at all).
 | 
						|
      Swap = false;
 | 
						|
      ShiftElts = (8 - M0) % 8;
 | 
						|
    } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
 | 
						|
      // Input vectors need to be swapped if the leading element
 | 
						|
      // of the result is one of the 3 left elements of the first vector
 | 
						|
      // (or if we're shifting by 4 - thereby simply swapping the vectors).
 | 
						|
      Swap = true;
 | 
						|
      ShiftElts = (4 - M0) % 4;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  } else {                                          // BE
 | 
						|
    if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
 | 
						|
      // Input vectors don't need to be swapped if the leading element
 | 
						|
      // of the result is one of the 4 elements of the first vector.
 | 
						|
      Swap = false;
 | 
						|
      ShiftElts = M0;
 | 
						|
    } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
 | 
						|
      // Input vectors need to be swapped if the leading element
 | 
						|
      // of the result is one of the 4 elements of the right vector.
 | 
						|
      Swap = true;
 | 
						|
      ShiftElts = M0 - 4;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
 | 
						|
  if (!isNByteElemShuffleMask(N, Width, -1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (int i = 0; i < 16; i += Width)
 | 
						|
    if (N->getMaskElt(i) != i + Width - 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 2);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 4);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 8);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 16);
 | 
						|
}
 | 
						|
 | 
						|
/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
 | 
						|
/// if the inputs to the instruction should be swapped and set \p DM to the
 | 
						|
/// value for the immediate.
 | 
						|
/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
 | 
						|
/// AND element 0 of the result comes from the first input (LE) or second input
 | 
						|
/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
 | 
						|
/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
 | 
						|
/// mask.
 | 
						|
bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
 | 
						|
                               bool &Swap, bool IsLE) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
 | 
						|
  // Ensure each byte index of the double word is consecutive.
 | 
						|
  if (!isNByteElemShuffleMask(N, 8, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 8;
 | 
						|
  unsigned M1 = N->getMaskElt(8) / 8;
 | 
						|
  assert(((M0 | M1) < 4) && "A mask element out of bounds?");
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    if ((M0 | M1) < 2) {
 | 
						|
      DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
 | 
						|
      Swap = false;
 | 
						|
      return true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsLE) {
 | 
						|
    if (M0 > 1 && M1 < 2) {
 | 
						|
      Swap = false;
 | 
						|
    } else if (M0 < 2 && M1 > 1) {
 | 
						|
      M0 = (M0 + 2) % 4;
 | 
						|
      M1 = (M1 + 2) % 4;
 | 
						|
      Swap = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Note: if control flow comes here that means Swap is already set above
 | 
						|
    DM = (((~M1) & 1) << 1) + ((~M0) & 1);
 | 
						|
    return true;
 | 
						|
  } else { // BE
 | 
						|
    if (M0 < 2 && M1 > 1) {
 | 
						|
      Swap = false;
 | 
						|
    } else if (M0 > 1 && M1 < 2) {
 | 
						|
      M0 = (M0 + 2) % 4;
 | 
						|
      M1 = (M1 + 2) % 4;
 | 
						|
      Swap = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Note: if control flow comes here that means Swap is already set above
 | 
						|
    DM = (M0 << 1) + (M1 & 1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
 | 
						|
/// appropriate for PPC mnemonics (which have a big endian bias - namely
 | 
						|
/// elements are counted from the left of the vector register).
 | 
						|
unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
 | 
						|
                                         SelectionDAG &DAG) {
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
  assert(isSplatShuffleMask(SVOp, EltSize));
 | 
						|
  if (DAG.getDataLayout().isLittleEndian())
 | 
						|
    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
 | 
						|
  else
 | 
						|
    return SVOp->getMaskElt(0) / EltSize;
 | 
						|
}
 | 
						|
 | 
						|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | 
						|
/// by using a vspltis[bhw] instruction of the specified element size, return
 | 
						|
/// the constant being splatted.  The ByteSize field indicates the number of
 | 
						|
/// bytes of each element [124] -> [bhw].
 | 
						|
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | 
						|
  SDValue OpVal(nullptr, 0);
 | 
						|
 | 
						|
  // If ByteSize of the splat is bigger than the element size of the
 | 
						|
  // build_vector, then we have a case where we are checking for a splat where
 | 
						|
  // multiple elements of the buildvector are folded together into a single
 | 
						|
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | 
						|
  unsigned EltSize = 16/N->getNumOperands();
 | 
						|
  if (EltSize < ByteSize) {
 | 
						|
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | 
						|
    SDValue UniquedVals[4];
 | 
						|
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | 
						|
 | 
						|
    // See if all of the elements in the buildvector agree across.
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
      if (N->getOperand(i).isUndef()) continue;
 | 
						|
      // If the element isn't a constant, bail fully out.
 | 
						|
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | 
						|
 | 
						|
      if (!UniquedVals[i&(Multiple-1)].getNode())
 | 
						|
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | 
						|
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | 
						|
        return SDValue();  // no match.
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | 
						|
    // either constant or undef values that are identical for each chunk.  See
 | 
						|
    // if these chunks can form into a larger vspltis*.
 | 
						|
 | 
						|
    // Check to see if all of the leading entries are either 0 or -1.  If
 | 
						|
    // neither, then this won't fit into the immediate field.
 | 
						|
    bool LeadingZero = true;
 | 
						|
    bool LeadingOnes = true;
 | 
						|
    for (unsigned i = 0; i != Multiple-1; ++i) {
 | 
						|
      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
 | 
						|
 | 
						|
      LeadingZero &= isNullConstant(UniquedVals[i]);
 | 
						|
      LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
 | 
						|
    }
 | 
						|
    // Finally, check the least significant entry.
 | 
						|
    if (LeadingZero) {
 | 
						|
      if (!UniquedVals[Multiple-1].getNode())
 | 
						|
        return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
 | 
						|
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
 | 
						|
      if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
 | 
						|
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | 
						|
    }
 | 
						|
    if (LeadingOnes) {
 | 
						|
      if (!UniquedVals[Multiple-1].getNode())
 | 
						|
        return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
 | 
						|
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
 | 
						|
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | 
						|
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this buildvec has a single non-undef value in its elements.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    if (N->getOperand(i).isUndef()) continue;
 | 
						|
    if (!OpVal.getNode())
 | 
						|
      OpVal = N->getOperand(i);
 | 
						|
    else if (OpVal != N->getOperand(i))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
 | 
						|
 | 
						|
  unsigned ValSizeInBytes = EltSize;
 | 
						|
  uint64_t Value = 0;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
    Value = CN->getZExtValue();
 | 
						|
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | 
						|
    Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the splat value is larger than the element value, then we can never do
 | 
						|
  // this splat.  The only case that we could fit the replicated bits into our
 | 
						|
  // immediate field for would be zero, and we prefer to use vxor for it.
 | 
						|
  if (ValSizeInBytes < ByteSize) return SDValue();
 | 
						|
 | 
						|
  // If the element value is larger than the splat value, check if it consists
 | 
						|
  // of a repeated bit pattern of size ByteSize.
 | 
						|
  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Properly sign extend the value.
 | 
						|
  int MaskVal = SignExtend32(Value, ByteSize * 8);
 | 
						|
 | 
						|
  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | 
						|
  if (MaskVal == 0) return SDValue();
 | 
						|
 | 
						|
  // Finally, if this value fits in a 5 bit sext field, return it
 | 
						|
  if (SignExtend32<5>(MaskVal) == MaskVal)
 | 
						|
    return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Addressing Mode Selection
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
 | 
						|
  if (!isa<ConstantSDNode>(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
}
 | 
						|
bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
 | 
						|
  return isIntS16Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
/// Used when computing address flags for selecting loads and stores.
 | 
						|
/// If we have an OR, check if the LHS and RHS are provably disjoint.
 | 
						|
/// An OR of two provably disjoint values is equivalent to an ADD.
 | 
						|
/// Most PPC load/store instructions compute the effective address as a sum,
 | 
						|
/// so doing this conversion is useful.
 | 
						|
static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
 | 
						|
  if (N.getOpcode() != ISD::OR)
 | 
						|
    return false;
 | 
						|
  KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
 | 
						|
  if (!LHSKnown.Zero.getBoolValue())
 | 
						|
    return false;
 | 
						|
  KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
 | 
						|
  return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressEVXRegReg - Given the specified address, check to see if it can
 | 
						|
/// be represented as an indexed [r+r] operation.
 | 
						|
bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
 | 
						|
                                               SDValue &Index,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
 | 
						|
      UI != E; ++UI) {
 | 
						|
    if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
 | 
						|
      if (Memop->getMemoryVT() == MVT::f64) {
 | 
						|
          Base = N.getOperand(0);
 | 
						|
          Index = N.getOperand(1);
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isIntS34Immediate - This method tests if value of node given can be
 | 
						|
/// accurately represented as a sign extension from a 34-bit value.  If so,
 | 
						|
/// this returns true and the immediate.
 | 
						|
bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
 | 
						|
  if (!isa<ConstantSDNode>(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  return isInt<34>(Imm);
 | 
						|
}
 | 
						|
bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
 | 
						|
  return isIntS34Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
 | 
						|
/// can be represented as an indexed [r+r] operation.  Returns false if it
 | 
						|
/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
 | 
						|
/// non-zero and N can be represented by a base register plus a signed 16-bit
 | 
						|
/// displacement, make a more precise judgement by checking (displacement % \p
 | 
						|
/// EncodingAlignment).
 | 
						|
bool PPCTargetLowering::SelectAddressRegReg(
 | 
						|
    SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
 | 
						|
    MaybeAlign EncodingAlignment) const {
 | 
						|
  // If we have a PC Relative target flag don't select as [reg+reg]. It will be
 | 
						|
  // a [pc+imm].
 | 
						|
  if (SelectAddressPCRel(N, Base))
 | 
						|
    return false;
 | 
						|
 | 
						|
  int16_t Imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    // Is there any SPE load/store (f64), which can't handle 16bit offset?
 | 
						|
    // SPE load/store can only handle 8-bit offsets.
 | 
						|
    if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
 | 
						|
        return true;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), Imm) &&
 | 
						|
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
 | 
						|
      return false; // r+i
 | 
						|
    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | 
						|
      return false;    // r+i
 | 
						|
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), Imm) &&
 | 
						|
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
 | 
						|
      return false; // r+i can fold it if we can.
 | 
						|
 | 
						|
    // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
    // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | 
						|
    // disjoint.
 | 
						|
    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
 | 
						|
 | 
						|
    if (LHSKnown.Zero.getBoolValue()) {
 | 
						|
      KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
 | 
						|
      // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
      // carry.
 | 
						|
      if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Index = N.getOperand(1);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If we happen to be doing an i64 load or store into a stack slot that has
 | 
						|
// less than a 4-byte alignment, then the frame-index elimination may need to
 | 
						|
// use an indexed load or store instruction (because the offset may not be a
 | 
						|
// multiple of 4). The extra register needed to hold the offset comes from the
 | 
						|
// register scavenger, and it is possible that the scavenger will need to use
 | 
						|
// an emergency spill slot. As a result, we need to make sure that a spill slot
 | 
						|
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
 | 
						|
// stack slot.
 | 
						|
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
 | 
						|
  // FIXME: This does not handle the LWA case.
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return;
 | 
						|
 | 
						|
  // NOTE: We'll exclude negative FIs here, which come from argument
 | 
						|
  // lowering, because there are no known test cases triggering this problem
 | 
						|
  // using packed structures (or similar). We can remove this exclusion if
 | 
						|
  // we find such a test case. The reason why this is so test-case driven is
 | 
						|
  // because this entire 'fixup' is only to prevent crashes (from the
 | 
						|
  // register scavenger) on not-really-valid inputs. For example, if we have:
 | 
						|
  //   %a = alloca i1
 | 
						|
  //   %b = bitcast i1* %a to i64*
 | 
						|
  //   store i64* a, i64 b
 | 
						|
  // then the store should really be marked as 'align 1', but is not. If it
 | 
						|
  // were marked as 'align 1' then the indexed form would have been
 | 
						|
  // instruction-selected initially, and the problem this 'fixup' is preventing
 | 
						|
  // won't happen regardless.
 | 
						|
  if (FrameIdx < 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  if (MFI.getObjectAlign(FrameIdx) >= Align(4))
 | 
						|
    return;
 | 
						|
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setHasNonRISpills();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the address N can be represented by a base register plus
 | 
						|
/// a signed 16-bit displacement [r+imm], and if it is not better
 | 
						|
/// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
 | 
						|
/// displacements that are multiples of that value.
 | 
						|
bool PPCTargetLowering::SelectAddressRegImm(
 | 
						|
    SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
 | 
						|
    MaybeAlign EncodingAlignment) const {
 | 
						|
  // FIXME dl should come from parent load or store, not from address
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // If we have a PC Relative target flag don't select as [reg+imm]. It will be
 | 
						|
  // a [pc+imm].
 | 
						|
  if (SelectAddressPCRel(N, Base))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    int16_t imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) &&
 | 
						|
        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
 | 
						|
      Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool ||
 | 
						|
             Disp.getOpcode() == ISD::TargetJumpTable);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    int16_t imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) &&
 | 
						|
        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
 | 
						|
 | 
						|
      if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        if (FrameIndexSDNode *FI =
 | 
						|
              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
        } else {
 | 
						|
          Base = N.getOperand(0);
 | 
						|
        }
 | 
						|
        Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.
 | 
						|
 | 
						|
    // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
    // this as "d, 0"
 | 
						|
    int16_t Imm;
 | 
						|
    if (isIntS16Immediate(CN, Imm) &&
 | 
						|
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
 | 
						|
      Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
 | 
						|
      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                             CN->getValueType(0));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle 32-bit sext immediates with LIS + addr mode.
 | 
						|
    if ((CN->getValueType(0) == MVT::i32 ||
 | 
						|
         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
 | 
						|
        (!EncodingAlignment ||
 | 
						|
         isAligned(*EncodingAlignment, CN->getZExtValue()))) {
 | 
						|
      int Addr = (int)CN->getZExtValue();
 | 
						|
 | 
						|
      // Otherwise, break this down into an LIS + disp.
 | 
						|
      Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
 | 
						|
 | 
						|
      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
 | 
						|
                                   MVT::i32);
 | 
						|
      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | 
						|
      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
 | 
						|
    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
  } else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
/// Similar to the 16-bit case but for instructions that take a 34-bit
 | 
						|
/// displacement field (prefixed loads/stores).
 | 
						|
bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
 | 
						|
                                              SDValue &Base,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // Only on 64-bit targets.
 | 
						|
  if (N.getValueType() != MVT::i64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  int64_t Imm = 0;
 | 
						|
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    if (!isIntS34Immediate(N.getOperand(1), Imm))
 | 
						|
      return false;
 | 
						|
    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
 | 
						|
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
 | 
						|
      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
    else
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (N.getOpcode() == ISD::OR) {
 | 
						|
    if (!isIntS34Immediate(N.getOperand(1), Imm))
 | 
						|
      return false;
 | 
						|
    // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
    // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
    // provably disjoint.
 | 
						|
    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
 | 
						|
    if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
 | 
						|
      return false;
 | 
						|
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
 | 
						|
      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
    else
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
 | 
						|
    Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
 | 
						|
    Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | 
						|
/// represented as an indexed [r+r] operation.
 | 
						|
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &Index,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  // Check to see if we can easily represent this as an [r+r] address.  This
 | 
						|
  // will fail if it thinks that the address is more profitably represented as
 | 
						|
  // reg+imm, e.g. where imm = 0.
 | 
						|
  if (SelectAddressRegReg(N, Base, Index, DAG))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the address is the result of an add, we will utilize the fact that the
 | 
						|
  // address calculation includes an implicit add.  However, we can reduce
 | 
						|
  // register pressure if we do not materialize a constant just for use as the
 | 
						|
  // index register.  We only get rid of the add if it is not an add of a
 | 
						|
  // value and a 16-bit signed constant and both have a single use.
 | 
						|
  int16_t imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD &&
 | 
						|
      (!isIntS16Immediate(N.getOperand(1), imm) ||
 | 
						|
       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, do it the hard way, using R0 as the base register.
 | 
						|
  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                         N.getValueType());
 | 
						|
  Index = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Ty> static bool isValidPCRelNode(SDValue N) {
 | 
						|
  Ty *PCRelCand = dyn_cast<Ty>(N);
 | 
						|
  return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if this address is a PC Relative address.
 | 
						|
/// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
 | 
						|
/// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
 | 
						|
bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
 | 
						|
  // This is a materialize PC Relative node. Always select this as PC Relative.
 | 
						|
  Base = N;
 | 
						|
  if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
 | 
						|
    return true;
 | 
						|
  if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
 | 
						|
      isValidPCRelNode<GlobalAddressSDNode>(N) ||
 | 
						|
      isValidPCRelNode<JumpTableSDNode>(N) ||
 | 
						|
      isValidPCRelNode<BlockAddressSDNode>(N))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we should use a direct load into vector instruction
 | 
						|
/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
 | 
						|
static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
 | 
						|
 | 
						|
  // If there are any other uses other than scalar to vector, then we should
 | 
						|
  // keep it as a scalar load -> direct move pattern to prevent multiple
 | 
						|
  // loads.
 | 
						|
  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
 | 
						|
  if (!LD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT MemVT = LD->getMemoryVT();
 | 
						|
  if (!MemVT.isSimple())
 | 
						|
    return false;
 | 
						|
  switch(MemVT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::i64:
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    if (!ST.hasP8Vector())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i8:
 | 
						|
    if (!ST.hasP9Vector())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LoadedVal(N, 0);
 | 
						|
  if (!LoadedVal.hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    if (UI.getUse().get().getResNo() == 0 &&
 | 
						|
        UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
 | 
						|
        UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getPreIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if the node's address
 | 
						|
/// can be legally represented as pre-indexed load / store address.
 | 
						|
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | 
						|
                                                  SDValue &Offset,
 | 
						|
                                                  ISD::MemIndexedMode &AM,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  if (DisablePPCPreinc) return false;
 | 
						|
 | 
						|
  bool isLoad = true;
 | 
						|
  SDValue Ptr;
 | 
						|
  EVT VT;
 | 
						|
  unsigned Alignment;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
    VT = LD->getMemoryVT();
 | 
						|
    Alignment = LD->getAlignment();
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
    Alignment = ST->getAlignment();
 | 
						|
    isLoad = false;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
 | 
						|
  // instructions because we can fold these into a more efficient instruction
 | 
						|
  // instead, (such as LXSD).
 | 
						|
  if (isLoad && usePartialVectorLoads(N, Subtarget)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC doesn't have preinc load/store instructions for vectors
 | 
						|
  if (VT.isVector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
 | 
						|
    // Common code will reject creating a pre-inc form if the base pointer
 | 
						|
    // is a frame index, or if N is a store and the base pointer is either
 | 
						|
    // the same as or a predecessor of the value being stored.  Check for
 | 
						|
    // those situations here, and try with swapped Base/Offset instead.
 | 
						|
    bool Swap = false;
 | 
						|
 | 
						|
    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
 | 
						|
      Swap = true;
 | 
						|
    else if (!isLoad) {
 | 
						|
      SDValue Val = cast<StoreSDNode>(N)->getValue();
 | 
						|
      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
 | 
						|
        Swap = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Swap)
 | 
						|
      std::swap(Base, Offset);
 | 
						|
 | 
						|
    AM = ISD::PRE_INC;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // LDU/STU can only handle immediates that are a multiple of 4.
 | 
						|
  if (VT != MVT::i64) {
 | 
						|
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // LDU/STU need an address with at least 4-byte alignment.
 | 
						|
    if (Alignment < 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | 
						|
    // sext i32 to i64 when addr mode is r+i.
 | 
						|
    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | 
						|
        LD->getExtensionType() == ISD::SEXTLOAD &&
 | 
						|
        isa<ConstantSDNode>(Offset))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  AM = ISD::PRE_INC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  LowerOperation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return true if we should reference labels using a PICBase, set the HiOpFlags
 | 
						|
/// and LoOpFlags to the target MO flags.
 | 
						|
static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
 | 
						|
                               unsigned &HiOpFlags, unsigned &LoOpFlags,
 | 
						|
                               const GlobalValue *GV = nullptr) {
 | 
						|
  HiOpFlags = PPCII::MO_HA;
 | 
						|
  LoOpFlags = PPCII::MO_LO;
 | 
						|
 | 
						|
  // Don't use the pic base if not in PIC relocation model.
 | 
						|
  if (IsPIC) {
 | 
						|
    HiOpFlags |= PPCII::MO_PIC_FLAG;
 | 
						|
    LoOpFlags |= PPCII::MO_PIC_FLAG;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(HiPart);
 | 
						|
  EVT PtrVT = HiPart.getValueType();
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, PtrVT);
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
 | 
						|
  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
 | 
						|
 | 
						|
  // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
  if (isPIC)
 | 
						|
    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
 | 
						|
 | 
						|
  // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
  // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | 
						|
}
 | 
						|
 | 
						|
static void setUsesTOCBasePtr(MachineFunction &MF) {
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setUsesTOCBasePtr();
 | 
						|
}
 | 
						|
 | 
						|
static void setUsesTOCBasePtr(SelectionDAG &DAG) {
 | 
						|
  setUsesTOCBasePtr(DAG.getMachineFunction());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                                       SDValue GA) const {
 | 
						|
  const bool Is64Bit = Subtarget.isPPC64();
 | 
						|
  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
 | 
						|
  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
 | 
						|
                        : Subtarget.isAIXABI()
 | 
						|
                              ? DAG.getRegister(PPC::R2, VT)
 | 
						|
                              : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
 | 
						|
  SDValue Ops[] = { GA, Reg };
 | 
						|
  return DAG.getMemIntrinsicNode(
 | 
						|
      PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
 | 
						|
      MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
 | 
						|
      MachineMemOperand::MOLoad);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  const Constant *C = CP->getConstVal();
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
 | 
						|
    if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      SDLoc DL(CP);
 | 
						|
      EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
      SDValue ConstPool = DAG.getTargetConstantPool(
 | 
						|
          C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
 | 
						|
      return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
 | 
						|
    }
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
 | 
						|
    return getTOCEntry(DAG, SDLoc(CP), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA =
 | 
						|
        DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, SDLoc(CP), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue CPIHi =
 | 
						|
      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
 | 
						|
  SDValue CPILo =
 | 
						|
      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
 | 
						|
  return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
// For 64-bit PowerPC, prefer the more compact relative encodings.
 | 
						|
// This trades 32 bits per jump table entry for one or two instructions
 | 
						|
// on the jump site.
 | 
						|
unsigned PPCTargetLowering::getJumpTableEncoding() const {
 | 
						|
  if (isJumpTableRelative())
 | 
						|
    return MachineJumpTableInfo::EK_LabelDifference32;
 | 
						|
 | 
						|
  return TargetLowering::getJumpTableEncoding();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isJumpTableRelative() const {
 | 
						|
  if (UseAbsoluteJumpTables)
 | 
						|
    return false;
 | 
						|
  if (Subtarget.isPPC64() || Subtarget.isAIXABI())
 | 
						|
    return true;
 | 
						|
  return TargetLowering::isJumpTableRelative();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
 | 
						|
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | 
						|
 | 
						|
  switch (getTargetMachine().getCodeModel()) {
 | 
						|
  case CodeModel::Small:
 | 
						|
  case CodeModel::Medium:
 | 
						|
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | 
						|
  default:
 | 
						|
    return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
 | 
						|
                       getPointerTy(DAG.getDataLayout()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const MCExpr *
 | 
						|
PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | 
						|
                                                unsigned JTI,
 | 
						|
                                                MCContext &Ctx) const {
 | 
						|
  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
 | 
						|
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | 
						|
 | 
						|
  switch (getTargetMachine().getCodeModel()) {
 | 
						|
  case CodeModel::Small:
 | 
						|
  case CodeModel::Medium:
 | 
						|
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | 
						|
  default:
 | 
						|
    return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
 | 
						|
  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
 | 
						|
  if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
    SDLoc DL(JT);
 | 
						|
    EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
    SDValue GA =
 | 
						|
        DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
 | 
						|
    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
 | 
						|
    return MatAddr;
 | 
						|
  }
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | 
						|
    return getTOCEntry(DAG, SDLoc(JT), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
 | 
						|
                                        PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, SDLoc(GA), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
 | 
						|
  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
 | 
						|
  return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
 | 
						|
  const BlockAddress *BA = BASDN->getBlockAddress();
 | 
						|
 | 
						|
  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
 | 
						|
  if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
    SDLoc DL(BASDN);
 | 
						|
    EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
    SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
 | 
						|
                                           PPCII::MO_PCREL_FLAG);
 | 
						|
    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
 | 
						|
    return MatAddr;
 | 
						|
  }
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
 | 
						|
  // The actual BlockAddress is stored in the TOC.
 | 
						|
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
 | 
						|
    return getTOCEntry(DAG, SDLoc(BASDN), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  // 32-bit position-independent ELF stores the BlockAddress in the .got.
 | 
						|
  if (Subtarget.is32BitELFABI() && isPositionIndependent())
 | 
						|
    return getTOCEntry(
 | 
						|
        DAG, SDLoc(BASDN),
 | 
						|
        DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
 | 
						|
  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
 | 
						|
  return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    return LowerGlobalTLSAddressAIX(Op, DAG);
 | 
						|
 | 
						|
  return LowerGlobalTLSAddressLinux(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
 | 
						|
  if (DAG.getTarget().useEmulatedTLS())
 | 
						|
    report_fatal_error("Emulated TLS is not yet supported on AIX");
 | 
						|
 | 
						|
  SDLoc dl(GA);
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // The general-dynamic model is the only access model supported for now, so
 | 
						|
  // all the GlobalTLSAddress nodes are lowered with this model.
 | 
						|
  // We need to generate two TOC entries, one for the variable offset, one for
 | 
						|
  // the region handle. The global address for the TOC entry of the region
 | 
						|
  // handle is created with the MO_TLSGDM_FLAG flag and the global address
 | 
						|
  // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
 | 
						|
  SDValue VariableOffsetTGA =
 | 
						|
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
 | 
						|
  SDValue RegionHandleTGA =
 | 
						|
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
 | 
						|
  SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
 | 
						|
  SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
 | 
						|
  return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
 | 
						|
                     RegionHandle);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  // FIXME: TLS addresses currently use medium model code sequences,
 | 
						|
  // which is the most useful form.  Eventually support for small and
 | 
						|
  // large models could be added if users need it, at the cost of
 | 
						|
  // additional complexity.
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
  if (DAG.getTarget().useEmulatedTLS())
 | 
						|
    return LowerToTLSEmulatedModel(GA, DAG);
 | 
						|
 | 
						|
  SDLoc dl(GA);
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool is64bit = Subtarget.isPPC64();
 | 
						|
  const Module *M = DAG.getMachineFunction().getFunction().getParent();
 | 
						|
  PICLevel::Level picLevel = M->getPICLevel();
 | 
						|
 | 
						|
  const TargetMachine &TM = getTargetMachine();
 | 
						|
  TLSModel::Model Model = TM.getTLSModel(GV);
 | 
						|
 | 
						|
  if (Model == TLSModel::LocalExec) {
 | 
						|
    if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
 | 
						|
      SDValue TGA = DAG.getTargetGlobalAddress(
 | 
						|
          GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
 | 
						|
      SDValue MatAddr =
 | 
						|
          DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
 | 
						|
      return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_TPREL_HA);
 | 
						|
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_TPREL_LO);
 | 
						|
    SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
 | 
						|
                             : DAG.getRegister(PPC::R2, MVT::i32);
 | 
						|
 | 
						|
    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
 | 
						|
    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::InitialExec) {
 | 
						|
    bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(
 | 
						|
        GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
 | 
						|
    SDValue TGATLS = DAG.getTargetGlobalAddress(
 | 
						|
        GV, dl, PtrVT, 0,
 | 
						|
        IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
 | 
						|
    SDValue TPOffset;
 | 
						|
    if (IsPCRel) {
 | 
						|
      SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
 | 
						|
      TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
 | 
						|
                             MachinePointerInfo());
 | 
						|
    } else {
 | 
						|
      SDValue GOTPtr;
 | 
						|
      if (is64bit) {
 | 
						|
        setUsesTOCBasePtr(DAG);
 | 
						|
        SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
        GOTPtr =
 | 
						|
            DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
 | 
						|
      } else {
 | 
						|
        if (!TM.isPositionIndependent())
 | 
						|
          GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
 | 
						|
        else if (picLevel == PICLevel::SmallPIC)
 | 
						|
          GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | 
						|
        else
 | 
						|
          GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | 
						|
      }
 | 
						|
      TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::GeneralDynamic) {
 | 
						|
    if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_GOT_TLSGD_PCREL_FLAG);
 | 
						|
      return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | 
						|
    SDValue GOTPtr;
 | 
						|
    if (is64bit) {
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
 | 
						|
                                   GOTReg, TGA);
 | 
						|
    } else {
 | 
						|
      if (picLevel == PICLevel::SmallPIC)
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | 
						|
      else
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
 | 
						|
                       GOTPtr, TGA, TGA);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::LocalDynamic) {
 | 
						|
    if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_GOT_TLSLD_PCREL_FLAG);
 | 
						|
      SDValue MatPCRel =
 | 
						|
          DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
 | 
						|
      return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | 
						|
    SDValue GOTPtr;
 | 
						|
    if (is64bit) {
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
 | 
						|
                           GOTReg, TGA);
 | 
						|
    } else {
 | 
						|
      if (picLevel == PICLevel::SmallPIC)
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | 
						|
      else
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | 
						|
    }
 | 
						|
    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
 | 
						|
                                  PtrVT, GOTPtr, TGA, TGA);
 | 
						|
    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
 | 
						|
                                      PtrVT, TLSAddr, TGA);
 | 
						|
    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unknown TLS model!");
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  SDLoc DL(GSDN);
 | 
						|
  const GlobalValue *GV = GSDN->getGlobal();
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
 | 
						|
    if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
      if (isAccessedAsGotIndirect(Op)) {
 | 
						|
        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
 | 
						|
                                                PPCII::MO_PCREL_FLAG |
 | 
						|
                                                    PPCII::MO_GOT_FLAG);
 | 
						|
        SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
 | 
						|
        SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
 | 
						|
                                   MachinePointerInfo());
 | 
						|
        return Load;
 | 
						|
      } else {
 | 
						|
        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
 | 
						|
                                                PPCII::MO_PCREL_FLAG);
 | 
						|
        return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
 | 
						|
    return getTOCEntry(DAG, DL, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
 | 
						|
                                            GSDN->getOffset(),
 | 
						|
                                            PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, DL, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue GAHi =
 | 
						|
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
 | 
						|
  SDValue GALo =
 | 
						|
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
 | 
						|
 | 
						|
  return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  ISD::CondCode CC =
 | 
						|
      cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
 | 
						|
  SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
 | 
						|
  SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
 | 
						|
  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
 | 
						|
  EVT LHSVT = LHS.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Soften the setcc with libcall if it is fp128.
 | 
						|
  if (LHSVT == MVT::f128) {
 | 
						|
    assert(!Subtarget.hasP9Vector() &&
 | 
						|
           "SETCC for f128 is already legal under Power9!");
 | 
						|
    softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
 | 
						|
                        Op->getOpcode() == ISD::STRICT_FSETCCS);
 | 
						|
    if (RHS.getNode())
 | 
						|
      LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
 | 
						|
                        DAG.getCondCode(CC));
 | 
						|
    if (IsStrict)
 | 
						|
      return DAG.getMergeValues({LHS, Chain}, dl);
 | 
						|
    return LHS;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::v2i64) {
 | 
						|
    // When the operands themselves are v2i64 values, we need to do something
 | 
						|
    // special because VSX has no underlying comparison operations for these.
 | 
						|
    if (LHS.getValueType() == MVT::v2i64) {
 | 
						|
      // Equality can be handled by casting to the legal type for Altivec
 | 
						|
      // comparisons, everything else needs to be expanded.
 | 
						|
      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
        return DAG.getNode(
 | 
						|
            ISD::BITCAST, dl, MVT::v2i64,
 | 
						|
            DAG.getSetCC(dl, MVT::v4i32,
 | 
						|
                         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
 | 
						|
                         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
 | 
						|
      }
 | 
						|
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // We handle most of these in the usual way.
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're comparing for equality to zero, expose the fact that this is
 | 
						|
  // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
 | 
						|
  // fold the new nodes.
 | 
						|
  if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | 
						|
    // Leave comparisons against 0 and -1 alone for now, since they're usually
 | 
						|
    // optimized.  FIXME: revisit this when we can custom lower all setcc
 | 
						|
    // optimizations.
 | 
						|
    if (C->isAllOnes() || C->isZero())
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have an integer seteq/setne, turn it into a compare against zero
 | 
						|
  // by xor'ing the rhs with the lhs, which is faster than setting a
 | 
						|
  // condition register, reading it back out, and masking the correct bit.  The
 | 
						|
  // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | 
						|
  // the result to other bit-twiddling opportunities.
 | 
						|
  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
 | 
						|
    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue InChain = Node->getOperand(0);
 | 
						|
  SDValue VAListPtr = Node->getOperand(1);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | 
						|
  SDLoc dl(Node);
 | 
						|
 | 
						|
  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
 | 
						|
 | 
						|
  // gpr_index
 | 
						|
  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | 
						|
                                    VAListPtr, MachinePointerInfo(SV), MVT::i8);
 | 
						|
  InChain = GprIndex.getValue(1);
 | 
						|
 | 
						|
  if (VT == MVT::i64) {
 | 
						|
    // Check if GprIndex is even
 | 
						|
    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
 | 
						|
                                 DAG.getConstant(1, dl, MVT::i32));
 | 
						|
    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
 | 
						|
                                DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
 | 
						|
    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
 | 
						|
                                          DAG.getConstant(1, dl, MVT::i32));
 | 
						|
    // Align GprIndex to be even if it isn't
 | 
						|
    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
 | 
						|
                           GprIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // fpr index is 1 byte after gpr
 | 
						|
  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                               DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  // fpr
 | 
						|
  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | 
						|
                                    FprPtr, MachinePointerInfo(SV), MVT::i8);
 | 
						|
  InChain = FprIndex.getValue(1);
 | 
						|
 | 
						|
  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                                       DAG.getConstant(8, dl, MVT::i32));
 | 
						|
 | 
						|
  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                                        DAG.getConstant(4, dl, MVT::i32));
 | 
						|
 | 
						|
  // areas
 | 
						|
  SDValue OverflowArea =
 | 
						|
      DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
 | 
						|
  InChain = OverflowArea.getValue(1);
 | 
						|
 | 
						|
  SDValue RegSaveArea =
 | 
						|
      DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
 | 
						|
  InChain = RegSaveArea.getValue(1);
 | 
						|
 | 
						|
  // select overflow_area if index > 8
 | 
						|
  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                            DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
 | 
						|
 | 
						|
  // adjustment constant gpr_index * 4/8
 | 
						|
  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
 | 
						|
                                    VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                                    DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
 | 
						|
                                                    MVT::i32));
 | 
						|
 | 
						|
  // OurReg = RegSaveArea + RegConstant
 | 
						|
  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
 | 
						|
                               RegConstant);
 | 
						|
 | 
						|
  // Floating types are 32 bytes into RegSaveArea
 | 
						|
  if (VT.isFloatingPoint())
 | 
						|
    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
 | 
						|
                         DAG.getConstant(32, dl, MVT::i32));
 | 
						|
 | 
						|
  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
 | 
						|
  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | 
						|
                                   VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
 | 
						|
                                                   MVT::i32));
 | 
						|
 | 
						|
  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
 | 
						|
                              VT.isInteger() ? VAListPtr : FprPtr,
 | 
						|
                              MachinePointerInfo(SV), MVT::i8);
 | 
						|
 | 
						|
  // determine if we should load from reg_save_area or overflow_area
 | 
						|
  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
 | 
						|
 | 
						|
  // increase overflow_area by 4/8 if gpr/fpr > 8
 | 
						|
  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
 | 
						|
                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
 | 
						|
                                          dl, MVT::i32));
 | 
						|
 | 
						|
  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
 | 
						|
                             OverflowAreaPlusN);
 | 
						|
 | 
						|
  InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
 | 
						|
                              MachinePointerInfo(), MVT::i32);
 | 
						|
 | 
						|
  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
 | 
						|
 | 
						|
  // We have to copy the entire va_list struct:
 | 
						|
  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
 | 
						|
  return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
 | 
						|
                       DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
 | 
						|
                       false, true, false, MachinePointerInfo(),
 | 
						|
                       MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
 | 
						|
 | 
						|
  return Op.getOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  assert((Op.getOpcode() == ISD::INLINEASM ||
 | 
						|
          Op.getOpcode() == ISD::INLINEASM_BR) &&
 | 
						|
         "Expecting Inline ASM node.");
 | 
						|
 | 
						|
  // If an LR store is already known to be required then there is not point in
 | 
						|
  // checking this ASM as well.
 | 
						|
  if (MFI.isLRStoreRequired())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Inline ASM nodes have an optional last operand that is an incoming Flag of
 | 
						|
  // type MVT::Glue. We want to ignore this last operand if that is the case.
 | 
						|
  unsigned NumOps = Op.getNumOperands();
 | 
						|
  if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
 | 
						|
    --NumOps;
 | 
						|
 | 
						|
  // Check all operands that may contain the LR.
 | 
						|
  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | 
						|
    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
 | 
						|
    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | 
						|
    ++i; // Skip the ID value.
 | 
						|
 | 
						|
    switch (InlineAsm::getKind(Flags)) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Bad flags!");
 | 
						|
    case InlineAsm::Kind_RegUse:
 | 
						|
    case InlineAsm::Kind_Imm:
 | 
						|
    case InlineAsm::Kind_Mem:
 | 
						|
      i += NumVals;
 | 
						|
      break;
 | 
						|
    case InlineAsm::Kind_Clobber:
 | 
						|
    case InlineAsm::Kind_RegDef:
 | 
						|
    case InlineAsm::Kind_RegDefEarlyClobber: {
 | 
						|
      for (; NumVals; --NumVals, ++i) {
 | 
						|
        Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
 | 
						|
        if (Reg != PPC::LR && Reg != PPC::LR8)
 | 
						|
          continue;
 | 
						|
        MFI.setLRStoreRequired();
 | 
						|
        return Op;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
 | 
						|
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Trmp = Op.getOperand(1); // trampoline
 | 
						|
  SDValue FPtr = Op.getOperand(2); // nested function
 | 
						|
  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
 | 
						|
  Entry.Ty = IntPtrTy;
 | 
						|
  Entry.Node = Trmp; Args.push_back(Entry);
 | 
						|
 | 
						|
  // TrampSize == (isPPC64 ? 48 : 40);
 | 
						|
  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
 | 
						|
                               isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
  Args.push_back(Entry);
 | 
						|
 | 
						|
  Entry.Node = FPtr; Args.push_back(Entry);
 | 
						|
  Entry.Node = Nest; Args.push_back(Entry);
 | 
						|
 | 
						|
  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
 | 
						|
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						|
  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
 | 
						|
      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
 | 
						|
      DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | 
						|
  return CallResult.second;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
 | 
						|
    // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
    // memory location argument.
 | 
						|
    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV));
 | 
						|
  }
 | 
						|
 | 
						|
  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
 | 
						|
  // We suppose the given va_list is already allocated.
 | 
						|
  //
 | 
						|
  // typedef struct {
 | 
						|
  //  char gpr;     /* index into the array of 8 GPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * gpr=0 corresponds to r3,
 | 
						|
  //                 * gpr=1 to r4, etc.
 | 
						|
  //                 */
 | 
						|
  //  char fpr;     /* index into the array of 8 FPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * fpr=0 corresponds to f1,
 | 
						|
  //                 * fpr=1 to f2, etc.
 | 
						|
  //                 */
 | 
						|
  //  char *overflow_arg_area;
 | 
						|
  //                /* location on stack that holds
 | 
						|
  //                 * the next overflow argument
 | 
						|
  //                 */
 | 
						|
  //  char *reg_save_area;
 | 
						|
  //               /* where r3:r10 and f1:f8 (if saved)
 | 
						|
  //                * are stored
 | 
						|
  //                */
 | 
						|
  // } va_list[1];
 | 
						|
 | 
						|
  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
 | 
						|
  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
 | 
						|
  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
 | 
						|
                                            PtrVT);
 | 
						|
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | 
						|
                                 PtrVT);
 | 
						|
 | 
						|
  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | 
						|
  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
 | 
						|
 | 
						|
  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | 
						|
  SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
 | 
						|
 | 
						|
  uint64_t FPROffset = 1;
 | 
						|
  SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
 | 
						|
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
 | 
						|
  // Store first byte : number of int regs
 | 
						|
  SDValue firstStore =
 | 
						|
      DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV), MVT::i8);
 | 
						|
  uint64_t nextOffset = FPROffset;
 | 
						|
  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
 | 
						|
                                  ConstFPROffset);
 | 
						|
 | 
						|
  // Store second byte : number of float regs
 | 
						|
  SDValue secondStore =
 | 
						|
      DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
 | 
						|
                        MachinePointerInfo(SV, nextOffset), MVT::i8);
 | 
						|
  nextOffset += StackOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
 | 
						|
 | 
						|
  // Store second word : arguments given on stack
 | 
						|
  SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
 | 
						|
                                    MachinePointerInfo(SV, nextOffset));
 | 
						|
  nextOffset += FrameOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
 | 
						|
 | 
						|
  // Store third word : arguments given in registers
 | 
						|
  return DAG.getStore(thirdStore, dl, FR, nextPtr,
 | 
						|
                      MachinePointerInfo(SV, nextOffset));
 | 
						|
}
 | 
						|
 | 
						|
/// FPR - The set of FP registers that should be allocated for arguments
 | 
						|
/// on Darwin and AIX.
 | 
						|
static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
 | 
						|
                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
 | 
						|
                                PPC::F11, PPC::F12, PPC::F13};
 | 
						|
 | 
						|
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | 
						|
/// the stack.
 | 
						|
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
 | 
						|
                                       unsigned PtrByteSize) {
 | 
						|
  unsigned ArgSize = ArgVT.getStoreSize();
 | 
						|
  if (Flags.isByVal())
 | 
						|
    ArgSize = Flags.getByValSize();
 | 
						|
 | 
						|
  // Round up to multiples of the pointer size, except for array members,
 | 
						|
  // which are always packed.
 | 
						|
  if (!Flags.isInConsecutiveRegs())
 | 
						|
    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
 | 
						|
  return ArgSize;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
 | 
						|
/// on the stack.
 | 
						|
static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
 | 
						|
                                         ISD::ArgFlagsTy Flags,
 | 
						|
                                         unsigned PtrByteSize) {
 | 
						|
  Align Alignment(PtrByteSize);
 | 
						|
 | 
						|
  // Altivec parameters are padded to a 16 byte boundary.
 | 
						|
  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | 
						|
      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | 
						|
      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | 
						|
      ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | 
						|
    Alignment = Align(16);
 | 
						|
 | 
						|
  // ByVal parameters are aligned as requested.
 | 
						|
  if (Flags.isByVal()) {
 | 
						|
    auto BVAlign = Flags.getNonZeroByValAlign();
 | 
						|
    if (BVAlign > PtrByteSize) {
 | 
						|
      if (BVAlign.value() % PtrByteSize != 0)
 | 
						|
        llvm_unreachable(
 | 
						|
            "ByVal alignment is not a multiple of the pointer size");
 | 
						|
 | 
						|
      Alignment = BVAlign;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Array members are always packed to their original alignment.
 | 
						|
  if (Flags.isInConsecutiveRegs()) {
 | 
						|
    // If the array member was split into multiple registers, the first
 | 
						|
    // needs to be aligned to the size of the full type.  (Except for
 | 
						|
    // ppcf128, which is only aligned as its f64 components.)
 | 
						|
    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
 | 
						|
      Alignment = Align(OrigVT.getStoreSize());
 | 
						|
    else
 | 
						|
      Alignment = Align(ArgVT.getStoreSize());
 | 
						|
  }
 | 
						|
 | 
						|
  return Alignment;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateStackSlotUsed - Return whether this argument will use its
 | 
						|
/// stack slot (instead of being passed in registers).  ArgOffset,
 | 
						|
/// AvailableFPRs, and AvailableVRs must hold the current argument
 | 
						|
/// position, and will be updated to account for this argument.
 | 
						|
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
 | 
						|
                                   unsigned PtrByteSize, unsigned LinkageSize,
 | 
						|
                                   unsigned ParamAreaSize, unsigned &ArgOffset,
 | 
						|
                                   unsigned &AvailableFPRs,
 | 
						|
                                   unsigned &AvailableVRs) {
 | 
						|
  bool UseMemory = false;
 | 
						|
 | 
						|
  // Respect alignment of argument on the stack.
 | 
						|
  Align Alignment =
 | 
						|
      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
  ArgOffset = alignTo(ArgOffset, Alignment);
 | 
						|
  // If there's no space left in the argument save area, we must
 | 
						|
  // use memory (this check also catches zero-sized arguments).
 | 
						|
  if (ArgOffset >= LinkageSize + ParamAreaSize)
 | 
						|
    UseMemory = true;
 | 
						|
 | 
						|
  // Allocate argument on the stack.
 | 
						|
  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | 
						|
  if (Flags.isInConsecutiveRegsLast())
 | 
						|
    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
  // If we overran the argument save area, we must use memory
 | 
						|
  // (this check catches arguments passed partially in memory)
 | 
						|
  if (ArgOffset > LinkageSize + ParamAreaSize)
 | 
						|
    UseMemory = true;
 | 
						|
 | 
						|
  // However, if the argument is actually passed in an FPR or a VR,
 | 
						|
  // we don't use memory after all.
 | 
						|
  if (!Flags.isByVal()) {
 | 
						|
    if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
 | 
						|
      if (AvailableFPRs > 0) {
 | 
						|
        --AvailableFPRs;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | 
						|
        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | 
						|
        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | 
						|
        ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | 
						|
      if (AvailableVRs > 0) {
 | 
						|
        --AvailableVRs;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return UseMemory;
 | 
						|
}
 | 
						|
 | 
						|
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
 | 
						|
/// ensure minimum alignment required for target.
 | 
						|
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
 | 
						|
                                     unsigned NumBytes) {
 | 
						|
  return alignTo(NumBytes, Lowering->getStackAlign());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
 | 
						|
                                    InVals);
 | 
						|
  if (Subtarget.is64BitELFABI())
 | 
						|
    return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
 | 
						|
                                       InVals);
 | 
						|
  assert(Subtarget.is32BitELFABI());
 | 
						|
  return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
 | 
						|
                                     InVals);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
 | 
						|
  // 32-bit SVR4 ABI Stack Frame Layout:
 | 
						|
  //              +-----------------------------------+
 | 
						|
  //        +-->  |            Back chain             |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     | Floating-point register save area |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |    General register save area     |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |          CR save word             |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |         VRSAVE save word          |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |         Alignment padding         |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |     Vector register save area     |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |       Local variable space        |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |        Parameter list area        |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |           LR save word            |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  // SP-->  +---  |            Back chain             |
 | 
						|
  //              +-----------------------------------+
 | 
						|
  //
 | 
						|
  // Specifications:
 | 
						|
  //   System V Application Binary Interface PowerPC Processor Supplement
 | 
						|
  //   AltiVec Technology Programming Interface Manual
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
                       (CallConv == CallingConv::Fast));
 | 
						|
  const Align PtrAlign(4);
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve space for the linkage area on the stack.
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  CCInfo.AllocateStack(LinkageSize, PtrAlign);
 | 
						|
  if (useSoftFloat())
 | 
						|
    CCInfo.PreAnalyzeFormalArguments(Ins);
 | 
						|
 | 
						|
  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
 | 
						|
  CCInfo.clearWasPPCF128();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
 | 
						|
    // Arguments stored in registers.
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      const TargetRegisterClass *RC;
 | 
						|
      EVT ValVT = VA.getValVT();
 | 
						|
 | 
						|
      switch (ValVT.getSimpleVT().SimpleTy) {
 | 
						|
        default:
 | 
						|
          llvm_unreachable("ValVT not supported by formal arguments Lowering");
 | 
						|
        case MVT::i1:
 | 
						|
        case MVT::i32:
 | 
						|
          RC = &PPC::GPRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::f32:
 | 
						|
          if (Subtarget.hasP8Vector())
 | 
						|
            RC = &PPC::VSSRCRegClass;
 | 
						|
          else if (Subtarget.hasSPE())
 | 
						|
            RC = &PPC::GPRCRegClass;
 | 
						|
          else
 | 
						|
            RC = &PPC::F4RCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::f64:
 | 
						|
          if (Subtarget.hasVSX())
 | 
						|
            RC = &PPC::VSFRCRegClass;
 | 
						|
          else if (Subtarget.hasSPE())
 | 
						|
            // SPE passes doubles in GPR pairs.
 | 
						|
            RC = &PPC::GPRCRegClass;
 | 
						|
          else
 | 
						|
            RC = &PPC::F8RCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v16i8:
 | 
						|
        case MVT::v8i16:
 | 
						|
        case MVT::v4i32:
 | 
						|
          RC = &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v4f32:
 | 
						|
          RC = &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v2f64:
 | 
						|
        case MVT::v2i64:
 | 
						|
          RC = &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue ArgValue;
 | 
						|
      // Transform the arguments stored in physical registers into
 | 
						|
      // virtual ones.
 | 
						|
      if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
 | 
						|
        assert(i + 1 < e && "No second half of double precision argument");
 | 
						|
        unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
        unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
 | 
						|
        SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
 | 
						|
        SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
 | 
						|
        if (!Subtarget.isLittleEndian())
 | 
						|
          std::swap (ArgValueLo, ArgValueHi);
 | 
						|
        ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
 | 
						|
                               ArgValueHi);
 | 
						|
      } else {
 | 
						|
        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
 | 
						|
                                      ValVT == MVT::i1 ? MVT::i32 : ValVT);
 | 
						|
        if (ValVT == MVT::i1)
 | 
						|
          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
 | 
						|
      }
 | 
						|
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
    } else {
 | 
						|
      // Argument stored in memory.
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
 | 
						|
      // Get the extended size of the argument type in stack
 | 
						|
      unsigned ArgSize = VA.getLocVT().getStoreSize();
 | 
						|
      // Get the actual size of the argument type
 | 
						|
      unsigned ObjSize = VA.getValVT().getStoreSize();
 | 
						|
      unsigned ArgOffset = VA.getLocMemOffset();
 | 
						|
      // Stack objects in PPC32 are right justified.
 | 
						|
      ArgOffset += ArgSize - ObjSize;
 | 
						|
      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
 | 
						|
 | 
						|
      // Create load nodes to retrieve arguments from the stack.
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      InVals.push_back(
 | 
						|
          DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign locations to all of the incoming aggregate by value arguments.
 | 
						|
  // Aggregates passed by value are stored in the local variable space of the
 | 
						|
  // caller's stack frame, right above the parameter list area.
 | 
						|
  SmallVector<CCValAssign, 16> ByValArgLocs;
 | 
						|
  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | 
						|
                      ByValArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve stack space for the allocations in CCInfo.
 | 
						|
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
 | 
						|
 | 
						|
  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
 | 
						|
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
 | 
						|
  MinReservedArea = std::max(MinReservedArea, LinkageSize);
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized function's reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  MinReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (isVarArg) {
 | 
						|
    static const MCPhysReg GPArgRegs[] = {
 | 
						|
      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
    };
 | 
						|
    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
 | 
						|
 | 
						|
    static const MCPhysReg FPArgRegs[] = {
 | 
						|
      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
      PPC::F8
 | 
						|
    };
 | 
						|
    unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
 | 
						|
 | 
						|
    if (useSoftFloat() || hasSPE())
 | 
						|
       NumFPArgRegs = 0;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
 | 
						|
    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
 | 
						|
 | 
						|
    // Make room for NumGPArgRegs and NumFPArgRegs.
 | 
						|
    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
 | 
						|
                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsStackOffset(
 | 
						|
      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
 | 
						|
                            CCInfo.getNextStackOffset(), true));
 | 
						|
 | 
						|
    FuncInfo->setVarArgsFrameIndex(
 | 
						|
        MFI.CreateStackObject(Depth, Align(8), false));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    // The fixed integer arguments of a variadic function are stored to the
 | 
						|
    // VarArgsFrameIndex on the stack so that they may be loaded by
 | 
						|
    // dereferencing the result of va_next.
 | 
						|
    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
 | 
						|
      // Get an existing live-in vreg, or add a new one.
 | 
						|
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
 | 
						|
      if (!VReg)
 | 
						|
        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
 | 
						|
    // is set.
 | 
						|
    // The double arguments are stored to the VarArgsFrameIndex
 | 
						|
    // on the stack.
 | 
						|
    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
 | 
						|
      // Get an existing live-in vreg, or add a new one.
 | 
						|
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
 | 
						|
      if (!VReg)
 | 
						|
        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by eight for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
 | 
						|
                                         PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
// value to MVT::i64 and then truncate to the correct register size.
 | 
						|
SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
 | 
						|
                                             EVT ObjectVT, SelectionDAG &DAG,
 | 
						|
                                             SDValue ArgVal,
 | 
						|
                                             const SDLoc &dl) const {
 | 
						|
  if (Flags.isSExt())
 | 
						|
    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
 | 
						|
                         DAG.getValueType(ObjectVT));
 | 
						|
  else if (Flags.isZExt())
 | 
						|
    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
 | 
						|
                         DAG.getValueType(ObjectVT));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  // TODO: add description of PPC stack frame format, or at least some docs.
 | 
						|
  //
 | 
						|
  bool isELFv2ABI = Subtarget.isELFv2ABI();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
 | 
						|
         "fastcc not supported on varargs functions");
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
                       (CallConv == CallingConv::Fast));
 | 
						|
  unsigned PtrByteSize = 8;
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned Num_GPR_Regs = array_lengthof(GPR);
 | 
						|
  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
 | 
						|
  const unsigned Num_VR_Regs  = array_lengthof(VR);
 | 
						|
 | 
						|
  // Do a first pass over the arguments to determine whether the ABI
 | 
						|
  // guarantees that our caller has allocated the parameter save area
 | 
						|
  // on its stack frame.  In the ELFv1 ABI, this is always the case;
 | 
						|
  // in the ELFv2 ABI, it is true if this is a vararg function or if
 | 
						|
  // any parameter is located in a stack slot.
 | 
						|
 | 
						|
  bool HasParameterArea = !isELFv2ABI || isVarArg;
 | 
						|
  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned AvailableFPRs = Num_FPR_Regs;
 | 
						|
  unsigned AvailableVRs = Num_VR_Regs;
 | 
						|
  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | 
						|
    if (Ins[i].Flags.isNest())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
 | 
						|
                               PtrByteSize, LinkageSize, ParamAreaSize,
 | 
						|
                               NumBytes, AvailableFPRs, AvailableVRs))
 | 
						|
      HasParameterArea = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments or copy them out of registers.  On
 | 
						|
  // entry to a function on PPC, the arguments start after the linkage area,
 | 
						|
  // although the first ones are often in registers.
 | 
						|
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
 | 
						|
  unsigned CurArgIdx = 0;
 | 
						|
  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | 
						|
    SDValue ArgVal;
 | 
						|
    bool needsLoad = false;
 | 
						|
    EVT ObjectVT = Ins[ArgNo].VT;
 | 
						|
    EVT OrigVT = Ins[ArgNo].ArgVT;
 | 
						|
    unsigned ObjSize = ObjectVT.getStoreSize();
 | 
						|
    unsigned ArgSize = ObjSize;
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | 
						|
    if (Ins[ArgNo].isOrigArg()) {
 | 
						|
      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
 | 
						|
      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
 | 
						|
    }
 | 
						|
    // We re-align the argument offset for each argument, except when using the
 | 
						|
    // fast calling convention, when we need to make sure we do that only when
 | 
						|
    // we'll actually use a stack slot.
 | 
						|
    unsigned CurArgOffset;
 | 
						|
    Align Alignment;
 | 
						|
    auto ComputeArgOffset = [&]() {
 | 
						|
      /* Respect alignment of argument on the stack.  */
 | 
						|
      Alignment =
 | 
						|
          CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
 | 
						|
      ArgOffset = alignTo(ArgOffset, Alignment);
 | 
						|
      CurArgOffset = ArgOffset;
 | 
						|
    };
 | 
						|
 | 
						|
    if (CallConv != CallingConv::Fast) {
 | 
						|
      ComputeArgOffset();
 | 
						|
 | 
						|
      /* Compute GPR index associated with argument offset.  */
 | 
						|
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME the codegen can be much improved in some cases.
 | 
						|
    // We do not have to keep everything in memory.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
 | 
						|
 | 
						|
      if (CallConv == CallingConv::Fast)
 | 
						|
        ComputeArgOffset();
 | 
						|
 | 
						|
      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | 
						|
      ObjSize = Flags.getByValSize();
 | 
						|
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      // Empty aggregate parameters do not take up registers.  Examples:
 | 
						|
      //   struct { } a;
 | 
						|
      //   union  { } b;
 | 
						|
      //   int c[0];
 | 
						|
      // etc.  However, we have to provide a place-holder in InVals, so
 | 
						|
      // pretend we have an 8-byte item at the current address for that
 | 
						|
      // purpose.
 | 
						|
      if (!ObjSize) {
 | 
						|
        int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
 | 
						|
        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
        InVals.push_back(FIN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Create a stack object covering all stack doublewords occupied
 | 
						|
      // by the argument.  If the argument is (fully or partially) on
 | 
						|
      // the stack, or if the argument is fully in registers but the
 | 
						|
      // caller has allocated the parameter save anyway, we can refer
 | 
						|
      // directly to the caller's stack frame.  Otherwise, create a
 | 
						|
      // local copy in our own frame.
 | 
						|
      int FI;
 | 
						|
      if (HasParameterArea ||
 | 
						|
          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
 | 
						|
        FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
 | 
						|
      else
 | 
						|
        FI = MFI.CreateStackObject(ArgSize, Alignment, false);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
 | 
						|
      // Handle aggregates smaller than 8 bytes.
 | 
						|
      if (ObjSize < PtrByteSize) {
 | 
						|
        // The value of the object is its address, which differs from the
 | 
						|
        // address of the enclosing doubleword on big-endian systems.
 | 
						|
        SDValue Arg = FIN;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
 | 
						|
          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
 | 
						|
        }
 | 
						|
        InVals.push_back(Arg);
 | 
						|
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
          FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
          EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
 | 
						|
          SDValue Store =
 | 
						|
              DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
 | 
						|
                                MachinePointerInfo(&*FuncArg), ObjType);
 | 
						|
          MemOps.push_back(Store);
 | 
						|
        }
 | 
						|
        // Whether we copied from a register or not, advance the offset
 | 
						|
        // into the parameter save area by a full doubleword.
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // The value of the object is its address, which is the address of
 | 
						|
      // its first stack doubleword.
 | 
						|
      InVals.push_back(FIN);
 | 
						|
 | 
						|
      // Store whatever pieces of the object are in registers to memory.
 | 
						|
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | 
						|
        if (GPR_idx == Num_GPR_Regs)
 | 
						|
          break;
 | 
						|
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
        SDValue Addr = FIN;
 | 
						|
        if (j) {
 | 
						|
          SDValue Off = DAG.getConstant(j, dl, PtrVT);
 | 
						|
          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
 | 
						|
        }
 | 
						|
        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
 | 
						|
                                     MachinePointerInfo(&*FuncArg, j));
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        ++GPR_idx;
 | 
						|
      }
 | 
						|
      ArgOffset += ArgSize;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ObjectVT.getSimpleVT().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      if (Flags.isNest()) {
 | 
						|
        // The 'nest' parameter, if any, is passed in R11.
 | 
						|
        unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | 
						|
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // These can be scalar arguments or elements of an integer array type
 | 
						|
      // passed directly.  Clang may use those instead of "byval" aggregate
 | 
						|
      // types to avoid forcing arguments to memory unnecessarily.
 | 
						|
      if (GPR_idx != Num_GPR_Regs) {
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | 
						|
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
          // value to MVT::i64 and then truncate to the correct register size.
 | 
						|
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
 | 
						|
        needsLoad = true;
 | 
						|
        ArgSize = PtrByteSize;
 | 
						|
      }
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad)
 | 
						|
        ArgOffset += 8;
 | 
						|
      break;
 | 
						|
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      // These can be scalar arguments or elements of a float array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // float aggregates.
 | 
						|
      if (FPR_idx != Num_FPR_Regs) {
 | 
						|
        unsigned VReg;
 | 
						|
 | 
						|
        if (ObjectVT == MVT::f32)
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx],
 | 
						|
                              Subtarget.hasP8Vector()
 | 
						|
                                  ? &PPC::VSSRCRegClass
 | 
						|
                                  : &PPC::F4RCRegClass);
 | 
						|
        else
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
 | 
						|
                                                ? &PPC::VSFRCRegClass
 | 
						|
                                                : &PPC::F8RCRegClass);
 | 
						|
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        ++FPR_idx;
 | 
						|
      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
 | 
						|
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | 
						|
        // once we support fp <-> gpr moves.
 | 
						|
 | 
						|
        // This can only ever happen in the presence of f32 array types,
 | 
						|
        // since otherwise we never run out of FPRs before running out
 | 
						|
        // of GPRs.
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::f32) {
 | 
						|
          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
 | 
						|
            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getConstant(32, dl, MVT::i32));
 | 
						|
          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
 | 
						|
        }
 | 
						|
 | 
						|
        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // When passing an array of floats, the array occupies consecutive
 | 
						|
      // space in the argument area; only round up to the next doubleword
 | 
						|
      // at the end of the array.  Otherwise, each float takes 8 bytes.
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad) {
 | 
						|
        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
 | 
						|
        ArgOffset += ArgSize;
 | 
						|
        if (Flags.isInConsecutiveRegsLast())
 | 
						|
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
    case MVT::v2f64:
 | 
						|
    case MVT::v2i64:
 | 
						|
    case MVT::v1i128:
 | 
						|
    case MVT::f128:
 | 
						|
      // These can be scalar arguments or elements of a vector array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // vector aggregates.
 | 
						|
      if (VR_idx != Num_VR_Regs) {
 | 
						|
        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        ++VR_idx;
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad)
 | 
						|
        ArgOffset += 16;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to load the argument to a virtual register if we determined
 | 
						|
    // above that we ran out of physical registers of the appropriate type.
 | 
						|
    if (needsLoad) {
 | 
						|
      if (ObjSize < ArgSize && !isLittleEndian)
 | 
						|
        CurArgOffset += ArgSize - ObjSize;
 | 
						|
      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(ArgVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  unsigned MinReservedArea;
 | 
						|
  if (HasParameterArea)
 | 
						|
    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
 | 
						|
  else
 | 
						|
    MinReservedArea = LinkageSize;
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized functions' reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  MinReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  // On ELFv2ABI spec, it writes:
 | 
						|
  // C programs that are intended to be *portable* across different compilers
 | 
						|
  // and architectures must use the header file <stdarg.h> to deal with variable
 | 
						|
  // argument lists.
 | 
						|
  if (isVarArg && MFI.hasVAStart()) {
 | 
						|
    int Depth = ArgOffset;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsFrameIndex(
 | 
						|
      MFI.CreateFixedObject(PtrByteSize, Depth, true));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    // If this function is vararg, store any remaining integer argument regs
 | 
						|
    // to their spots on the stack so that they may be loaded by dereferencing
 | 
						|
    // the result of va_next.
 | 
						|
    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
 | 
						|
      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | 
						|
/// adjusted to accommodate the arguments for the tailcall.
 | 
						|
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
 | 
						|
                                   unsigned ParamSize) {
 | 
						|
 | 
						|
  if (!isTailCall) return 0;
 | 
						|
 | 
						|
  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | 
						|
  unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | 
						|
  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | 
						|
  // Remember only if the new adjustment is bigger.
 | 
						|
  if (SPDiff < FI->getTailCallSPDelta())
 | 
						|
    FI->setTailCallSPDelta(SPDiff);
 | 
						|
 | 
						|
  return SPDiff;
 | 
						|
}
 | 
						|
 | 
						|
static bool isFunctionGlobalAddress(SDValue Callee);
 | 
						|
 | 
						|
static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
 | 
						|
                              const TargetMachine &TM) {
 | 
						|
  // It does not make sense to call callsShareTOCBase() with a caller that
 | 
						|
  // is PC Relative since PC Relative callers do not have a TOC.
 | 
						|
#ifndef NDEBUG
 | 
						|
  const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
 | 
						|
  assert(!STICaller->isUsingPCRelativeCalls() &&
 | 
						|
         "PC Relative callers do not have a TOC and cannot share a TOC Base");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
 | 
						|
  // don't have enough information to determine if the caller and callee share
 | 
						|
  // the same  TOC base, so we have to pessimistically assume they don't for
 | 
						|
  // correctness.
 | 
						|
  GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | 
						|
  if (!G)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const GlobalValue *GV = G->getGlobal();
 | 
						|
 | 
						|
  // If the callee is preemptable, then the static linker will use a plt-stub
 | 
						|
  // which saves the toc to the stack, and needs a nop after the call
 | 
						|
  // instruction to convert to a toc-restore.
 | 
						|
  if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Functions with PC Relative enabled may clobber the TOC in the same DSO.
 | 
						|
  // We may need a TOC restore in the situation where the caller requires a
 | 
						|
  // valid TOC but the callee is PC Relative and does not.
 | 
						|
  const Function *F = dyn_cast<Function>(GV);
 | 
						|
  const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
 | 
						|
 | 
						|
  // If we have an Alias we can try to get the function from there.
 | 
						|
  if (Alias) {
 | 
						|
    const GlobalObject *GlobalObj = Alias->getAliaseeObject();
 | 
						|
    F = dyn_cast<Function>(GlobalObj);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we still have no valid function pointer we do not have enough
 | 
						|
  // information to determine if the callee uses PC Relative calls so we must
 | 
						|
  // assume that it does.
 | 
						|
  if (!F)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the callee uses PC Relative we cannot guarantee that the callee won't
 | 
						|
  // clobber the TOC of the caller and so we must assume that the two
 | 
						|
  // functions do not share a TOC base.
 | 
						|
  const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
 | 
						|
  if (STICallee->isUsingPCRelativeCalls())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the GV is not a strong definition then we need to assume it can be
 | 
						|
  // replaced by another function at link time. The function that replaces
 | 
						|
  // it may not share the same TOC as the caller since the callee may be
 | 
						|
  // replaced by a PC Relative version of the same function.
 | 
						|
  if (!GV->isStrongDefinitionForLinker())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The medium and large code models are expected to provide a sufficiently
 | 
						|
  // large TOC to provide all data addressing needs of a module with a
 | 
						|
  // single TOC.
 | 
						|
  if (CodeModel::Medium == TM.getCodeModel() ||
 | 
						|
      CodeModel::Large == TM.getCodeModel())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Any explicitly-specified sections and section prefixes must also match.
 | 
						|
  // Also, if we're using -ffunction-sections, then each function is always in
 | 
						|
  // a different section (the same is true for COMDAT functions).
 | 
						|
  if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
 | 
						|
      GV->getSection() != Caller->getSection())
 | 
						|
    return false;
 | 
						|
  if (const auto *F = dyn_cast<Function>(GV)) {
 | 
						|
    if (F->getSectionPrefix() != Caller->getSectionPrefix())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
needStackSlotPassParameters(const PPCSubtarget &Subtarget,
 | 
						|
                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | 
						|
  assert(Subtarget.is64BitELFABI());
 | 
						|
 | 
						|
  const unsigned PtrByteSize = 8;
 | 
						|
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR);
 | 
						|
  const unsigned NumFPRs = 13;
 | 
						|
  const unsigned NumVRs = array_lengthof(VR);
 | 
						|
  const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | 
						|
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned AvailableFPRs = NumFPRs;
 | 
						|
  unsigned AvailableVRs = NumVRs;
 | 
						|
 | 
						|
  for (const ISD::OutputArg& Param : Outs) {
 | 
						|
    if (Param.Flags.isNest()) continue;
 | 
						|
 | 
						|
    if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
 | 
						|
                               LinkageSize, ParamAreaSize, NumBytes,
 | 
						|
                               AvailableFPRs, AvailableVRs))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
 | 
						|
  if (CB.arg_size() != CallerFn->arg_size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto CalleeArgIter = CB.arg_begin();
 | 
						|
  auto CalleeArgEnd = CB.arg_end();
 | 
						|
  Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
 | 
						|
 | 
						|
  for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
 | 
						|
    const Value* CalleeArg = *CalleeArgIter;
 | 
						|
    const Value* CallerArg = &(*CallerArgIter);
 | 
						|
    if (CalleeArg == CallerArg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
 | 
						|
    //        tail call @callee([4 x i64] undef, [4 x i64] %b)
 | 
						|
    //      }
 | 
						|
    // 1st argument of callee is undef and has the same type as caller.
 | 
						|
    if (CalleeArg->getType() == CallerArg->getType() &&
 | 
						|
        isa<UndefValue>(CalleeArg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if TCO is possible between the callers and callees
 | 
						|
// calling conventions.
 | 
						|
static bool
 | 
						|
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
 | 
						|
                                    CallingConv::ID CalleeCC) {
 | 
						|
  // Tail calls are possible with fastcc and ccc.
 | 
						|
  auto isTailCallableCC  = [] (CallingConv::ID CC){
 | 
						|
      return  CC == CallingConv::C || CC == CallingConv::Fast;
 | 
						|
  };
 | 
						|
  if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can safely tail call both fastcc and ccc callees from a c calling
 | 
						|
  // convention caller. If the caller is fastcc, we may have less stack space
 | 
						|
  // than a non-fastcc caller with the same signature so disable tail-calls in
 | 
						|
  // that case.
 | 
						|
  return CallerCC == CallingConv::C || CallerCC == CalleeCC;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
 | 
						|
    SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
 | 
						|
  bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
 | 
						|
 | 
						|
  if (DisableSCO && !TailCallOpt) return false;
 | 
						|
 | 
						|
  // Variadic argument functions are not supported.
 | 
						|
  if (isVarArg) return false;
 | 
						|
 | 
						|
  auto &Caller = DAG.getMachineFunction().getFunction();
 | 
						|
  // Check that the calling conventions are compatible for tco.
 | 
						|
  if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Caller contains any byval parameter is not supported.
 | 
						|
  if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Callee contains any byval parameter is not supported, too.
 | 
						|
  // Note: This is a quick work around, because in some cases, e.g.
 | 
						|
  // caller's stack size > callee's stack size, we are still able to apply
 | 
						|
  // sibling call optimization. For example, gcc is able to do SCO for caller1
 | 
						|
  // in the following example, but not for caller2.
 | 
						|
  //   struct test {
 | 
						|
  //     long int a;
 | 
						|
  //     char ary[56];
 | 
						|
  //   } gTest;
 | 
						|
  //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
 | 
						|
  //     b->a = v.a;
 | 
						|
  //     return 0;
 | 
						|
  //   }
 | 
						|
  //   void caller1(struct test a, struct test c, struct test *b) {
 | 
						|
  //     callee(gTest, b); }
 | 
						|
  //   void caller2(struct test *b) { callee(gTest, b); }
 | 
						|
  if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If callee and caller use different calling conventions, we cannot pass
 | 
						|
  // parameters on stack since offsets for the parameter area may be different.
 | 
						|
  if (Caller.getCallingConv() != CalleeCC &&
 | 
						|
      needStackSlotPassParameters(Subtarget, Outs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
 | 
						|
  // the caller and callee share the same TOC for TCO/SCO. If the caller and
 | 
						|
  // callee potentially have different TOC bases then we cannot tail call since
 | 
						|
  // we need to restore the TOC pointer after the call.
 | 
						|
  // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
 | 
						|
  // We cannot guarantee this for indirect calls or calls to external functions.
 | 
						|
  // When PC-Relative addressing is used, the concept of the TOC is no longer
 | 
						|
  // applicable so this check is not required.
 | 
						|
  // Check first for indirect calls.
 | 
						|
  if (!Subtarget.isUsingPCRelativeCalls() &&
 | 
						|
      !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if we share the TOC base.
 | 
						|
  if (!Subtarget.isUsingPCRelativeCalls() &&
 | 
						|
      !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TCO allows altering callee ABI, so we don't have to check further.
 | 
						|
  if (CalleeCC == CallingConv::Fast && TailCallOpt)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (DisableSCO) return false;
 | 
						|
 | 
						|
  // If callee use the same argument list that caller is using, then we can
 | 
						|
  // apply SCO on this case. If it is not, then we need to check if callee needs
 | 
						|
  // stack for passing arguments.
 | 
						|
  // PC Relative tail calls may not have a CallBase.
 | 
						|
  // If there is no CallBase we cannot verify if we have the same argument
 | 
						|
  // list so assume that we don't have the same argument list.
 | 
						|
  if (CB && !hasSameArgumentList(&Caller, *CB) &&
 | 
						|
      needStackSlotPassParameters(Subtarget, Outs))
 | 
						|
    return false;
 | 
						|
  else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | 
						|
/// for tail call optimization. Targets which want to do tail call
 | 
						|
/// optimization should implement this function.
 | 
						|
bool
 | 
						|
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | 
						|
                                                     CallingConv::ID CalleeCC,
 | 
						|
                                                     bool isVarArg,
 | 
						|
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                                     SelectionDAG& DAG) const {
 | 
						|
  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Variable argument functions are not supported.
 | 
						|
  if (isVarArg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
 | 
						|
  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | 
						|
    // Functions containing by val parameters are not supported.
 | 
						|
    for (unsigned i = 0; i != Ins.size(); i++) {
 | 
						|
       ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | 
						|
       if (Flags.isByVal()) return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-PIC/GOT tail calls are supported.
 | 
						|
    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // At the moment we can only do local tail calls (in same module, hidden
 | 
						|
    // or protected) if we are generating PIC.
 | 
						|
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
      return G->getGlobal()->hasHiddenVisibility()
 | 
						|
          || G->getGlobal()->hasProtectedVisibility();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isCallCompatibleAddress - Return the immediate to use if the specified
 | 
						|
/// 32-bit value is representable in the immediate field of a BxA instruction.
 | 
						|
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | 
						|
  if (!C) return nullptr;
 | 
						|
 | 
						|
  int Addr = C->getZExtValue();
 | 
						|
  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | 
						|
      SignExtend32<26>(Addr) != Addr)
 | 
						|
    return nullptr;  // Top 6 bits have to be sext of immediate.
 | 
						|
 | 
						|
  return DAG
 | 
						|
      .getConstant(
 | 
						|
          (int)C->getZExtValue() >> 2, SDLoc(Op),
 | 
						|
          DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
 | 
						|
      .getNode();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct TailCallArgumentInfo {
 | 
						|
  SDValue Arg;
 | 
						|
  SDValue FrameIdxOp;
 | 
						|
  int FrameIdx = 0;
 | 
						|
 | 
						|
  TailCallArgumentInfo() = default;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | 
						|
static void StoreTailCallArgumentsToStackSlot(
 | 
						|
    SelectionDAG &DAG, SDValue Chain,
 | 
						|
    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
 | 
						|
    SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
 | 
						|
  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | 
						|
    SDValue Arg = TailCallArgs[i].Arg;
 | 
						|
    SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | 
						|
    int FI = TailCallArgs[i].FrameIdx;
 | 
						|
    // Store relative to framepointer.
 | 
						|
    MemOpChains.push_back(DAG.getStore(
 | 
						|
        Chain, dl, Arg, FIN,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | 
						|
/// the appropriate stack slot for the tail call optimized function call.
 | 
						|
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
 | 
						|
                                             SDValue OldRetAddr, SDValue OldFP,
 | 
						|
                                             int SPDiff, const SDLoc &dl) {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Calculate the new stack slot for the return address.
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
 | 
						|
    const PPCFrameLowering *FL = Subtarget.getFrameLowering();
 | 
						|
    bool isPPC64 = Subtarget.isPPC64();
 | 
						|
    int SlotSize = isPPC64 ? 8 : 4;
 | 
						|
    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
 | 
						|
    int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
 | 
						|
                                                         NewRetAddrLoc, true);
 | 
						|
    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | 
						|
    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
 | 
						|
                         MachinePointerInfo::getFixedStack(MF, NewRetAddr));
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | 
						|
/// the position of the argument.
 | 
						|
static void
 | 
						|
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | 
						|
                         SDValue Arg, int SPDiff, unsigned ArgOffset,
 | 
						|
                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
 | 
						|
  int Offset = ArgOffset + SPDiff;
 | 
						|
  uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
 | 
						|
  int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
 | 
						|
  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
  SDValue FIN = DAG.getFrameIndex(FI, VT);
 | 
						|
  TailCallArgumentInfo Info;
 | 
						|
  Info.Arg = Arg;
 | 
						|
  Info.FrameIdxOp = FIN;
 | 
						|
  Info.FrameIdx = FI;
 | 
						|
  TailCallArguments.push_back(Info);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | 
						|
/// stack slot. Returns the chain as result and the loaded frame pointers in
 | 
						|
/// LROpOut/FPOpout. Used when tail calling.
 | 
						|
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
 | 
						|
    SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
 | 
						|
    SDValue &FPOpOut, const SDLoc &dl) const {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Load the LR and FP stack slot for later adjusting.
 | 
						|
    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
 | 
						|
    LROpOut = getReturnAddrFrameIndex(DAG);
 | 
						|
    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
 | 
						|
    Chain = SDValue(LROpOut.getNode(), 1);
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is
 | 
						|
/// specified by the specific parameter attribute. The copy will be passed as
 | 
						|
/// a byval function parameter.
 | 
						|
/// Sometimes what we are copying is the end of a larger object, the part that
 | 
						|
/// does not fit in registers.
 | 
						|
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
 | 
						|
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
 | 
						|
                                         SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | 
						|
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
 | 
						|
                       Flags.getNonZeroByValAlign(), false, false, false,
 | 
						|
                       MachinePointerInfo(), MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | 
						|
/// tail calls.
 | 
						|
static void LowerMemOpCallTo(
 | 
						|
    SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
 | 
						|
    SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
 | 
						|
    bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
 | 
						|
    SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
 | 
						|
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | 
						|
  if (!isTailCall) {
 | 
						|
    if (isVector) {
 | 
						|
      SDValue StackPtr;
 | 
						|
      if (isPPC64)
 | 
						|
        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
      else
 | 
						|
        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | 
						|
                           DAG.getConstant(ArgOffset, dl, PtrVT));
 | 
						|
    }
 | 
						|
    MemOpChains.push_back(
 | 
						|
        DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | 
						|
    // Calculate and remember argument location.
 | 
						|
  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | 
						|
                                  TailCallArguments);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
 | 
						|
                const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
 | 
						|
                SDValue FPOp,
 | 
						|
                SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
 | 
						|
  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | 
						|
  // might overwrite each other in case of tail call optimization.
 | 
						|
  SmallVector<SDValue, 8> MemOpChains2;
 | 
						|
  // Do not flag preceding copytoreg stuff together with the following stuff.
 | 
						|
  InFlag = SDValue();
 | 
						|
  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | 
						|
                                    MemOpChains2, dl);
 | 
						|
  if (!MemOpChains2.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
 | 
						|
 | 
						|
  // Store the return address to the appropriate stack slot.
 | 
						|
  Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
 | 
						|
 | 
						|
  // Emit callseq_end just before tailcall node.
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
}
 | 
						|
 | 
						|
// Is this global address that of a function that can be called by name? (as
 | 
						|
// opposed to something that must hold a descriptor for an indirect call).
 | 
						|
static bool isFunctionGlobalAddress(SDValue Callee) {
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
 | 
						|
        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return G->getGlobal()->getValueType()->isFunctionTy();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCallResult(
 | 
						|
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                    *DAG.getContext());
 | 
						|
 | 
						|
  CCRetInfo.AnalyzeCallResult(
 | 
						|
      Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
               ? RetCC_PPC_Cold
 | 
						|
               : RetCC_PPC);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
 | 
						|
    SDValue Val;
 | 
						|
 | 
						|
    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
 | 
						|
      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | 
						|
                                      InFlag);
 | 
						|
      Chain = Lo.getValue(1);
 | 
						|
      InFlag = Lo.getValue(2);
 | 
						|
      VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | 
						|
                                      InFlag);
 | 
						|
      Chain = Hi.getValue(1);
 | 
						|
      InFlag = Hi.getValue(2);
 | 
						|
      if (!Subtarget.isLittleEndian())
 | 
						|
        std::swap (Lo, Hi);
 | 
						|
      Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
 | 
						|
    } else {
 | 
						|
      Val = DAG.getCopyFromReg(Chain, dl,
 | 
						|
                               VA.getLocReg(), VA.getLocVT(), InFlag);
 | 
						|
      Chain = Val.getValue(1);
 | 
						|
      InFlag = Val.getValue(2);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
 | 
						|
                        DAG.getValueType(VA.getValVT()));
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
 | 
						|
                        DAG.getValueType(VA.getValVT()));
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
 | 
						|
                           const PPCSubtarget &Subtarget, bool isPatchPoint) {
 | 
						|
  // PatchPoint calls are not indirect.
 | 
						|
  if (isPatchPoint)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
 | 
						|
  // becuase the immediate function pointer points to a descriptor instead of
 | 
						|
  // a function entry point. The ELFv2 ABI cannot use a BLA because the function
 | 
						|
  // pointer immediate points to the global entry point, while the BLA would
 | 
						|
  // need to jump to the local entry point (see rL211174).
 | 
						|
  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
 | 
						|
      isBLACompatibleAddress(Callee, DAG))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
 | 
						|
static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
 | 
						|
  return Subtarget.isAIXABI() ||
 | 
						|
         (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
 | 
						|
                              const Function &Caller,
 | 
						|
                              const SDValue &Callee,
 | 
						|
                              const PPCSubtarget &Subtarget,
 | 
						|
                              const TargetMachine &TM) {
 | 
						|
  if (CFlags.IsTailCall)
 | 
						|
    return PPCISD::TC_RETURN;
 | 
						|
 | 
						|
  // This is a call through a function pointer.
 | 
						|
  if (CFlags.IsIndirect) {
 | 
						|
    // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
 | 
						|
    // indirect calls. The save of the caller's TOC pointer to the stack will be
 | 
						|
    // inserted into the DAG as part of call lowering. The restore of the TOC
 | 
						|
    // pointer is modeled by using a pseudo instruction for the call opcode that
 | 
						|
    // represents the 2 instruction sequence of an indirect branch and link,
 | 
						|
    // immediately followed by a load of the TOC pointer from the the stack save
 | 
						|
    // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
 | 
						|
    // as it is not saved or used.
 | 
						|
    return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
 | 
						|
                                               : PPCISD::BCTRL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
    assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
 | 
						|
    return PPCISD::CALL_NOTOC;
 | 
						|
  }
 | 
						|
 | 
						|
  // The ABIs that maintain a TOC pointer accross calls need to have a nop
 | 
						|
  // immediately following the call instruction if the caller and callee may
 | 
						|
  // have different TOC bases. At link time if the linker determines the calls
 | 
						|
  // may not share a TOC base, the call is redirected to a trampoline inserted
 | 
						|
  // by the linker. The trampoline will (among other things) save the callers
 | 
						|
  // TOC pointer at an ABI designated offset in the linkage area and the linker
 | 
						|
  // will rewrite the nop to be a load of the TOC pointer from the linkage area
 | 
						|
  // into gpr2.
 | 
						|
  if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
 | 
						|
    return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
 | 
						|
                                                  : PPCISD::CALL_NOP;
 | 
						|
 | 
						|
  return PPCISD::CALL;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
 | 
						|
                               const SDLoc &dl, const PPCSubtarget &Subtarget) {
 | 
						|
  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
 | 
						|
    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
 | 
						|
      return SDValue(Dest, 0);
 | 
						|
 | 
						|
  // Returns true if the callee is local, and false otherwise.
 | 
						|
  auto isLocalCallee = [&]() {
 | 
						|
    const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | 
						|
    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
 | 
						|
    const GlobalValue *GV = G ? G->getGlobal() : nullptr;
 | 
						|
 | 
						|
    return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
 | 
						|
           !dyn_cast_or_null<GlobalIFunc>(GV);
 | 
						|
  };
 | 
						|
 | 
						|
  // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
 | 
						|
  // a static relocation model causes some versions of GNU LD (2.17.50, at
 | 
						|
  // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
 | 
						|
  // built with secure-PLT.
 | 
						|
  bool UsePlt =
 | 
						|
      Subtarget.is32BitELFABI() && !isLocalCallee() &&
 | 
						|
      Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
 | 
						|
 | 
						|
  const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
 | 
						|
    const TargetMachine &TM = Subtarget.getTargetMachine();
 | 
						|
    const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
 | 
						|
    MCSymbolXCOFF *S =
 | 
						|
        cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
 | 
						|
 | 
						|
    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | 
						|
    return DAG.getMCSymbol(S, PtrVT);
 | 
						|
  };
 | 
						|
 | 
						|
  if (isFunctionGlobalAddress(Callee)) {
 | 
						|
    const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
 | 
						|
 | 
						|
    if (Subtarget.isAIXABI()) {
 | 
						|
      assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
 | 
						|
      return getAIXFuncEntryPointSymbolSDNode(GV);
 | 
						|
    }
 | 
						|
    return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
 | 
						|
                                      UsePlt ? PPCII::MO_PLT : 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    const char *SymName = S->getSymbol();
 | 
						|
    if (Subtarget.isAIXABI()) {
 | 
						|
      // If there exists a user-declared function whose name is the same as the
 | 
						|
      // ExternalSymbol's, then we pick up the user-declared version.
 | 
						|
      const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
 | 
						|
      if (const Function *F =
 | 
						|
              dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
 | 
						|
        return getAIXFuncEntryPointSymbolSDNode(F);
 | 
						|
 | 
						|
      // On AIX, direct function calls reference the symbol for the function's
 | 
						|
      // entry point, which is named by prepending a "." before the function's
 | 
						|
      // C-linkage name. A Qualname is returned here because an external
 | 
						|
      // function entry point is a csect with XTY_ER property.
 | 
						|
      const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
 | 
						|
        auto &Context = DAG.getMachineFunction().getMMI().getContext();
 | 
						|
        MCSectionXCOFF *Sec = Context.getXCOFFSection(
 | 
						|
            (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
 | 
						|
            XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
 | 
						|
        return Sec->getQualNameSymbol();
 | 
						|
      };
 | 
						|
 | 
						|
      SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
 | 
						|
    }
 | 
						|
    return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
 | 
						|
                                       UsePlt ? PPCII::MO_PLT : 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // No transformation needed.
 | 
						|
  assert(Callee.getNode() && "What no callee?");
 | 
						|
  return Callee;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
 | 
						|
  assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
 | 
						|
         "Expected a CALLSEQ_STARTSDNode.");
 | 
						|
 | 
						|
  // The last operand is the chain, except when the node has glue. If the node
 | 
						|
  // has glue, then the last operand is the glue, and the chain is the second
 | 
						|
  // last operand.
 | 
						|
  SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
 | 
						|
  if (LastValue.getValueType() != MVT::Glue)
 | 
						|
    return LastValue;
 | 
						|
 | 
						|
  return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
 | 
						|
}
 | 
						|
 | 
						|
// Creates the node that moves a functions address into the count register
 | 
						|
// to prepare for an indirect call instruction.
 | 
						|
static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
 | 
						|
                                SDValue &Glue, SDValue &Chain,
 | 
						|
                                const SDLoc &dl) {
 | 
						|
  SDValue MTCTROps[] = {Chain, Callee, Glue};
 | 
						|
  EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
 | 
						|
  Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
 | 
						|
                      makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
 | 
						|
  // The glue is the second value produced.
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
}
 | 
						|
 | 
						|
static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
 | 
						|
                                          SDValue &Glue, SDValue &Chain,
 | 
						|
                                          SDValue CallSeqStart,
 | 
						|
                                          const CallBase *CB, const SDLoc &dl,
 | 
						|
                                          bool hasNest,
 | 
						|
                                          const PPCSubtarget &Subtarget) {
 | 
						|
  // Function pointers in the 64-bit SVR4 ABI do not point to the function
 | 
						|
  // entry point, but to the function descriptor (the function entry point
 | 
						|
  // address is part of the function descriptor though).
 | 
						|
  // The function descriptor is a three doubleword structure with the
 | 
						|
  // following fields: function entry point, TOC base address and
 | 
						|
  // environment pointer.
 | 
						|
  // Thus for a call through a function pointer, the following actions need
 | 
						|
  // to be performed:
 | 
						|
  //   1. Save the TOC of the caller in the TOC save area of its stack
 | 
						|
  //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
 | 
						|
  //   2. Load the address of the function entry point from the function
 | 
						|
  //      descriptor.
 | 
						|
  //   3. Load the TOC of the callee from the function descriptor into r2.
 | 
						|
  //   4. Load the environment pointer from the function descriptor into
 | 
						|
  //      r11.
 | 
						|
  //   5. Branch to the function entry point address.
 | 
						|
  //   6. On return of the callee, the TOC of the caller needs to be
 | 
						|
  //      restored (this is done in FinishCall()).
 | 
						|
  //
 | 
						|
  // The loads are scheduled at the beginning of the call sequence, and the
 | 
						|
  // register copies are flagged together to ensure that no other
 | 
						|
  // operations can be scheduled in between. E.g. without flagging the
 | 
						|
  // copies together, a TOC access in the caller could be scheduled between
 | 
						|
  // the assignment of the callee TOC and the branch to the callee, which leads
 | 
						|
  // to incorrect code.
 | 
						|
 | 
						|
  // Start by loading the function address from the descriptor.
 | 
						|
  SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
 | 
						|
  auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
 | 
						|
                      ? (MachineMemOperand::MODereferenceable |
 | 
						|
                         MachineMemOperand::MOInvariant)
 | 
						|
                      : MachineMemOperand::MONone;
 | 
						|
 | 
						|
  MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
 | 
						|
 | 
						|
  // Registers used in building the DAG.
 | 
						|
  const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
 | 
						|
  const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
 | 
						|
 | 
						|
  // Offsets of descriptor members.
 | 
						|
  const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
 | 
						|
  const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
 | 
						|
 | 
						|
  const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
 | 
						|
  const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
 | 
						|
 | 
						|
  // One load for the functions entry point address.
 | 
						|
  SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
 | 
						|
                                    Alignment, MMOFlags);
 | 
						|
 | 
						|
  // One for loading the TOC anchor for the module that contains the called
 | 
						|
  // function.
 | 
						|
  SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
 | 
						|
  SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
 | 
						|
  SDValue TOCPtr =
 | 
						|
      DAG.getLoad(RegVT, dl, LDChain, AddTOC,
 | 
						|
                  MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
 | 
						|
 | 
						|
  // One for loading the environment pointer.
 | 
						|
  SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
 | 
						|
  SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
 | 
						|
  SDValue LoadEnvPtr =
 | 
						|
      DAG.getLoad(RegVT, dl, LDChain, AddPtr,
 | 
						|
                  MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
 | 
						|
 | 
						|
 | 
						|
  // Then copy the newly loaded TOC anchor to the TOC pointer.
 | 
						|
  SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
 | 
						|
  Chain = TOCVal.getValue(0);
 | 
						|
  Glue = TOCVal.getValue(1);
 | 
						|
 | 
						|
  // If the function call has an explicit 'nest' parameter, it takes the
 | 
						|
  // place of the environment pointer.
 | 
						|
  assert((!hasNest || !Subtarget.isAIXABI()) &&
 | 
						|
         "Nest parameter is not supported on AIX.");
 | 
						|
  if (!hasNest) {
 | 
						|
    SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
 | 
						|
    Chain = EnvVal.getValue(0);
 | 
						|
    Glue = EnvVal.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // The rest of the indirect call sequence is the same as the non-descriptor
 | 
						|
  // DAG.
 | 
						|
  prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
buildCallOperands(SmallVectorImpl<SDValue> &Ops,
 | 
						|
                  PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
 | 
						|
                  SelectionDAG &DAG,
 | 
						|
                  SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
 | 
						|
                  SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
 | 
						|
                  const PPCSubtarget &Subtarget) {
 | 
						|
  const bool IsPPC64 = Subtarget.isPPC64();
 | 
						|
  // MVT for a general purpose register.
 | 
						|
  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
 | 
						|
  // First operand is always the chain.
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  // If it's a direct call pass the callee as the second operand.
 | 
						|
  if (!CFlags.IsIndirect)
 | 
						|
    Ops.push_back(Callee);
 | 
						|
  else {
 | 
						|
    assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
 | 
						|
 | 
						|
    // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
 | 
						|
    // on the stack (this would have been done in `LowerCall_64SVR4` or
 | 
						|
    // `LowerCall_AIX`). The call instruction is a pseudo instruction that
 | 
						|
    // represents both the indirect branch and a load that restores the TOC
 | 
						|
    // pointer from the linkage area. The operand for the TOC restore is an add
 | 
						|
    // of the TOC save offset to the stack pointer. This must be the second
 | 
						|
    // operand: after the chain input but before any other variadic arguments.
 | 
						|
    // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
 | 
						|
    // saved or used.
 | 
						|
    if (isTOCSaveRestoreRequired(Subtarget)) {
 | 
						|
      const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
 | 
						|
 | 
						|
      SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
 | 
						|
      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | 
						|
      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
 | 
						|
      Ops.push_back(AddTOC);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the register used for the environment pointer.
 | 
						|
    if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
 | 
						|
      Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
 | 
						|
                                    RegVT));
 | 
						|
 | 
						|
 | 
						|
    // Add CTR register as callee so a bctr can be emitted later.
 | 
						|
    if (CFlags.IsTailCall)
 | 
						|
      Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a tail call add stack pointer delta.
 | 
						|
  if (CFlags.IsTailCall)
 | 
						|
    Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
 | 
						|
  // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
 | 
						|
  // no way to mark dependencies as implicit here.
 | 
						|
  // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
 | 
						|
  if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
 | 
						|
       !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
 | 
						|
    Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
 | 
						|
 | 
						|
  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
 | 
						|
  if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
 | 
						|
    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
 | 
						|
 | 
						|
  // Add a register mask operand representing the call-preserved registers.
 | 
						|
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const uint32_t *Mask =
 | 
						|
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
  Ops.push_back(DAG.getRegisterMask(Mask));
 | 
						|
 | 
						|
  // If the glue is valid, it is the last operand.
 | 
						|
  if (Glue.getNode())
 | 
						|
    Ops.push_back(Glue);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::FinishCall(
 | 
						|
    CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
 | 
						|
    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
 | 
						|
    SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
 | 
						|
    unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
    SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
 | 
						|
 | 
						|
  if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
 | 
						|
      Subtarget.isAIXABI())
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
 | 
						|
  unsigned CallOpc =
 | 
						|
      getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
 | 
						|
                    Subtarget, DAG.getTarget());
 | 
						|
 | 
						|
  if (!CFlags.IsIndirect)
 | 
						|
    Callee = transformCallee(Callee, DAG, dl, Subtarget);
 | 
						|
  else if (Subtarget.usesFunctionDescriptors())
 | 
						|
    prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
 | 
						|
                                  dl, CFlags.HasNest, Subtarget);
 | 
						|
  else
 | 
						|
    prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
 | 
						|
 | 
						|
  // Build the operand list for the call instruction.
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
 | 
						|
                    SPDiff, Subtarget);
 | 
						|
 | 
						|
  // Emit tail call.
 | 
						|
  if (CFlags.IsTailCall) {
 | 
						|
    // Indirect tail call when using PC Relative calls do not have the same
 | 
						|
    // constraints.
 | 
						|
    assert(((Callee.getOpcode() == ISD::Register &&
 | 
						|
             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
 | 
						|
            Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | 
						|
            Callee.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
            isa<ConstantSDNode>(Callee) ||
 | 
						|
            (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
 | 
						|
           "Expecting a global address, external symbol, absolute value, "
 | 
						|
           "register or an indirect tail call when PC Relative calls are "
 | 
						|
           "used.");
 | 
						|
    // PC Relative calls also use TC_RETURN as the way to mark tail calls.
 | 
						|
    assert(CallOpc == PPCISD::TC_RETURN &&
 | 
						|
           "Unexpected call opcode for a tail call.");
 | 
						|
    DAG.getMachineFunction().getFrameInfo().setHasTailCall();
 | 
						|
    return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
 | 
						|
  Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
 | 
						|
  DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
 | 
						|
  // When performing tail call optimization the callee pops its arguments off
 | 
						|
  // the stack. Account for this here so these bytes can be pushed back on in
 | 
						|
  // PPCFrameLowering::eliminateCallFramePseudoInstr.
 | 
						|
  int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
 | 
						|
                         getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
                            ? NumBytes
 | 
						|
                            : 0;
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(BytesCalleePops, dl, true),
 | 
						|
                             Glue, dl);
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
 | 
						|
  return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
 | 
						|
                         DAG, InVals);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                             SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG                     = CLI.DAG;
 | 
						|
  SDLoc &dl                             = CLI.DL;
 | 
						|
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | 
						|
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | 
						|
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | 
						|
  SDValue Chain                         = CLI.Chain;
 | 
						|
  SDValue Callee                        = CLI.Callee;
 | 
						|
  bool &isTailCall                      = CLI.IsTailCall;
 | 
						|
  CallingConv::ID CallConv              = CLI.CallConv;
 | 
						|
  bool isVarArg                         = CLI.IsVarArg;
 | 
						|
  bool isPatchPoint                     = CLI.IsPatchPoint;
 | 
						|
  const CallBase *CB                    = CLI.CB;
 | 
						|
 | 
						|
  if (isTailCall) {
 | 
						|
    if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
 | 
						|
      isTailCall = false;
 | 
						|
    else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
 | 
						|
      isTailCall = IsEligibleForTailCallOptimization_64SVR4(
 | 
						|
          Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
 | 
						|
    else
 | 
						|
      isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
 | 
						|
                                                     Ins, DAG);
 | 
						|
    if (isTailCall) {
 | 
						|
      ++NumTailCalls;
 | 
						|
      if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
        ++NumSiblingCalls;
 | 
						|
 | 
						|
      // PC Relative calls no longer guarantee that the callee is a Global
 | 
						|
      // Address Node. The callee could be an indirect tail call in which
 | 
						|
      // case the SDValue for the callee could be a load (to load the address
 | 
						|
      // of a function pointer) or it may be a register copy (to move the
 | 
						|
      // address of the callee from a function parameter into a virtual
 | 
						|
      // register). It may also be an ExternalSymbolSDNode (ex memcopy).
 | 
						|
      assert((Subtarget.isUsingPCRelativeCalls() ||
 | 
						|
              isa<GlobalAddressSDNode>(Callee)) &&
 | 
						|
             "Callee should be an llvm::Function object.");
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
 | 
						|
                        << "\nTCO callee: ");
 | 
						|
      LLVM_DEBUG(Callee.dump());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isTailCall && CB && CB->isMustTailCall())
 | 
						|
    report_fatal_error("failed to perform tail call elimination on a call "
 | 
						|
                       "site marked musttail");
 | 
						|
 | 
						|
  // When long calls (i.e. indirect calls) are always used, calls are always
 | 
						|
  // made via function pointer. If we have a function name, first translate it
 | 
						|
  // into a pointer.
 | 
						|
  if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
 | 
						|
      !isTailCall)
 | 
						|
    Callee = LowerGlobalAddress(Callee, DAG);
 | 
						|
 | 
						|
  CallFlags CFlags(
 | 
						|
      CallConv, isTailCall, isVarArg, isPatchPoint,
 | 
						|
      isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
 | 
						|
      // hasNest
 | 
						|
      Subtarget.is64BitELFABI() &&
 | 
						|
          any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
 | 
						|
      CLI.NoMerge);
 | 
						|
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
 | 
						|
                         InVals, CB);
 | 
						|
 | 
						|
  assert(Subtarget.isSVR4ABI());
 | 
						|
  if (Subtarget.isPPC64())
 | 
						|
    return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
 | 
						|
                            InVals, CB);
 | 
						|
  return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
 | 
						|
                          InVals, CB);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_32SVR4(
 | 
						|
    SDValue Chain, SDValue Callee, CallFlags CFlags,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    const CallBase *CB) const {
 | 
						|
  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
 | 
						|
  // of the 32-bit SVR4 ABI stack frame layout.
 | 
						|
 | 
						|
  const CallingConv::ID CallConv = CFlags.CallConv;
 | 
						|
  const bool IsVarArg = CFlags.IsVarArg;
 | 
						|
  const bool IsTailCall = CFlags.IsTailCall;
 | 
						|
 | 
						|
  assert((CallConv == CallingConv::C ||
 | 
						|
          CallConv == CallingConv::Cold ||
 | 
						|
          CallConv == CallingConv::Fast) && "Unknown calling convention!");
 | 
						|
 | 
						|
  const Align PtrAlign(4);
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, parameter list area and the part of the local variable space which
 | 
						|
  // contains copies of aggregates which are passed by value.
 | 
						|
 | 
						|
  // Assign locations to all of the outgoing arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve space for the linkage area on the stack.
 | 
						|
  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
 | 
						|
                       PtrAlign);
 | 
						|
  if (useSoftFloat())
 | 
						|
    CCInfo.PreAnalyzeCallOperands(Outs);
 | 
						|
 | 
						|
  if (IsVarArg) {
 | 
						|
    // Handle fixed and variable vector arguments differently.
 | 
						|
    // Fixed vector arguments go into registers as long as registers are
 | 
						|
    // available. Variable vector arguments always go into memory.
 | 
						|
    unsigned NumArgs = Outs.size();
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i) {
 | 
						|
      MVT ArgVT = Outs[i].VT;
 | 
						|
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | 
						|
      bool Result;
 | 
						|
 | 
						|
      if (Outs[i].IsFixed) {
 | 
						|
        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
 | 
						|
                               CCInfo);
 | 
						|
      } else {
 | 
						|
        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
 | 
						|
                                      ArgFlags, CCInfo);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Result) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        errs() << "Call operand #" << i << " has unhandled type "
 | 
						|
             << EVT(ArgVT).getEVTString() << "\n";
 | 
						|
#endif
 | 
						|
        llvm_unreachable(nullptr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // All arguments are treated the same.
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
 | 
						|
  }
 | 
						|
  CCInfo.clearWasPPCF128();
 | 
						|
 | 
						|
  // Assign locations to all of the outgoing aggregate by value arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ByValArgLocs;
 | 
						|
  CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve stack space for the allocations in CCInfo.
 | 
						|
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
 | 
						|
 | 
						|
  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
 | 
						|
 | 
						|
  // Size of the linkage area, parameter list area and the part of the local
 | 
						|
  // space variable where copies of aggregates which are passed by value are
 | 
						|
  // stored.
 | 
						|
  unsigned NumBytes = CCByValInfo.getNextStackOffset();
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  // Load the return address and frame pointer so it can be moved somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  bool seenFloatArg = false;
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.
 | 
						|
  // i - Tracks the index into the list of registers allocated for the call
 | 
						|
  // RealArgIdx - Tracks the index into the list of actual function arguments
 | 
						|
  // j - Tracks the index into the list of byval arguments
 | 
						|
  for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
 | 
						|
       i != e;
 | 
						|
       ++i, ++RealArgIdx) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[RealArgIdx];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
 | 
						|
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      // Argument is an aggregate which is passed by value, thus we need to
 | 
						|
      // create a copy of it in the local variable space of the current stack
 | 
						|
      // frame (which is the stack frame of the caller) and pass the address of
 | 
						|
      // this copy to the callee.
 | 
						|
      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
 | 
						|
      CCValAssign &ByValVA = ByValArgLocs[j++];
 | 
						|
      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 | 
						|
 | 
						|
      // Memory reserved in the local variable space of the callers stack frame.
 | 
						|
      unsigned LocMemOffset = ByValVA.getLocMemOffset();
 | 
						|
 | 
						|
      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | 
						|
                           StackPtr, PtrOff);
 | 
						|
 | 
						|
      // Create a copy of the argument in the local area of the current
 | 
						|
      // stack frame.
 | 
						|
      SDValue MemcpyCall =
 | 
						|
        CreateCopyOfByValArgument(Arg, PtrOff,
 | 
						|
                                  CallSeqStart.getNode()->getOperand(0),
 | 
						|
                                  Flags, DAG, dl);
 | 
						|
 | 
						|
      // This must go outside the CALLSEQ_START..END.
 | 
						|
      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
 | 
						|
                                                     SDLoc(MemcpyCall));
 | 
						|
      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | 
						|
                             NewCallSeqStart.getNode());
 | 
						|
      Chain = CallSeqStart = NewCallSeqStart;
 | 
						|
 | 
						|
      // Pass the address of the aggregate copy on the stack either in a
 | 
						|
      // physical register or in the parameter list area of the current stack
 | 
						|
      // frame to the callee.
 | 
						|
      Arg = PtrOff;
 | 
						|
    }
 | 
						|
 | 
						|
    // When useCRBits() is true, there can be i1 arguments.
 | 
						|
    // It is because getRegisterType(MVT::i1) => MVT::i1,
 | 
						|
    // and for other integer types getRegisterType() => MVT::i32.
 | 
						|
    // Extend i1 and ensure callee will get i32.
 | 
						|
    if (Arg.getValueType() == MVT::i1)
 | 
						|
      Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
 | 
						|
                        dl, MVT::i32, Arg);
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      seenFloatArg |= VA.getLocVT().isFloatingPoint();
 | 
						|
      // Put argument in a physical register.
 | 
						|
      if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
 | 
						|
        bool IsLE = Subtarget.isLittleEndian();
 | 
						|
        SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
 | 
						|
                        DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
 | 
						|
        RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
 | 
						|
        SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
 | 
						|
                           DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
 | 
						|
        RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
 | 
						|
                             SVal.getValue(0)));
 | 
						|
      } else
 | 
						|
        RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
    } else {
 | 
						|
      // Put argument in the parameter list area of the current stack frame.
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
 | 
						|
      if (!IsTailCall) {
 | 
						|
        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | 
						|
        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | 
						|
                             StackPtr, PtrOff);
 | 
						|
 | 
						|
        MemOpChains.push_back(
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | 
						|
      } else {
 | 
						|
        // Calculate and remember argument location.
 | 
						|
        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
 | 
						|
                                 TailCallArguments);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set CR bit 6 to true if this is a vararg call with floating args passed in
 | 
						|
  // registers.
 | 
						|
  if (IsVarArg) {
 | 
						|
    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    SDValue Ops[] = { Chain, InFlag };
 | 
						|
 | 
						|
    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
 | 
						|
                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
 | 
						|
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsTailCall)
 | 
						|
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | 
						|
                    TailCallArguments);
 | 
						|
 | 
						|
  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
 | 
						|
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
 | 
						|
}
 | 
						|
 | 
						|
// Copy an argument into memory, being careful to do this outside the
 | 
						|
// call sequence for the call to which the argument belongs.
 | 
						|
SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
 | 
						|
    SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
 | 
						|
    SelectionDAG &DAG, const SDLoc &dl) const {
 | 
						|
  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | 
						|
                        CallSeqStart.getNode()->getOperand(0),
 | 
						|
                        Flags, DAG, dl);
 | 
						|
  // The MEMCPY must go outside the CALLSEQ_START..END.
 | 
						|
  int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
 | 
						|
  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
 | 
						|
                                                 SDLoc(MemcpyCall));
 | 
						|
  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | 
						|
                         NewCallSeqStart.getNode());
 | 
						|
  return NewCallSeqStart;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_64SVR4(
 | 
						|
    SDValue Chain, SDValue Callee, CallFlags CFlags,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    const CallBase *CB) const {
 | 
						|
  bool isELFv2ABI = Subtarget.isELFv2ABI();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  unsigned NumOps = Outs.size();
 | 
						|
  bool IsSibCall = false;
 | 
						|
  bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  unsigned PtrByteSize = 8;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    IsSibCall = true;
 | 
						|
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  assert(!(IsFastCall && CFlags.IsVarArg) &&
 | 
						|
         "fastcc not supported on varargs functions");
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
 | 
						|
  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
 | 
						|
  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR);
 | 
						|
  const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
 | 
						|
  const unsigned NumVRs  = array_lengthof(VR);
 | 
						|
 | 
						|
  // On ELFv2, we can avoid allocating the parameter area if all the arguments
 | 
						|
  // can be passed to the callee in registers.
 | 
						|
  // For the fast calling convention, there is another check below.
 | 
						|
  // Note: We should keep consistent with LowerFormalArguments_64SVR4()
 | 
						|
  bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
 | 
						|
  if (!HasParameterArea) {
 | 
						|
    unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | 
						|
    unsigned AvailableFPRs = NumFPRs;
 | 
						|
    unsigned AvailableVRs = NumVRs;
 | 
						|
    unsigned NumBytesTmp = NumBytes;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      if (Outs[i].Flags.isNest()) continue;
 | 
						|
      if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
 | 
						|
                                 PtrByteSize, LinkageSize, ParamAreaSize,
 | 
						|
                                 NumBytesTmp, AvailableFPRs, AvailableVRs))
 | 
						|
        HasParameterArea = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When using the fast calling convention, we don't provide backing for
 | 
						|
  // arguments that will be in registers.
 | 
						|
  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
 | 
						|
 | 
						|
  // Avoid allocating parameter area for fastcc functions if all the arguments
 | 
						|
  // can be passed in the registers.
 | 
						|
  if (IsFastCall)
 | 
						|
    HasParameterArea = false;
 | 
						|
 | 
						|
  // Add up all the space actually used.
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    EVT ArgVT = Outs[i].VT;
 | 
						|
    EVT OrigVT = Outs[i].ArgVT;
 | 
						|
 | 
						|
    if (Flags.isNest())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (IsFastCall) {
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        NumGPRsUsed += (Flags.getByValSize()+7)/8;
 | 
						|
        if (NumGPRsUsed > NumGPRs)
 | 
						|
          HasParameterArea = true;
 | 
						|
      } else {
 | 
						|
        switch (ArgVT.getSimpleVT().SimpleTy) {
 | 
						|
        default: llvm_unreachable("Unexpected ValueType for argument!");
 | 
						|
        case MVT::i1:
 | 
						|
        case MVT::i32:
 | 
						|
        case MVT::i64:
 | 
						|
          if (++NumGPRsUsed <= NumGPRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        case MVT::v4i32:
 | 
						|
        case MVT::v8i16:
 | 
						|
        case MVT::v16i8:
 | 
						|
        case MVT::v2f64:
 | 
						|
        case MVT::v2i64:
 | 
						|
        case MVT::v1i128:
 | 
						|
        case MVT::f128:
 | 
						|
          if (++NumVRsUsed <= NumVRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        case MVT::v4f32:
 | 
						|
          if (++NumVRsUsed <= NumVRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        case MVT::f32:
 | 
						|
        case MVT::f64:
 | 
						|
          if (++NumFPRsUsed <= NumFPRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        HasParameterArea = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Respect alignment of argument on the stack.  */
 | 
						|
    auto Alignement =
 | 
						|
        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
    NumBytes = alignTo(NumBytes, Alignement);
 | 
						|
 | 
						|
    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | 
						|
    if (Flags.isInConsecutiveRegsLast())
 | 
						|
      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumBytesActuallyUsed = NumBytes;
 | 
						|
 | 
						|
  // In the old ELFv1 ABI,
 | 
						|
  // the prolog code of the callee may store up to 8 GPR argument registers to
 | 
						|
  // the stack, allowing va_start to index over them in memory if its varargs.
 | 
						|
  // Because we cannot tell if this is needed on the caller side, we have to
 | 
						|
  // conservatively assume that it is needed.  As such, make sure we have at
 | 
						|
  // least enough stack space for the caller to store the 8 GPRs.
 | 
						|
  // In the ELFv2 ABI, we allocate the parameter area iff a callee
 | 
						|
  // really requires memory operands, e.g. a vararg function.
 | 
						|
  if (HasParameterArea)
 | 
						|
    NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
 | 
						|
  else
 | 
						|
    NumBytes = LinkageSize;
 | 
						|
 | 
						|
  // Tail call needs the stack to be aligned.
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
 | 
						|
    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
 | 
						|
 | 
						|
  int SPDiff = 0;
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  if (!IsSibCall)
 | 
						|
    SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
 | 
						|
 | 
						|
  // To protect arguments on the stack from being clobbered in a tail call,
 | 
						|
  // force all the loads to happen before doing any other lowering.
 | 
						|
  if (CFlags.IsTailCall)
 | 
						|
    Chain = DAG.getStackArgumentTokenFactor(Chain);
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  if (!IsSibCall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  // Load the return address and frame pointer so it can be move somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
 | 
						|
  // Figure out which arguments are going to go in registers, and which in
 | 
						|
  // memory.  Also, if this is a vararg function, floating point operations
 | 
						|
  // must be stored to our stack, and loaded into integer regs as well, if
 | 
						|
  // any integer regs are available for argument passing.
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    EVT ArgVT = Outs[i].VT;
 | 
						|
    EVT OrigVT = Outs[i].ArgVT;
 | 
						|
 | 
						|
    // PtrOff will be used to store the current argument to the stack if a
 | 
						|
    // register cannot be found for it.
 | 
						|
    SDValue PtrOff;
 | 
						|
 | 
						|
    // We re-align the argument offset for each argument, except when using the
 | 
						|
    // fast calling convention, when we need to make sure we do that only when
 | 
						|
    // we'll actually use a stack slot.
 | 
						|
    auto ComputePtrOff = [&]() {
 | 
						|
      /* Respect alignment of argument on the stack.  */
 | 
						|
      auto Alignment =
 | 
						|
          CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
      ArgOffset = alignTo(ArgOffset, Alignment);
 | 
						|
 | 
						|
      PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
 | 
						|
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
    };
 | 
						|
 | 
						|
    if (!IsFastCall) {
 | 
						|
      ComputePtrOff();
 | 
						|
 | 
						|
      /* Compute GPR index associated with argument offset.  */
 | 
						|
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
      GPR_idx = std::min(GPR_idx, NumGPRs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Promote integers to 64-bit values.
 | 
						|
    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
 | 
						|
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | 
						|
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME memcpy is used way more than necessary.  Correctness first.
 | 
						|
    // Note: "by value" is code for passing a structure by value, not
 | 
						|
    // basic types.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      // Note: Size includes alignment padding, so
 | 
						|
      //   struct x { short a; char b; }
 | 
						|
      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
 | 
						|
      // These are the proper values we need for right-justifying the
 | 
						|
      // aggregate in a parameter register.
 | 
						|
      unsigned Size = Flags.getByValSize();
 | 
						|
 | 
						|
      // An empty aggregate parameter takes up no storage and no
 | 
						|
      // registers.
 | 
						|
      if (Size == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (IsFastCall)
 | 
						|
        ComputePtrOff();
 | 
						|
 | 
						|
      // All aggregates smaller than 8 bytes must be passed right-justified.
 | 
						|
      if (Size==1 || Size==2 || Size==4) {
 | 
						|
        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | 
						|
                                        MachinePointerInfo(), VT);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (GPR_idx == NumGPRs && Size < 8) {
 | 
						|
        SDValue AddPtr = PtrOff;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
 | 
						|
                                          PtrOff.getValueType());
 | 
						|
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | 
						|
        }
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Copy entire object into memory.  There are cases where gcc-generated
 | 
						|
      // code assumes it is there, even if it could be put entirely into
 | 
						|
      // registers.  (This is not what the doc says.)
 | 
						|
 | 
						|
      // FIXME: The above statement is likely due to a misunderstanding of the
 | 
						|
      // documents.  All arguments must be copied into the parameter area BY
 | 
						|
      // THE CALLEE in the event that the callee takes the address of any
 | 
						|
      // formal argument.  That has not yet been implemented.  However, it is
 | 
						|
      // reasonable to use the stack area as a staging area for the register
 | 
						|
      // load.
 | 
						|
 | 
						|
      // Skip this for small aggregates, as we will use the same slot for a
 | 
						|
      // right-justified copy, below.
 | 
						|
      if (Size >= 8)
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
 | 
						|
      // When a register is available, pass a small aggregate right-justified.
 | 
						|
      if (Size < 8 && GPR_idx != NumGPRs) {
 | 
						|
        // The easiest way to get this right-justified in a register
 | 
						|
        // is to copy the structure into the rightmost portion of a
 | 
						|
        // local variable slot, then load the whole slot into the
 | 
						|
        // register.
 | 
						|
        // FIXME: The memcpy seems to produce pretty awful code for
 | 
						|
        // small aggregates, particularly for packed ones.
 | 
						|
        // FIXME: It would be preferable to use the slot in the
 | 
						|
        // parameter save area instead of a new local variable.
 | 
						|
        SDValue AddPtr = PtrOff;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
 | 
						|
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | 
						|
        }
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
 | 
						|
        // Load the slot into the register.
 | 
						|
        SDValue Load =
 | 
						|
            DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Load.getValue(1));
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
 | 
						|
        // Done with this argument.
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For aggregates larger than PtrByteSize, copy the pieces of the
 | 
						|
      // object that fit into registers from the parameter save area.
 | 
						|
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | 
						|
        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
 | 
						|
        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getSimpleValueType().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unexpected ValueType for argument!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      if (Flags.isNest()) {
 | 
						|
        // The 'nest' parameter, if any, is passed in R11.
 | 
						|
        RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // These can be scalar arguments or elements of an integer array type
 | 
						|
      // passed directly.  Clang may use those instead of "byval" aggregate
 | 
						|
      // types to avoid forcing arguments to memory unnecessarily.
 | 
						|
      if (GPR_idx != NumGPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        if (IsFastCall)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, CFlags.IsTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        if (IsFastCall)
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
      }
 | 
						|
      if (!IsFastCall)
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64: {
 | 
						|
      // These can be scalar arguments or elements of a float array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // float aggregates.
 | 
						|
 | 
						|
      // Named arguments go into FPRs first, and once they overflow, the
 | 
						|
      // remaining arguments go into GPRs and then the parameter save area.
 | 
						|
      // Unnamed arguments for vararg functions always go to GPRs and
 | 
						|
      // then the parameter save area.  For now, put all arguments to vararg
 | 
						|
      // routines always in both locations (FPR *and* GPR or stack slot).
 | 
						|
      bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
 | 
						|
      bool NeededLoad = false;
 | 
						|
 | 
						|
      // First load the argument into the next available FPR.
 | 
						|
      if (FPR_idx != NumFPRs)
 | 
						|
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | 
						|
 | 
						|
      // Next, load the argument into GPR or stack slot if needed.
 | 
						|
      if (!NeedGPROrStack)
 | 
						|
        ;
 | 
						|
      else if (GPR_idx != NumGPRs && !IsFastCall) {
 | 
						|
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | 
						|
        // once we support fp <-> gpr moves.
 | 
						|
 | 
						|
        // In the non-vararg case, this can only ever happen in the
 | 
						|
        // presence of f32 array types, since otherwise we never run
 | 
						|
        // out of FPRs before running out of GPRs.
 | 
						|
        SDValue ArgVal;
 | 
						|
 | 
						|
        // Double values are always passed in a single GPR.
 | 
						|
        if (Arg.getValueType() != MVT::f32) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
 | 
						|
 | 
						|
        // Non-array float values are extended and passed in a GPR.
 | 
						|
        } else if (!Flags.isInConsecutiveRegs()) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | 
						|
 | 
						|
        // If we have an array of floats, we collect every odd element
 | 
						|
        // together with its predecessor into one GPR.
 | 
						|
        } else if (ArgOffset % PtrByteSize != 0) {
 | 
						|
          SDValue Lo, Hi;
 | 
						|
          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
 | 
						|
          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          if (!isLittleEndian)
 | 
						|
            std::swap(Lo, Hi);
 | 
						|
          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | 
						|
 | 
						|
        // The final element, if even, goes into the first half of a GPR.
 | 
						|
        } else if (Flags.isInConsecutiveRegsLast()) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | 
						|
          if (!isLittleEndian)
 | 
						|
            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getConstant(32, dl, MVT::i32));
 | 
						|
 | 
						|
        // Non-final even elements are skipped; they will be handled
 | 
						|
        // together the with subsequent argument on the next go-around.
 | 
						|
        } else
 | 
						|
          ArgVal = SDValue();
 | 
						|
 | 
						|
        if (ArgVal.getNode())
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
 | 
						|
      } else {
 | 
						|
        if (IsFastCall)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        // Single-precision floating-point values are mapped to the
 | 
						|
        // second (rightmost) word of the stack doubleword.
 | 
						|
        if (Arg.getValueType() == MVT::f32 &&
 | 
						|
            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
 | 
						|
          SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
 | 
						|
          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | 
						|
        }
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, CFlags.IsTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
 | 
						|
        NeededLoad = true;
 | 
						|
      }
 | 
						|
      // When passing an array of floats, the array occupies consecutive
 | 
						|
      // space in the argument area; only round up to the next doubleword
 | 
						|
      // at the end of the array.  Otherwise, each float takes 8 bytes.
 | 
						|
      if (!IsFastCall || NeededLoad) {
 | 
						|
        ArgOffset += (Arg.getValueType() == MVT::f32 &&
 | 
						|
                      Flags.isInConsecutiveRegs()) ? 4 : 8;
 | 
						|
        if (Flags.isInConsecutiveRegsLast())
 | 
						|
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
    case MVT::v2f64:
 | 
						|
    case MVT::v2i64:
 | 
						|
    case MVT::v1i128:
 | 
						|
    case MVT::f128:
 | 
						|
      // These can be scalar arguments or elements of a vector array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // vector aggregates.
 | 
						|
 | 
						|
      // For a varargs call, named arguments go into VRs or on the stack as
 | 
						|
      // usual; unnamed arguments always go to the stack or the corresponding
 | 
						|
      // GPRs when within range.  For now, we always put the value in both
 | 
						|
      // locations (or even all three).
 | 
						|
      if (CFlags.IsVarArg) {
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist if we have a varargs call.");
 | 
						|
        // We could elide this store in the case where the object fits
 | 
						|
        // entirely in R registers.  Maybe later.
 | 
						|
        SDValue Store =
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
        if (VR_idx != NumVRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | 
						|
        }
 | 
						|
        ArgOffset += 16;
 | 
						|
        for (unsigned i=0; i<16; i+=PtrByteSize) {
 | 
						|
          if (GPR_idx == NumGPRs)
 | 
						|
            break;
 | 
						|
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | 
						|
                                   DAG.getConstant(i, dl, PtrVT));
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-varargs Altivec params go into VRs or on the stack.
 | 
						|
      if (VR_idx != NumVRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        if (IsFastCall)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, CFlags.IsTailCall, true, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        if (IsFastCall)
 | 
						|
          ArgOffset += 16;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!IsFastCall)
 | 
						|
        ArgOffset += 16;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
 | 
						|
         "mismatch in size of parameter area");
 | 
						|
  (void)NumBytesActuallyUsed;
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // Check if this is an indirect call (MTCTR/BCTRL).
 | 
						|
  // See prepareDescriptorIndirectCall and buildCallOperands for more
 | 
						|
  // information about calls through function pointers in the 64-bit SVR4 ABI.
 | 
						|
  if (CFlags.IsIndirect) {
 | 
						|
    // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
 | 
						|
    // caller in the TOC save area.
 | 
						|
    if (isTOCSaveRestoreRequired(Subtarget)) {
 | 
						|
      assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
 | 
						|
      // Load r2 into a virtual register and store it to the TOC save area.
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
 | 
						|
      // TOC save area offset.
 | 
						|
      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
      SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | 
						|
      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
      Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
 | 
						|
                           MachinePointerInfo::getStack(
 | 
						|
                               DAG.getMachineFunction(), TOCSaveOffset));
 | 
						|
    }
 | 
						|
    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
 | 
						|
    // This does not mean the MTCTR instruction must use R12; it's easier
 | 
						|
    // to model this as an extra parameter, so do that.
 | 
						|
    if (isELFv2ABI && !CFlags.IsPatchPoint)
 | 
						|
      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CFlags.IsTailCall && !IsSibCall)
 | 
						|
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | 
						|
                    TailCallArguments);
 | 
						|
 | 
						|
  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
 | 
						|
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
 | 
						|
}
 | 
						|
 | 
						|
// Returns true when the shadow of a general purpose argument register
 | 
						|
// in the parameter save area is aligned to at least 'RequiredAlign'.
 | 
						|
static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
 | 
						|
  assert(RequiredAlign.value() <= 16 &&
 | 
						|
         "Required alignment greater than stack alignment.");
 | 
						|
  switch (Reg) {
 | 
						|
  default:
 | 
						|
    report_fatal_error("called on invalid register.");
 | 
						|
  case PPC::R5:
 | 
						|
  case PPC::R9:
 | 
						|
  case PPC::X3:
 | 
						|
  case PPC::X5:
 | 
						|
  case PPC::X7:
 | 
						|
  case PPC::X9:
 | 
						|
    // These registers are 16 byte aligned which is the most strict aligment
 | 
						|
    // we can support.
 | 
						|
    return true;
 | 
						|
  case PPC::R3:
 | 
						|
  case PPC::R7:
 | 
						|
  case PPC::X4:
 | 
						|
  case PPC::X6:
 | 
						|
  case PPC::X8:
 | 
						|
  case PPC::X10:
 | 
						|
    // The shadow of these registers in the PSA is 8 byte aligned.
 | 
						|
    return RequiredAlign <= 8;
 | 
						|
  case PPC::R4:
 | 
						|
  case PPC::R6:
 | 
						|
  case PPC::R8:
 | 
						|
  case PPC::R10:
 | 
						|
    return RequiredAlign <= 4;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
 | 
						|
                   CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
 | 
						|
                   CCState &S) {
 | 
						|
  AIXCCState &State = static_cast<AIXCCState &>(S);
 | 
						|
  const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
 | 
						|
      State.getMachineFunction().getSubtarget());
 | 
						|
  const bool IsPPC64 = Subtarget.isPPC64();
 | 
						|
  const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
 | 
						|
  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
 | 
						|
  if (ValVT == MVT::f128)
 | 
						|
    report_fatal_error("f128 is unimplemented on AIX.");
 | 
						|
 | 
						|
  if (ArgFlags.isNest())
 | 
						|
    report_fatal_error("Nest arguments are unimplemented.");
 | 
						|
 | 
						|
  static const MCPhysReg GPR_32[] = {// 32-bit registers.
 | 
						|
                                     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
                                     PPC::R7, PPC::R8, PPC::R9, PPC::R10};
 | 
						|
  static const MCPhysReg GPR_64[] = {// 64-bit registers.
 | 
						|
                                     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
                                     PPC::X7, PPC::X8, PPC::X9, PPC::X10};
 | 
						|
 | 
						|
  static const MCPhysReg VR[] = {// Vector registers.
 | 
						|
                                 PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
 | 
						|
                                 PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
 | 
						|
                                 PPC::V10, PPC::V11, PPC::V12, PPC::V13};
 | 
						|
 | 
						|
  if (ArgFlags.isByVal()) {
 | 
						|
    if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
 | 
						|
      report_fatal_error("Pass-by-value arguments with alignment greater than "
 | 
						|
                         "register width are not supported.");
 | 
						|
 | 
						|
    const unsigned ByValSize = ArgFlags.getByValSize();
 | 
						|
 | 
						|
    // An empty aggregate parameter takes up no storage and no registers,
 | 
						|
    // but needs a MemLoc for a stack slot for the formal arguments side.
 | 
						|
    if (ByValSize == 0) {
 | 
						|
      State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
 | 
						|
                                       State.getNextStackOffset(), RegVT,
 | 
						|
                                       LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    const unsigned StackSize = alignTo(ByValSize, PtrAlign);
 | 
						|
    unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
 | 
						|
    for (const unsigned E = Offset + StackSize; Offset < E;
 | 
						|
         Offset += PtrAlign.value()) {
 | 
						|
      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
 | 
						|
        State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
 | 
						|
      else {
 | 
						|
        State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
 | 
						|
                                         Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
 | 
						|
                                         LocInfo));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Arguments always reserve parameter save area.
 | 
						|
  switch (ValVT.SimpleTy) {
 | 
						|
  default:
 | 
						|
    report_fatal_error("Unhandled value type for argument.");
 | 
						|
  case MVT::i64:
 | 
						|
    // i64 arguments should have been split to i32 for PPC32.
 | 
						|
    assert(IsPPC64 && "PPC32 should have split i64 values.");
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i32: {
 | 
						|
    const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
 | 
						|
    // AIX integer arguments are always passed in register width.
 | 
						|
    if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
 | 
						|
      LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
 | 
						|
                                  : CCValAssign::LocInfo::ZExt;
 | 
						|
    if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
 | 
						|
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
 | 
						|
    else
 | 
						|
      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64: {
 | 
						|
    // Parameter save area (PSA) is reserved even if the float passes in fpr.
 | 
						|
    const unsigned StoreSize = LocVT.getStoreSize();
 | 
						|
    // Floats are always 4-byte aligned in the PSA on AIX.
 | 
						|
    // This includes f64 in 64-bit mode for ABI compatibility.
 | 
						|
    const unsigned Offset =
 | 
						|
        State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
 | 
						|
    unsigned FReg = State.AllocateReg(FPR);
 | 
						|
    if (FReg)
 | 
						|
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
 | 
						|
 | 
						|
    // Reserve and initialize GPRs or initialize the PSA as required.
 | 
						|
    for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
 | 
						|
      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
 | 
						|
        assert(FReg && "An FPR should be available when a GPR is reserved.");
 | 
						|
        if (State.isVarArg()) {
 | 
						|
          // Successfully reserved GPRs are only initialized for vararg calls.
 | 
						|
          // Custom handling is required for:
 | 
						|
          //   f64 in PPC32 needs to be split into 2 GPRs.
 | 
						|
          //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
 | 
						|
          State.addLoc(
 | 
						|
              CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // If there are insufficient GPRs, the PSA needs to be initialized.
 | 
						|
        // Initialization occurs even if an FPR was initialized for
 | 
						|
        // compatibility with the AIX XL compiler. The full memory for the
 | 
						|
        // argument will be initialized even if a prior word is saved in GPR.
 | 
						|
        // A custom memLoc is used when the argument also passes in FPR so
 | 
						|
        // that the callee handling can skip over it easily.
 | 
						|
        State.addLoc(
 | 
						|
            FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
 | 
						|
                                             LocInfo)
 | 
						|
                 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32:
 | 
						|
  case MVT::v8i16:
 | 
						|
  case MVT::v16i8:
 | 
						|
  case MVT::v2i64:
 | 
						|
  case MVT::v2f64:
 | 
						|
  case MVT::v1i128: {
 | 
						|
    const unsigned VecSize = 16;
 | 
						|
    const Align VecAlign(VecSize);
 | 
						|
 | 
						|
    if (!State.isVarArg()) {
 | 
						|
      // If there are vector registers remaining we don't consume any stack
 | 
						|
      // space.
 | 
						|
      if (unsigned VReg = State.AllocateReg(VR)) {
 | 
						|
        State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // Vectors passed on the stack do not shadow GPRs or FPRs even though they
 | 
						|
      // might be allocated in the portion of the PSA that is shadowed by the
 | 
						|
      // GPRs.
 | 
						|
      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
 | 
						|
      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    const unsigned PtrSize = IsPPC64 ? 8 : 4;
 | 
						|
    ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
 | 
						|
 | 
						|
    unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
 | 
						|
    // Burn any underaligned registers and their shadowed stack space until
 | 
						|
    // we reach the required alignment.
 | 
						|
    while (NextRegIndex != GPRs.size() &&
 | 
						|
           !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
 | 
						|
      // Shadow allocate register and its stack shadow.
 | 
						|
      unsigned Reg = State.AllocateReg(GPRs);
 | 
						|
      State.AllocateStack(PtrSize, PtrAlign);
 | 
						|
      assert(Reg && "Allocating register unexpectedly failed.");
 | 
						|
      (void)Reg;
 | 
						|
      NextRegIndex = State.getFirstUnallocated(GPRs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Vectors that are passed as fixed arguments are handled differently.
 | 
						|
    // They are passed in VRs if any are available (unlike arguments passed
 | 
						|
    // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
 | 
						|
    // functions)
 | 
						|
    if (State.isFixed(ValNo)) {
 | 
						|
      if (unsigned VReg = State.AllocateReg(VR)) {
 | 
						|
        State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
 | 
						|
        // Shadow allocate GPRs and stack space even though we pass in a VR.
 | 
						|
        for (unsigned I = 0; I != VecSize; I += PtrSize)
 | 
						|
          State.AllocateReg(GPRs);
 | 
						|
        State.AllocateStack(VecSize, VecAlign);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // No vector registers remain so pass on the stack.
 | 
						|
      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
 | 
						|
      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If all GPRS are consumed then we pass the argument fully on the stack.
 | 
						|
    if (NextRegIndex == GPRs.size()) {
 | 
						|
      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
 | 
						|
      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Corner case for 32-bit codegen. We have 2 registers to pass the first
 | 
						|
    // half of the argument, and then need to pass the remaining half on the
 | 
						|
    // stack.
 | 
						|
    if (GPRs[NextRegIndex] == PPC::R9) {
 | 
						|
      const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
 | 
						|
      State.addLoc(
 | 
						|
          CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
 | 
						|
      const unsigned FirstReg = State.AllocateReg(PPC::R9);
 | 
						|
      const unsigned SecondReg = State.AllocateReg(PPC::R10);
 | 
						|
      assert(FirstReg && SecondReg &&
 | 
						|
             "Allocating R9 or R10 unexpectedly failed.");
 | 
						|
      State.addLoc(
 | 
						|
          CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
 | 
						|
      State.addLoc(
 | 
						|
          CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We have enough GPRs to fully pass the vector argument, and we have
 | 
						|
    // already consumed any underaligned registers. Start with the custom
 | 
						|
    // MemLoc and then the custom RegLocs.
 | 
						|
    const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
 | 
						|
    State.addLoc(
 | 
						|
        CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
    for (unsigned I = 0; I != VecSize; I += PtrSize) {
 | 
						|
      const unsigned Reg = State.AllocateReg(GPRs);
 | 
						|
      assert(Reg && "Failed to allocated register for vararg vector argument");
 | 
						|
      State.addLoc(
 | 
						|
          CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// So far, this function is only used by LowerFormalArguments_AIX()
 | 
						|
static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
 | 
						|
                                                    bool IsPPC64,
 | 
						|
                                                    bool HasP8Vector,
 | 
						|
                                                    bool HasVSX) {
 | 
						|
  assert((IsPPC64 || SVT != MVT::i64) &&
 | 
						|
         "i64 should have been split for 32-bit codegen.");
 | 
						|
 | 
						|
  switch (SVT) {
 | 
						|
  default:
 | 
						|
    report_fatal_error("Unexpected value type for formal argument");
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i32:
 | 
						|
  case MVT::i64:
 | 
						|
    return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
  case MVT::f32:
 | 
						|
    return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
 | 
						|
  case MVT::f64:
 | 
						|
    return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32:
 | 
						|
  case MVT::v8i16:
 | 
						|
  case MVT::v16i8:
 | 
						|
  case MVT::v2i64:
 | 
						|
  case MVT::v2f64:
 | 
						|
  case MVT::v1i128:
 | 
						|
    return &PPC::VRRCRegClass;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
 | 
						|
                                        SelectionDAG &DAG, SDValue ArgValue,
 | 
						|
                                        MVT LocVT, const SDLoc &dl) {
 | 
						|
  assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
 | 
						|
  assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
 | 
						|
 | 
						|
  if (Flags.isSExt())
 | 
						|
    ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
 | 
						|
                           DAG.getValueType(ValVT));
 | 
						|
  else if (Flags.isZExt())
 | 
						|
    ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
 | 
						|
                           DAG.getValueType(ValVT));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
 | 
						|
  const unsigned LASize = FL->getLinkageSize();
 | 
						|
 | 
						|
  if (PPC::GPRCRegClass.contains(Reg)) {
 | 
						|
    assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
 | 
						|
           "Reg must be a valid argument register!");
 | 
						|
    return LASize + 4 * (Reg - PPC::R3);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PPC::G8RCRegClass.contains(Reg)) {
 | 
						|
    assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
 | 
						|
           "Reg must be a valid argument register!");
 | 
						|
    return LASize + 8 * (Reg - PPC::X3);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Only general purpose registers expected.");
 | 
						|
}
 | 
						|
 | 
						|
//   AIX ABI Stack Frame Layout:
 | 
						|
//
 | 
						|
//   Low Memory +--------------------------------------------+
 | 
						|
//   SP   +---> | Back chain                                 | ---+
 | 
						|
//        |     +--------------------------------------------+    |   
 | 
						|
//        |     | Saved Condition Register                   |    |
 | 
						|
//        |     +--------------------------------------------+    |
 | 
						|
//        |     | Saved Linkage Register                     |    |
 | 
						|
//        |     +--------------------------------------------+    | Linkage Area
 | 
						|
//        |     | Reserved for compilers                     |    |
 | 
						|
//        |     +--------------------------------------------+    |
 | 
						|
//        |     | Reserved for binders                       |    |
 | 
						|
//        |     +--------------------------------------------+    |
 | 
						|
//        |     | Saved TOC pointer                          | ---+
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Parameter save area                        |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Alloca space                               |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Local variable space                       |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Float/int conversion temporary             |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Save area for AltiVec registers            |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | AltiVec alignment padding                  |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Save area for VRSAVE register              |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Save area for General Purpose registers    |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        |     | Save area for Floating Point registers     |
 | 
						|
//        |     +--------------------------------------------+
 | 
						|
//        +---- | Back chain                                 |
 | 
						|
// High Memory  +--------------------------------------------+
 | 
						|
//
 | 
						|
//  Specifications:
 | 
						|
//  AIX 7.2 Assembler Language Reference
 | 
						|
//  Subroutine linkage convention
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_AIX(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
 | 
						|
  assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
 | 
						|
          CallConv == CallingConv::Fast) &&
 | 
						|
         "Unexpected calling convention!");
 | 
						|
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    report_fatal_error("Tail call support is unimplemented on AIX.");
 | 
						|
 | 
						|
  if (useSoftFloat())
 | 
						|
    report_fatal_error("Soft float support is unimplemented on AIX.");
 | 
						|
 | 
						|
  const PPCSubtarget &Subtarget =
 | 
						|
      static_cast<const PPCSubtarget &>(DAG.getSubtarget());
 | 
						|
 | 
						|
  const bool IsPPC64 = Subtarget.isPPC64();
 | 
						|
  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  const EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  // Reserve space for the linkage area on the stack.
 | 
						|
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
 | 
						|
  CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
 | 
						|
  for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
 | 
						|
    CCValAssign &VA = ArgLocs[I++];
 | 
						|
    MVT LocVT = VA.getLocVT();
 | 
						|
    MVT ValVT = VA.getValVT();
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
 | 
						|
    // For compatibility with the AIX XL compiler, the float args in the
 | 
						|
    // parameter save area are initialized even if the argument is available
 | 
						|
    // in register.  The caller is required to initialize both the register
 | 
						|
    // and memory, however, the callee can choose to expect it in either.
 | 
						|
    // The memloc is dismissed here because the argument is retrieved from
 | 
						|
    // the register.
 | 
						|
    if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto HandleMemLoc = [&]() {
 | 
						|
      const unsigned LocSize = LocVT.getStoreSize();
 | 
						|
      const unsigned ValSize = ValVT.getStoreSize();
 | 
						|
      assert((ValSize <= LocSize) &&
 | 
						|
             "Object size is larger than size of MemLoc");
 | 
						|
      int CurArgOffset = VA.getLocMemOffset();
 | 
						|
      // Objects are right-justified because AIX is big-endian.
 | 
						|
      if (LocSize > ValSize)
 | 
						|
        CurArgOffset += LocSize - ValSize;
 | 
						|
      // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
      const bool IsImmutable =
 | 
						|
          !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
            (CallConv == CallingConv::Fast));
 | 
						|
      int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      SDValue ArgValue =
 | 
						|
          DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
    };
 | 
						|
 | 
						|
    // Vector arguments to VaArg functions are passed both on the stack, and
 | 
						|
    // in any available GPRs. Load the value from the stack and add the GPRs
 | 
						|
    // as live ins.
 | 
						|
    if (VA.isMemLoc() && VA.needsCustom()) {
 | 
						|
      assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
 | 
						|
      assert(isVarArg && "Only use custom memloc for vararg.");
 | 
						|
      // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
 | 
						|
      // matching custom RegLocs.
 | 
						|
      const unsigned OriginalValNo = VA.getValNo();
 | 
						|
      (void)OriginalValNo;
 | 
						|
 | 
						|
      auto HandleCustomVecRegLoc = [&]() {
 | 
						|
        assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
 | 
						|
               "Missing custom RegLoc.");
 | 
						|
        VA = ArgLocs[I++];
 | 
						|
        assert(VA.getValVT().isVector() &&
 | 
						|
               "Unexpected Val type for custom RegLoc.");
 | 
						|
        assert(VA.getValNo() == OriginalValNo &&
 | 
						|
               "ValNo mismatch between custom MemLoc and RegLoc.");
 | 
						|
        MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
 | 
						|
        MF.addLiveIn(VA.getLocReg(),
 | 
						|
                     getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
 | 
						|
                                       Subtarget.hasVSX()));
 | 
						|
      };
 | 
						|
 | 
						|
      HandleMemLoc();
 | 
						|
      // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
 | 
						|
      // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
 | 
						|
      // R10.
 | 
						|
      HandleCustomVecRegLoc();
 | 
						|
      HandleCustomVecRegLoc();
 | 
						|
 | 
						|
      // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
 | 
						|
      // we passed the vector in R5, R6, R7 and R8.
 | 
						|
      if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
 | 
						|
        assert(!IsPPC64 &&
 | 
						|
               "Only 2 custom RegLocs expected for 64-bit codegen.");
 | 
						|
        HandleCustomVecRegLoc();
 | 
						|
        HandleCustomVecRegLoc();
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      if (VA.getValVT().isScalarInteger())
 | 
						|
        FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
 | 
						|
      else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
 | 
						|
        switch (VA.getValVT().SimpleTy) {
 | 
						|
        default:
 | 
						|
          report_fatal_error("Unhandled value type for argument.");
 | 
						|
        case MVT::f32:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
 | 
						|
          break;
 | 
						|
        case MVT::f64:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (VA.getValVT().isVector()) {
 | 
						|
        switch (VA.getValVT().SimpleTy) {
 | 
						|
        default:
 | 
						|
          report_fatal_error("Unhandled value type for argument.");
 | 
						|
        case MVT::v16i8:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
 | 
						|
          break;
 | 
						|
        case MVT::v8i16:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
 | 
						|
          break;
 | 
						|
        case MVT::v4i32:
 | 
						|
        case MVT::v2i64:
 | 
						|
        case MVT::v1i128:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
 | 
						|
          break;
 | 
						|
        case MVT::v4f32:
 | 
						|
        case MVT::v2f64:
 | 
						|
          FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Flags.isByVal() && VA.isMemLoc()) {
 | 
						|
      const unsigned Size =
 | 
						|
          alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
 | 
						|
                  PtrByteSize);
 | 
						|
      const int FI = MF.getFrameInfo().CreateFixedObject(
 | 
						|
          Size, VA.getLocMemOffset(), /* IsImmutable */ false,
 | 
						|
          /* IsAliased */ true);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      InVals.push_back(FIN);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      assert(VA.isRegLoc() && "MemLocs should already be handled.");
 | 
						|
 | 
						|
      const MCPhysReg ArgReg = VA.getLocReg();
 | 
						|
      const PPCFrameLowering *FL = Subtarget.getFrameLowering();
 | 
						|
 | 
						|
      if (Flags.getNonZeroByValAlign() > PtrByteSize)
 | 
						|
        report_fatal_error("Over aligned byvals not supported yet.");
 | 
						|
 | 
						|
      const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
 | 
						|
      const int FI = MF.getFrameInfo().CreateFixedObject(
 | 
						|
          StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
 | 
						|
          /* IsAliased */ true);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      InVals.push_back(FIN);
 | 
						|
 | 
						|
      // Add live ins for all the RegLocs for the same ByVal.
 | 
						|
      const TargetRegisterClass *RegClass =
 | 
						|
          IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
 | 
						|
      auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
 | 
						|
                                               unsigned Offset) {
 | 
						|
        const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
 | 
						|
        // Since the callers side has left justified the aggregate in the
 | 
						|
        // register, we can simply store the entire register into the stack
 | 
						|
        // slot.
 | 
						|
        SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
 | 
						|
        // The store to the fixedstack object is needed becuase accessing a
 | 
						|
        // field of the ByVal will use a gep and load. Ideally we will optimize
 | 
						|
        // to extracting the value from the register directly, and elide the
 | 
						|
        // stores when the arguments address is not taken, but that will need to
 | 
						|
        // be future work.
 | 
						|
        SDValue Store = DAG.getStore(
 | 
						|
            CopyFrom.getValue(1), dl, CopyFrom,
 | 
						|
            DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
 | 
						|
            MachinePointerInfo::getFixedStack(MF, FI, Offset));
 | 
						|
 | 
						|
        MemOps.push_back(Store);
 | 
						|
      };
 | 
						|
 | 
						|
      unsigned Offset = 0;
 | 
						|
      HandleRegLoc(VA.getLocReg(), Offset);
 | 
						|
      Offset += PtrByteSize;
 | 
						|
      for (; Offset != StackSize && ArgLocs[I].isRegLoc();
 | 
						|
           Offset += PtrByteSize) {
 | 
						|
        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
 | 
						|
               "RegLocs should be for ByVal argument.");
 | 
						|
 | 
						|
        const CCValAssign RL = ArgLocs[I++];
 | 
						|
        HandleRegLoc(RL.getLocReg(), Offset);
 | 
						|
        FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Offset != StackSize) {
 | 
						|
        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
 | 
						|
               "Expected MemLoc for remaining bytes.");
 | 
						|
        assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
 | 
						|
        // Consume the MemLoc.The InVal has already been emitted, so nothing
 | 
						|
        // more needs to be done.
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isRegLoc() && !VA.needsCustom()) {
 | 
						|
      MVT::SimpleValueType SVT = ValVT.SimpleTy;
 | 
						|
      Register VReg =
 | 
						|
          MF.addLiveIn(VA.getLocReg(),
 | 
						|
                       getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
 | 
						|
                                         Subtarget.hasVSX()));
 | 
						|
      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
 | 
						|
      if (ValVT.isScalarInteger() &&
 | 
						|
          (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
 | 
						|
        ArgValue =
 | 
						|
            truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
 | 
						|
      }
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (VA.isMemLoc()) {
 | 
						|
      HandleMemLoc();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // On AIX a minimum of 8 words is saved to the parameter save area.
 | 
						|
  const unsigned MinParameterSaveArea = 8 * PtrByteSize;
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  unsigned CallerReservedArea =
 | 
						|
      std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function. Tail
 | 
						|
  // call optimized function's reserved stack space needs to be aligned so
 | 
						|
  // that taking the difference between two stack areas will result in an
 | 
						|
  // aligned stack.
 | 
						|
  CallerReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(CallerReservedArea);
 | 
						|
 | 
						|
  if (isVarArg) {
 | 
						|
    FuncInfo->setVarArgsFrameIndex(
 | 
						|
        MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
                                       PPC::R7, PPC::R8, PPC::R9, PPC::R10};
 | 
						|
 | 
						|
    static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
                                       PPC::X7, PPC::X8, PPC::X9, PPC::X10};
 | 
						|
    const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
 | 
						|
 | 
						|
    // The fixed integer arguments of a variadic function are stored to the
 | 
						|
    // VarArgsFrameIndex on the stack so that they may be loaded by
 | 
						|
    // dereferencing the result of va_next.
 | 
						|
    for (unsigned GPRIndex =
 | 
						|
             (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
 | 
						|
         GPRIndex < NumGPArgRegs; ++GPRIndex) {
 | 
						|
 | 
						|
      const unsigned VReg =
 | 
						|
          IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
 | 
						|
                  : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address for the next argument to store.
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_AIX(
 | 
						|
    SDValue Chain, SDValue Callee, CallFlags CFlags,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    const CallBase *CB) const {
 | 
						|
  // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
 | 
						|
  // AIX ABI stack frame layout.
 | 
						|
 | 
						|
  assert((CFlags.CallConv == CallingConv::C ||
 | 
						|
          CFlags.CallConv == CallingConv::Cold ||
 | 
						|
          CFlags.CallConv == CallingConv::Fast) &&
 | 
						|
         "Unexpected calling convention!");
 | 
						|
 | 
						|
  if (CFlags.IsPatchPoint)
 | 
						|
    report_fatal_error("This call type is unimplemented on AIX.");
 | 
						|
 | 
						|
  const PPCSubtarget& Subtarget =
 | 
						|
      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
 | 
						|
                    *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve space for the linkage save area (LSA) on the stack.
 | 
						|
  // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
 | 
						|
  //   [SP][CR][LR][2 x reserved][TOC].
 | 
						|
  // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
 | 
						|
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  const bool IsPPC64 = Subtarget.isPPC64();
 | 
						|
  const EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
 | 
						|
  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
 | 
						|
  CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
 | 
						|
 | 
						|
  // The prolog code of the callee may store up to 8 GPR argument registers to
 | 
						|
  // the stack, allowing va_start to index over them in memory if the callee
 | 
						|
  // is variadic.
 | 
						|
  // Because we cannot tell if this is needed on the caller side, we have to
 | 
						|
  // conservatively assume that it is needed.  As such, make sure we have at
 | 
						|
  // least enough stack space for the caller to store the 8 GPRs.
 | 
						|
  const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
 | 
						|
  const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
 | 
						|
                                     CCInfo.getNextStackOffset());
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass.
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
 | 
						|
                                   : DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
 | 
						|
  for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
 | 
						|
    const unsigned ValNo = ArgLocs[I].getValNo();
 | 
						|
    SDValue Arg = OutVals[ValNo];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
 | 
						|
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      const unsigned ByValSize = Flags.getByValSize();
 | 
						|
 | 
						|
      // Nothing to do for zero-sized ByVals on the caller side.
 | 
						|
      if (!ByValSize) {
 | 
						|
        ++I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
 | 
						|
        return DAG.getExtLoad(
 | 
						|
            ISD::ZEXTLOAD, dl, PtrVT, Chain,
 | 
						|
            (LoadOffset != 0)
 | 
						|
                ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
 | 
						|
                : Arg,
 | 
						|
            MachinePointerInfo(), VT);
 | 
						|
      };
 | 
						|
 | 
						|
      unsigned LoadOffset = 0;
 | 
						|
 | 
						|
      // Initialize registers, which are fully occupied by the by-val argument.
 | 
						|
      while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
 | 
						|
        SDValue Load = GetLoad(PtrVT, LoadOffset);
 | 
						|
        MemOpChains.push_back(Load.getValue(1));
 | 
						|
        LoadOffset += PtrByteSize;
 | 
						|
        const CCValAssign &ByValVA = ArgLocs[I++];
 | 
						|
        assert(ByValVA.getValNo() == ValNo &&
 | 
						|
               "Unexpected location for pass-by-value argument.");
 | 
						|
        RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
 | 
						|
      }
 | 
						|
 | 
						|
      if (LoadOffset == ByValSize)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // There must be one more loc to handle the remainder.
 | 
						|
      assert(ArgLocs[I].getValNo() == ValNo &&
 | 
						|
             "Expected additional location for by-value argument.");
 | 
						|
 | 
						|
      if (ArgLocs[I].isMemLoc()) {
 | 
						|
        assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
 | 
						|
        const CCValAssign &ByValVA = ArgLocs[I++];
 | 
						|
        ISD::ArgFlagsTy MemcpyFlags = Flags;
 | 
						|
        // Only memcpy the bytes that don't pass in register.
 | 
						|
        MemcpyFlags.setByValSize(ByValSize - LoadOffset);
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(
 | 
						|
            (LoadOffset != 0)
 | 
						|
                ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
 | 
						|
                : Arg,
 | 
						|
            DAG.getObjectPtrOffset(dl, StackPtr,
 | 
						|
                                   TypeSize::Fixed(ByValVA.getLocMemOffset())),
 | 
						|
            CallSeqStart, MemcpyFlags, DAG, dl);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Initialize the final register residue.
 | 
						|
      // Any residue that occupies the final by-val arg register must be
 | 
						|
      // left-justified on AIX. Loads must be a power-of-2 size and cannot be
 | 
						|
      // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
 | 
						|
      // 2 and 1 byte loads.
 | 
						|
      const unsigned ResidueBytes = ByValSize % PtrByteSize;
 | 
						|
      assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
 | 
						|
             "Unexpected register residue for by-value argument.");
 | 
						|
      SDValue ResidueVal;
 | 
						|
      for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
 | 
						|
        const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
 | 
						|
        const MVT VT =
 | 
						|
            N == 1 ? MVT::i8
 | 
						|
                   : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
 | 
						|
        SDValue Load = GetLoad(VT, LoadOffset);
 | 
						|
        MemOpChains.push_back(Load.getValue(1));
 | 
						|
        LoadOffset += N;
 | 
						|
        Bytes += N;
 | 
						|
 | 
						|
        // By-val arguments are passed left-justfied in register.
 | 
						|
        // Every load here needs to be shifted, otherwise a full register load
 | 
						|
        // should have been used.
 | 
						|
        assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
 | 
						|
               "Unexpected load emitted during handling of pass-by-value "
 | 
						|
               "argument.");
 | 
						|
        unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
 | 
						|
        EVT ShiftAmountTy =
 | 
						|
            getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
 | 
						|
        SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
 | 
						|
        SDValue ShiftedLoad =
 | 
						|
            DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
 | 
						|
        ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
 | 
						|
                                              ShiftedLoad)
 | 
						|
                                : ShiftedLoad;
 | 
						|
      }
 | 
						|
 | 
						|
      const CCValAssign &ByValVA = ArgLocs[I++];
 | 
						|
      RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CCValAssign &VA = ArgLocs[I++];
 | 
						|
    const MVT LocVT = VA.getLocVT();
 | 
						|
    const MVT ValVT = VA.getValVT();
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default:
 | 
						|
      report_fatal_error("Unexpected argument extension type.");
 | 
						|
    case CCValAssign::Full:
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isRegLoc() && !VA.needsCustom()) {
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Vector arguments passed to VarArg functions need custom handling when
 | 
						|
    // they are passed (at least partially) in GPRs.
 | 
						|
    if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
 | 
						|
      assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
 | 
						|
      // Store value to its stack slot.
 | 
						|
      SDValue PtrOff =
 | 
						|
          DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
      MemOpChains.push_back(Store);
 | 
						|
      const unsigned OriginalValNo = VA.getValNo();
 | 
						|
      // Then load the GPRs from the stack
 | 
						|
      unsigned LoadOffset = 0;
 | 
						|
      auto HandleCustomVecRegLoc = [&]() {
 | 
						|
        assert(I != E && "Unexpected end of CCvalAssigns.");
 | 
						|
        assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
 | 
						|
               "Expected custom RegLoc.");
 | 
						|
        CCValAssign RegVA = ArgLocs[I++];
 | 
						|
        assert(RegVA.getValNo() == OriginalValNo &&
 | 
						|
               "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
 | 
						|
        SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | 
						|
                                  DAG.getConstant(LoadOffset, dl, PtrVT));
 | 
						|
        SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Load.getValue(1));
 | 
						|
        RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
 | 
						|
        LoadOffset += PtrByteSize;
 | 
						|
      };
 | 
						|
 | 
						|
      // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
 | 
						|
      // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
 | 
						|
      // R10.
 | 
						|
      HandleCustomVecRegLoc();
 | 
						|
      HandleCustomVecRegLoc();
 | 
						|
 | 
						|
      if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
 | 
						|
          ArgLocs[I].getValNo() == OriginalValNo) {
 | 
						|
        assert(!IsPPC64 &&
 | 
						|
               "Only 2 custom RegLocs expected for 64-bit codegen.");
 | 
						|
        HandleCustomVecRegLoc();
 | 
						|
        HandleCustomVecRegLoc();
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isMemLoc()) {
 | 
						|
      SDValue PtrOff =
 | 
						|
          DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
      MemOpChains.push_back(
 | 
						|
          DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ValVT.isFloatingPoint())
 | 
						|
      report_fatal_error(
 | 
						|
          "Unexpected register handling for calling convention.");
 | 
						|
 | 
						|
    // Custom handling is used for GPR initializations for vararg float
 | 
						|
    // arguments.
 | 
						|
    assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
 | 
						|
           LocVT.isInteger() &&
 | 
						|
           "Custom register handling only expected for VarArg.");
 | 
						|
 | 
						|
    SDValue ArgAsInt =
 | 
						|
        DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
 | 
						|
 | 
						|
    if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
 | 
						|
      // f32 in 32-bit GPR
 | 
						|
      // f64 in 64-bit GPR
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
 | 
						|
    else if (Arg.getValueType().getFixedSizeInBits() <
 | 
						|
             LocVT.getFixedSizeInBits())
 | 
						|
      // f32 in 64-bit GPR.
 | 
						|
      RegsToPass.push_back(std::make_pair(
 | 
						|
          VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
 | 
						|
    else {
 | 
						|
      // f64 in two 32-bit GPRs
 | 
						|
      // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
 | 
						|
      assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
 | 
						|
             "Unexpected custom register for argument!");
 | 
						|
      CCValAssign &GPR1 = VA;
 | 
						|
      SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
 | 
						|
                                     DAG.getConstant(32, dl, MVT::i8));
 | 
						|
      RegsToPass.push_back(std::make_pair(
 | 
						|
          GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
 | 
						|
 | 
						|
      if (I != E) {
 | 
						|
        // If only 1 GPR was available, there will only be one custom GPR and
 | 
						|
        // the argument will also pass in memory.
 | 
						|
        CCValAssign &PeekArg = ArgLocs[I];
 | 
						|
        if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
 | 
						|
          assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
 | 
						|
          CCValAssign &GPR2 = ArgLocs[I++];
 | 
						|
          RegsToPass.push_back(std::make_pair(
 | 
						|
              GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // For indirect calls, we need to save the TOC base to the stack for
 | 
						|
  // restoration after the call.
 | 
						|
  if (CFlags.IsIndirect) {
 | 
						|
    assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
 | 
						|
    const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
 | 
						|
    const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
 | 
						|
    const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
 | 
						|
    const unsigned TOCSaveOffset =
 | 
						|
        Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
 | 
						|
    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | 
						|
    SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
 | 
						|
    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
    Chain = DAG.getStore(
 | 
						|
        Val.getValue(1), dl, Val, AddPtr,
 | 
						|
        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (auto Reg : RegsToPass) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  const int SPDiff = 0;
 | 
						|
  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
 | 
						|
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | 
						|
                                  MachineFunction &MF, bool isVarArg,
 | 
						|
                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                  LLVMContext &Context) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | 
						|
  return CCInfo.CheckReturn(
 | 
						|
      Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
                ? RetCC_PPC_Cold
 | 
						|
                : RetCC_PPC);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                               bool isVarArg,
 | 
						|
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                               const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                               const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeReturn(Outs,
 | 
						|
                       (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
                           ? RetCC_PPC_Cold
 | 
						|
                           : RetCC_PPC);
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 4> RetOps(1, Chain);
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
 | 
						|
    SDValue Arg = OutVals[RealResIdx];
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
 | 
						|
      bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
      // Legalize ret f64 -> ret 2 x i32.
 | 
						|
      SDValue SVal =
 | 
						|
          DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
 | 
						|
                      DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
 | 
						|
      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
      SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
 | 
						|
                         DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
 | 
						|
      Flag = Chain.getValue(1);
 | 
						|
      VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
 | 
						|
    } else
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain;  // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for integers.
 | 
						|
  EVT IntVT = Op.getValueType();
 | 
						|
 | 
						|
  // Get the inputs.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | 
						|
  // Build a DYNAREAOFFSET node.
 | 
						|
  SDValue Ops[2] = {Chain, FPSIdx};
 | 
						|
  SDVTList VTs = DAG.getVTList(IntVT);
 | 
						|
  return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  // When we pop the dynamic allocation we need to restore the SP link.
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for pointers.
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Construct the stack pointer operand.
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | 
						|
 | 
						|
  // Get the operands for the STACKRESTORE.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue SaveSP = Op.getOperand(1);
 | 
						|
 | 
						|
  // Load the old link SP.
 | 
						|
  SDValue LoadLinkSP =
 | 
						|
      DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
 | 
						|
 | 
						|
  // Restore the stack pointer.
 | 
						|
  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
 | 
						|
 | 
						|
  // Store the old link SP.
 | 
						|
  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int RASI = FI->getReturnAddrSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!RASI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
 | 
						|
    // Save the result.
 | 
						|
    FI->setReturnAddrSaveIndex(RASI);
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(RASI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int FPSI = FI->getFramePointerSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!FPSI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
 | 
						|
    // Save the result.
 | 
						|
    FI->setFramePointerSaveIndex(FPSI);
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(FPSI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  // Get the inputs.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size  = Op.getOperand(1);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for pointers.
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  // Negate the size.
 | 
						|
  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
 | 
						|
                                DAG.getConstant(0, dl, PtrVT), Size);
 | 
						|
  // Construct a node for the frame pointer save index.
 | 
						|
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | 
						|
  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | 
						|
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | 
						|
  if (hasInlineStackProbe(MF))
 | 
						|
    return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
 | 
						|
  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
 | 
						|
  return DAG.getFrameIndex(FI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
 | 
						|
                     DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getValueType().isVector())
 | 
						|
    return LowerVectorLoad(Op, DAG);
 | 
						|
 | 
						|
  assert(Op.getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 loads");
 | 
						|
 | 
						|
  // First, load 8 bits into 32 bits, then truncate to 1 bit.
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(Op);
 | 
						|
 | 
						|
  SDValue Chain = LD->getChain();
 | 
						|
  SDValue BasePtr = LD->getBasePtr();
 | 
						|
  MachineMemOperand *MMO = LD->getMemOperand();
 | 
						|
 | 
						|
  SDValue NewLD =
 | 
						|
      DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
 | 
						|
                     BasePtr, MVT::i8, MMO);
 | 
						|
  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
 | 
						|
 | 
						|
  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getOperand(1).getValueType().isVector())
 | 
						|
    return LowerVectorStore(Op, DAG);
 | 
						|
 | 
						|
  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 stores");
 | 
						|
 | 
						|
  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  StoreSDNode *ST = cast<StoreSDNode>(Op);
 | 
						|
 | 
						|
  SDValue Chain = ST->getChain();
 | 
						|
  SDValue BasePtr = ST->getBasePtr();
 | 
						|
  SDValue Value = ST->getValue();
 | 
						|
  MachineMemOperand *MMO = ST->getMemOperand();
 | 
						|
 | 
						|
  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                      Value);
 | 
						|
  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Remove this once the ANDI glue bug is fixed:
 | 
						|
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 results");
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  // Implements a vector truncate that fits in a vector register as a shuffle.
 | 
						|
  // We want to legalize vector truncates down to where the source fits in
 | 
						|
  // a vector register (and target is therefore smaller than vector register
 | 
						|
  // size).  At that point legalization will try to custom lower the sub-legal
 | 
						|
  // result and get here - where we can contain the truncate as a single target
 | 
						|
  // operation.
 | 
						|
 | 
						|
  // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
 | 
						|
  //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
 | 
						|
  //
 | 
						|
  // We will implement it for big-endian ordering as this (where x denotes
 | 
						|
  // undefined):
 | 
						|
  //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
 | 
						|
  //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
 | 
						|
  //
 | 
						|
  // The same operation in little-endian ordering will be:
 | 
						|
  //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
 | 
						|
  //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
 | 
						|
 | 
						|
  EVT TrgVT = Op.getValueType();
 | 
						|
  assert(TrgVT.isVector() && "Vector type expected.");
 | 
						|
  unsigned TrgNumElts = TrgVT.getVectorNumElements();
 | 
						|
  EVT EltVT = TrgVT.getVectorElementType();
 | 
						|
  if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
 | 
						|
      TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
 | 
						|
      !isPowerOf2_32(EltVT.getSizeInBits()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N1 = Op.getOperand(0);
 | 
						|
  EVT SrcVT = N1.getValueType();  
 | 
						|
  unsigned SrcSize = SrcVT.getSizeInBits();
 | 
						|
  if (SrcSize > 256 ||
 | 
						|
      !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
 | 
						|
      !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
 | 
						|
    return SDValue();
 | 
						|
  if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
 | 
						|
  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Op1, Op2;
 | 
						|
  if (SrcSize == 256) {
 | 
						|
    EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
 | 
						|
    EVT SplitVT =
 | 
						|
        N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
 | 
						|
    unsigned SplitNumElts = SplitVT.getVectorNumElements();
 | 
						|
    Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
 | 
						|
                      DAG.getConstant(0, DL, VecIdxTy));
 | 
						|
    Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
 | 
						|
                      DAG.getConstant(SplitNumElts, DL, VecIdxTy));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
 | 
						|
    Op2 = DAG.getUNDEF(WideVT);
 | 
						|
  }
 | 
						|
 | 
						|
  // First list the elements we want to keep.
 | 
						|
  unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
 | 
						|
  SmallVector<int, 16> ShuffV;
 | 
						|
  if (Subtarget.isLittleEndian())
 | 
						|
    for (unsigned i = 0; i < TrgNumElts; ++i)
 | 
						|
      ShuffV.push_back(i * SizeMult);
 | 
						|
  else
 | 
						|
    for (unsigned i = 1; i <= TrgNumElts; ++i)
 | 
						|
      ShuffV.push_back(i * SizeMult - 1);
 | 
						|
 | 
						|
  // Populate the remaining elements with undefs.
 | 
						|
  for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
 | 
						|
    // ShuffV.push_back(i + WideNumElts);
 | 
						|
    ShuffV.push_back(WideNumElts + 1);
 | 
						|
 | 
						|
  Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
 | 
						|
  Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
 | 
						|
  return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | 
						|
/// possible.
 | 
						|
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
  EVT ResVT = Op.getValueType();
 | 
						|
  EVT CmpVT = Op.getOperand(0).getValueType();
 | 
						|
  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Without power9-vector, we don't have native instruction for f128 comparison.
 | 
						|
  // Following transformation to libcall is needed for setcc:
 | 
						|
  // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
 | 
						|
  if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
 | 
						|
    SDValue Z = DAG.getSetCC(
 | 
						|
        dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
 | 
						|
        LHS, RHS, CC);
 | 
						|
    SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
 | 
						|
    return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
 | 
						|
  }
 | 
						|
 | 
						|
  // Not FP, or using SPE? Not a fsel.
 | 
						|
  if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
 | 
						|
      Subtarget.hasSPE())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  SDNodeFlags Flags = Op.getNode()->getFlags();
 | 
						|
 | 
						|
  // We have xsmaxcdp/xsmincdp which are OK to emit even in the
 | 
						|
  // presence of infinities.
 | 
						|
  if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
 | 
						|
    switch (CC) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case ISD::SETOGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
 | 
						|
    case ISD::SETOLT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We might be able to do better than this under some circumstances, but in
 | 
						|
  // general, fsel-based lowering of select is a finite-math-only optimization.
 | 
						|
  // For more information, see section F.3 of the 2.06 ISA specification.
 | 
						|
  // With ISA 3.0
 | 
						|
  if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
 | 
						|
      (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // If the RHS of the comparison is a 0.0, we don't need to do the
 | 
						|
  // subtraction at all.
 | 
						|
  SDValue Sel1;
 | 
						|
  if (isFloatingPointZero(RHS))
 | 
						|
    switch (CC) {
 | 
						|
    default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
    case ISD::SETNE:
 | 
						|
      std::swap(TV, FV);
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETEQ:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | 
						|
      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETOGE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETOLE:
 | 
						|
    case ISD::SETLE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
 | 
						|
    }
 | 
						|
 | 
						|
  SDValue Cmp;
 | 
						|
  switch (CC) {
 | 
						|
  default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
  case ISD::SETNE:
 | 
						|
    std::swap(TV, FV);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETEQ:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETLE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getPPCStrictOpcode(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("No strict version of this opcode!");
 | 
						|
  case PPCISD::FCTIDZ:
 | 
						|
    return PPCISD::STRICT_FCTIDZ;
 | 
						|
  case PPCISD::FCTIWZ:
 | 
						|
    return PPCISD::STRICT_FCTIWZ;
 | 
						|
  case PPCISD::FCTIDUZ:
 | 
						|
    return PPCISD::STRICT_FCTIDUZ;
 | 
						|
  case PPCISD::FCTIWUZ:
 | 
						|
    return PPCISD::STRICT_FCTIWUZ;
 | 
						|
  case PPCISD::FCFID:
 | 
						|
    return PPCISD::STRICT_FCFID;
 | 
						|
  case PPCISD::FCFIDU:
 | 
						|
    return PPCISD::STRICT_FCFIDU;
 | 
						|
  case PPCISD::FCFIDS:
 | 
						|
    return PPCISD::STRICT_FCFIDS;
 | 
						|
  case PPCISD::FCFIDUS:
 | 
						|
    return PPCISD::STRICT_FCFIDUS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
 | 
						|
                              const PPCSubtarget &Subtarget) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
 | 
						|
                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
 | 
						|
 | 
						|
  // TODO: Any other flags to propagate?
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
 | 
						|
 | 
						|
  // For strict nodes, source is the second operand.
 | 
						|
  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
 | 
						|
  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
 | 
						|
  assert(Src.getValueType().isFloatingPoint());
 | 
						|
  if (Src.getValueType() == MVT::f32) {
 | 
						|
    if (IsStrict) {
 | 
						|
      Src =
 | 
						|
          DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
 | 
						|
                      DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
 | 
						|
      Chain = Src.getValue(1);
 | 
						|
    } else
 | 
						|
      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | 
						|
  }
 | 
						|
  SDValue Conv;
 | 
						|
  unsigned Opc = ISD::DELETED_NODE;
 | 
						|
  switch (Op.getSimpleValueType().SimpleTy) {
 | 
						|
  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = IsSigned ? PPCISD::FCTIWZ
 | 
						|
                   : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    assert((IsSigned || Subtarget.hasFPCVT()) &&
 | 
						|
           "i64 FP_TO_UINT is supported only with FPCVT");
 | 
						|
    Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
 | 
						|
  }
 | 
						|
  if (IsStrict) {
 | 
						|
    Opc = getPPCStrictOpcode(Opc);
 | 
						|
    Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                       {Chain, Src}, Flags);
 | 
						|
  } else {
 | 
						|
    Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
 | 
						|
  }
 | 
						|
  return Conv;
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
 | 
						|
                                               SelectionDAG &DAG,
 | 
						|
                                               const SDLoc &dl) const {
 | 
						|
  SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
 | 
						|
                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
 | 
						|
  // Convert the FP value to an int value through memory.
 | 
						|
  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
 | 
						|
                  (IsSigned || Subtarget.hasFPCVT());
 | 
						|
  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
 | 
						|
  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
 | 
						|
  MachinePointerInfo MPI =
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
 | 
						|
 | 
						|
  // Emit a store to the stack slot.
 | 
						|
  SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
 | 
						|
  Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
 | 
						|
  if (i32Stack) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    Alignment = Align(4);
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
 | 
						|
    SDValue Ops[] = { Chain, Tmp, FIPtr };
 | 
						|
    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
 | 
						|
              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
 | 
						|
  } else
 | 
						|
    Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
 | 
						|
 | 
						|
  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | 
						|
  // add in a bias on big endian.
 | 
						|
  if (Op.getValueType() == MVT::i32 && !i32Stack) {
 | 
						|
    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
 | 
						|
                        DAG.getConstant(4, dl, FIPtr.getValueType()));
 | 
						|
    MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
 | 
						|
  }
 | 
						|
 | 
						|
  RLI.Chain = Chain;
 | 
						|
  RLI.Ptr = FIPtr;
 | 
						|
  RLI.MPI = MPI;
 | 
						|
  RLI.Alignment = Alignment;
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lowers floating point to integer conversions to use
 | 
						|
/// the direct move instructions available in ISA 2.07 to avoid the
 | 
						|
/// need for load/store combinations.
 | 
						|
SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG,
 | 
						|
                                                    const SDLoc &dl) const {
 | 
						|
  SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
 | 
						|
  SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
 | 
						|
  if (Op->isStrictFPOpcode())
 | 
						|
    return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
 | 
						|
  else
 | 
						|
    return Mov;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                          const SDLoc &dl) const {
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
 | 
						|
                  Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
 | 
						|
  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
  EVT DstVT = Op.getValueType();
 | 
						|
 | 
						|
  // FP to INT conversions are legal for f128.
 | 
						|
  if (SrcVT == MVT::f128)
 | 
						|
    return Subtarget.hasP9Vector() ? Op : SDValue();
 | 
						|
 | 
						|
  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | 
						|
  // PPC (the libcall is not available).
 | 
						|
  if (SrcVT == MVT::ppcf128) {
 | 
						|
    if (DstVT == MVT::i32) {
 | 
						|
      // TODO: Conservatively pass only nofpexcept flag here. Need to check and
 | 
						|
      // set other fast-math flags to FP operations in both strict and
 | 
						|
      // non-strict cases. (FP_TO_SINT, FSUB)
 | 
						|
      SDNodeFlags Flags;
 | 
						|
      Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
 | 
						|
 | 
						|
      if (IsSigned) {
 | 
						|
        SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
 | 
						|
                                 DAG.getIntPtrConstant(0, dl));
 | 
						|
        SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
 | 
						|
                                 DAG.getIntPtrConstant(1, dl));
 | 
						|
 | 
						|
        // Add the two halves of the long double in round-to-zero mode, and use
 | 
						|
        // a smaller FP_TO_SINT.
 | 
						|
        if (IsStrict) {
 | 
						|
          SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
 | 
						|
                                    DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                    {Op.getOperand(0), Lo, Hi}, Flags);
 | 
						|
          return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
 | 
						|
                             DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
                             {Res.getValue(1), Res}, Flags);
 | 
						|
        } else {
 | 
						|
          SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
 | 
						|
          return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
 | 
						|
        APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
 | 
						|
        SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
 | 
						|
        SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
 | 
						|
        if (IsStrict) {
 | 
						|
          // Sel = Src < 0x80000000
 | 
						|
          // FltOfs = select Sel, 0.0, 0x80000000
 | 
						|
          // IntOfs = select Sel, 0, 0x80000000
 | 
						|
          // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
 | 
						|
          SDValue Chain = Op.getOperand(0);
 | 
						|
          EVT SetCCVT =
 | 
						|
              getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
 | 
						|
          EVT DstSetCCVT =
 | 
						|
              getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
 | 
						|
          SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
 | 
						|
                                     Chain, true);
 | 
						|
          Chain = Sel.getValue(1);
 | 
						|
 | 
						|
          SDValue FltOfs = DAG.getSelect(
 | 
						|
              dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
 | 
						|
          Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
 | 
						|
 | 
						|
          SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
 | 
						|
                                    DAG.getVTList(SrcVT, MVT::Other),
 | 
						|
                                    {Chain, Src, FltOfs}, Flags);
 | 
						|
          Chain = Val.getValue(1);
 | 
						|
          SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
 | 
						|
                                     DAG.getVTList(DstVT, MVT::Other),
 | 
						|
                                     {Chain, Val}, Flags);
 | 
						|
          Chain = SInt.getValue(1);
 | 
						|
          SDValue IntOfs = DAG.getSelect(
 | 
						|
              dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
 | 
						|
          SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
 | 
						|
          return DAG.getMergeValues({Result, Chain}, dl);
 | 
						|
        } else {
 | 
						|
          // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
 | 
						|
          // FIXME: generated code sucks.
 | 
						|
          SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
 | 
						|
          True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
 | 
						|
          True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
 | 
						|
          SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
 | 
						|
          return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
 | 
						|
    return LowerFP_TO_INTDirectMove(Op, DAG, dl);
 | 
						|
 | 
						|
  ReuseLoadInfo RLI;
 | 
						|
  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | 
						|
 | 
						|
  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | 
						|
                     RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | 
						|
}
 | 
						|
 | 
						|
// We're trying to insert a regular store, S, and then a load, L. If the
 | 
						|
// incoming value, O, is a load, we might just be able to have our load use the
 | 
						|
// address used by O. However, we don't know if anything else will store to
 | 
						|
// that address before we can load from it. To prevent this situation, we need
 | 
						|
// to insert our load, L, into the chain as a peer of O. To do this, we give L
 | 
						|
// the same chain operand as O, we create a token factor from the chain results
 | 
						|
// of O and L, and we replace all uses of O's chain result with that token
 | 
						|
// factor (see spliceIntoChain below for this last part).
 | 
						|
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
 | 
						|
                                            ReuseLoadInfo &RLI,
 | 
						|
                                            SelectionDAG &DAG,
 | 
						|
                                            ISD::LoadExtType ET) const {
 | 
						|
  // Conservatively skip reusing for constrained FP nodes.
 | 
						|
  if (Op->isStrictFPOpcode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
 | 
						|
                       (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
 | 
						|
  if (ET == ISD::NON_EXTLOAD &&
 | 
						|
      (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
 | 
						|
      isOperationLegalOrCustom(Op.getOpcode(),
 | 
						|
                               Op.getOperand(0).getValueType())) {
 | 
						|
 | 
						|
    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
 | 
						|
  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
 | 
						|
      LD->isNonTemporal())
 | 
						|
    return false;
 | 
						|
  if (LD->getMemoryVT() != MemVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the result of the load is an illegal type, then we can't build a
 | 
						|
  // valid chain for reuse since the legalised loads and token factor node that
 | 
						|
  // ties the legalised loads together uses a different output chain then the
 | 
						|
  // illegal load.
 | 
						|
  if (!isTypeLegal(LD->getValueType(0)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  RLI.Ptr = LD->getBasePtr();
 | 
						|
  if (LD->isIndexed() && !LD->getOffset().isUndef()) {
 | 
						|
    assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
           "Non-pre-inc AM on PPC?");
 | 
						|
    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
 | 
						|
                          LD->getOffset());
 | 
						|
  }
 | 
						|
 | 
						|
  RLI.Chain = LD->getChain();
 | 
						|
  RLI.MPI = LD->getPointerInfo();
 | 
						|
  RLI.IsDereferenceable = LD->isDereferenceable();
 | 
						|
  RLI.IsInvariant = LD->isInvariant();
 | 
						|
  RLI.Alignment = LD->getAlign();
 | 
						|
  RLI.AAInfo = LD->getAAInfo();
 | 
						|
  RLI.Ranges = LD->getRanges();
 | 
						|
 | 
						|
  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Given the head of the old chain, ResChain, insert a token factor containing
 | 
						|
// it and NewResChain, and make users of ResChain now be users of that token
 | 
						|
// factor.
 | 
						|
// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
 | 
						|
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
 | 
						|
                                        SDValue NewResChain,
 | 
						|
                                        SelectionDAG &DAG) const {
 | 
						|
  if (!ResChain)
 | 
						|
    return;
 | 
						|
 | 
						|
  SDLoc dl(NewResChain);
 | 
						|
 | 
						|
  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                           NewResChain, DAG.getUNDEF(MVT::Other));
 | 
						|
  assert(TF.getNode() != NewResChain.getNode() &&
 | 
						|
         "A new TF really is required here");
 | 
						|
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
 | 
						|
  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze profitability of direct move
 | 
						|
/// prefer float load to int load plus direct move
 | 
						|
/// when there is no integer use of int load
 | 
						|
bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
 | 
						|
  SDNode *Origin = Op.getOperand(0).getNode();
 | 
						|
  if (Origin->getOpcode() != ISD::LOAD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If there is no LXSIBZX/LXSIHZX, like Power8,
 | 
						|
  // prefer direct move if the memory size is 1 or 2 bytes.
 | 
						|
  MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
 | 
						|
  if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (SDNode::use_iterator UI = Origin->use_begin(),
 | 
						|
                            UE = Origin->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
 | 
						|
    // Only look at the users of the loaded value.
 | 
						|
    if (UI.getUse().get().getResNo() != 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (UI->getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
        UI->getOpcode() != ISD::UINT_TO_FP &&
 | 
						|
        UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
 | 
						|
        UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
 | 
						|
                              const PPCSubtarget &Subtarget,
 | 
						|
                              SDValue Chain = SDValue()) {
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
 | 
						|
                  Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // TODO: Any other flags to propagate?
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
 | 
						|
 | 
						|
  // If we have FCFIDS, then use it when converting to single-precision.
 | 
						|
  // Otherwise, convert to double-precision and then round.
 | 
						|
  bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
 | 
						|
  unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
 | 
						|
                              : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
 | 
						|
  EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
 | 
						|
  if (Op->isStrictFPOpcode()) {
 | 
						|
    if (!Chain)
 | 
						|
      Chain = Op.getOperand(0);
 | 
						|
    return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
 | 
						|
                       DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
 | 
						|
  } else
 | 
						|
    return DAG.getNode(ConvOpc, dl, ConvTy, Src);
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lowers integer to floating point conversions to use
 | 
						|
/// the direct move instructions available in ISA 2.07 to avoid the
 | 
						|
/// need for load/store combinations.
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG,
 | 
						|
                                                    const SDLoc &dl) const {
 | 
						|
  assert((Op.getValueType() == MVT::f32 ||
 | 
						|
          Op.getValueType() == MVT::f64) &&
 | 
						|
         "Invalid floating point type as target of conversion");
 | 
						|
  assert(Subtarget.hasFPCVT() &&
 | 
						|
         "Int to FP conversions with direct moves require FPCVT");
 | 
						|
  SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
 | 
						|
  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
 | 
						|
  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
 | 
						|
                Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
 | 
						|
  unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
 | 
						|
  SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
 | 
						|
  return convertIntToFP(Op, Mov, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
 | 
						|
 | 
						|
  EVT VecVT = Vec.getValueType();
 | 
						|
  assert(VecVT.isVector() && "Expected a vector type.");
 | 
						|
  assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
 | 
						|
 | 
						|
  EVT EltVT = VecVT.getVectorElementType();
 | 
						|
  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
 | 
						|
  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
 | 
						|
 | 
						|
  unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
 | 
						|
  SmallVector<SDValue, 16> Ops(NumConcat);
 | 
						|
  Ops[0] = Vec;
 | 
						|
  SDValue UndefVec = DAG.getUNDEF(VecVT);
 | 
						|
  for (unsigned i = 1; i < NumConcat; ++i)
 | 
						|
    Ops[i] = UndefVec;
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                                const SDLoc &dl) const {
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
 | 
						|
  assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
 | 
						|
          Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
 | 
						|
         "Unexpected conversion type");
 | 
						|
  assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
 | 
						|
         "Supports conversions to v2f64/v4f32 only.");
 | 
						|
 | 
						|
  // TODO: Any other flags to propagate?
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
 | 
						|
 | 
						|
  bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
 | 
						|
  bool FourEltRes = Op.getValueType() == MVT::v4f32;
 | 
						|
 | 
						|
  SDValue Wide = widenVec(DAG, Src, dl);
 | 
						|
  EVT WideVT = Wide.getValueType();
 | 
						|
  unsigned WideNumElts = WideVT.getVectorNumElements();
 | 
						|
  MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
 | 
						|
 | 
						|
  SmallVector<int, 16> ShuffV;
 | 
						|
  for (unsigned i = 0; i < WideNumElts; ++i)
 | 
						|
    ShuffV.push_back(i + WideNumElts);
 | 
						|
 | 
						|
  int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
 | 
						|
  int SaveElts = FourEltRes ? 4 : 2;
 | 
						|
  if (Subtarget.isLittleEndian())
 | 
						|
    for (int i = 0; i < SaveElts; i++)
 | 
						|
      ShuffV[i * Stride] = i;
 | 
						|
  else
 | 
						|
    for (int i = 1; i <= SaveElts; i++)
 | 
						|
      ShuffV[i * Stride - 1] = i - 1;
 | 
						|
 | 
						|
  SDValue ShuffleSrc2 =
 | 
						|
      SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
 | 
						|
  SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
 | 
						|
 | 
						|
  SDValue Extend;
 | 
						|
  if (SignedConv) {
 | 
						|
    Arrange = DAG.getBitcast(IntermediateVT, Arrange);
 | 
						|
    EVT ExtVT = Src.getValueType();
 | 
						|
    if (Subtarget.hasP9Altivec())
 | 
						|
      ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
 | 
						|
                               IntermediateVT.getVectorNumElements());
 | 
						|
 | 
						|
    Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
 | 
						|
                         DAG.getValueType(ExtVT));
 | 
						|
  } else
 | 
						|
    Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
 | 
						|
 | 
						|
  if (IsStrict)
 | 
						|
    return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
 | 
						|
                       {Op.getOperand(0), Extend}, Flags);
 | 
						|
 | 
						|
  return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
 | 
						|
                  Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
 | 
						|
  SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
 | 
						|
 | 
						|
  // TODO: Any other flags to propagate?
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
 | 
						|
 | 
						|
  EVT InVT = Src.getValueType();
 | 
						|
  EVT OutVT = Op.getValueType();
 | 
						|
  if (OutVT.isVector() && OutVT.isFloatingPoint() &&
 | 
						|
      isOperationCustom(Op.getOpcode(), InVT))
 | 
						|
    return LowerINT_TO_FPVector(Op, DAG, dl);
 | 
						|
 | 
						|
  // Conversions to f128 are legal.
 | 
						|
  if (Op.getValueType() == MVT::f128)
 | 
						|
    return Subtarget.hasP9Vector() ? Op : SDValue();
 | 
						|
 | 
						|
  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | 
						|
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Src.getValueType() == MVT::i1) {
 | 
						|
    SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
 | 
						|
                              DAG.getConstantFP(1.0, dl, Op.getValueType()),
 | 
						|
                              DAG.getConstantFP(0.0, dl, Op.getValueType()));
 | 
						|
    if (IsStrict)
 | 
						|
      return DAG.getMergeValues({Sel, Chain}, dl);
 | 
						|
    else
 | 
						|
      return Sel;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have direct moves, we can do all the conversion, skip the store/load
 | 
						|
  // however, without FPCVT we can't do most conversions.
 | 
						|
  if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
 | 
						|
      Subtarget.isPPC64() && Subtarget.hasFPCVT())
 | 
						|
    return LowerINT_TO_FPDirectMove(Op, DAG, dl);
 | 
						|
 | 
						|
  assert((IsSigned || Subtarget.hasFPCVT()) &&
 | 
						|
         "UINT_TO_FP is supported only with FPCVT");
 | 
						|
 | 
						|
  if (Src.getValueType() == MVT::i64) {
 | 
						|
    SDValue SINT = Src;
 | 
						|
    // When converting to single-precision, we actually need to convert
 | 
						|
    // to double-precision first and then round to single-precision.
 | 
						|
    // To avoid double-rounding effects during that operation, we have
 | 
						|
    // to prepare the input operand.  Bits that might be truncated when
 | 
						|
    // converting to double-precision are replaced by a bit that won't
 | 
						|
    // be lost at this stage, but is below the single-precision rounding
 | 
						|
    // position.
 | 
						|
    //
 | 
						|
    // However, if -enable-unsafe-fp-math is in effect, accept double
 | 
						|
    // rounding to avoid the extra overhead.
 | 
						|
    if (Op.getValueType() == MVT::f32 &&
 | 
						|
        !Subtarget.hasFPCVT() &&
 | 
						|
        !DAG.getTarget().Options.UnsafeFPMath) {
 | 
						|
 | 
						|
      // Twiddle input to make sure the low 11 bits are zero.  (If this
 | 
						|
      // is the case, we are guaranteed the value will fit into the 53 bit
 | 
						|
      // mantissa of an IEEE double-precision value without rounding.)
 | 
						|
      // If any of those low 11 bits were not zero originally, make sure
 | 
						|
      // bit 12 (value 2048) is set instead, so that the final rounding
 | 
						|
      // to single-precision gets the correct result.
 | 
						|
      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | 
						|
                                  SINT, DAG.getConstant(2047, dl, MVT::i64));
 | 
						|
      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | 
						|
                          Round, DAG.getConstant(2047, dl, MVT::i64));
 | 
						|
      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
 | 
						|
      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | 
						|
                          Round, DAG.getConstant(-2048, dl, MVT::i64));
 | 
						|
 | 
						|
      // However, we cannot use that value unconditionally: if the magnitude
 | 
						|
      // of the input value is small, the bit-twiddling we did above might
 | 
						|
      // end up visibly changing the output.  Fortunately, in that case, we
 | 
						|
      // don't need to twiddle bits since the original input will convert
 | 
						|
      // exactly to double-precision floating-point already.  Therefore,
 | 
						|
      // construct a conditional to use the original value if the top 11
 | 
						|
      // bits are all sign-bit copies, and use the rounded value computed
 | 
						|
      // above otherwise.
 | 
						|
      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
 | 
						|
                                 SINT, DAG.getConstant(53, dl, MVT::i32));
 | 
						|
      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | 
						|
                         Cond, DAG.getConstant(1, dl, MVT::i64));
 | 
						|
      Cond = DAG.getSetCC(
 | 
						|
          dl,
 | 
						|
          getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
 | 
						|
          Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
 | 
						|
 | 
						|
      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
 | 
						|
    }
 | 
						|
 | 
						|
    ReuseLoadInfo RLI;
 | 
						|
    SDValue Bits;
 | 
						|
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
 | 
						|
      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | 
						|
                         RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (Subtarget.hasLFIWAX() &&
 | 
						|
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
 | 
						|
                                     DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (Subtarget.hasFPCVT() &&
 | 
						|
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
 | 
						|
                                     DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (((Subtarget.hasLFIWAX() &&
 | 
						|
                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
 | 
						|
                (Subtarget.hasFPCVT() &&
 | 
						|
                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
 | 
						|
               SINT.getOperand(0).getValueType() == MVT::i32) {
 | 
						|
      MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
 | 
						|
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
      SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
 | 
						|
                                   MachinePointerInfo::getFixedStack(
 | 
						|
                                       DAG.getMachineFunction(), FrameIdx));
 | 
						|
      Chain = Store;
 | 
						|
 | 
						|
      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | 
						|
             "Expected an i32 store");
 | 
						|
 | 
						|
      RLI.Ptr = FIdx;
 | 
						|
      RLI.Chain = Chain;
 | 
						|
      RLI.MPI =
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
      RLI.Alignment = Align(4);
 | 
						|
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
 | 
						|
                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
 | 
						|
                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
      Chain = Bits.getValue(1);
 | 
						|
    } else
 | 
						|
      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
 | 
						|
 | 
						|
    SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
 | 
						|
    if (IsStrict)
 | 
						|
      Chain = FP.getValue(1);
 | 
						|
 | 
						|
    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
 | 
						|
      if (IsStrict)
 | 
						|
        FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
 | 
						|
                         DAG.getVTList(MVT::f32, MVT::Other),
 | 
						|
                         {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
 | 
						|
      else
 | 
						|
        FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
 | 
						|
                         DAG.getIntPtrConstant(0, dl));
 | 
						|
    }
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Src.getValueType() == MVT::i32 &&
 | 
						|
         "Unhandled INT_TO_FP type in custom expander!");
 | 
						|
  // Since we only generate this in 64-bit mode, we can take advantage of
 | 
						|
  // 64-bit registers.  In particular, sign extend the input value into the
 | 
						|
  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | 
						|
  // then lfd it and fcfid it.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  SDValue Ld;
 | 
						|
  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
 | 
						|
    ReuseLoadInfo RLI;
 | 
						|
    bool ReusingLoad;
 | 
						|
    if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
 | 
						|
      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
 | 
						|
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
      SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
 | 
						|
                                   MachinePointerInfo::getFixedStack(
 | 
						|
                                       DAG.getMachineFunction(), FrameIdx));
 | 
						|
      Chain = Store;
 | 
						|
 | 
						|
      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | 
						|
             "Expected an i32 store");
 | 
						|
 | 
						|
      RLI.Ptr = FIdx;
 | 
						|
      RLI.Chain = Chain;
 | 
						|
      RLI.MPI =
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
      RLI.Alignment = Align(4);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
    Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
 | 
						|
                                 DAG.getVTList(MVT::f64, MVT::Other), Ops,
 | 
						|
                                 MVT::i32, MMO);
 | 
						|
    Chain = Ld.getValue(1);
 | 
						|
    if (ReusingLoad)
 | 
						|
      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
 | 
						|
  } else {
 | 
						|
    assert(Subtarget.isPPC64() &&
 | 
						|
           "i32->FP without LFIWAX supported only on PPC64");
 | 
						|
 | 
						|
    int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
 | 
						|
    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
 | 
						|
 | 
						|
    // STD the extended value into the stack slot.
 | 
						|
    SDValue Store = DAG.getStore(
 | 
						|
        Chain, dl, Ext64, FIdx,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | 
						|
    Chain = Store;
 | 
						|
 | 
						|
    // Load the value as a double.
 | 
						|
    Ld = DAG.getLoad(
 | 
						|
        MVT::f64, dl, Chain, FIdx,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | 
						|
    Chain = Ld.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // FCFID it and return it.
 | 
						|
  SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
 | 
						|
  if (IsStrict)
 | 
						|
    Chain = FP.getValue(1);
 | 
						|
  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
 | 
						|
    if (IsStrict)
 | 
						|
      FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
 | 
						|
                       DAG.getVTList(MVT::f32, MVT::Other),
 | 
						|
                       {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
 | 
						|
    else
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
  return FP;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  /*
 | 
						|
   The rounding mode is in bits 30:31 of FPSR, and has the following
 | 
						|
   settings:
 | 
						|
     00 Round to nearest
 | 
						|
     01 Round to 0
 | 
						|
     10 Round to +inf
 | 
						|
     11 Round to -inf
 | 
						|
 | 
						|
  FLT_ROUNDS, on the other hand, expects the following:
 | 
						|
    -1 Undefined
 | 
						|
     0 Round to 0
 | 
						|
     1 Round to nearest
 | 
						|
     2 Round to +inf
 | 
						|
     3 Round to -inf
 | 
						|
 | 
						|
  To perform the conversion, we do:
 | 
						|
    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | 
						|
  */
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Save FP Control Word to register
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
 | 
						|
  Chain = MFFS.getValue(1);
 | 
						|
 | 
						|
  SDValue CWD;
 | 
						|
  if (isTypeLegal(MVT::i64)) {
 | 
						|
    CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
 | 
						|
                      DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
 | 
						|
  } else {
 | 
						|
    // Save FP register to stack slot
 | 
						|
    int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
 | 
						|
    SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
    Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
 | 
						|
 | 
						|
    // Load FP Control Word from low 32 bits of stack slot.
 | 
						|
    assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
 | 
						|
           "Stack slot adjustment is valid only on big endian subtargets!");
 | 
						|
    SDValue Four = DAG.getConstant(4, dl, PtrVT);
 | 
						|
    SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
 | 
						|
    CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
 | 
						|
    Chain = CWD.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform as necessary
 | 
						|
  SDValue CWD1 =
 | 
						|
    DAG.getNode(ISD::AND, dl, MVT::i32,
 | 
						|
                CWD, DAG.getConstant(3, dl, MVT::i32));
 | 
						|
  SDValue CWD2 =
 | 
						|
    DAG.getNode(ISD::SRL, dl, MVT::i32,
 | 
						|
                DAG.getNode(ISD::AND, dl, MVT::i32,
 | 
						|
                            DAG.getNode(ISD::XOR, dl, MVT::i32,
 | 
						|
                                        CWD, DAG.getConstant(3, dl, MVT::i32)),
 | 
						|
                            DAG.getConstant(3, dl, MVT::i32)),
 | 
						|
                DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  SDValue RetVal =
 | 
						|
    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
 | 
						|
 | 
						|
  RetVal =
 | 
						|
      DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
 | 
						|
                  dl, VT, RetVal);
 | 
						|
 | 
						|
  return DAG.getMergeValues({RetVal, Chain}, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SHL!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRL!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
 | 
						|
  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRA!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops, followed by a select_cc.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
 | 
						|
  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
 | 
						|
                                  Tmp4, Tmp6, ISD::SETLE);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
 | 
						|
  bool IsFSHL = Op.getOpcode() == ISD::FSHL;
 | 
						|
  SDValue X = Op.getOperand(0);
 | 
						|
  SDValue Y = Op.getOperand(1);
 | 
						|
  SDValue Z = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Z.getValueType();
 | 
						|
 | 
						|
  // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
 | 
						|
  // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
 | 
						|
  // This is simpler than TargetLowering::expandFunnelShift because we can rely
 | 
						|
  // on PowerPC shift by BW being well defined.
 | 
						|
  Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
 | 
						|
                  DAG.getConstant(BitWidth - 1, dl, AmtVT));
 | 
						|
  SDValue SubZ =
 | 
						|
      DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
 | 
						|
  X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
 | 
						|
  Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
 | 
						|
  return DAG.getNode(ISD::OR, dl, VT, X, Y);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector related lowering.
 | 
						|
//
 | 
						|
 | 
						|
/// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
 | 
						|
/// element size of SplatSize. Cast the result to VT.
 | 
						|
static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
 | 
						|
                                      SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  static const MVT VTys[] = { // canonical VT to use for each size.
 | 
						|
    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | 
						|
  };
 | 
						|
 | 
						|
  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | 
						|
 | 
						|
  // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
 | 
						|
  if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
 | 
						|
    SplatSize = 1;
 | 
						|
    Val = 0xFF;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT CanonicalVT = VTys[SplatSize-1];
 | 
						|
 | 
						|
  // Build a canonical splat for this value.
 | 
						|
  return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                const SDLoc &dl, EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), Op);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | 
						|
                                SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                                EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | 
						|
                                SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                                EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | 
						|
/// amount.  The result has the specified value type.
 | 
						|
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
 | 
						|
                           SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  // Force LHS/RHS to be the right type.
 | 
						|
  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
 | 
						|
  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
 | 
						|
 | 
						|
  int Ops[16];
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops[i] = i + Amt;
 | 
						|
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
/// Do we have an efficient pattern in a .td file for this node?
 | 
						|
///
 | 
						|
/// \param V - pointer to the BuildVectorSDNode being matched
 | 
						|
/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
 | 
						|
///
 | 
						|
/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
 | 
						|
/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
 | 
						|
/// the opposite is true (expansion is beneficial) are:
 | 
						|
/// - The node builds a vector out of integers that are not 32 or 64-bits
 | 
						|
/// - The node builds a vector out of constants
 | 
						|
/// - The node is a "load-and-splat"
 | 
						|
/// In all other cases, we will choose to keep the BUILD_VECTOR.
 | 
						|
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
 | 
						|
                                            bool HasDirectMove,
 | 
						|
                                            bool HasP8Vector) {
 | 
						|
  EVT VecVT = V->getValueType(0);
 | 
						|
  bool RightType = VecVT == MVT::v2f64 ||
 | 
						|
    (HasP8Vector && VecVT == MVT::v4f32) ||
 | 
						|
    (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
 | 
						|
  if (!RightType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsSplat = true;
 | 
						|
  bool IsLoad = false;
 | 
						|
  SDValue Op0 = V->getOperand(0);
 | 
						|
 | 
						|
  // This function is called in a block that confirms the node is not a constant
 | 
						|
  // splat. So a constant BUILD_VECTOR here means the vector is built out of
 | 
						|
  // different constants.
 | 
						|
  if (V->isConstant())
 | 
						|
    return false;
 | 
						|
  for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
 | 
						|
    if (V->getOperand(i).isUndef())
 | 
						|
      return false;
 | 
						|
    // We want to expand nodes that represent load-and-splat even if the
 | 
						|
    // loaded value is a floating point truncation or conversion to int.
 | 
						|
    if (V->getOperand(i).getOpcode() == ISD::LOAD ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
 | 
						|
      IsLoad = true;
 | 
						|
    // If the operands are different or the input is not a load and has more
 | 
						|
    // uses than just this BV node, then it isn't a splat.
 | 
						|
    if (V->getOperand(i) != Op0 ||
 | 
						|
        (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
 | 
						|
      IsSplat = false;
 | 
						|
  }
 | 
						|
  return !(IsSplat && IsLoad);
 | 
						|
}
 | 
						|
 | 
						|
// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
 | 
						|
SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Op0 = Op->getOperand(0);
 | 
						|
 | 
						|
  if ((Op.getValueType() != MVT::f128) ||
 | 
						|
      (Op0.getOpcode() != ISD::BUILD_PAIR) ||
 | 
						|
      (Op0.getOperand(0).getValueType() != MVT::i64) ||
 | 
						|
      (Op0.getOperand(1).getValueType() != MVT::i64))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
 | 
						|
                     Op0.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
 | 
						|
  const SDValue *InputLoad = &Op;
 | 
						|
  if (InputLoad->getOpcode() == ISD::BITCAST)
 | 
						|
    InputLoad = &InputLoad->getOperand(0);
 | 
						|
  if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
 | 
						|
      InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
 | 
						|
    IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
 | 
						|
    InputLoad = &InputLoad->getOperand(0);
 | 
						|
  }
 | 
						|
  if (InputLoad->getOpcode() != ISD::LOAD)
 | 
						|
    return nullptr;
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
 | 
						|
  return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Convert the argument APFloat to a single precision APFloat if there is no
 | 
						|
// loss in information during the conversion to single precision APFloat and the
 | 
						|
// resulting number is not a denormal number. Return true if successful.
 | 
						|
bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
 | 
						|
  APFloat APFloatToConvert = ArgAPFloat;
 | 
						|
  bool LosesInfo = true;
 | 
						|
  APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
 | 
						|
                           &LosesInfo);
 | 
						|
  bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
 | 
						|
  if (Success)
 | 
						|
    ArgAPFloat = APFloatToConvert;
 | 
						|
  return Success;
 | 
						|
}
 | 
						|
 | 
						|
// Bitcast the argument APInt to a double and convert it to a single precision
 | 
						|
// APFloat, bitcast the APFloat to an APInt and assign it to the original
 | 
						|
// argument if there is no loss in information during the conversion from
 | 
						|
// double to single precision APFloat and the resulting number is not a denormal
 | 
						|
// number. Return true if successful.
 | 
						|
bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
 | 
						|
  double DpValue = ArgAPInt.bitsToDouble();
 | 
						|
  APFloat APFloatDp(DpValue);
 | 
						|
  bool Success = convertToNonDenormSingle(APFloatDp);
 | 
						|
  if (Success)
 | 
						|
    ArgAPInt = APFloatDp.bitcastToAPInt();
 | 
						|
  return Success;
 | 
						|
}
 | 
						|
 | 
						|
// Nondestructive check for convertTonNonDenormSingle.
 | 
						|
bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
 | 
						|
  // Only convert if it loses info, since XXSPLTIDP should
 | 
						|
  // handle the other case.
 | 
						|
  APFloat APFloatToConvert = ArgAPFloat;
 | 
						|
  bool LosesInfo = true;
 | 
						|
  APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
 | 
						|
                           &LosesInfo);
 | 
						|
 | 
						|
  return (!LosesInfo && !APFloatToConvert.isDenormal());
 | 
						|
}
 | 
						|
 | 
						|
// If this is a case we can't handle, return null and let the default
 | 
						|
// expansion code take care of it.  If we CAN select this case, and if it
 | 
						|
// selects to a single instruction, return Op.  Otherwise, if we can codegen
 | 
						|
// this case more efficiently than a constant pool load, lower it to the
 | 
						|
// sequence of ops that should be used.
 | 
						|
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
 | 
						|
 | 
						|
  // Check if this is a splat of a constant value.
 | 
						|
  APInt APSplatBits, APSplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  bool BVNIsConstantSplat =
 | 
						|
      BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | 
						|
                           HasAnyUndefs, 0, !Subtarget.isLittleEndian());
 | 
						|
 | 
						|
  // If it is a splat of a double, check if we can shrink it to a 32 bit
 | 
						|
  // non-denormal float which when converted back to double gives us the same
 | 
						|
  // double. This is to exploit the XXSPLTIDP instruction.
 | 
						|
  // If we lose precision, we use XXSPLTI32DX.
 | 
						|
  if (BVNIsConstantSplat && (SplatBitSize == 64) &&
 | 
						|
      Subtarget.hasPrefixInstrs()) {
 | 
						|
    // Check the type first to short-circuit so we don't modify APSplatBits if
 | 
						|
    // this block isn't executed.
 | 
						|
    if ((Op->getValueType(0) == MVT::v2f64) &&
 | 
						|
        convertToNonDenormSingle(APSplatBits)) {
 | 
						|
      SDValue SplatNode = DAG.getNode(
 | 
						|
          PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
 | 
						|
          DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
 | 
						|
      return DAG.getBitcast(Op.getValueType(), SplatNode);
 | 
						|
    } else {
 | 
						|
      // We may lose precision, so we have to use XXSPLTI32DX.
 | 
						|
 | 
						|
      uint32_t Hi =
 | 
						|
          (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
 | 
						|
      uint32_t Lo =
 | 
						|
          (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
 | 
						|
      SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
 | 
						|
 | 
						|
      if (!Hi || !Lo)
 | 
						|
        // If either load is 0, then we should generate XXLXOR to set to 0.
 | 
						|
        SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
 | 
						|
 | 
						|
      if (Hi)
 | 
						|
        SplatNode = DAG.getNode(
 | 
						|
            PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
 | 
						|
            DAG.getTargetConstant(0, dl, MVT::i32),
 | 
						|
            DAG.getTargetConstant(Hi, dl, MVT::i32));
 | 
						|
 | 
						|
      if (Lo)
 | 
						|
        SplatNode =
 | 
						|
            DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
 | 
						|
                        DAG.getTargetConstant(1, dl, MVT::i32),
 | 
						|
                        DAG.getTargetConstant(Lo, dl, MVT::i32));
 | 
						|
 | 
						|
      return DAG.getBitcast(Op.getValueType(), SplatNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BVNIsConstantSplat || SplatBitSize > 32) {
 | 
						|
 | 
						|
    bool IsPermutedLoad = false;
 | 
						|
    const SDValue *InputLoad =
 | 
						|
        getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
 | 
						|
    // Handle load-and-splat patterns as we have instructions that will do this
 | 
						|
    // in one go.
 | 
						|
    if (InputLoad && DAG.isSplatValue(Op, true)) {
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
 | 
						|
 | 
						|
      // We have handling for 4 and 8 byte elements.
 | 
						|
      unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
 | 
						|
 | 
						|
      // Checking for a single use of this load, we have to check for vector
 | 
						|
      // width (128 bits) / ElementSize uses (since each operand of the
 | 
						|
      // BUILD_VECTOR is a separate use of the value.
 | 
						|
      unsigned NumUsesOfInputLD = 128 / ElementSize;
 | 
						|
      for (SDValue BVInOp : Op->ops())
 | 
						|
        if (BVInOp.isUndef())
 | 
						|
          NumUsesOfInputLD--;
 | 
						|
      assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
 | 
						|
      if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
 | 
						|
          ((Subtarget.hasVSX() && ElementSize == 64) ||
 | 
						|
           (Subtarget.hasP9Vector() && ElementSize == 32))) {
 | 
						|
        SDValue Ops[] = {
 | 
						|
          LD->getChain(),    // Chain
 | 
						|
          LD->getBasePtr(),  // Ptr
 | 
						|
          DAG.getValueType(Op.getValueType()) // VT
 | 
						|
        };
 | 
						|
        SDValue LdSplt = DAG.getMemIntrinsicNode(
 | 
						|
            PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
 | 
						|
            Ops, LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
        // Replace all uses of the output chain of the original load with the
 | 
						|
        // output chain of the new load.
 | 
						|
        DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
 | 
						|
                                      LdSplt.getValue(1));
 | 
						|
        return LdSplt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
 | 
						|
    // 32-bits can be lowered to VSX instructions under certain conditions.
 | 
						|
    // Without VSX, there is no pattern more efficient than expanding the node.
 | 
						|
    if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
 | 
						|
        haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
 | 
						|
                                        Subtarget.hasP8Vector()))
 | 
						|
      return Op;
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t SplatBits = APSplatBits.getZExtValue();
 | 
						|
  uint64_t SplatUndef = APSplatUndef.getZExtValue();
 | 
						|
  unsigned SplatSize = SplatBitSize / 8;
 | 
						|
 | 
						|
  // First, handle single instruction cases.
 | 
						|
 | 
						|
  // All zeros?
 | 
						|
  if (SplatBits == 0) {
 | 
						|
    // Canonicalize all zero vectors to be v4i32.
 | 
						|
    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | 
						|
      SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
 | 
						|
      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
 | 
						|
    }
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have XXSPLTIW for constant splats four bytes wide.
 | 
						|
  // Given vector length is a multiple of 4, 2-byte splats can be replaced
 | 
						|
  // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
 | 
						|
  // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
 | 
						|
  // turned into a 4-byte splat of 0xABABABAB.
 | 
						|
  if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
 | 
						|
    return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
 | 
						|
                                  Op.getValueType(), DAG, dl);
 | 
						|
 | 
						|
  if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
 | 
						|
    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
 | 
						|
                                  dl);
 | 
						|
 | 
						|
  // We have XXSPLTIB for constant splats one byte wide.
 | 
						|
  if (Subtarget.hasP9Vector() && SplatSize == 1)
 | 
						|
    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
 | 
						|
                                  dl);
 | 
						|
 | 
						|
  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | 
						|
  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
 | 
						|
                    (32-SplatBitSize));
 | 
						|
  if (SextVal >= -16 && SextVal <= 15)
 | 
						|
    return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
 | 
						|
                                  dl);
 | 
						|
 | 
						|
  // Two instruction sequences.
 | 
						|
 | 
						|
  // If this value is in the range [-32,30] and is even, use:
 | 
						|
  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
 | 
						|
  // If this value is in the range [17,31] and is odd, use:
 | 
						|
  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
 | 
						|
  // If this value is in the range [-31,-17] and is odd, use:
 | 
						|
  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
 | 
						|
  // Note the last two are three-instruction sequences.
 | 
						|
  if (SextVal >= -32 && SextVal <= 31) {
 | 
						|
    // To avoid having these optimizations undone by constant folding,
 | 
						|
    // we convert to a pseudo that will be expanded later into one of
 | 
						|
    // the above forms.
 | 
						|
    SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
 | 
						|
    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
 | 
						|
              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
 | 
						|
    SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
 | 
						|
    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
 | 
						|
    if (VT == Op.getValueType())
 | 
						|
      return RetVal;
 | 
						|
    else
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
 | 
						|
  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | 
						|
  // for fneg/fabs.
 | 
						|
  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | 
						|
    // Make -1 and vspltisw -1:
 | 
						|
    SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
 | 
						|
 | 
						|
    // Make the VSLW intrinsic, computing 0x8000_0000.
 | 
						|
    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
 | 
						|
                                   OnesV, DAG, dl);
 | 
						|
 | 
						|
    // xor by OnesV to invert it.
 | 
						|
    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this is a wide variety of vsplti*, binop self cases.
 | 
						|
  static const signed char SplatCsts[] = {
 | 
						|
    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | 
						|
    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | 
						|
    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | 
						|
    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | 
						|
    int i = SplatCsts[idx];
 | 
						|
 | 
						|
    // Figure out what shift amount will be used by altivec if shifted by i in
 | 
						|
    // this splat size.
 | 
						|
    unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | 
						|
 | 
						|
    // vsplti + shl self.
 | 
						|
    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
 | 
						|
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vslw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // vsplti + srl self.
 | 
						|
    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vsrw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // vsplti + rol self.
 | 
						|
    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | 
						|
                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | 
						|
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vrlw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 1
 | 
						|
    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
 | 
						|
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 2
 | 
						|
    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
 | 
						|
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 3
 | 
						|
    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
 | 
						|
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | 
						|
                                      SDValue RHS, SelectionDAG &DAG,
 | 
						|
                                      const SDLoc &dl) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | 
						|
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | 
						|
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VMRGHW,
 | 
						|
    OP_VMRGLW,
 | 
						|
    OP_VSPLTISW0,
 | 
						|
    OP_VSPLTISW1,
 | 
						|
    OP_VSPLTISW2,
 | 
						|
    OP_VSPLTISW3,
 | 
						|
    OP_VSLDOI4,
 | 
						|
    OP_VSLDOI8,
 | 
						|
    OP_VSLDOI12
 | 
						|
  };
 | 
						|
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1*9+2)*9+3) return LHS;
 | 
						|
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | 
						|
 | 
						|
  int ShufIdxs[16];
 | 
						|
  switch (OpNum) {
 | 
						|
  default: llvm_unreachable("Unknown i32 permute!");
 | 
						|
  case OP_VMRGHW:
 | 
						|
    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | 
						|
    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | 
						|
    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | 
						|
    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | 
						|
    break;
 | 
						|
  case OP_VMRGLW:
 | 
						|
    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | 
						|
    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | 
						|
    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | 
						|
    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW0:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+0;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW1:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+4;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW2:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+8;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW3:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+12;
 | 
						|
    break;
 | 
						|
  case OP_VSLDOI4:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
 | 
						|
  case OP_VSLDOI8:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
 | 
						|
  case OP_VSLDOI12:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
 | 
						|
  }
 | 
						|
  EVT VT = OpLHS.getValueType();
 | 
						|
  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
 | 
						|
  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
 | 
						|
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | 
						|
/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
 | 
						|
/// SDValue.
 | 
						|
SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  const unsigned BytesInVector = 16;
 | 
						|
  bool IsLE = Subtarget.isLittleEndian();
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue V1 = N->getOperand(0);
 | 
						|
  SDValue V2 = N->getOperand(1);
 | 
						|
  unsigned ShiftElts = 0, InsertAtByte = 0;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // Shifts required to get the byte we want at element 7.
 | 
						|
  unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
 | 
						|
                                   0, 15, 14, 13, 12, 11, 10, 9};
 | 
						|
  unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
 | 
						|
                                1, 2,  3,  4,  5,  6,  7,  8};
 | 
						|
 | 
						|
  ArrayRef<int> Mask = N->getMask();
 | 
						|
  int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
 | 
						|
 | 
						|
  // For each mask element, find out if we're just inserting something
 | 
						|
  // from V2 into V1 or vice versa.
 | 
						|
  // Possible permutations inserting an element from V2 into V1:
 | 
						|
  //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | 
						|
  //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | 
						|
  //   ...
 | 
						|
  //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
 | 
						|
  // Inserting from V1 into V2 will be similar, except mask range will be
 | 
						|
  // [16,31].
 | 
						|
 | 
						|
  bool FoundCandidate = false;
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask
 | 
						|
  // will contain only elements from the first one and the second one will be
 | 
						|
  // undef.
 | 
						|
  unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
 | 
						|
  // Go through the mask of half-words to find an element that's being moved
 | 
						|
  // from one vector to the other.
 | 
						|
  for (unsigned i = 0; i < BytesInVector; ++i) {
 | 
						|
    unsigned CurrentElement = Mask[i];
 | 
						|
    // If 2nd operand is undefined, we should only look for element 7 in the
 | 
						|
    // Mask.
 | 
						|
    if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool OtherElementsInOrder = true;
 | 
						|
    // Examine the other elements in the Mask to see if they're in original
 | 
						|
    // order.
 | 
						|
    for (unsigned j = 0; j < BytesInVector; ++j) {
 | 
						|
      if (j == i)
 | 
						|
        continue;
 | 
						|
      // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
 | 
						|
      // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
 | 
						|
      // in which we always assume we're always picking from the 1st operand.
 | 
						|
      int MaskOffset =
 | 
						|
          (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
 | 
						|
      if (Mask[j] != OriginalOrder[j] + MaskOffset) {
 | 
						|
        OtherElementsInOrder = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If other elements are in original order, we record the number of shifts
 | 
						|
    // we need to get the element we want into element 7. Also record which byte
 | 
						|
    // in the vector we should insert into.
 | 
						|
    if (OtherElementsInOrder) {
 | 
						|
      // If 2nd operand is undefined, we assume no shifts and no swapping.
 | 
						|
      if (V2.isUndef()) {
 | 
						|
        ShiftElts = 0;
 | 
						|
        Swap = false;
 | 
						|
      } else {
 | 
						|
        // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
 | 
						|
        ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
 | 
						|
                         : BigEndianShifts[CurrentElement & 0xF];
 | 
						|
        Swap = CurrentElement < BytesInVector;
 | 
						|
      }
 | 
						|
      InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
 | 
						|
      FoundCandidate = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundCandidate)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Candidate found, construct the proper SDAG sequence with VINSERTB,
 | 
						|
  // optionally with VECSHL if shift is required.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(V1, V2);
 | 
						|
  if (V2.isUndef())
 | 
						|
    V2 = V1;
 | 
						|
  if (ShiftElts) {
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
 | 
						|
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
 | 
						|
                     DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | 
						|
/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
 | 
						|
/// SDValue.
 | 
						|
SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  const unsigned NumHalfWords = 8;
 | 
						|
  const unsigned BytesInVector = NumHalfWords * 2;
 | 
						|
  // Check that the shuffle is on half-words.
 | 
						|
  if (!isNByteElemShuffleMask(N, 2, 1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool IsLE = Subtarget.isLittleEndian();
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue V1 = N->getOperand(0);
 | 
						|
  SDValue V2 = N->getOperand(1);
 | 
						|
  unsigned ShiftElts = 0, InsertAtByte = 0;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // Shifts required to get the half-word we want at element 3.
 | 
						|
  unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
 | 
						|
  unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
 | 
						|
 | 
						|
  uint32_t Mask = 0;
 | 
						|
  uint32_t OriginalOrderLow = 0x1234567;
 | 
						|
  uint32_t OriginalOrderHigh = 0x89ABCDEF;
 | 
						|
  // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
 | 
						|
  // 32-bit space, only need 4-bit nibbles per element.
 | 
						|
  for (unsigned i = 0; i < NumHalfWords; ++i) {
 | 
						|
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | 
						|
    Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each mask element, find out if we're just inserting something
 | 
						|
  // from V2 into V1 or vice versa.  Possible permutations inserting an element
 | 
						|
  // from V2 into V1:
 | 
						|
  //   X, 1, 2, 3, 4, 5, 6, 7
 | 
						|
  //   0, X, 2, 3, 4, 5, 6, 7
 | 
						|
  //   0, 1, X, 3, 4, 5, 6, 7
 | 
						|
  //   0, 1, 2, X, 4, 5, 6, 7
 | 
						|
  //   0, 1, 2, 3, X, 5, 6, 7
 | 
						|
  //   0, 1, 2, 3, 4, X, 6, 7
 | 
						|
  //   0, 1, 2, 3, 4, 5, X, 7
 | 
						|
  //   0, 1, 2, 3, 4, 5, 6, X
 | 
						|
  // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
 | 
						|
 | 
						|
  bool FoundCandidate = false;
 | 
						|
  // Go through the mask of half-words to find an element that's being moved
 | 
						|
  // from one vector to the other.
 | 
						|
  for (unsigned i = 0; i < NumHalfWords; ++i) {
 | 
						|
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | 
						|
    uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
 | 
						|
    uint32_t MaskOtherElts = ~(0xF << MaskShift);
 | 
						|
    uint32_t TargetOrder = 0x0;
 | 
						|
 | 
						|
    // If both vector operands for the shuffle are the same vector, the mask
 | 
						|
    // will contain only elements from the first one and the second one will be
 | 
						|
    // undef.
 | 
						|
    if (V2.isUndef()) {
 | 
						|
      ShiftElts = 0;
 | 
						|
      unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
 | 
						|
      TargetOrder = OriginalOrderLow;
 | 
						|
      Swap = false;
 | 
						|
      // Skip if not the correct element or mask of other elements don't equal
 | 
						|
      // to our expected order.
 | 
						|
      if (MaskOneElt == VINSERTHSrcElem &&
 | 
						|
          (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | 
						|
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | 
						|
        FoundCandidate = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else { // If both operands are defined.
 | 
						|
      // Target order is [8,15] if the current mask is between [0,7].
 | 
						|
      TargetOrder =
 | 
						|
          (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
 | 
						|
      // Skip if mask of other elements don't equal our expected order.
 | 
						|
      if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | 
						|
        // We only need the last 3 bits for the number of shifts.
 | 
						|
        ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
 | 
						|
                         : BigEndianShifts[MaskOneElt & 0x7];
 | 
						|
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | 
						|
        Swap = MaskOneElt < NumHalfWords;
 | 
						|
        FoundCandidate = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundCandidate)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Candidate found, construct the proper SDAG sequence with VINSERTH,
 | 
						|
  // optionally with VECSHL if shift is required.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(V1, V2);
 | 
						|
  if (V2.isUndef())
 | 
						|
    V2 = V1;
 | 
						|
  SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | 
						|
  if (ShiftElts) {
 | 
						|
    // Double ShiftElts because we're left shifting on v16i8 type.
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | 
						|
                              DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
 | 
						|
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
 | 
						|
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
  }
 | 
						|
  SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
 | 
						|
  SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | 
						|
                            DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
}
 | 
						|
 | 
						|
/// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
 | 
						|
/// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
 | 
						|
/// return the default SDValue.
 | 
						|
SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
 | 
						|
  // to v16i8. Peek through the bitcasts to get the actual operands.
 | 
						|
  SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
 | 
						|
  SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
 | 
						|
 | 
						|
  auto ShuffleMask = SVN->getMask();
 | 
						|
  SDValue VecShuffle(SVN, 0);
 | 
						|
  SDLoc DL(SVN);
 | 
						|
 | 
						|
  // Check that we have a four byte shuffle.
 | 
						|
  if (!isNByteElemShuffleMask(SVN, 4, 1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
 | 
						|
  if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
 | 
						|
    ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that the RHS is a vector of constants.
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
 | 
						|
  if (!BVN)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check if RHS is a splat of 4-bytes (or smaller).
 | 
						|
  APInt APSplatValue, APSplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
 | 
						|
                            HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
 | 
						|
      SplatBitSize > 32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
 | 
						|
  // The instruction splats a constant C into two words of the source vector
 | 
						|
  // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
 | 
						|
  // Thus we check that the shuffle mask is the equivalent  of
 | 
						|
  // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
 | 
						|
  // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
 | 
						|
  // within each word are consecutive, so we only need to check the first byte.
 | 
						|
  SDValue Index;
 | 
						|
  bool IsLE = Subtarget.isLittleEndian();
 | 
						|
  if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
 | 
						|
      (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
 | 
						|
       ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
 | 
						|
    Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
 | 
						|
  else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
 | 
						|
           (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
 | 
						|
            ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
 | 
						|
    Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the splat is narrower than 32-bits, we need to get the 32-bit value
 | 
						|
  // for XXSPLTI32DX.
 | 
						|
  unsigned SplatVal = APSplatValue.getZExtValue();
 | 
						|
  for (; SplatBitSize < 32; SplatBitSize <<= 1)
 | 
						|
    SplatVal |= (SplatVal << SplatBitSize);
 | 
						|
 | 
						|
  SDValue SplatNode = DAG.getNode(
 | 
						|
      PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
 | 
						|
      Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
 | 
						|
/// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
 | 
						|
/// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
 | 
						|
/// i.e (or (shl x, C1), (srl x, 128-C1)).
 | 
						|
SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
 | 
						|
  assert(Op.getValueType() == MVT::v1i128 &&
 | 
						|
         "Only set v1i128 as custom, other type shouldn't reach here!");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
 | 
						|
  SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
 | 
						|
  unsigned SHLAmt = N1.getConstantOperandVal(0);
 | 
						|
  if (SHLAmt % 8 == 0) {
 | 
						|
    SmallVector<int, 16> Mask(16, 0);
 | 
						|
    std::iota(Mask.begin(), Mask.end(), 0);
 | 
						|
    std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
 | 
						|
    if (SDValue Shuffle =
 | 
						|
            DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
 | 
						|
                                 DAG.getUNDEF(MVT::v16i8), Mask))
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
 | 
						|
  }
 | 
						|
  SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
 | 
						|
  SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
 | 
						|
                              DAG.getConstant(SHLAmt, dl, MVT::i32));
 | 
						|
  SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
 | 
						|
                              DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
 | 
						|
  SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | 
						|
/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | 
						|
/// return the code it can be lowered into.  Worst case, it can always be
 | 
						|
/// lowered into a vperm.
 | 
						|
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | 
						|
 | 
						|
  // Any nodes that were combined in the target-independent combiner prior
 | 
						|
  // to vector legalization will not be sent to the target combine. Try to
 | 
						|
  // combine it here.
 | 
						|
  if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
 | 
						|
    if (!isa<ShuffleVectorSDNode>(NewShuffle))
 | 
						|
      return NewShuffle;
 | 
						|
    Op = NewShuffle;
 | 
						|
    SVOp = cast<ShuffleVectorSDNode>(Op);
 | 
						|
    V1 = Op.getOperand(0);
 | 
						|
    V2 = Op.getOperand(1);
 | 
						|
  }
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
  unsigned ShiftElts, InsertAtByte;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // If this is a load-and-splat, we can do that with a single instruction
 | 
						|
  // in some cases. However if the load has multiple uses, we don't want to
 | 
						|
  // combine it because that will just produce multiple loads.
 | 
						|
  bool IsPermutedLoad = false;
 | 
						|
  const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
 | 
						|
  if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
 | 
						|
      (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
 | 
						|
      InputLoad->hasOneUse()) {
 | 
						|
    bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
 | 
						|
    int SplatIdx =
 | 
						|
      PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
 | 
						|
 | 
						|
    // The splat index for permuted loads will be in the left half of the vector
 | 
						|
    // which is strictly wider than the loaded value by 8 bytes. So we need to
 | 
						|
    // adjust the splat index to point to the correct address in memory.
 | 
						|
    if (IsPermutedLoad) {
 | 
						|
      assert((isLittleEndian || IsFourByte) &&
 | 
						|
             "Unexpected size for permuted load on big endian target");
 | 
						|
      SplatIdx += IsFourByte ? 2 : 1;
 | 
						|
      assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
 | 
						|
             "Splat of a value outside of the loaded memory");
 | 
						|
    }
 | 
						|
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
 | 
						|
    // For 4-byte load-and-splat, we need Power9.
 | 
						|
    if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
 | 
						|
      uint64_t Offset = 0;
 | 
						|
      if (IsFourByte)
 | 
						|
        Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
 | 
						|
      else
 | 
						|
        Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
 | 
						|
 | 
						|
      // If the width of the load is the same as the width of the splat,
 | 
						|
      // loading with an offset would load the wrong memory.
 | 
						|
      if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
 | 
						|
        Offset = 0;
 | 
						|
 | 
						|
      SDValue BasePtr = LD->getBasePtr();
 | 
						|
      if (Offset != 0)
 | 
						|
        BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                              BasePtr, DAG.getIntPtrConstant(Offset, dl));
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LD->getChain(),    // Chain
 | 
						|
        BasePtr,           // BasePtr
 | 
						|
        DAG.getValueType(Op.getValueType()) // VT
 | 
						|
      };
 | 
						|
      SDVTList VTL =
 | 
						|
        DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
 | 
						|
      SDValue LdSplt =
 | 
						|
        DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
 | 
						|
                                Ops, LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
 | 
						|
      if (LdSplt.getValueType() != SVOp->getValueType(0))
 | 
						|
        LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
 | 
						|
      return LdSplt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Subtarget.hasP9Vector() &&
 | 
						|
      PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
 | 
						|
                           isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
 | 
						|
    if (ShiftElts) {
 | 
						|
      SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
 | 
						|
                                DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
      SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
 | 
						|
                                DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
    }
 | 
						|
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasPrefixInstrs()) {
 | 
						|
    SDValue SplatInsertNode;
 | 
						|
    if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
 | 
						|
      return SplatInsertNode;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Altivec()) {
 | 
						|
    SDValue NewISDNode;
 | 
						|
    if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
 | 
						|
      return NewISDNode;
 | 
						|
 | 
						|
    if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
 | 
						|
      return NewISDNode;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX() &&
 | 
						|
      PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
    SDValue Conv2 =
 | 
						|
        DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
 | 
						|
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX() &&
 | 
						|
    PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | 
						|
    SDValue Conv2 =
 | 
						|
        DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
 | 
						|
 | 
						|
    SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Vector()) {
 | 
						|
     if (PPC::isXXBRHShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | 
						|
      SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
 | 
						|
    } else if (PPC::isXXBRWShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
      SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
 | 
						|
    } else if (PPC::isXXBRDShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | 
						|
      SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
 | 
						|
    } else if (PPC::isXXBRQShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
 | 
						|
      SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX()) {
 | 
						|
    if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
 | 
						|
      int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
 | 
						|
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
      SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
 | 
						|
                                  DAG.getConstant(SplatIdx, dl, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
 | 
						|
    }
 | 
						|
 | 
						|
    // Left shifts of 8 bytes are actually swaps. Convert accordingly.
 | 
						|
    if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
 | 
						|
      SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Cases that are handled by instructions that take permute immediates
 | 
						|
  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | 
						|
  // selected by the instruction selector.
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    if (PPC::isSplatShuffleMask(SVOp, 1) ||
 | 
						|
        PPC::isSplatShuffleMask(SVOp, 2) ||
 | 
						|
        PPC::isSplatShuffleMask(SVOp, 4) ||
 | 
						|
        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
 | 
						|
        (Subtarget.hasP8Altivec() && (
 | 
						|
         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
 | 
						|
         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | 
						|
  // and produce a fixed permutation.  If any of these match, do not lower to
 | 
						|
  // VPERM.
 | 
						|
  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
 | 
						|
  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | 
						|
      (Subtarget.hasP8Altivec() && (
 | 
						|
       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
 | 
						|
       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | 
						|
  // perfect shuffle table to emit an optimal matching sequence.
 | 
						|
  ArrayRef<int> PermMask = SVOp->getMask();
 | 
						|
 | 
						|
  unsigned PFIndexes[4];
 | 
						|
  bool isFourElementShuffle = true;
 | 
						|
  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | 
						|
    unsigned EltNo = 8;   // Start out undef.
 | 
						|
    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | 
						|
      if (PermMask[i*4+j] < 0)
 | 
						|
        continue;   // Undef, ignore it.
 | 
						|
 | 
						|
      unsigned ByteSource = PermMask[i*4+j];
 | 
						|
      if ((ByteSource & 3) != j) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (EltNo == 8) {
 | 
						|
        EltNo = ByteSource/4;
 | 
						|
      } else if (EltNo != ByteSource/4) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    PFIndexes[i] = EltNo;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
 | 
						|
  // perfect shuffle vector to determine if it is cost effective to do this as
 | 
						|
  // discrete instructions, or whether we should use a vperm.
 | 
						|
  // For now, we skip this for little endian until such time as we have a
 | 
						|
  // little-endian perfect shuffle table.
 | 
						|
  if (isFourElementShuffle && !isLittleEndian) {
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex =
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost  = (PFEntry >> 30);
 | 
						|
 | 
						|
    // Determining when to avoid vperm is tricky.  Many things affect the cost
 | 
						|
    // of vperm, particularly how many times the perm mask needs to be computed.
 | 
						|
    // For example, if the perm mask can be hoisted out of a loop or is already
 | 
						|
    // used (perhaps because there are multiple permutes with the same shuffle
 | 
						|
    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | 
						|
    // the loop requires an extra register.
 | 
						|
    //
 | 
						|
    // As a compromise, we only emit discrete instructions if the shuffle can be
 | 
						|
    // generated in 3 or fewer operations.  When we have loop information
 | 
						|
    // available, if this block is within a loop, we should avoid using vperm
 | 
						|
    // for 3-operation perms and use a constant pool load instead.
 | 
						|
    if (Cost < 3)
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | 
						|
  // vector that will get spilled to the constant pool.
 | 
						|
  if (V2.isUndef()) V2 = V1;
 | 
						|
 | 
						|
  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | 
						|
  // that it is in input element units, not in bytes.  Convert now.
 | 
						|
 | 
						|
  // For little endian, the order of the input vectors is reversed, and
 | 
						|
  // the permutation mask is complemented with respect to 31.  This is
 | 
						|
  // necessary to produce proper semantics with the big-endian-biased vperm
 | 
						|
  // instruction.
 | 
						|
  EVT EltVT = V1.getValueType().getVectorElementType();
 | 
						|
  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> ResultMask;
 | 
						|
  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | 
						|
    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
 | 
						|
 | 
						|
    for (unsigned j = 0; j != BytesPerElement; ++j)
 | 
						|
      if (isLittleEndian)
 | 
						|
        ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
 | 
						|
                                             dl, MVT::i32));
 | 
						|
      else
 | 
						|
        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
 | 
						|
                                             MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  ShufflesHandledWithVPERM++;
 | 
						|
  SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
 | 
						|
  LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
 | 
						|
  LLVM_DEBUG(SVOp->dump());
 | 
						|
  LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
 | 
						|
  LLVM_DEBUG(VPermMask.dump());
 | 
						|
 | 
						|
  if (isLittleEndian)
 | 
						|
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | 
						|
                       V2, V1, VPermMask);
 | 
						|
  else
 | 
						|
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | 
						|
                       V1, V2, VPermMask);
 | 
						|
}
 | 
						|
 | 
						|
/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
 | 
						|
/// vector comparison.  If it is, return true and fill in Opc/isDot with
 | 
						|
/// information about the intrinsic.
 | 
						|
static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
 | 
						|
                                 bool &isDot, const PPCSubtarget &Subtarget) {
 | 
						|
  unsigned IntrinsicID =
 | 
						|
      cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
 | 
						|
  CompareOpc = -1;
 | 
						|
  isDot = false;
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  // Comparison predicates.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    CompareOpc = 966;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    CompareOpc = 198;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    CompareOpc = 6;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    CompareOpc = 70;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    CompareOpc = 134;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequd_p:
 | 
						|
    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 199;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneb_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneh_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnew_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezb_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezh_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezw_p:
 | 
						|
    if (Subtarget.hasP9Altivec()) {
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneb_p:
 | 
						|
        CompareOpc = 7;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneh_p:
 | 
						|
        CompareOpc = 71;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnew_p:
 | 
						|
        CompareOpc = 135;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezb_p:
 | 
						|
        CompareOpc = 263;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezh_p:
 | 
						|
        CompareOpc = 327;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezw_p:
 | 
						|
        CompareOpc = 391;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    CompareOpc = 454;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    CompareOpc = 710;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    CompareOpc = 774;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    CompareOpc = 838;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    CompareOpc = 902;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | 
						|
    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 967;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    CompareOpc = 518;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    CompareOpc = 582;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
    CompareOpc = 646;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtud_p:
 | 
						|
    if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 711;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequq:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsq:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuq:
 | 
						|
    if (!Subtarget.isISA3_1())
 | 
						|
      return false;
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequq:
 | 
						|
      CompareOpc = 455;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsq:
 | 
						|
      CompareOpc = 903;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuq:
 | 
						|
      CompareOpc = 647;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  // VSX predicate comparisons use the same infrastructure
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | 
						|
        CompareOpc = 99;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | 
						|
        CompareOpc = 115;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | 
						|
        CompareOpc = 107;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | 
						|
        CompareOpc = 67;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | 
						|
        CompareOpc = 83;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | 
						|
        CompareOpc = 75;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  // Normal Comparisons.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp:
 | 
						|
    CompareOpc = 966;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp:
 | 
						|
    CompareOpc = 198;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb:
 | 
						|
    CompareOpc = 6;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh:
 | 
						|
    CompareOpc = 70;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw:
 | 
						|
    CompareOpc = 134;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequd:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 199;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneb:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneh:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnew:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezb:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezh:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezw:
 | 
						|
    if (Subtarget.hasP9Altivec())
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneb:
 | 
						|
        CompareOpc = 7;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneh:
 | 
						|
        CompareOpc = 71;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnew:
 | 
						|
        CompareOpc = 135;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezb:
 | 
						|
        CompareOpc = 263;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezh:
 | 
						|
        CompareOpc = 327;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezw:
 | 
						|
        CompareOpc = 391;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp:
 | 
						|
    CompareOpc = 454;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp:
 | 
						|
    CompareOpc = 710;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb:
 | 
						|
    CompareOpc = 774;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh:
 | 
						|
    CompareOpc = 838;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw:
 | 
						|
    CompareOpc = 902;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsd:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 967;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub:
 | 
						|
    CompareOpc = 518;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh:
 | 
						|
    CompareOpc = 582;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw:
 | 
						|
    CompareOpc = 646;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtud:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 711;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequq_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsq_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuq_p:
 | 
						|
    if (!Subtarget.isISA3_1())
 | 
						|
      return false;
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequq_p:
 | 
						|
      CompareOpc = 455;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsq_p:
 | 
						|
      CompareOpc = 903;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuq_p:
 | 
						|
      CompareOpc = 647;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | 
						|
/// lower, do it, otherwise return null.
 | 
						|
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  unsigned IntrinsicID =
 | 
						|
    cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  case Intrinsic::thread_pointer:
 | 
						|
    // Reads the thread pointer register, used for __builtin_thread_pointer.
 | 
						|
    if (Subtarget.isPPC64())
 | 
						|
      return DAG.getRegister(PPC::X13, MVT::i64);
 | 
						|
    return DAG.getRegister(PPC::R2, MVT::i32);
 | 
						|
 | 
						|
  case Intrinsic::ppc_mma_disassemble_acc:
 | 
						|
  case Intrinsic::ppc_vsx_disassemble_pair: {
 | 
						|
    int NumVecs = 2;
 | 
						|
    SDValue WideVec = Op.getOperand(1);
 | 
						|
    if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
 | 
						|
      NumVecs = 4;
 | 
						|
      WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
 | 
						|
    }
 | 
						|
    SmallVector<SDValue, 4> RetOps;
 | 
						|
    for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
 | 
						|
      SDValue Extract = DAG.getNode(
 | 
						|
          PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
 | 
						|
          DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
 | 
						|
                                                     : VecNo,
 | 
						|
                          dl, getPointerTy(DAG.getDataLayout())));
 | 
						|
      RetOps.push_back(Extract);
 | 
						|
    }
 | 
						|
    return DAG.getMergeValues(RetOps, dl);
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_compare_exp_lt:
 | 
						|
  case Intrinsic::ppc_compare_exp_gt:
 | 
						|
  case Intrinsic::ppc_compare_exp_eq:
 | 
						|
  case Intrinsic::ppc_compare_exp_uo: {
 | 
						|
    unsigned Pred;
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    case Intrinsic::ppc_compare_exp_lt:
 | 
						|
      Pred = PPC::PRED_LT;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_compare_exp_gt:
 | 
						|
      Pred = PPC::PRED_GT;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_compare_exp_eq:
 | 
						|
      Pred = PPC::PRED_EQ;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_compare_exp_uo:
 | 
						|
      Pred = PPC::PRED_UN;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return SDValue(
 | 
						|
        DAG.getMachineNode(
 | 
						|
            PPC::SELECT_CC_I4, dl, MVT::i32,
 | 
						|
            {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
 | 
						|
                                        Op.getOperand(1), Op.getOperand(2)),
 | 
						|
                     0),
 | 
						|
             DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
 | 
						|
             DAG.getTargetConstant(Pred, dl, MVT::i32)}),
 | 
						|
        0);
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_test_data_class_d:
 | 
						|
  case Intrinsic::ppc_test_data_class_f: {
 | 
						|
    unsigned CmprOpc = PPC::XSTSTDCDP;
 | 
						|
    if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
 | 
						|
      CmprOpc = PPC::XSTSTDCSP;
 | 
						|
    return SDValue(
 | 
						|
        DAG.getMachineNode(
 | 
						|
            PPC::SELECT_CC_I4, dl, MVT::i32,
 | 
						|
            {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
 | 
						|
                                        Op.getOperand(1)),
 | 
						|
                     0),
 | 
						|
             DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
 | 
						|
             DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
 | 
						|
        0);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | 
						|
  // opcode number of the comparison.
 | 
						|
  int CompareOpc;
 | 
						|
  bool isDot;
 | 
						|
  if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
 | 
						|
    return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
 | 
						|
  // If this is a non-dot comparison, make the VCMP node and we are done.
 | 
						|
  if (!isDot) {
 | 
						|
    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
 | 
						|
                              Op.getOperand(1), Op.getOperand(2),
 | 
						|
                              DAG.getConstant(CompareOpc, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
  SDValue Ops[] = {
 | 
						|
    Op.getOperand(2),  // LHS
 | 
						|
    Op.getOperand(3),  // RHS
 | 
						|
    DAG.getConstant(CompareOpc, dl, MVT::i32)
 | 
						|
  };
 | 
						|
  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
 | 
						|
  SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
 | 
						|
 | 
						|
  // Now that we have the comparison, emit a copy from the CR to a GPR.
 | 
						|
  // This is flagged to the above dot comparison.
 | 
						|
  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
 | 
						|
                                DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                                CompNode.getValue(1));
 | 
						|
 | 
						|
  // Unpack the result based on how the target uses it.
 | 
						|
  unsigned BitNo;   // Bit # of CR6.
 | 
						|
  bool InvertBit;   // Invert result?
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | 
						|
  default:  // Can't happen, don't crash on invalid number though.
 | 
						|
  case 0:   // Return the value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 1:   // Return the inverted value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = true;
 | 
						|
    break;
 | 
						|
  case 2:   // Return the value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 3:   // Return the inverted value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Shift the bit into the low position.
 | 
						|
  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
 | 
						|
  // Isolate the bit.
 | 
						|
  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  // If we are supposed to, toggle the bit.
 | 
						|
  if (InvertBit)
 | 
						|
    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
 | 
						|
                        DAG.getConstant(1, dl, MVT::i32));
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
 | 
						|
  // the beginning of the argument list.
 | 
						|
  int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
 | 
						|
  SDLoc DL(Op);
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
 | 
						|
  case Intrinsic::ppc_cfence: {
 | 
						|
    assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
 | 
						|
    assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
 | 
						|
    SDValue Val = Op.getOperand(ArgStart + 1);
 | 
						|
    EVT Ty = Val.getValueType();
 | 
						|
    if (Ty == MVT::i128) {
 | 
						|
      // FIXME: Testing one of two paired registers is sufficient to guarantee
 | 
						|
      // ordering?
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
 | 
						|
    }
 | 
						|
    return SDValue(
 | 
						|
        DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
 | 
						|
                           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
 | 
						|
                           Op.getOperand(0)),
 | 
						|
        0);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Lower scalar BSWAP64 to xxbrd.
 | 
						|
SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (!Subtarget.isPPC64())
 | 
						|
    return Op;
 | 
						|
  // MTVSRDD
 | 
						|
  Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
 | 
						|
                   Op.getOperand(0));
 | 
						|
  // XXBRD
 | 
						|
  Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
 | 
						|
  // MFVSRD
 | 
						|
  int VectorIndex = 0;
 | 
						|
  if (Subtarget.isLittleEndian())
 | 
						|
    VectorIndex = 1;
 | 
						|
  Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
 | 
						|
                   DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
 | 
						|
// compared to a value that is atomically loaded (atomic loads zero-extend).
 | 
						|
SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
 | 
						|
         "Expecting an atomic compare-and-swap here.");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
 | 
						|
  EVT MemVT = AtomicNode->getMemoryVT();
 | 
						|
  if (MemVT.getSizeInBits() >= 32)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  SDValue CmpOp = Op.getOperand(2);
 | 
						|
  // If this is already correctly zero-extended, leave it alone.
 | 
						|
  auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
 | 
						|
  if (DAG.MaskedValueIsZero(CmpOp, HighBits))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Clear the high bits of the compare operand.
 | 
						|
  unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
 | 
						|
  SDValue NewCmpOp =
 | 
						|
    DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
 | 
						|
                DAG.getConstant(MaskVal, dl, MVT::i32));
 | 
						|
 | 
						|
  // Replace the existing compare operand with the properly zero-extended one.
 | 
						|
  SmallVector<SDValue, 4> Ops;
 | 
						|
  for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
 | 
						|
    Ops.push_back(AtomicNode->getOperand(i));
 | 
						|
  Ops[2] = NewCmpOp;
 | 
						|
  MachineMemOperand *MMO = AtomicNode->getMemOperand();
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
 | 
						|
  auto NodeTy =
 | 
						|
    (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
 | 
						|
  return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
 | 
						|
  EVT MemVT = N->getMemoryVT();
 | 
						|
  assert(MemVT.getSimpleVT() == MVT::i128 &&
 | 
						|
         "Expect quadword atomic operations");
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned Opc = N->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case ISD::ATOMIC_LOAD: {
 | 
						|
    // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
 | 
						|
    // lowered to ppc instructions by pattern matching instruction selector.
 | 
						|
    SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
 | 
						|
    SmallVector<SDValue, 4> Ops{
 | 
						|
        N->getOperand(0),
 | 
						|
        DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
 | 
						|
    for (int I = 1, E = N->getNumOperands(); I < E; ++I)
 | 
						|
      Ops.push_back(N->getOperand(I));
 | 
						|
    SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
 | 
						|
                                                Ops, MemVT, N->getMemOperand());
 | 
						|
    SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
 | 
						|
    SDValue ValHi =
 | 
						|
        DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
 | 
						|
    ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
 | 
						|
                        DAG.getConstant(64, dl, MVT::i32));
 | 
						|
    SDValue Val =
 | 
						|
        DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
 | 
						|
                       {Val, LoadedVal.getValue(2)});
 | 
						|
  }
 | 
						|
  case ISD::ATOMIC_STORE: {
 | 
						|
    // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
 | 
						|
    // lowered to ppc instructions by pattern matching instruction selector.
 | 
						|
    SDVTList Tys = DAG.getVTList(MVT::Other);
 | 
						|
    SmallVector<SDValue, 4> Ops{
 | 
						|
        N->getOperand(0),
 | 
						|
        DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
 | 
						|
    SDValue Val = N->getOperand(2);
 | 
						|
    SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
 | 
						|
    SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
 | 
						|
                                DAG.getConstant(64, dl, MVT::i32));
 | 
						|
    ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
 | 
						|
    Ops.push_back(ValLo);
 | 
						|
    Ops.push_back(ValHi);
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
    return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
 | 
						|
                                   N->getMemOperand());
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected atomic opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // Create a stack slot that is 16-byte aligned.
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
  // Store the input value into Value#0 of the stack slot.
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | 
						|
                               MachinePointerInfo());
 | 
						|
  // Load it out.
 | 
						|
  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
 | 
						|
         "Should only be called for ISD::INSERT_VECTOR_ELT");
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  SDValue V3 = Op.getOperand(2);
 | 
						|
 | 
						|
  if (VT == MVT::v2f64 && C)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (Subtarget.isISA3_1()) {
 | 
						|
    if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
 | 
						|
      return SDValue();
 | 
						|
    // On P10, we have legal lowering for constant and variable indices for
 | 
						|
    // integer vectors.
 | 
						|
    if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | 
						|
        VT == MVT::v2i64)
 | 
						|
      return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
 | 
						|
    // For f32 and f64 vectors, we have legal lowering for variable indices.
 | 
						|
    // For f32 we also have legal lowering when the element is loaded from
 | 
						|
    // memory.
 | 
						|
    if (VT == MVT::v4f32 || VT == MVT::v2f64) {
 | 
						|
      if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
 | 
						|
        return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Before P10, we have legal lowering for constant indices but not for
 | 
						|
  // variable ones.
 | 
						|
  if (!C)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
 | 
						|
  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
 | 
						|
    SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
 | 
						|
    unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
 | 
						|
    unsigned InsertAtElement = C->getZExtValue();
 | 
						|
    unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
 | 
						|
    if (Subtarget.isLittleEndian()) {
 | 
						|
      InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
 | 
						|
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
 | 
						|
  SDValue LoadChain = LN->getChain();
 | 
						|
  SDValue BasePtr = LN->getBasePtr();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  if (VT != MVT::v256i1 && VT != MVT::v512i1)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Type v256i1 is used for pairs and v512i1 is used for accumulators.
 | 
						|
  // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
 | 
						|
  // 2 or 4 vsx registers.
 | 
						|
  assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
 | 
						|
         "Type unsupported without MMA");
 | 
						|
  assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
 | 
						|
         "Type unsupported without paired vector support");
 | 
						|
  Align Alignment = LN->getAlign();
 | 
						|
  SmallVector<SDValue, 4> Loads;
 | 
						|
  SmallVector<SDValue, 4> LoadChains;
 | 
						|
  unsigned NumVecs = VT.getSizeInBits() / 128;
 | 
						|
  for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
 | 
						|
    SDValue Load =
 | 
						|
        DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
 | 
						|
                    LN->getPointerInfo().getWithOffset(Idx * 16),
 | 
						|
                    commonAlignment(Alignment, Idx * 16),
 | 
						|
                    LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | 
						|
    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                          DAG.getConstant(16, dl, BasePtr.getValueType()));
 | 
						|
    Loads.push_back(Load);
 | 
						|
    LoadChains.push_back(Load.getValue(1));
 | 
						|
  }
 | 
						|
  if (Subtarget.isLittleEndian()) {
 | 
						|
    std::reverse(Loads.begin(), Loads.end());
 | 
						|
    std::reverse(LoadChains.begin(), LoadChains.end());
 | 
						|
  }
 | 
						|
  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | 
						|
  SDValue Value =
 | 
						|
      DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
 | 
						|
                  dl, VT, Loads);
 | 
						|
  SDValue RetOps[] = {Value, TF};
 | 
						|
  return DAG.getMergeValues(RetOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
 | 
						|
  SDValue StoreChain = SN->getChain();
 | 
						|
  SDValue BasePtr = SN->getBasePtr();
 | 
						|
  SDValue Value = SN->getValue();
 | 
						|
  EVT StoreVT = Value.getValueType();
 | 
						|
 | 
						|
  if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Type v256i1 is used for pairs and v512i1 is used for accumulators.
 | 
						|
  // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
 | 
						|
  // underlying registers individually.
 | 
						|
  assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
 | 
						|
         "Type unsupported without MMA");
 | 
						|
  assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
 | 
						|
         "Type unsupported without paired vector support");
 | 
						|
  Align Alignment = SN->getAlign();
 | 
						|
  SmallVector<SDValue, 4> Stores;
 | 
						|
  unsigned NumVecs = 2;
 | 
						|
  if (StoreVT == MVT::v512i1) {
 | 
						|
    Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
 | 
						|
    NumVecs = 4;
 | 
						|
  }
 | 
						|
  for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
 | 
						|
    unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
 | 
						|
    SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
 | 
						|
                              DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
 | 
						|
    SDValue Store =
 | 
						|
        DAG.getStore(StoreChain, dl, Elt, BasePtr,
 | 
						|
                     SN->getPointerInfo().getWithOffset(Idx * 16),
 | 
						|
                     commonAlignment(Alignment, Idx * 16),
 | 
						|
                     SN->getMemOperand()->getFlags(), SN->getAAInfo());
 | 
						|
    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                          DAG.getConstant(16, dl, BasePtr.getValueType()));
 | 
						|
    Stores.push_back(Store);
 | 
						|
  }
 | 
						|
  SDValue TF = DAG.getTokenFactor(dl, Stores);
 | 
						|
  return TF;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (Op.getValueType() == MVT::v4i32) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
 | 
						|
    SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
 | 
						|
    // +16 as shift amt.
 | 
						|
    SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
 | 
						|
    SDValue RHSSwap =   // = vrlw RHS, 16
 | 
						|
      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
 | 
						|
 | 
						|
    // Shrinkify inputs to v8i16.
 | 
						|
    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
 | 
						|
    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
 | 
						|
    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
 | 
						|
 | 
						|
    // Low parts multiplied together, generating 32-bit results (we ignore the
 | 
						|
    // top parts).
 | 
						|
    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | 
						|
                                        LHS, RHS, DAG, dl, MVT::v4i32);
 | 
						|
 | 
						|
    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | 
						|
                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
 | 
						|
    // Shift the high parts up 16 bits.
 | 
						|
    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
 | 
						|
                              Neg16, DAG, dl);
 | 
						|
    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
 | 
						|
  } else if (Op.getValueType() == MVT::v16i8) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
    // Multiply the even 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | 
						|
                                           LHS, RHS, DAG, dl, MVT::v8i16);
 | 
						|
    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
 | 
						|
 | 
						|
    // Multiply the odd 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | 
						|
                                          LHS, RHS, DAG, dl, MVT::v8i16);
 | 
						|
    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
 | 
						|
 | 
						|
    // Merge the results together.  Because vmuleub and vmuloub are
 | 
						|
    // instructions with a big-endian bias, we must reverse the
 | 
						|
    // element numbering and reverse the meaning of "odd" and "even"
 | 
						|
    // when generating little endian code.
 | 
						|
    int Ops[16];
 | 
						|
    for (unsigned i = 0; i != 8; ++i) {
 | 
						|
      if (isLittleEndian) {
 | 
						|
        Ops[i*2  ] = 2*i;
 | 
						|
        Ops[i*2+1] = 2*i+16;
 | 
						|
      } else {
 | 
						|
        Ops[i*2  ] = 2*i+1;
 | 
						|
        Ops[i*2+1] = 2*i+1+16;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isLittleEndian)
 | 
						|
      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
 | 
						|
    else
 | 
						|
      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown mul to lower!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  bool IsStrict = Op->isStrictFPOpcode();
 | 
						|
  if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
 | 
						|
      !Subtarget.hasP9Vector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Custom lowering for fpext vf32 to v2f64
 | 
						|
SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::FP_EXTEND &&
 | 
						|
         "Should only be called for ISD::FP_EXTEND");
 | 
						|
 | 
						|
  // FIXME: handle extends from half precision float vectors on P9.
 | 
						|
  // We only want to custom lower an extend from v2f32 to v2f64.
 | 
						|
  if (Op.getValueType() != MVT::v2f64 ||
 | 
						|
      Op.getOperand(0).getValueType() != MVT::v2f32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
 | 
						|
  switch (Op0.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case ISD::EXTRACT_SUBVECTOR: {
 | 
						|
    assert(Op0.getNumOperands() == 2 &&
 | 
						|
           isa<ConstantSDNode>(Op0->getOperand(1)) &&
 | 
						|
           "Node should have 2 operands with second one being a constant!");
 | 
						|
 | 
						|
    if (Op0.getOperand(0).getValueType() != MVT::v4f32)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Custom lower is only done for high or low doubleword.
 | 
						|
    int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
 | 
						|
    if (Idx % 2 != 0)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Since input is v4f32, at this point Idx is either 0 or 2.
 | 
						|
    // Shift to get the doubleword position we want.
 | 
						|
    int DWord = Idx >> 1;
 | 
						|
 | 
						|
    // High and low word positions are different on little endian.
 | 
						|
    if (Subtarget.isLittleEndian())
 | 
						|
      DWord ^= 0x1;
 | 
						|
 | 
						|
    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
 | 
						|
                       Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  case ISD::FADD:
 | 
						|
  case ISD::FMUL:
 | 
						|
  case ISD::FSUB: {
 | 
						|
    SDValue NewLoad[2];
 | 
						|
    for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
 | 
						|
      // Ensure both input are loads.
 | 
						|
      SDValue LdOp = Op0.getOperand(i);
 | 
						|
      if (LdOp.getOpcode() != ISD::LOAD)
 | 
						|
        return SDValue();
 | 
						|
      // Generate new load node.
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(LdOp);
 | 
						|
      SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
 | 
						|
      NewLoad[i] = DAG.getMemIntrinsicNode(
 | 
						|
          PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
 | 
						|
          LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
    }
 | 
						|
    SDValue NewOp =
 | 
						|
        DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
 | 
						|
                    NewLoad[1], Op0.getNode()->getFlags());
 | 
						|
    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
 | 
						|
                       DAG.getConstant(0, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(Op0);
 | 
						|
    SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
 | 
						|
    SDValue NewLd = DAG.getMemIntrinsicNode(
 | 
						|
        PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
 | 
						|
        LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
 | 
						|
                       DAG.getConstant(0, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("ERROR:Should return for all cases within swtich.");
 | 
						|
}
 | 
						|
 | 
						|
/// LowerOperation - Provide custom lowering hooks for some operations.
 | 
						|
///
 | 
						|
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
 | 
						|
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::STRICT_FSETCC:
 | 
						|
  case ISD::STRICT_FSETCCS:
 | 
						|
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
 | 
						|
  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
 | 
						|
 | 
						|
  case ISD::INLINEASM:
 | 
						|
  case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
 | 
						|
  // Variable argument lowering.
 | 
						|
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | 
						|
  case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | 
						|
  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | 
						|
 | 
						|
  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
  case ISD::GET_DYNAMIC_AREA_OFFSET:
 | 
						|
    return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
 | 
						|
 | 
						|
  // Exception handling lowering.
 | 
						|
  case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
 | 
						|
 | 
						|
  case ISD::LOAD:               return LowerLOAD(Op, DAG);
 | 
						|
  case ISD::STORE:              return LowerSTORE(Op, DAG);
 | 
						|
  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
 | 
						|
  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::STRICT_FP_TO_UINT:
 | 
						|
  case ISD::STRICT_FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
 | 
						|
  case ISD::STRICT_UINT_TO_FP:
 | 
						|
  case ISD::STRICT_SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | 
						|
 | 
						|
  // Lower 64-bit shifts.
 | 
						|
  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | 
						|
 | 
						|
  case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
 | 
						|
  case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
 | 
						|
 | 
						|
  // Vector-related lowering.
 | 
						|
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | 
						|
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::MUL:                return LowerMUL(Op, DAG);
 | 
						|
  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
 | 
						|
  case ISD::STRICT_FP_ROUND:
 | 
						|
  case ISD::FP_ROUND:
 | 
						|
    return LowerFP_ROUND(Op, DAG);
 | 
						|
  case ISD::ROTL:               return LowerROTL(Op, DAG);
 | 
						|
 | 
						|
  // For counter-based loop handling.
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
 | 
						|
 | 
						|
  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
 | 
						|
 | 
						|
  // Frame & Return address.
 | 
						|
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | 
						|
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
    return LowerINTRINSIC_VOID(Op, DAG);
 | 
						|
  case ISD::BSWAP:
 | 
						|
    return LowerBSWAP(Op, DAG);
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
    return LowerATOMIC_CMP_SWAP(Op, DAG);
 | 
						|
  case ISD::ATOMIC_STORE:
 | 
						|
    return LowerATOMIC_LOAD_STORE(Op, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                           SmallVectorImpl<SDValue>&Results,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(N);
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Do not know how to custom type legalize this operation!");
 | 
						|
  case ISD::ATOMIC_LOAD: {
 | 
						|
    SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
 | 
						|
    Results.push_back(Res);
 | 
						|
    Results.push_back(Res.getValue(1));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::READCYCLECOUNTER: {
 | 
						|
    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | 
						|
    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
 | 
						|
 | 
						|
    Results.push_back(
 | 
						|
        DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
 | 
						|
    Results.push_back(RTB.getValue(2));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
 | 
						|
        Intrinsic::loop_decrement)
 | 
						|
      break;
 | 
						|
 | 
						|
    assert(N->getValueType(0) == MVT::i1 &&
 | 
						|
           "Unexpected result type for CTR decrement intrinsic");
 | 
						|
    EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | 
						|
                                 N->getValueType(0));
 | 
						|
    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
 | 
						|
    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
 | 
						|
                                 N->getOperand(1));
 | 
						|
 | 
						|
    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
 | 
						|
    Results.push_back(NewInt.getValue(1));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::VAARG: {
 | 
						|
    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
 | 
						|
      return;
 | 
						|
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
    if (VT == MVT::i64) {
 | 
						|
      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
 | 
						|
 | 
						|
      Results.push_back(NewNode);
 | 
						|
      Results.push_back(NewNode.getValue(1));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::STRICT_FP_TO_SINT:
 | 
						|
  case ISD::STRICT_FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    // LowerFP_TO_INT() can only handle f32 and f64.
 | 
						|
    if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
 | 
						|
        MVT::ppcf128)
 | 
						|
      return;
 | 
						|
    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
 | 
						|
    return;
 | 
						|
  case ISD::TRUNCATE: {
 | 
						|
    if (!N->getValueType(0).isVector())
 | 
						|
      return;
 | 
						|
    SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
 | 
						|
    if (Lowered)
 | 
						|
      Results.push_back(Lowered);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::FSHL:
 | 
						|
  case ISD::FSHR:
 | 
						|
    // Don't handle funnel shifts here.
 | 
						|
    return;
 | 
						|
  case ISD::BITCAST:
 | 
						|
    // Don't handle bitcast here.
 | 
						|
    return;
 | 
						|
  case ISD::FP_EXTEND:
 | 
						|
    SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
 | 
						|
    if (Lowered)
 | 
						|
      Results.push_back(Lowered);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Other Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Function *Func = Intrinsic::getDeclaration(M, Id);
 | 
						|
  return Builder.CreateCall(Func, {});
 | 
						|
}
 | 
						|
 | 
						|
// The mappings for emitLeading/TrailingFence is taken from
 | 
						|
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
 | 
						|
Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
 | 
						|
                                                 Instruction *Inst,
 | 
						|
                                                 AtomicOrdering Ord) const {
 | 
						|
  if (Ord == AtomicOrdering::SequentiallyConsistent)
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_sync);
 | 
						|
  if (isReleaseOrStronger(Ord))
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
 | 
						|
                                                  Instruction *Inst,
 | 
						|
                                                  AtomicOrdering Ord) const {
 | 
						|
  if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
 | 
						|
    // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
 | 
						|
    // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
 | 
						|
    // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
 | 
						|
    if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
 | 
						|
      return Builder.CreateCall(
 | 
						|
          Intrinsic::getDeclaration(
 | 
						|
              Builder.GetInsertBlock()->getParent()->getParent(),
 | 
						|
              Intrinsic::ppc_cfence, {Inst->getType()}),
 | 
						|
          {Inst});
 | 
						|
    // FIXME: Can use isync for rmw operation.
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                    unsigned AtomicSize,
 | 
						|
                                    unsigned BinOpcode,
 | 
						|
                                    unsigned CmpOpcode,
 | 
						|
                                    unsigned CmpPred) const {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  auto LoadMnemonic = PPC::LDARX;
 | 
						|
  auto StoreMnemonic = PPC::STDCX;
 | 
						|
  switch (AtomicSize) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected size of atomic entity");
 | 
						|
  case 1:
 | 
						|
    LoadMnemonic = PPC::LBARX;
 | 
						|
    StoreMnemonic = PPC::STBCX;
 | 
						|
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    LoadMnemonic = PPC::LHARX;
 | 
						|
    StoreMnemonic = PPC::STHCX;
 | 
						|
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    LoadMnemonic = PPC::LWARX;
 | 
						|
    StoreMnemonic = PPC::STWCX;
 | 
						|
    break;
 | 
						|
  case 8:
 | 
						|
    LoadMnemonic = PPC::LDARX;
 | 
						|
    StoreMnemonic = PPC::STDCX;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  Register dest = MI.getOperand(0).getReg();
 | 
						|
  Register ptrA = MI.getOperand(1).getReg();
 | 
						|
  Register ptrB = MI.getOperand(2).getReg();
 | 
						|
  Register incr = MI.getOperand(3).getReg();
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *loop2MBB =
 | 
						|
    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  if (CmpOpcode)
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  Register TmpReg = (!BinOpcode) ? incr :
 | 
						|
    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
 | 
						|
                                           : &PPC::GPRCRegClass);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  //  loopMBB:
 | 
						|
  //   l[wd]arx dest, ptr
 | 
						|
  //   add r0, dest, incr
 | 
						|
  //   st[wd]cx. r0, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
 | 
						|
  // For max/min...
 | 
						|
  //  loopMBB:
 | 
						|
  //   l[wd]arx dest, ptr
 | 
						|
  //   cmpl?[wd] incr, dest
 | 
						|
  //   bgt exitMBB
 | 
						|
  //  loop2MBB:
 | 
						|
  //   st[wd]cx. dest, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
 | 
						|
    .addReg(ptrA).addReg(ptrB);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | 
						|
  if (CmpOpcode) {
 | 
						|
    // Signed comparisons of byte or halfword values must be sign-extended.
 | 
						|
    if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
 | 
						|
      Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
      BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
 | 
						|
              ExtReg).addReg(dest);
 | 
						|
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
        .addReg(incr).addReg(ExtReg);
 | 
						|
    } else
 | 
						|
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
        .addReg(incr).addReg(dest);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    BB = loop2MBB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
 | 
						|
  switch(MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case PPC::COPY:
 | 
						|
    return TII->isSignExtended(MI);
 | 
						|
  case PPC::LHA:
 | 
						|
  case PPC::LHA8:
 | 
						|
  case PPC::LHAU:
 | 
						|
  case PPC::LHAU8:
 | 
						|
  case PPC::LHAUX:
 | 
						|
  case PPC::LHAUX8:
 | 
						|
  case PPC::LHAX:
 | 
						|
  case PPC::LHAX8:
 | 
						|
  case PPC::LWA:
 | 
						|
  case PPC::LWAUX:
 | 
						|
  case PPC::LWAX:
 | 
						|
  case PPC::LWAX_32:
 | 
						|
  case PPC::LWA_32:
 | 
						|
  case PPC::PLHA:
 | 
						|
  case PPC::PLHA8:
 | 
						|
  case PPC::PLHA8pc:
 | 
						|
  case PPC::PLHApc:
 | 
						|
  case PPC::PLWA:
 | 
						|
  case PPC::PLWA8:
 | 
						|
  case PPC::PLWA8pc:
 | 
						|
  case PPC::PLWApc:
 | 
						|
  case PPC::EXTSB:
 | 
						|
  case PPC::EXTSB8:
 | 
						|
  case PPC::EXTSB8_32_64:
 | 
						|
  case PPC::EXTSB8_rec:
 | 
						|
  case PPC::EXTSB_rec:
 | 
						|
  case PPC::EXTSH:
 | 
						|
  case PPC::EXTSH8:
 | 
						|
  case PPC::EXTSH8_32_64:
 | 
						|
  case PPC::EXTSH8_rec:
 | 
						|
  case PPC::EXTSH_rec:
 | 
						|
  case PPC::EXTSW:
 | 
						|
  case PPC::EXTSWSLI:
 | 
						|
  case PPC::EXTSWSLI_32_64:
 | 
						|
  case PPC::EXTSWSLI_32_64_rec:
 | 
						|
  case PPC::EXTSWSLI_rec:
 | 
						|
  case PPC::EXTSW_32:
 | 
						|
  case PPC::EXTSW_32_64:
 | 
						|
  case PPC::EXTSW_32_64_rec:
 | 
						|
  case PPC::EXTSW_rec:
 | 
						|
  case PPC::SRAW:
 | 
						|
  case PPC::SRAWI:
 | 
						|
  case PPC::SRAWI_rec:
 | 
						|
  case PPC::SRAW_rec:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
 | 
						|
    MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
    bool is8bit, // operation
 | 
						|
    unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const PPCInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  // If this is a signed comparison and the value being compared is not known
 | 
						|
  // to be sign extended, sign extend it here.
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  Register incr = MI.getOperand(3).getReg();
 | 
						|
  bool IsSignExtended = Register::isVirtualRegister(incr) &&
 | 
						|
    isSignExtended(*RegInfo.getVRegDef(incr), TII);
 | 
						|
 | 
						|
  if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
 | 
						|
    Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
 | 
						|
        .addReg(MI.getOperand(3).getReg());
 | 
						|
    MI.getOperand(3).setReg(ValueReg);
 | 
						|
  }
 | 
						|
  // If we support part-word atomic mnemonics, just use them
 | 
						|
  if (Subtarget.hasPartwordAtomics())
 | 
						|
    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
 | 
						|
                            CmpPred);
 | 
						|
 | 
						|
  // In 64 bit mode we have to use 64 bits for addresses, even though the
 | 
						|
  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | 
						|
  // registers without caring whether they're 32 or 64, but here we're
 | 
						|
  // doing actual arithmetic on the addresses.
 | 
						|
  bool is64bit = Subtarget.isPPC64();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  Register dest = MI.getOperand(0).getReg();
 | 
						|
  Register ptrA = MI.getOperand(1).getReg();
 | 
						|
  Register ptrB = MI.getOperand(2).getReg();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *loop2MBB =
 | 
						|
      CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  if (CmpOpcode)
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
      is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
 | 
						|
 | 
						|
  Register PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register ShiftReg =
 | 
						|
      isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register MaskReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
  Register Ptr1Reg;
 | 
						|
  Register TmpReg =
 | 
						|
      (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  // The 4-byte load must be aligned, while a char or short may be
 | 
						|
  // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
  //   xori shift, shift1, 24 [16]
 | 
						|
  //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
  //   slw incr2, incr, shift
 | 
						|
  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
  //   slw mask, mask2, shift
 | 
						|
  //  loopMBB:
 | 
						|
  //   lwarx tmpDest, ptr
 | 
						|
  //   add tmp, tmpDest, incr2
 | 
						|
  //   andc tmp2, tmpDest, mask
 | 
						|
  //   and tmp3, tmp, mask
 | 
						|
  //   or tmp4, tmp3, tmp2
 | 
						|
  //   stwcx. tmp4, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
  //   srw SrwDest, tmpDest, shift
 | 
						|
  //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
 | 
						|
  if (ptrA != ZeroReg) {
 | 
						|
    Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
        .addReg(ptrA)
 | 
						|
        .addReg(ptrB);
 | 
						|
  } else {
 | 
						|
    Ptr1Reg = ptrB;
 | 
						|
  }
 | 
						|
  // We need use 32-bit subregister to avoid mismatch register class in 64-bit
 | 
						|
  // mode.
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
 | 
						|
      .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
 | 
						|
      .addImm(3)
 | 
						|
      .addImm(27)
 | 
						|
      .addImm(is8bit ? 28 : 27);
 | 
						|
  if (!isLittleEndian)
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
 | 
						|
        .addReg(Shift1Reg)
 | 
						|
        .addImm(is8bit ? 24 : 16);
 | 
						|
  if (is64bit)
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
        .addReg(Ptr1Reg)
 | 
						|
        .addImm(0)
 | 
						|
        .addImm(61);
 | 
						|
  else
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
        .addReg(Ptr1Reg)
 | 
						|
        .addImm(0)
 | 
						|
        .addImm(0)
 | 
						|
        .addImm(29);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
 | 
						|
  if (is8bit)
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
  else {
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | 
						|
        .addReg(Mask3Reg)
 | 
						|
        .addImm(65535);
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | 
						|
      .addReg(Mask2Reg)
 | 
						|
      .addReg(ShiftReg);
 | 
						|
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
      .addReg(ZeroReg)
 | 
						|
      .addReg(PtrReg);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
 | 
						|
        .addReg(Incr2Reg)
 | 
						|
        .addReg(TmpDestReg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
 | 
						|
      .addReg(TmpDestReg)
 | 
						|
      .addReg(MaskReg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
 | 
						|
  if (CmpOpcode) {
 | 
						|
    // For unsigned comparisons, we can directly compare the shifted values.
 | 
						|
    // For signed comparisons we shift and sign extend.
 | 
						|
    Register SReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), SReg)
 | 
						|
        .addReg(TmpDestReg)
 | 
						|
        .addReg(MaskReg);
 | 
						|
    unsigned ValueReg = SReg;
 | 
						|
    unsigned CmpReg = Incr2Reg;
 | 
						|
    if (CmpOpcode == PPC::CMPW) {
 | 
						|
      ValueReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
 | 
						|
          .addReg(SReg)
 | 
						|
          .addReg(ShiftReg);
 | 
						|
      Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
      BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
 | 
						|
          .addReg(ValueReg);
 | 
						|
      ValueReg = ValueSReg;
 | 
						|
      CmpReg = incr;
 | 
						|
    }
 | 
						|
    BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
        .addReg(CmpReg)
 | 
						|
        .addReg(ValueReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(CmpPred)
 | 
						|
        .addReg(PPC::CR0)
 | 
						|
        .addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    BB = loop2MBB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::STWCX))
 | 
						|
      .addReg(Tmp4Reg)
 | 
						|
      .addReg(ZeroReg)
 | 
						|
      .addReg(PtrReg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE)
 | 
						|
      .addReg(PPC::CR0)
 | 
						|
      .addMBB(loopMBB);
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  // Since the shift amount is not a constant, we need to clear
 | 
						|
  // the upper bits with a separate RLWINM.
 | 
						|
  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
 | 
						|
      .addReg(SrwDestReg)
 | 
						|
      .addImm(0)
 | 
						|
      .addImm(is8bit ? 24 : 16)
 | 
						|
      .addImm(31);
 | 
						|
  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
 | 
						|
      .addReg(TmpDestReg)
 | 
						|
      .addReg(ShiftReg);
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
llvm::MachineBasicBlock *
 | 
						|
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
 | 
						|
                                    MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  MachineFunction::iterator I = ++MBB->getIterator();
 | 
						|
 | 
						|
  Register DstReg = MI.getOperand(0).getReg();
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | 
						|
  assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
 | 
						|
  Register mainDstReg = MRI.createVirtualRegister(RC);
 | 
						|
  Register restoreDstReg = MRI.createVirtualRegister(RC);
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
  // For v = setjmp(buf), we generate
 | 
						|
  //
 | 
						|
  // thisMBB:
 | 
						|
  //  SjLjSetup mainMBB
 | 
						|
  //  bl mainMBB
 | 
						|
  //  v_restore = 1
 | 
						|
  //  b sinkMBB
 | 
						|
  //
 | 
						|
  // mainMBB:
 | 
						|
  //  buf[LabelOffset] = LR
 | 
						|
  //  v_main = 0
 | 
						|
  //
 | 
						|
  // sinkMBB:
 | 
						|
  //  v = phi(main, restore)
 | 
						|
  //
 | 
						|
 | 
						|
  MachineBasicBlock *thisMBB = MBB;
 | 
						|
  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MF->insert(I, mainMBB);
 | 
						|
  MF->insert(I, sinkMBB);
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
  sinkMBB->splice(sinkMBB->begin(), MBB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  // Note that the structure of the jmp_buf used here is not compatible
 | 
						|
  // with that used by libc, and is not designed to be. Specifically, it
 | 
						|
  // stores only those 'reserved' registers that LLVM does not otherwise
 | 
						|
  // understand how to spill. Also, by convention, by the time this
 | 
						|
  // intrinsic is called, Clang has already stored the frame address in the
 | 
						|
  // first slot of the buffer and stack address in the third. Following the
 | 
						|
  // X86 target code, we'll store the jump address in the second slot. We also
 | 
						|
  // need to save the TOC pointer (R2) to handle jumps between shared
 | 
						|
  // libraries, and that will be stored in the fourth slot. The thread
 | 
						|
  // identifier (R13) is not affected.
 | 
						|
 | 
						|
  // thisMBB:
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | 
						|
  const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | 
						|
 | 
						|
  // Prepare IP either in reg.
 | 
						|
  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
 | 
						|
  Register LabelReg = MRI.createVirtualRegister(PtrRC);
 | 
						|
  Register BufReg = MI.getOperand(1).getReg();
 | 
						|
 | 
						|
  if (Subtarget.is64BitELFABI()) {
 | 
						|
    setUsesTOCBasePtr(*MBB->getParent());
 | 
						|
    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
 | 
						|
              .addReg(PPC::X2)
 | 
						|
              .addImm(TOCOffset)
 | 
						|
              .addReg(BufReg)
 | 
						|
              .cloneMemRefs(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Naked functions never have a base pointer, and so we use r1. For all
 | 
						|
  // other functions, this decision must be delayed until during PEI.
 | 
						|
  unsigned BaseReg;
 | 
						|
  if (MF->getFunction().hasFnAttribute(Attribute::Naked))
 | 
						|
    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
 | 
						|
  else
 | 
						|
    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
 | 
						|
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL,
 | 
						|
                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
 | 
						|
            .addReg(BaseReg)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg)
 | 
						|
            .cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Setup
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
 | 
						|
  MIB.addRegMask(TRI->getNoPreservedMask());
 | 
						|
 | 
						|
  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
 | 
						|
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
 | 
						|
          .addMBB(mainMBB);
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
 | 
						|
 | 
						|
  thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
 | 
						|
  thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
 | 
						|
 | 
						|
  // mainMBB:
 | 
						|
  //  mainDstReg = 0
 | 
						|
  MIB =
 | 
						|
      BuildMI(mainMBB, DL,
 | 
						|
              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
 | 
						|
 | 
						|
  // Store IP
 | 
						|
  if (Subtarget.isPPC64()) {
 | 
						|
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
 | 
						|
            .addReg(LabelReg)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
 | 
						|
            .addReg(LabelReg)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
 | 
						|
  mainMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // sinkMBB:
 | 
						|
  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | 
						|
          TII->get(PPC::PHI), DstReg)
 | 
						|
    .addReg(mainDstReg).addMBB(mainMBB)
 | 
						|
    .addReg(restoreDstReg).addMBB(thisMBB);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return sinkMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
 | 
						|
                                     MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
  Register Tmp = MRI.createVirtualRegister(RC);
 | 
						|
  // Since FP is only updated here but NOT referenced, it's treated as GPR.
 | 
						|
  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
 | 
						|
  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
 | 
						|
  unsigned BP =
 | 
						|
      (PVT == MVT::i64)
 | 
						|
          ? PPC::X30
 | 
						|
          : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
 | 
						|
                                                              : PPC::R30);
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  const int64_t SPOffset    = 2 * PVT.getStoreSize();
 | 
						|
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | 
						|
  const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | 
						|
 | 
						|
  Register BufReg = MI.getOperand(0).getReg();
 | 
						|
 | 
						|
  // Reload FP (the jumped-to function may not have had a
 | 
						|
  // frame pointer, and if so, then its r31 will be restored
 | 
						|
  // as necessary).
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload IP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload SP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
 | 
						|
            .addImm(SPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
 | 
						|
            .addImm(SPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload BP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload TOC
 | 
						|
  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
 | 
						|
    setUsesTOCBasePtr(*MBB->getParent());
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
 | 
						|
              .addImm(TOCOffset)
 | 
						|
              .addReg(BufReg)
 | 
						|
              .cloneMemRefs(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Jump
 | 
						|
  BuildMI(*MBB, MI, DL,
 | 
						|
          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
 | 
						|
  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return MBB;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
 | 
						|
  // If the function specifically requests inline stack probes, emit them.
 | 
						|
  if (MF.getFunction().hasFnAttribute("probe-stack"))
 | 
						|
    return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
 | 
						|
           "inline-asm";
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
 | 
						|
  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
 | 
						|
  unsigned StackAlign = TFI->getStackAlignment();
 | 
						|
  assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
 | 
						|
         "Unexpected stack alignment");
 | 
						|
  // The default stack probe size is 4096 if the function has no
 | 
						|
  // stack-probe-size attribute.
 | 
						|
  unsigned StackProbeSize = 4096;
 | 
						|
  const Function &Fn = MF.getFunction();
 | 
						|
  if (Fn.hasFnAttribute("stack-probe-size"))
 | 
						|
    Fn.getFnAttribute("stack-probe-size")
 | 
						|
        .getValueAsString()
 | 
						|
        .getAsInteger(0, StackProbeSize);
 | 
						|
  // Round down to the stack alignment.
 | 
						|
  StackProbeSize &= ~(StackAlign - 1);
 | 
						|
  return StackProbeSize ? StackProbeSize : StackAlign;
 | 
						|
}
 | 
						|
 | 
						|
// Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
 | 
						|
// into three phases. In the first phase, it uses pseudo instruction
 | 
						|
// PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
 | 
						|
// FinalStackPtr. In the second phase, it generates a loop for probing blocks.
 | 
						|
// At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
 | 
						|
// MaxCallFrameSize so that it can calculate correct data area pointer.
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
 | 
						|
                                    MachineBasicBlock *MBB) const {
 | 
						|
  const bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const unsigned ProbeSize = getStackProbeSize(*MF);
 | 
						|
  const BasicBlock *ProbedBB = MBB->getBasicBlock();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
  // The CFG of probing stack looks as
 | 
						|
  //         +-----+
 | 
						|
  //         | MBB |
 | 
						|
  //         +--+--+
 | 
						|
  //            |
 | 
						|
  //       +----v----+
 | 
						|
  //  +--->+ TestMBB +---+
 | 
						|
  //  |    +----+----+   |
 | 
						|
  //  |         |        |
 | 
						|
  //  |   +-----v----+   |
 | 
						|
  //  +---+ BlockMBB |   |
 | 
						|
  //      +----------+   |
 | 
						|
  //                     |
 | 
						|
  //       +---------+   |
 | 
						|
  //       | TailMBB +<--+
 | 
						|
  //       +---------+
 | 
						|
  // In MBB, calculate previous frame pointer and final stack pointer.
 | 
						|
  // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
 | 
						|
  // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
 | 
						|
  // TailMBB is spliced via \p MI.
 | 
						|
  MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
 | 
						|
  MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
 | 
						|
  MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
 | 
						|
 | 
						|
  MachineFunction::iterator MBBIter = ++MBB->getIterator();
 | 
						|
  MF->insert(MBBIter, TestMBB);
 | 
						|
  MF->insert(MBBIter, BlockMBB);
 | 
						|
  MF->insert(MBBIter, TailMBB);
 | 
						|
 | 
						|
  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
 | 
						|
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
 | 
						|
 | 
						|
  Register DstReg = MI.getOperand(0).getReg();
 | 
						|
  Register NegSizeReg = MI.getOperand(1).getReg();
 | 
						|
  Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
  Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
  Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
 | 
						|
  // Since value of NegSizeReg might be realigned in prologepilog, insert a
 | 
						|
  // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
 | 
						|
  // NegSize.
 | 
						|
  unsigned ProbeOpc;
 | 
						|
  if (!MRI.hasOneNonDBGUse(NegSizeReg))
 | 
						|
    ProbeOpc =
 | 
						|
        isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
 | 
						|
  else
 | 
						|
    // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
 | 
						|
    // and NegSizeReg will be allocated in the same phyreg to avoid
 | 
						|
    // redundant copy when NegSizeReg has only one use which is current MI and
 | 
						|
    // will be replaced by PREPARE_PROBED_ALLOCA then.
 | 
						|
    ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
 | 
						|
                       : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
 | 
						|
  BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
 | 
						|
      .addDef(ActualNegSizeReg)
 | 
						|
      .addReg(NegSizeReg)
 | 
						|
      .add(MI.getOperand(2))
 | 
						|
      .add(MI.getOperand(3));
 | 
						|
 | 
						|
  // Calculate final stack pointer, which equals to SP + ActualNegSize.
 | 
						|
  BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
 | 
						|
          FinalStackPtr)
 | 
						|
      .addReg(SPReg)
 | 
						|
      .addReg(ActualNegSizeReg);
 | 
						|
 | 
						|
  // Materialize a scratch register for update.
 | 
						|
  int64_t NegProbeSize = -(int64_t)ProbeSize;
 | 
						|
  assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
 | 
						|
  Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
  if (!isInt<16>(NegProbeSize)) {
 | 
						|
    Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
 | 
						|
        .addImm(NegProbeSize >> 16);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
 | 
						|
            ScratchReg)
 | 
						|
        .addReg(TempReg)
 | 
						|
        .addImm(NegProbeSize & 0xFFFF);
 | 
						|
  } else
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
 | 
						|
        .addImm(NegProbeSize);
 | 
						|
 | 
						|
  {
 | 
						|
    // Probing leading residual part.
 | 
						|
    Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
 | 
						|
        .addReg(ActualNegSizeReg)
 | 
						|
        .addReg(ScratchReg);
 | 
						|
    Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
 | 
						|
        .addReg(Div)
 | 
						|
        .addReg(ScratchReg);
 | 
						|
    Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
 | 
						|
        .addReg(Mul)
 | 
						|
        .addReg(ActualNegSizeReg);
 | 
						|
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
 | 
						|
        .addReg(FramePointer)
 | 
						|
        .addReg(SPReg)
 | 
						|
        .addReg(NegMod);
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    // Remaining part should be multiple of ProbeSize.
 | 
						|
    Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
    BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
 | 
						|
        .addReg(SPReg)
 | 
						|
        .addReg(FinalStackPtr);
 | 
						|
    BuildMI(TestMBB, DL, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_EQ)
 | 
						|
        .addReg(CmpResult)
 | 
						|
        .addMBB(TailMBB);
 | 
						|
    TestMBB->addSuccessor(BlockMBB);
 | 
						|
    TestMBB->addSuccessor(TailMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    // Touch the block.
 | 
						|
    // |P...|P...|P...
 | 
						|
    BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
 | 
						|
        .addReg(FramePointer)
 | 
						|
        .addReg(SPReg)
 | 
						|
        .addReg(ScratchReg);
 | 
						|
    BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
 | 
						|
    BlockMBB->addSuccessor(TestMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculation of MaxCallFrameSize is deferred to prologepilog, use
 | 
						|
  // DYNAREAOFFSET pseudo instruction to get the future result.
 | 
						|
  Register MaxCallFrameSizeReg =
 | 
						|
      MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
 | 
						|
  BuildMI(TailMBB, DL,
 | 
						|
          TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
 | 
						|
          MaxCallFrameSizeReg)
 | 
						|
      .add(MI.getOperand(2))
 | 
						|
      .add(MI.getOperand(3));
 | 
						|
  BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
 | 
						|
      .addReg(SPReg)
 | 
						|
      .addReg(MaxCallFrameSizeReg);
 | 
						|
 | 
						|
  // Splice instructions after MI to TailMBB.
 | 
						|
  TailMBB->splice(TailMBB->end(), MBB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
  MBB->addSuccessor(TestMBB);
 | 
						|
 | 
						|
  // Delete the pseudo instruction.
 | 
						|
  MI.eraseFromParent();
 | 
						|
 | 
						|
  ++NumDynamicAllocaProbed;
 | 
						|
  return TailMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | 
						|
                                               MachineBasicBlock *BB) const {
 | 
						|
  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
 | 
						|
      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
 | 
						|
    if (Subtarget.is64BitELFABI() &&
 | 
						|
        MI.getOpcode() == TargetOpcode::PATCHPOINT &&
 | 
						|
        !Subtarget.isUsingPCRelativeCalls()) {
 | 
						|
      // Call lowering should have added an r2 operand to indicate a dependence
 | 
						|
      // on the TOC base pointer value. It can't however, because there is no
 | 
						|
      // way to mark the dependence as implicit there, and so the stackmap code
 | 
						|
      // will confuse it with a regular operand. Instead, add the dependence
 | 
						|
      // here.
 | 
						|
      MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
 | 
						|
    }
 | 
						|
 | 
						|
    return emitPatchPoint(MI, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
 | 
						|
      MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
 | 
						|
    return emitEHSjLjSetJmp(MI, BB);
 | 
						|
  } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
 | 
						|
             MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
 | 
						|
    return emitEHSjLjLongJmp(MI, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  // To "insert" these instructions we actually have to insert their
 | 
						|
  // control-flow patterns.
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
 | 
						|
  if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
      MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
 | 
						|
      MI.getOpcode() == PPC::SELECT_I8) {
 | 
						|
    SmallVector<MachineOperand, 2> Cond;
 | 
						|
    if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_CC_I8)
 | 
						|
      Cond.push_back(MI.getOperand(4));
 | 
						|
    else
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | 
						|
    Cond.push_back(MI.getOperand(1));
 | 
						|
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
 | 
						|
                      MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
 | 
						|
  } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_F8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_F16 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VRRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_SPE ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F16 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_SPE ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_SPE4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VRRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSRC) {
 | 
						|
    // The incoming instruction knows the destination vreg to set, the
 | 
						|
    // condition code register to branch on, the true/false values to
 | 
						|
    // select between, and a branch opcode to use.
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //  ...
 | 
						|
    //   TrueVal = ...
 | 
						|
    //   cmpTY ccX, r1, r2
 | 
						|
    //   bCC copy1MBB
 | 
						|
    //   fallthrough --> copy0MBB
 | 
						|
    MachineBasicBlock *thisMBB = BB;
 | 
						|
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    F->insert(It, copy0MBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
    sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    // Next, add the true and fallthrough blocks as its successors.
 | 
						|
    BB->addSuccessor(copy0MBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_F16 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_SPE4 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_SPE ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VRRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSFRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSSRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSRC) {
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::BC))
 | 
						|
          .addReg(MI.getOperand(1).getReg())
 | 
						|
          .addMBB(sinkMBB);
 | 
						|
    } else {
 | 
						|
      unsigned SelectPred = MI.getOperand(4).getImm();
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
          .addImm(SelectPred)
 | 
						|
          .addReg(MI.getOperand(1).getReg())
 | 
						|
          .addMBB(sinkMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    //  copy0MBB:
 | 
						|
    //   %FalseValue = ...
 | 
						|
    //   # fallthrough to sinkMBB
 | 
						|
    BB = copy0MBB;
 | 
						|
 | 
						|
    // Update machine-CFG edges
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    //  sinkMBB:
 | 
						|
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
    //  ...
 | 
						|
    BB = sinkMBB;
 | 
						|
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
 | 
						|
        .addReg(MI.getOperand(3).getReg())
 | 
						|
        .addMBB(copy0MBB)
 | 
						|
        .addReg(MI.getOperand(2).getReg())
 | 
						|
        .addMBB(thisMBB);
 | 
						|
  } else if (MI.getOpcode() == PPC::ReadTB) {
 | 
						|
    // To read the 64-bit time-base register on a 32-bit target, we read the
 | 
						|
    // two halves. Should the counter have wrapped while it was being read, we
 | 
						|
    // need to try again.
 | 
						|
    // ...
 | 
						|
    // readLoop:
 | 
						|
    // mfspr Rx,TBU # load from TBU
 | 
						|
    // mfspr Ry,TB  # load from TB
 | 
						|
    // mfspr Rz,TBU # load from TBU
 | 
						|
    // cmpw crX,Rx,Rz # check if 'old'='new'
 | 
						|
    // bne readLoop   # branch if they're not equal
 | 
						|
    // ...
 | 
						|
 | 
						|
    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    F->insert(It, readMBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
    sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    BB->addSuccessor(readMBB);
 | 
						|
    BB = readMBB;
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
    Register LoReg = MI.getOperand(0).getReg();
 | 
						|
    Register HiReg = MI.getOperand(1).getReg();
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
 | 
						|
 | 
						|
    Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
 | 
						|
        .addReg(HiReg)
 | 
						|
        .addReg(ReadAgainReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE)
 | 
						|
        .addReg(CmpReg)
 | 
						|
        .addMBB(readMBB);
 | 
						|
 | 
						|
    BB->addSuccessor(readMBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
  } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | 
						|
           MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
 | 
						|
           (Subtarget.hasPartwordAtomics() &&
 | 
						|
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
 | 
						|
           (Subtarget.hasPartwordAtomics() &&
 | 
						|
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
 | 
						|
    bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | 
						|
 | 
						|
    auto LoadMnemonic = PPC::LDARX;
 | 
						|
    auto StoreMnemonic = PPC::STDCX;
 | 
						|
    switch (MI.getOpcode()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Compare and swap of unknown size");
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I8:
 | 
						|
      LoadMnemonic = PPC::LBARX;
 | 
						|
      StoreMnemonic = PPC::STBCX;
 | 
						|
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I16:
 | 
						|
      LoadMnemonic = PPC::LHARX;
 | 
						|
      StoreMnemonic = PPC::STHCX;
 | 
						|
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I32:
 | 
						|
      LoadMnemonic = PPC::LWARX;
 | 
						|
      StoreMnemonic = PPC::STWCX;
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I64:
 | 
						|
      LoadMnemonic = PPC::LDARX;
 | 
						|
      StoreMnemonic = PPC::STDCX;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    Register dest = MI.getOperand(0).getReg();
 | 
						|
    Register ptrA = MI.getOperand(1).getReg();
 | 
						|
    Register ptrB = MI.getOperand(2).getReg();
 | 
						|
    Register oldval = MI.getOperand(3).getReg();
 | 
						|
    Register newval = MI.getOperand(4).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // loop1MBB:
 | 
						|
    //   l[bhwd]arx dest, ptr
 | 
						|
    //   cmp[wd] dest, oldval
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   st[bhwd]cx. newval, ptr
 | 
						|
    //   bne- loopMBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   st[bhwd]cx. dest, ptr
 | 
						|
    // exitBB:
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | 
						|
        .addReg(oldval)
 | 
						|
        .addReg(dest);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE)
 | 
						|
        .addReg(PPC::CR0)
 | 
						|
        .addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
        .addReg(newval)
 | 
						|
        .addReg(ptrA)
 | 
						|
        .addReg(ptrB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE)
 | 
						|
        .addReg(PPC::CR0)
 | 
						|
        .addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
        .addReg(dest)
 | 
						|
        .addReg(ptrA)
 | 
						|
        .addReg(ptrB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
  } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | 
						|
             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | 
						|
    // We must use 64-bit registers for addresses when targeting 64-bit,
 | 
						|
    // since we're actually doing arithmetic on them.  Other registers
 | 
						|
    // can be 32-bit.
 | 
						|
    bool is64bit = Subtarget.isPPC64();
 | 
						|
    bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
    bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | 
						|
 | 
						|
    Register dest = MI.getOperand(0).getReg();
 | 
						|
    Register ptrA = MI.getOperand(1).getReg();
 | 
						|
    Register ptrB = MI.getOperand(2).getReg();
 | 
						|
    Register oldval = MI.getOperand(3).getReg();
 | 
						|
    Register newval = MI.getOperand(4).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    const TargetRegisterClass *RC =
 | 
						|
        is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
    const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
 | 
						|
 | 
						|
    Register PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register ShiftReg =
 | 
						|
        isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register MaskReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register Ptr1Reg;
 | 
						|
    Register TmpReg = RegInfo.createVirtualRegister(GPRC);
 | 
						|
    Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // The 4-byte load must be aligned, while a char or short may be
 | 
						|
    // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
    //   xori shift, shift1, 24 [16]
 | 
						|
    //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
    //   slw newval2, newval, shift
 | 
						|
    //   slw oldval2, oldval,shift
 | 
						|
    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
    //   slw mask, mask2, shift
 | 
						|
    //   and newval3, newval2, mask
 | 
						|
    //   and oldval3, oldval2, mask
 | 
						|
    // loop1MBB:
 | 
						|
    //   lwarx tmpDest, ptr
 | 
						|
    //   and tmp, tmpDest, mask
 | 
						|
    //   cmpw tmp, oldval3
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   andc tmp2, tmpDest, mask
 | 
						|
    //   or tmp4, tmp2, newval3
 | 
						|
    //   stwcx. tmp4, ptr
 | 
						|
    //   bne- loop1MBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   stwcx. tmpDest, ptr
 | 
						|
    // exitBB:
 | 
						|
    //   srw dest, tmpDest, shift
 | 
						|
    if (ptrA != ZeroReg) {
 | 
						|
      Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
          .addReg(ptrA)
 | 
						|
          .addReg(ptrB);
 | 
						|
    } else {
 | 
						|
      Ptr1Reg = ptrB;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need use 32-bit subregister to avoid mismatch register class in 64-bit
 | 
						|
    // mode.
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
 | 
						|
        .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
 | 
						|
        .addImm(3)
 | 
						|
        .addImm(27)
 | 
						|
        .addImm(is8bit ? 28 : 27);
 | 
						|
    if (!isLittleEndian)
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
 | 
						|
          .addReg(Shift1Reg)
 | 
						|
          .addImm(is8bit ? 24 : 16);
 | 
						|
    if (is64bit)
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
          .addReg(Ptr1Reg)
 | 
						|
          .addImm(0)
 | 
						|
          .addImm(61);
 | 
						|
    else
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
          .addReg(Ptr1Reg)
 | 
						|
          .addImm(0)
 | 
						|
          .addImm(0)
 | 
						|
          .addImm(29);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
 | 
						|
        .addReg(newval)
 | 
						|
        .addReg(ShiftReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
 | 
						|
        .addReg(oldval)
 | 
						|
        .addReg(ShiftReg);
 | 
						|
    if (is8bit)
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
    else {
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | 
						|
          .addReg(Mask3Reg)
 | 
						|
          .addImm(65535);
 | 
						|
    }
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | 
						|
        .addReg(Mask2Reg)
 | 
						|
        .addReg(ShiftReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
 | 
						|
        .addReg(NewVal2Reg)
 | 
						|
        .addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
 | 
						|
        .addReg(OldVal2Reg)
 | 
						|
        .addReg(MaskReg);
 | 
						|
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
        .addReg(ZeroReg)
 | 
						|
        .addReg(PtrReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
 | 
						|
        .addReg(TmpDestReg)
 | 
						|
        .addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
 | 
						|
        .addReg(TmpReg)
 | 
						|
        .addReg(OldVal3Reg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE)
 | 
						|
        .addReg(PPC::CR0)
 | 
						|
        .addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
 | 
						|
        .addReg(TmpDestReg)
 | 
						|
        .addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
 | 
						|
        .addReg(Tmp2Reg)
 | 
						|
        .addReg(NewVal3Reg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::STWCX))
 | 
						|
        .addReg(Tmp4Reg)
 | 
						|
        .addReg(ZeroReg)
 | 
						|
        .addReg(PtrReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE)
 | 
						|
        .addReg(PPC::CR0)
 | 
						|
        .addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::STWCX))
 | 
						|
        .addReg(TmpDestReg)
 | 
						|
        .addReg(ZeroReg)
 | 
						|
        .addReg(PtrReg);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
 | 
						|
        .addReg(TmpReg)
 | 
						|
        .addReg(ShiftReg);
 | 
						|
  } else if (MI.getOpcode() == PPC::FADDrtz) {
 | 
						|
    // This pseudo performs an FADD with rounding mode temporarily forced
 | 
						|
    // to round-to-zero.  We emit this via custom inserter since the FPSCR
 | 
						|
    // is not modeled at the SelectionDAG level.
 | 
						|
    Register Dest = MI.getOperand(0).getReg();
 | 
						|
    Register Src1 = MI.getOperand(1).getReg();
 | 
						|
    Register Src2 = MI.getOperand(2).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
 | 
						|
    // Save FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
 | 
						|
 | 
						|
    // Set rounding mode to round-to-zero.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
 | 
						|
        .addImm(31)
 | 
						|
        .addReg(PPC::RM, RegState::ImplicitDefine);
 | 
						|
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
 | 
						|
        .addImm(30)
 | 
						|
        .addReg(PPC::RM, RegState::ImplicitDefine);
 | 
						|
 | 
						|
    // Perform addition.
 | 
						|
    auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
 | 
						|
                   .addReg(Src1)
 | 
						|
                   .addReg(Src2);
 | 
						|
    if (MI.getFlag(MachineInstr::NoFPExcept))
 | 
						|
      MIB.setMIFlag(MachineInstr::NoFPExcept);
 | 
						|
 | 
						|
    // Restore FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
 | 
						|
  } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
 | 
						|
             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
 | 
						|
             MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
 | 
						|
             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
 | 
						|
    unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
 | 
						|
                       MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
 | 
						|
                          ? PPC::ANDI8_rec
 | 
						|
                          : PPC::ANDI_rec;
 | 
						|
    bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
 | 
						|
                 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    Register Dest = RegInfo.createVirtualRegister(
 | 
						|
        Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
 | 
						|
 | 
						|
    DebugLoc Dl = MI.getDebugLoc();
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
 | 
						|
        .addReg(MI.getOperand(1).getReg())
 | 
						|
        .addImm(1);
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
 | 
						|
            MI.getOperand(0).getReg())
 | 
						|
        .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
 | 
						|
  } else if (MI.getOpcode() == PPC::TCHECK_RET) {
 | 
						|
    DebugLoc Dl = MI.getDebugLoc();
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
 | 
						|
            MI.getOperand(0).getReg())
 | 
						|
        .addReg(CRReg);
 | 
						|
  } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
 | 
						|
    DebugLoc Dl = MI.getDebugLoc();
 | 
						|
    unsigned Imm = MI.getOperand(1).getImm();
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
 | 
						|
            MI.getOperand(0).getReg())
 | 
						|
        .addReg(PPC::CR0EQ);
 | 
						|
  } else if (MI.getOpcode() == PPC::SETRNDi) {
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    Register OldFPSCRReg = MI.getOperand(0).getReg();
 | 
						|
 | 
						|
    // Save FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
 | 
						|
 | 
						|
    // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
 | 
						|
    // the following settings:
 | 
						|
    //   00 Round to nearest
 | 
						|
    //   01 Round to 0
 | 
						|
    //   10 Round to +inf
 | 
						|
    //   11 Round to -inf
 | 
						|
 | 
						|
    // When the operand is immediate, using the two least significant bits of
 | 
						|
    // the immediate to set the bits 62:63 of FPSCR.
 | 
						|
    unsigned Mode = MI.getOperand(1).getImm();
 | 
						|
    BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
 | 
						|
        .addImm(31)
 | 
						|
        .addReg(PPC::RM, RegState::ImplicitDefine);
 | 
						|
 | 
						|
    BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
 | 
						|
        .addImm(30)
 | 
						|
        .addReg(PPC::RM, RegState::ImplicitDefine);
 | 
						|
  } else if (MI.getOpcode() == PPC::SETRND) {
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
 | 
						|
    // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
 | 
						|
    // If the target doesn't have DirectMove, we should use stack to do the
 | 
						|
    // conversion, because the target doesn't have the instructions like mtvsrd
 | 
						|
    // or mfvsrd to do this conversion directly.
 | 
						|
    auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
 | 
						|
      if (Subtarget.hasDirectMove()) {
 | 
						|
        BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
 | 
						|
          .addReg(SrcReg);
 | 
						|
      } else {
 | 
						|
        // Use stack to do the register copy.
 | 
						|
        unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
 | 
						|
        MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
        const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
 | 
						|
        if (RC == &PPC::F8RCRegClass) {
 | 
						|
          // Copy register from F8RCRegClass to G8RCRegclass.
 | 
						|
          assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
 | 
						|
                 "Unsupported RegClass.");
 | 
						|
 | 
						|
          StoreOp = PPC::STFD;
 | 
						|
          LoadOp = PPC::LD;
 | 
						|
        } else {
 | 
						|
          // Copy register from G8RCRegClass to F8RCRegclass.
 | 
						|
          assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
 | 
						|
                 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
 | 
						|
                 "Unsupported RegClass.");
 | 
						|
        }
 | 
						|
 | 
						|
        MachineFrameInfo &MFI = F->getFrameInfo();
 | 
						|
        int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
 | 
						|
 | 
						|
        MachineMemOperand *MMOStore = F->getMachineMemOperand(
 | 
						|
            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
 | 
						|
            MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
 | 
						|
            MFI.getObjectAlign(FrameIdx));
 | 
						|
 | 
						|
        // Store the SrcReg into the stack.
 | 
						|
        BuildMI(*BB, MI, dl, TII->get(StoreOp))
 | 
						|
          .addReg(SrcReg)
 | 
						|
          .addImm(0)
 | 
						|
          .addFrameIndex(FrameIdx)
 | 
						|
          .addMemOperand(MMOStore);
 | 
						|
 | 
						|
        MachineMemOperand *MMOLoad = F->getMachineMemOperand(
 | 
						|
            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
 | 
						|
            MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
 | 
						|
            MFI.getObjectAlign(FrameIdx));
 | 
						|
 | 
						|
        // Load from the stack where SrcReg is stored, and save to DestReg,
 | 
						|
        // so we have done the RegClass conversion from RegClass::SrcReg to
 | 
						|
        // RegClass::DestReg.
 | 
						|
        BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
 | 
						|
          .addImm(0)
 | 
						|
          .addFrameIndex(FrameIdx)
 | 
						|
          .addMemOperand(MMOLoad);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    Register OldFPSCRReg = MI.getOperand(0).getReg();
 | 
						|
 | 
						|
    // Save FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
 | 
						|
 | 
						|
    // When the operand is gprc register, use two least significant bits of the
 | 
						|
    // register and mtfsf instruction to set the bits 62:63 of FPSCR.
 | 
						|
    //
 | 
						|
    // copy OldFPSCRTmpReg, OldFPSCRReg
 | 
						|
    // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
 | 
						|
    // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
 | 
						|
    // copy NewFPSCRReg, NewFPSCRTmpReg
 | 
						|
    // mtfsf 255, NewFPSCRReg
 | 
						|
    MachineOperand SrcOp = MI.getOperand(1);
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
 | 
						|
    copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
 | 
						|
 | 
						|
    Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
    Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
 | 
						|
    // The first operand of INSERT_SUBREG should be a register which has
 | 
						|
    // subregisters, we only care about its RegClass, so we should use an
 | 
						|
    // IMPLICIT_DEF register.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
 | 
						|
      .addReg(ImDefReg)
 | 
						|
      .add(SrcOp)
 | 
						|
      .addImm(1);
 | 
						|
 | 
						|
    Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
 | 
						|
      .addReg(OldFPSCRTmpReg)
 | 
						|
      .addReg(ExtSrcReg)
 | 
						|
      .addImm(0)
 | 
						|
      .addImm(62);
 | 
						|
 | 
						|
    Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
    copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
 | 
						|
 | 
						|
    // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
 | 
						|
    // bits of FPSCR.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
 | 
						|
      .addImm(255)
 | 
						|
      .addReg(NewFPSCRReg)
 | 
						|
      .addImm(0)
 | 
						|
      .addImm(0);
 | 
						|
  } else if (MI.getOpcode() == PPC::SETFLM) {
 | 
						|
    DebugLoc Dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    // Result of setflm is previous FPSCR content, so we need to save it first.
 | 
						|
    Register OldFPSCRReg = MI.getOperand(0).getReg();
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
 | 
						|
 | 
						|
    // Put bits in 32:63 to FPSCR.
 | 
						|
    Register NewFPSCRReg = MI.getOperand(1).getReg();
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
 | 
						|
        .addImm(255)
 | 
						|
        .addReg(NewFPSCRReg)
 | 
						|
        .addImm(0)
 | 
						|
        .addImm(0);
 | 
						|
  } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
 | 
						|
             MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
 | 
						|
    return emitProbedAlloca(MI, BB);
 | 
						|
  } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
 | 
						|
    DebugLoc DL = MI.getDebugLoc();
 | 
						|
    Register Src = MI.getOperand(2).getReg();
 | 
						|
    Register Lo = MI.getOperand(0).getReg();
 | 
						|
    Register Hi = MI.getOperand(1).getReg();
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
 | 
						|
        .addDef(Lo)
 | 
						|
        .addUse(Src, 0, PPC::sub_gp8_x1);
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
 | 
						|
        .addDef(Hi)
 | 
						|
        .addUse(Src, 0, PPC::sub_gp8_x0);
 | 
						|
  } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
 | 
						|
             MI.getOpcode() == PPC::STQX_PSEUDO) {
 | 
						|
    DebugLoc DL = MI.getDebugLoc();
 | 
						|
    // Ptr is used as the ptr_rc_no_r0 part
 | 
						|
    // of LQ/STQ's memory operand and adding result of RA and RB,
 | 
						|
    // so it has to be g8rc_and_g8rc_nox0.
 | 
						|
    Register Ptr =
 | 
						|
        F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | 
						|
    Register Val = MI.getOperand(0).getReg();
 | 
						|
    Register RA = MI.getOperand(1).getReg();
 | 
						|
    Register RB = MI.getOperand(2).getReg();
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
 | 
						|
    BuildMI(*BB, MI, DL,
 | 
						|
            MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
 | 
						|
                                              : TII->get(PPC::STQ))
 | 
						|
        .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
 | 
						|
        .addImm(0)
 | 
						|
        .addReg(Ptr);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unexpected instr type to insert");
 | 
						|
  }
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Target Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
 | 
						|
  // For the estimates, convergence is quadratic, so we essentially double the
 | 
						|
  // number of digits correct after every iteration. For both FRE and FRSQRTE,
 | 
						|
  // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
 | 
						|
  // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
 | 
						|
  int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
 | 
						|
  if (VT.getScalarType() == MVT::f64)
 | 
						|
    RefinementSteps++;
 | 
						|
  return RefinementSteps;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                            const DenormalMode &Mode) const {
 | 
						|
  // We only have VSX Vector Test for software Square Root.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (!isTypeLegal(MVT::i1) ||
 | 
						|
      (VT != MVT::f64 &&
 | 
						|
       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
 | 
						|
    return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  // The output register of FTSQRT is CR field.
 | 
						|
  SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
 | 
						|
  // ftsqrt BF,FRB
 | 
						|
  // Let e_b be the unbiased exponent of the double-precision
 | 
						|
  // floating-point operand in register FRB.
 | 
						|
  // fe_flag is set to 1 if either of the following conditions occurs.
 | 
						|
  //   - The double-precision floating-point operand in register FRB is a zero,
 | 
						|
  //     a NaN, or an infinity, or a negative value.
 | 
						|
  //   - e_b is less than or equal to -970.
 | 
						|
  // Otherwise fe_flag is set to 0.
 | 
						|
  // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
 | 
						|
  // not eligible for iteration. (zero/negative/infinity/nan or unbiased
 | 
						|
  // exponent is less than -970)
 | 
						|
  SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
 | 
						|
  return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
 | 
						|
                                    FTSQRT, SRIdxVal),
 | 
						|
                 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  // We only have VSX Vector Square Root.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT != MVT::f64 &&
 | 
						|
      ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
 | 
						|
    return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
 | 
						|
 | 
						|
  return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
 | 
						|
                                           int Enabled, int &RefinementSteps,
 | 
						|
                                           bool &UseOneConstNR,
 | 
						|
                                           bool Reciprocal) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
 | 
						|
      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | 
						|
      (VT == MVT::v2f64 && Subtarget.hasVSX())) {
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | 
						|
 | 
						|
    // The Newton-Raphson computation with a single constant does not provide
 | 
						|
    // enough accuracy on some CPUs.
 | 
						|
    UseOneConstNR = !Subtarget.needsTwoConstNR();
 | 
						|
    return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
 | 
						|
                                            int Enabled,
 | 
						|
                                            int &RefinementSteps) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
 | 
						|
      (VT == MVT::f64 && Subtarget.hasFRE()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | 
						|
      (VT == MVT::v2f64 && Subtarget.hasVSX())) {
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | 
						|
    return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
 | 
						|
  // Note: This functionality is used only when unsafe-fp-math is enabled, and
 | 
						|
  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
 | 
						|
  // enabled for division), this functionality is redundant with the default
 | 
						|
  // combiner logic (once the division -> reciprocal/multiply transformation
 | 
						|
  // has taken place). As a result, this matters more for older cores than for
 | 
						|
  // newer ones.
 | 
						|
 | 
						|
  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
 | 
						|
  // reciprocal if there are two or more FDIVs (for embedded cores with only
 | 
						|
  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
 | 
						|
  switch (Subtarget.getCPUDirective()) {
 | 
						|
  default:
 | 
						|
    return 3;
 | 
						|
  case PPC::DIR_440:
 | 
						|
  case PPC::DIR_A2:
 | 
						|
  case PPC::DIR_E500:
 | 
						|
  case PPC::DIR_E500mc:
 | 
						|
  case PPC::DIR_E5500:
 | 
						|
    return 2;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// isConsecutiveLSLoc needs to work even if all adds have not yet been
 | 
						|
// collapsed, and so we need to look through chains of them.
 | 
						|
static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
 | 
						|
                                     int64_t& Offset, SelectionDAG &DAG) {
 | 
						|
  if (DAG.isBaseWithConstantOffset(Loc)) {
 | 
						|
    Base = Loc.getOperand(0);
 | 
						|
    Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
 | 
						|
 | 
						|
    // The base might itself be a base plus an offset, and if so, accumulate
 | 
						|
    // that as well.
 | 
						|
    getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
 | 
						|
                            unsigned Bytes, int Dist,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  if (VT.getSizeInBits() / 8 != Bytes)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue BaseLoc = Base->getBasePtr();
 | 
						|
  if (Loc.getOpcode() == ISD::FrameIndex) {
 | 
						|
    if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | 
						|
      return false;
 | 
						|
    const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
 | 
						|
    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | 
						|
    int FS  = MFI.getObjectSize(FI);
 | 
						|
    int BFS = MFI.getObjectSize(BFI);
 | 
						|
    if (FS != BFS || FS != (int)Bytes) return false;
 | 
						|
    return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Base1 = Loc, Base2 = BaseLoc;
 | 
						|
  int64_t Offset1 = 0, Offset2 = 0;
 | 
						|
  getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
 | 
						|
  getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
 | 
						|
  if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  const GlobalValue *GV1 = nullptr;
 | 
						|
  const GlobalValue *GV2 = nullptr;
 | 
						|
  Offset1 = 0;
 | 
						|
  Offset2 = 0;
 | 
						|
  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
 | 
						|
  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
 | 
						|
  if (isGA1 && isGA2 && GV1 == GV2)
 | 
						|
    return Offset1 == (Offset2 + Dist*Bytes);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
 | 
						|
// not enforce equality of the chain operands.
 | 
						|
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
 | 
						|
                            unsigned Bytes, int Dist,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
 | 
						|
    EVT VT = LS->getMemoryVT();
 | 
						|
    SDValue Loc = LS->getBasePtr();
 | 
						|
    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
 | 
						|
    EVT VT;
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    default: return false;
 | 
						|
    case Intrinsic::ppc_altivec_lvx:
 | 
						|
    case Intrinsic::ppc_altivec_lvxl:
 | 
						|
    case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
    case Intrinsic::ppc_vsx_lxvw4x_be:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
 | 
						|
    EVT VT;
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    default: return false;
 | 
						|
    case Intrinsic::ppc_altivec_stvx:
 | 
						|
    case Intrinsic::ppc_altivec_stvxl:
 | 
						|
    case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvw4x_be:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Return true is there is a nearyby consecutive load to the one provided
 | 
						|
// (regardless of alignment). We search up and down the chain, looking though
 | 
						|
// token factors and other loads (but nothing else). As a result, a true result
 | 
						|
// indicates that it is safe to create a new consecutive load adjacent to the
 | 
						|
// load provided.
 | 
						|
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
 | 
						|
  SDValue Chain = LD->getChain();
 | 
						|
  EVT VT = LD->getMemoryVT();
 | 
						|
 | 
						|
  SmallSet<SDNode *, 16> LoadRoots;
 | 
						|
  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
 | 
						|
  SmallSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  // First, search up the chain, branching to follow all token-factor operands.
 | 
						|
  // If we find a consecutive load, then we're done, otherwise, record all
 | 
						|
  // nodes just above the top-level loads and token factors.
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    SDNode *ChainNext = Queue.pop_back_val();
 | 
						|
    if (!Visited.insert(ChainNext).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
 | 
						|
      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (!Visited.count(ChainLD->getChain().getNode()))
 | 
						|
        Queue.push_back(ChainLD->getChain().getNode());
 | 
						|
    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
 | 
						|
      for (const SDUse &O : ChainNext->ops())
 | 
						|
        if (!Visited.count(O.getNode()))
 | 
						|
          Queue.push_back(O.getNode());
 | 
						|
    } else
 | 
						|
      LoadRoots.insert(ChainNext);
 | 
						|
  }
 | 
						|
 | 
						|
  // Second, search down the chain, starting from the top-level nodes recorded
 | 
						|
  // in the first phase. These top-level nodes are the nodes just above all
 | 
						|
  // loads and token factors. Starting with their uses, recursively look though
 | 
						|
  // all loads (just the chain uses) and token factors to find a consecutive
 | 
						|
  // load.
 | 
						|
  Visited.clear();
 | 
						|
  Queue.clear();
 | 
						|
 | 
						|
  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
 | 
						|
       IE = LoadRoots.end(); I != IE; ++I) {
 | 
						|
    Queue.push_back(*I);
 | 
						|
 | 
						|
    while (!Queue.empty()) {
 | 
						|
      SDNode *LoadRoot = Queue.pop_back_val();
 | 
						|
      if (!Visited.insert(LoadRoot).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
 | 
						|
        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | 
						|
          return true;
 | 
						|
 | 
						|
      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
 | 
						|
           UE = LoadRoot->use_end(); UI != UE; ++UI)
 | 
						|
        if (((isa<MemSDNode>(*UI) &&
 | 
						|
            cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
 | 
						|
            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
 | 
						|
          Queue.push_back(*UI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This function is called when we have proved that a SETCC node can be replaced
 | 
						|
/// by subtraction (and other supporting instructions) so that the result of
 | 
						|
/// comparison is kept in a GPR instead of CR. This function is purely for
 | 
						|
/// codegen purposes and has some flags to guide the codegen process.
 | 
						|
static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
 | 
						|
                                     bool Swap, SDLoc &DL, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | 
						|
 | 
						|
  // Zero extend the operands to the largest legal integer. Originally, they
 | 
						|
  // must be of a strictly smaller size.
 | 
						|
  auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
 | 
						|
                         DAG.getConstant(Size, DL, MVT::i32));
 | 
						|
  auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
 | 
						|
                         DAG.getConstant(Size, DL, MVT::i32));
 | 
						|
 | 
						|
  // Swap if needed. Depends on the condition code.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // Subtract extended integers.
 | 
						|
  auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
 | 
						|
 | 
						|
  // Move the sign bit to the least significant position and zero out the rest.
 | 
						|
  // Now the least significant bit carries the result of original comparison.
 | 
						|
  auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
 | 
						|
                             DAG.getConstant(Size - 1, DL, MVT::i32));
 | 
						|
  auto Final = Shifted;
 | 
						|
 | 
						|
  // Complement the result if needed. Based on the condition code.
 | 
						|
  if (Complement)
 | 
						|
    Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
 | 
						|
                        DAG.getConstant(1, DL, MVT::i64));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Size of integers being compared has a critical role in the following
 | 
						|
  // analysis, so we prefer to do this when all types are legal.
 | 
						|
  if (!DCI.isAfterLegalizeDAG())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If all users of SETCC extend its value to a legal integer type
 | 
						|
  // then we replace SETCC with a subtraction
 | 
						|
  for (SDNode::use_iterator UI = N->use_begin(),
 | 
						|
       UE = N->use_end(); UI != UE; ++UI) {
 | 
						|
    if (UI->getOpcode() != ISD::ZERO_EXTEND)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  auto OpSize = N->getOperand(0).getValueSizeInBits();
 | 
						|
 | 
						|
  unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
 | 
						|
 | 
						|
  if (OpSize < Size) {
 | 
						|
    switch (CC) {
 | 
						|
    default: break;
 | 
						|
    case ISD::SETULT:
 | 
						|
      return generateEquivalentSub(N, Size, false, false, DL, DAG);
 | 
						|
    case ISD::SETULE:
 | 
						|
      return generateEquivalentSub(N, Size, true, true, DL, DAG);
 | 
						|
    case ISD::SETUGT:
 | 
						|
      return generateEquivalentSub(N, Size, false, true, DL, DAG);
 | 
						|
    case ISD::SETUGE:
 | 
						|
      return generateEquivalentSub(N, Size, true, false, DL, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
 | 
						|
  // If we're tracking CR bits, we need to be careful that we don't have:
 | 
						|
  //   trunc(binary-ops(zext(x), zext(y)))
 | 
						|
  // or
 | 
						|
  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
 | 
						|
  // such that we're unnecessarily moving things into GPRs when it would be
 | 
						|
  // better to keep them in CR bits.
 | 
						|
 | 
						|
  // Note that trunc here can be an actual i1 trunc, or can be the effective
 | 
						|
  // truncation that comes from a setcc or select_cc.
 | 
						|
  if (N->getOpcode() == ISD::TRUNCATE &&
 | 
						|
      N->getValueType(0) != MVT::i1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOperand(0).getValueType() != MVT::i32 &&
 | 
						|
      N->getOperand(0).getValueType() != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::SETCC ||
 | 
						|
      N->getOpcode() == ISD::SELECT_CC) {
 | 
						|
    // If we're looking at a comparison, then we need to make sure that the
 | 
						|
    // high bits (all except for the first) don't matter the result.
 | 
						|
    ISD::CondCode CC =
 | 
						|
      cast<CondCodeSDNode>(N->getOperand(
 | 
						|
        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
 | 
						|
    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
 | 
						|
 | 
						|
    if (ISD::isSignedIntSetCC(CC)) {
 | 
						|
      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
 | 
						|
          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
 | 
						|
        return SDValue();
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (!DAG.MaskedValueIsZero(N->getOperand(0),
 | 
						|
                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
 | 
						|
          !DAG.MaskedValueIsZero(N->getOperand(1),
 | 
						|
                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
 | 
						|
        return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
 | 
						|
                                             : SDValue());
 | 
						|
    } else {
 | 
						|
      // This is neither a signed nor an unsigned comparison, just make sure
 | 
						|
      // that the high bits are equal.
 | 
						|
      KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
 | 
						|
      KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
 | 
						|
 | 
						|
      // We don't really care about what is known about the first bit (if
 | 
						|
      // anything), so pretend that it is known zero for both to ensure they can
 | 
						|
      // be compared as constants.
 | 
						|
      Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
 | 
						|
      Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
 | 
						|
 | 
						|
      if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
 | 
						|
          Op1Known.getConstant() != Op2Known.getConstant())
 | 
						|
        return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We now know that the higher-order bits are irrelevant, we just need to
 | 
						|
  // make sure that all of the intermediate operations are bit operations, and
 | 
						|
  // all inputs are extensions.
 | 
						|
  if (N->getOperand(0).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> Inputs;
 | 
						|
  SmallVector<SDValue, 8> BinOps, PromOps;
 | 
						|
  SmallPtrSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i) {
 | 
						|
    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | 
						|
          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | 
						|
        isa<ConstantSDNode>(N->getOperand(i)))
 | 
						|
      Inputs.push_back(N->getOperand(i));
 | 
						|
    else
 | 
						|
      BinOps.push_back(N->getOperand(i));
 | 
						|
 | 
						|
    if (N->getOpcode() == ISD::TRUNCATE)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit all inputs, collect all binary operations (and, or, xor and
 | 
						|
  // select) that are all fed by extensions.
 | 
						|
  while (!BinOps.empty()) {
 | 
						|
    SDValue BinOp = BinOps.pop_back_val();
 | 
						|
 | 
						|
    if (!Visited.insert(BinOp.getNode()).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    PromOps.push_back(BinOp);
 | 
						|
 | 
						|
    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | 
						|
      // The condition of the select is not promoted.
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | 
						|
        continue;
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | 
						|
           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | 
						|
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | 
						|
        Inputs.push_back(BinOp.getOperand(i));
 | 
						|
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
 | 
						|
        BinOps.push_back(BinOp.getOperand(i));
 | 
						|
      } else {
 | 
						|
        // We have an input that is not an extension or another binary
 | 
						|
        // operation; we'll abort this transformation.
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that this is a self-contained cluster of operations (which
 | 
						|
  // is not quite the same thing as saying that everything has only one
 | 
						|
  // use).
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | 
						|
                              UE = Inputs[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Make sure that we're not going to promote the non-output-value
 | 
						|
      // operand(s) or SELECT or SELECT_CC.
 | 
						|
      // FIXME: Although we could sometimes handle this, and it does occur in
 | 
						|
      // practice that one of the condition inputs to the select is also one of
 | 
						|
      // the outputs, we currently can't deal with this.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          return SDValue();
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == Inputs[i] ||
 | 
						|
            User->getOperand(1) == Inputs[i])
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | 
						|
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | 
						|
                              UE = PromOps[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Make sure that we're not going to promote the non-output-value
 | 
						|
      // operand(s) or SELECT or SELECT_CC.
 | 
						|
      // FIXME: Although we could sometimes handle this, and it does occur in
 | 
						|
      // practice that one of the condition inputs to the select is also one of
 | 
						|
      // the outputs, we currently can't deal with this.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          return SDValue();
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == PromOps[i] ||
 | 
						|
            User->getOperand(1) == PromOps[i])
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace all inputs with the extension operand.
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    // Constants may have users outside the cluster of to-be-promoted nodes,
 | 
						|
    // and so we need to replace those as we do the promotions.
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
    else
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  std::list<HandleSDNode> PromOpHandles;
 | 
						|
  for (auto &PromOp : PromOps)
 | 
						|
    PromOpHandles.emplace_back(PromOp);
 | 
						|
 | 
						|
  // Replace all operations (these are all the same, but have a different
 | 
						|
  // (i1) return type). DAG.getNode will validate that the types of
 | 
						|
  // a binary operator match, so go through the list in reverse so that
 | 
						|
  // we've likely promoted both operands first. Any intermediate truncations or
 | 
						|
  // extensions disappear.
 | 
						|
  while (!PromOpHandles.empty()) {
 | 
						|
    SDValue PromOp = PromOpHandles.back().getValue();
 | 
						|
    PromOpHandles.pop_back();
 | 
						|
 | 
						|
    if (PromOp.getOpcode() == ISD::TRUNCATE ||
 | 
						|
        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
        PromOp.getOpcode() == ISD::ANY_EXTEND) {
 | 
						|
      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
 | 
						|
          PromOp.getOperand(0).getValueType() != MVT::i1) {
 | 
						|
        // The operand is not yet ready (see comment below).
 | 
						|
        PromOpHandles.emplace_front(PromOp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue RepValue = PromOp.getOperand(0);
 | 
						|
      if (isa<ConstantSDNode>(RepValue))
 | 
						|
        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
 | 
						|
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned C;
 | 
						|
    switch (PromOp.getOpcode()) {
 | 
						|
    default:             C = 0; break;
 | 
						|
    case ISD::SELECT:    C = 1; break;
 | 
						|
    case ISD::SELECT_CC: C = 2; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | 
						|
         PromOp.getOperand(C).getValueType() != MVT::i1) ||
 | 
						|
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | 
						|
         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
 | 
						|
      // The to-be-promoted operands of this node have not yet been
 | 
						|
      // promoted (this should be rare because we're going through the
 | 
						|
      // list backward, but if one of the operands has several users in
 | 
						|
      // this cluster of to-be-promoted nodes, it is possible).
 | 
						|
      PromOpHandles.emplace_front(PromOp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | 
						|
                                PromOp.getNode()->op_end());
 | 
						|
 | 
						|
    // If there are any constant inputs, make sure they're replaced now.
 | 
						|
    for (unsigned i = 0; i < 2; ++i)
 | 
						|
      if (isa<ConstantSDNode>(Ops[C+i]))
 | 
						|
        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(PromOp,
 | 
						|
      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we're left with the initial truncation itself.
 | 
						|
  if (N->getOpcode() == ISD::TRUNCATE)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  // Otherwise, this is a comparison. The operands to be compared have just
 | 
						|
  // changed type (to i1), but everything else is the same.
 | 
						|
  return SDValue(N, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // If we're tracking CR bits, we need to be careful that we don't have:
 | 
						|
  //   zext(binary-ops(trunc(x), trunc(y)))
 | 
						|
  // or
 | 
						|
  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
 | 
						|
  // such that we're unnecessarily moving things into CR bits that can more
 | 
						|
  // efficiently stay in GPRs. Note that if we're not certain that the high
 | 
						|
  // bits are set as required by the final extension, we still may need to do
 | 
						|
  // some masking to get the proper behavior.
 | 
						|
 | 
						|
  // This same functionality is important on PPC64 when dealing with
 | 
						|
  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
 | 
						|
  // the return values of functions. Because it is so similar, it is handled
 | 
						|
  // here as well.
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::i32 &&
 | 
						|
      N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
 | 
						|
        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOperand(0).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> Inputs;
 | 
						|
  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
 | 
						|
  SmallPtrSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  // Visit all inputs, collect all binary operations (and, or, xor and
 | 
						|
  // select) that are all fed by truncations.
 | 
						|
  while (!BinOps.empty()) {
 | 
						|
    SDValue BinOp = BinOps.pop_back_val();
 | 
						|
 | 
						|
    if (!Visited.insert(BinOp.getNode()).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    PromOps.push_back(BinOp);
 | 
						|
 | 
						|
    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | 
						|
      // The condition of the select is not promoted.
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | 
						|
        continue;
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | 
						|
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | 
						|
        Inputs.push_back(BinOp.getOperand(i));
 | 
						|
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
 | 
						|
        BinOps.push_back(BinOp.getOperand(i));
 | 
						|
      } else {
 | 
						|
        // We have an input that is not a truncation or another binary
 | 
						|
        // operation; we'll abort this transformation.
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The operands of a select that must be truncated when the select is
 | 
						|
  // promoted because the operand is actually part of the to-be-promoted set.
 | 
						|
  DenseMap<SDNode *, EVT> SelectTruncOp[2];
 | 
						|
 | 
						|
  // Make sure that this is a self-contained cluster of operations (which
 | 
						|
  // is not quite the same thing as saying that everything has only one
 | 
						|
  // use).
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | 
						|
                              UE = Inputs[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // If we're going to promote the non-output-value operand(s) or SELECT or
 | 
						|
      // SELECT_CC, record them for truncation.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
        if (User->getOperand(1) == Inputs[i])
 | 
						|
          SelectTruncOp[1].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(1).getValueType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | 
						|
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | 
						|
                              UE = PromOps[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // If we're going to promote the non-output-value operand(s) or SELECT or
 | 
						|
      // SELECT_CC, record them for truncation.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
        if (User->getOperand(1) == PromOps[i])
 | 
						|
          SelectTruncOp[1].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(1).getValueType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
 | 
						|
  bool ReallyNeedsExt = false;
 | 
						|
  if (N->getOpcode() != ISD::ANY_EXTEND) {
 | 
						|
    // If all of the inputs are not already sign/zero extended, then
 | 
						|
    // we'll still need to do that at the end.
 | 
						|
    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
      if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned OpBits =
 | 
						|
        Inputs[i].getOperand(0).getValueSizeInBits();
 | 
						|
      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
 | 
						|
 | 
						|
      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
 | 
						|
           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
 | 
						|
                                  APInt::getHighBitsSet(OpBits,
 | 
						|
                                                        OpBits-PromBits))) ||
 | 
						|
          (N->getOpcode() == ISD::SIGN_EXTEND &&
 | 
						|
           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
 | 
						|
             (OpBits-(PromBits-1)))) {
 | 
						|
        ReallyNeedsExt = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace all inputs, either with the truncation operand, or a
 | 
						|
  // truncation or extension to the final output type.
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    // Constant inputs need to be replaced with the to-be-promoted nodes that
 | 
						|
    // use them because they might have users outside of the cluster of
 | 
						|
    // promoted nodes.
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue InSrc = Inputs[i].getOperand(0);
 | 
						|
    if (Inputs[i].getValueType() == N->getValueType(0))
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
 | 
						|
    else if (N->getOpcode() == ISD::SIGN_EXTEND)
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
    else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
    else
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
  }
 | 
						|
 | 
						|
  std::list<HandleSDNode> PromOpHandles;
 | 
						|
  for (auto &PromOp : PromOps)
 | 
						|
    PromOpHandles.emplace_back(PromOp);
 | 
						|
 | 
						|
  // Replace all operations (these are all the same, but have a different
 | 
						|
  // (promoted) return type). DAG.getNode will validate that the types of
 | 
						|
  // a binary operator match, so go through the list in reverse so that
 | 
						|
  // we've likely promoted both operands first.
 | 
						|
  while (!PromOpHandles.empty()) {
 | 
						|
    SDValue PromOp = PromOpHandles.back().getValue();
 | 
						|
    PromOpHandles.pop_back();
 | 
						|
 | 
						|
    unsigned C;
 | 
						|
    switch (PromOp.getOpcode()) {
 | 
						|
    default:             C = 0; break;
 | 
						|
    case ISD::SELECT:    C = 1; break;
 | 
						|
    case ISD::SELECT_CC: C = 2; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | 
						|
         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
 | 
						|
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | 
						|
         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
 | 
						|
      // The to-be-promoted operands of this node have not yet been
 | 
						|
      // promoted (this should be rare because we're going through the
 | 
						|
      // list backward, but if one of the operands has several users in
 | 
						|
      // this cluster of to-be-promoted nodes, it is possible).
 | 
						|
      PromOpHandles.emplace_front(PromOp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For SELECT and SELECT_CC nodes, we do a similar check for any
 | 
						|
    // to-be-promoted comparison inputs.
 | 
						|
    if (PromOp.getOpcode() == ISD::SELECT ||
 | 
						|
        PromOp.getOpcode() == ISD::SELECT_CC) {
 | 
						|
      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
 | 
						|
           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
 | 
						|
          (SelectTruncOp[1].count(PromOp.getNode()) &&
 | 
						|
           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
 | 
						|
        PromOpHandles.emplace_front(PromOp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | 
						|
                                PromOp.getNode()->op_end());
 | 
						|
 | 
						|
    // If this node has constant inputs, then they'll need to be promoted here.
 | 
						|
    for (unsigned i = 0; i < 2; ++i) {
 | 
						|
      if (!isa<ConstantSDNode>(Ops[C+i]))
 | 
						|
        continue;
 | 
						|
      if (Ops[C+i].getValueType() == N->getValueType(0))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (N->getOpcode() == ISD::SIGN_EXTEND)
 | 
						|
        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
      else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
      else
 | 
						|
        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
 | 
						|
    // truncate them again to the original value type.
 | 
						|
    if (PromOp.getOpcode() == ISD::SELECT ||
 | 
						|
        PromOp.getOpcode() == ISD::SELECT_CC) {
 | 
						|
      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
 | 
						|
      if (SI0 != SelectTruncOp[0].end())
 | 
						|
        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
 | 
						|
      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
 | 
						|
      if (SI1 != SelectTruncOp[1].end())
 | 
						|
        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
 | 
						|
    }
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(PromOp,
 | 
						|
      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we're left with the initial extension itself.
 | 
						|
  if (!ReallyNeedsExt)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  // To zero extend, just mask off everything except for the first bit (in the
 | 
						|
  // i1 case).
 | 
						|
  if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
 | 
						|
                       DAG.getConstant(APInt::getLowBitsSet(
 | 
						|
                                         N->getValueSizeInBits(0), PromBits),
 | 
						|
                                       dl, N->getValueType(0)));
 | 
						|
 | 
						|
  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
 | 
						|
         "Invalid extension type");
 | 
						|
  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
 | 
						|
  SDValue ShiftCst =
 | 
						|
      DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
 | 
						|
  return DAG.getNode(
 | 
						|
      ISD::SRA, dl, N->getValueType(0),
 | 
						|
      DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
 | 
						|
      ShiftCst);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSetCC(SDNode *N,
 | 
						|
                                        DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC &&
 | 
						|
         "Should be called with a SETCC node");
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (CC == ISD::SETNE || CC == ISD::SETEQ) {
 | 
						|
    SDValue LHS = N->getOperand(0);
 | 
						|
    SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
    // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
 | 
						|
    if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
 | 
						|
        LHS.hasOneUse())
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
 | 
						|
    // x == 0-y --> x+y == 0
 | 
						|
    // x != 0-y --> x+y != 0
 | 
						|
    if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
 | 
						|
        RHS.hasOneUse()) {
 | 
						|
      SDLoc DL(N);
 | 
						|
      SelectionDAG &DAG = DCI.DAG;
 | 
						|
      EVT VT = N->getValueType(0);
 | 
						|
      EVT OpVT = LHS.getValueType();
 | 
						|
      SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
 | 
						|
      return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DAGCombineTruncBoolExt(N, DCI);
 | 
						|
}
 | 
						|
 | 
						|
// Is this an extending load from an f32 to an f64?
 | 
						|
static bool isFPExtLoad(SDValue Op) {
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
 | 
						|
    return LD->getExtensionType() == ISD::EXTLOAD &&
 | 
						|
      Op.getValueType() == MVT::f64;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Reduces the number of fp-to-int conversion when building a vector.
 | 
						|
///
 | 
						|
/// If this vector is built out of floating to integer conversions,
 | 
						|
/// transform it to a vector built out of floating point values followed by a
 | 
						|
/// single floating to integer conversion of the vector.
 | 
						|
/// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
 | 
						|
/// becomes (fptosi (build_vector ($A, $B, ...)))
 | 
						|
SDValue PPCTargetLowering::
 | 
						|
combineElementTruncationToVectorTruncation(SDNode *N,
 | 
						|
                                           DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
 | 
						|
         "The input operand must be an fp-to-int conversion.");
 | 
						|
 | 
						|
  // This combine happens after legalization so the fp_to_[su]i nodes are
 | 
						|
  // already converted to PPCSISD nodes.
 | 
						|
  unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
 | 
						|
  if (FirstConversion == PPCISD::FCTIDZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIDUZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWUZ) {
 | 
						|
    bool IsSplat = true;
 | 
						|
    bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWUZ;
 | 
						|
    EVT SrcVT = FirstInput.getOperand(0).getValueType();
 | 
						|
    SmallVector<SDValue, 4> Ops;
 | 
						|
    EVT TargetVT = N->getValueType(0);
 | 
						|
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
      SDValue NextOp = N->getOperand(i);
 | 
						|
      if (NextOp.getOpcode() != PPCISD::MFVSR)
 | 
						|
        return SDValue();
 | 
						|
      unsigned NextConversion = NextOp.getOperand(0).getOpcode();
 | 
						|
      if (NextConversion != FirstConversion)
 | 
						|
        return SDValue();
 | 
						|
      // If we are converting to 32-bit integers, we need to add an FP_ROUND.
 | 
						|
      // This is not valid if the input was originally double precision. It is
 | 
						|
      // also not profitable to do unless this is an extending load in which
 | 
						|
      // case doing this combine will allow us to combine consecutive loads.
 | 
						|
      if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
 | 
						|
        return SDValue();
 | 
						|
      if (N->getOperand(i) != FirstInput)
 | 
						|
        IsSplat = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a splat, we leave it as-is since there will be only a single
 | 
						|
    // fp-to-int conversion followed by a splat of the integer. This is better
 | 
						|
    // for 32-bit and smaller ints and neutral for 64-bit ints.
 | 
						|
    if (IsSplat)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Now that we know we have the right type of node, get its operands
 | 
						|
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
      SDValue In = N->getOperand(i).getOperand(0);
 | 
						|
      if (Is32Bit) {
 | 
						|
        // For 32-bit values, we need to add an FP_ROUND node (if we made it
 | 
						|
        // here, we know that all inputs are extending loads so this is safe).
 | 
						|
        if (In.isUndef())
 | 
						|
          Ops.push_back(DAG.getUNDEF(SrcVT));
 | 
						|
        else {
 | 
						|
          SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                                      MVT::f32, In.getOperand(0),
 | 
						|
                                      DAG.getIntPtrConstant(1, dl));
 | 
						|
          Ops.push_back(Trunc);
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opcode;
 | 
						|
    if (FirstConversion == PPCISD::FCTIDZ ||
 | 
						|
        FirstConversion == PPCISD::FCTIWZ)
 | 
						|
      Opcode = ISD::FP_TO_SINT;
 | 
						|
    else
 | 
						|
      Opcode = ISD::FP_TO_UINT;
 | 
						|
 | 
						|
    EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
 | 
						|
    SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
 | 
						|
    return DAG.getNode(Opcode, dl, TargetVT, BV);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Reduce the number of loads when building a vector.
 | 
						|
///
 | 
						|
/// Building a vector out of multiple loads can be converted to a load
 | 
						|
/// of the vector type if the loads are consecutive. If the loads are
 | 
						|
/// consecutive but in descending order, a shuffle is added at the end
 | 
						|
/// to reorder the vector.
 | 
						|
static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // Return early for non byte-sized type, as they can't be consecutive.
 | 
						|
  if (!N->getValueType(0).getVectorElementType().isByteSized())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool InputsAreConsecutiveLoads = true;
 | 
						|
  bool InputsAreReverseConsecutive = true;
 | 
						|
  unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  bool IsRoundOfExtLoad = false;
 | 
						|
 | 
						|
  if (FirstInput.getOpcode() == ISD::FP_ROUND &&
 | 
						|
      FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
 | 
						|
    LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
 | 
						|
    IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
 | 
						|
  }
 | 
						|
  // Not a build vector of (possibly fp_rounded) loads.
 | 
						|
  if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
 | 
						|
      N->getNumOperands() == 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
    // If any inputs are fp_round(extload), they all must be.
 | 
						|
    if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
 | 
						|
      N->getOperand(i);
 | 
						|
    if (NextInput.getOpcode() != ISD::LOAD)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue PreviousInput =
 | 
						|
      IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
 | 
						|
    LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
 | 
						|
    LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
 | 
						|
 | 
						|
    // If any inputs are fp_round(extload), they all must be.
 | 
						|
    if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
 | 
						|
      InputsAreConsecutiveLoads = false;
 | 
						|
    if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
 | 
						|
      InputsAreReverseConsecutive = false;
 | 
						|
 | 
						|
    // Exit early if the loads are neither consecutive nor reverse consecutive.
 | 
						|
    if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
 | 
						|
         "The loads cannot be both consecutive and reverse consecutive.");
 | 
						|
 | 
						|
  SDValue FirstLoadOp =
 | 
						|
    IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
 | 
						|
  SDValue LastLoadOp =
 | 
						|
    IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
 | 
						|
                       N->getOperand(N->getNumOperands()-1);
 | 
						|
 | 
						|
  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
 | 
						|
  LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
 | 
						|
  if (InputsAreConsecutiveLoads) {
 | 
						|
    assert(LD1 && "Input needs to be a LoadSDNode.");
 | 
						|
    return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
 | 
						|
                       LD1->getBasePtr(), LD1->getPointerInfo(),
 | 
						|
                       LD1->getAlignment());
 | 
						|
  }
 | 
						|
  if (InputsAreReverseConsecutive) {
 | 
						|
    assert(LDL && "Input needs to be a LoadSDNode.");
 | 
						|
    SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
 | 
						|
                               LDL->getBasePtr(), LDL->getPointerInfo(),
 | 
						|
                               LDL->getAlignment());
 | 
						|
    SmallVector<int, 16> Ops;
 | 
						|
    for (int i = N->getNumOperands() - 1; i >= 0; i--)
 | 
						|
      Ops.push_back(i);
 | 
						|
 | 
						|
    return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
 | 
						|
                                DAG.getUNDEF(N->getValueType(0)), Ops);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// This function adds the required vector_shuffle needed to get
 | 
						|
// the elements of the vector extract in the correct position
 | 
						|
// as specified by the CorrectElems encoding.
 | 
						|
static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                      SDValue Input, uint64_t Elems,
 | 
						|
                                      uint64_t CorrectElems) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  unsigned NumElems = Input.getValueType().getVectorNumElements();
 | 
						|
  SmallVector<int, 16> ShuffleMask(NumElems, -1);
 | 
						|
 | 
						|
  // Knowing the element indices being extracted from the original
 | 
						|
  // vector and the order in which they're being inserted, just put
 | 
						|
  // them at element indices required for the instruction.
 | 
						|
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | 
						|
    if (DAG.getDataLayout().isLittleEndian())
 | 
						|
      ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
 | 
						|
    else
 | 
						|
      ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
 | 
						|
    CorrectElems = CorrectElems >> 8;
 | 
						|
    Elems = Elems >> 8;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Shuffle =
 | 
						|
      DAG.getVectorShuffle(Input.getValueType(), dl, Input,
 | 
						|
                           DAG.getUNDEF(Input.getValueType()), ShuffleMask);
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Conv = DAG.getBitcast(VT, Shuffle);
 | 
						|
 | 
						|
  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
                               Input.getValueType().getVectorElementType(),
 | 
						|
                               VT.getVectorNumElements());
 | 
						|
  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
 | 
						|
                     DAG.getValueType(ExtVT));
 | 
						|
}
 | 
						|
 | 
						|
// Look for build vector patterns where input operands come from sign
 | 
						|
// extended vector_extract elements of specific indices. If the correct indices
 | 
						|
// aren't used, add a vector shuffle to fix up the indices and create
 | 
						|
// SIGN_EXTEND_INREG node which selects the vector sign extend instructions
 | 
						|
// during instruction selection.
 | 
						|
static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  // This array encodes the indices that the vector sign extend instructions
 | 
						|
  // extract from when extending from one type to another for both BE and LE.
 | 
						|
  // The right nibble of each byte corresponds to the LE incides.
 | 
						|
  // and the left nibble of each byte corresponds to the BE incides.
 | 
						|
  // For example: 0x3074B8FC  byte->word
 | 
						|
  // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
 | 
						|
  // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
 | 
						|
  // For example: 0x000070F8  byte->double word
 | 
						|
  // For LE: the allowed indices are: 0x0,0x8
 | 
						|
  // For BE: the allowed indices are: 0x7,0xF
 | 
						|
  uint64_t TargetElems[] = {
 | 
						|
      0x3074B8FC, // b->w
 | 
						|
      0x000070F8, // b->d
 | 
						|
      0x10325476, // h->w
 | 
						|
      0x00003074, // h->d
 | 
						|
      0x00001032, // w->d
 | 
						|
  };
 | 
						|
 | 
						|
  uint64_t Elems = 0;
 | 
						|
  int Index;
 | 
						|
  SDValue Input;
 | 
						|
 | 
						|
  auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
 | 
						|
    if (!Op)
 | 
						|
      return false;
 | 
						|
    if (Op.getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
        Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
 | 
						|
    // of the right width.
 | 
						|
    SDValue Extract = Op.getOperand(0);
 | 
						|
    if (Extract.getOpcode() == ISD::ANY_EXTEND)
 | 
						|
      Extract = Extract.getOperand(0);
 | 
						|
    if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
 | 
						|
    if (!ExtOp)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Index = ExtOp->getZExtValue();
 | 
						|
    if (Input && Input != Extract.getOperand(0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Input)
 | 
						|
      Input = Extract.getOperand(0);
 | 
						|
 | 
						|
    Elems = Elems << 8;
 | 
						|
    Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
 | 
						|
    Elems |= Index;
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // If the build vector operands aren't sign extended vector extracts,
 | 
						|
  // of the same input vector, then return.
 | 
						|
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | 
						|
    if (!isSExtOfVecExtract(N->getOperand(i))) {
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the vector extract indicies are not correct, add the appropriate
 | 
						|
  // vector_shuffle.
 | 
						|
  int TgtElemArrayIdx;
 | 
						|
  int InputSize = Input.getValueType().getScalarSizeInBits();
 | 
						|
  int OutputSize = N->getValueType(0).getScalarSizeInBits();
 | 
						|
  if (InputSize + OutputSize == 40)
 | 
						|
    TgtElemArrayIdx = 0;
 | 
						|
  else if (InputSize + OutputSize == 72)
 | 
						|
    TgtElemArrayIdx = 1;
 | 
						|
  else if (InputSize + OutputSize == 48)
 | 
						|
    TgtElemArrayIdx = 2;
 | 
						|
  else if (InputSize + OutputSize == 80)
 | 
						|
    TgtElemArrayIdx = 3;
 | 
						|
  else if (InputSize + OutputSize == 96)
 | 
						|
    TgtElemArrayIdx = 4;
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
 | 
						|
  CorrectElems = DAG.getDataLayout().isLittleEndian()
 | 
						|
                     ? CorrectElems & 0x0F0F0F0F0F0F0F0F
 | 
						|
                     : CorrectElems & 0xF0F0F0F0F0F0F0F0;
 | 
						|
  if (Elems != CorrectElems) {
 | 
						|
    return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
 | 
						|
  }
 | 
						|
 | 
						|
  // Regular lowering will catch cases where a shuffle is not needed.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Look for the pattern of a load from a narrow width to i128, feeding
 | 
						|
// into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
 | 
						|
// (LXVRZX). This node represents a zero extending load that will be matched
 | 
						|
// to the Load VSX Vector Rightmost instructions.
 | 
						|
static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // This combine is only eligible for a BUILD_VECTOR of v1i128.
 | 
						|
  if (N->getValueType(0) != MVT::v1i128)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Operand = N->getOperand(0);
 | 
						|
  // Proceed with the transformation if the operand to the BUILD_VECTOR
 | 
						|
  // is a load instruction.
 | 
						|
  if (Operand.getOpcode() != ISD::LOAD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  auto *LD = cast<LoadSDNode>(Operand);
 | 
						|
  EVT MemoryType = LD->getMemoryVT();
 | 
						|
 | 
						|
  // This transformation is only valid if the we are loading either a byte,
 | 
						|
  // halfword, word, or doubleword.
 | 
						|
  bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
 | 
						|
                     MemoryType == MVT::i32 || MemoryType == MVT::i64;
 | 
						|
 | 
						|
  // Ensure that the load from the narrow width is being zero extended to i128.
 | 
						|
  if (!ValidLDType ||
 | 
						|
      (LD->getExtensionType() != ISD::ZEXTLOAD &&
 | 
						|
       LD->getExtensionType() != ISD::EXTLOAD))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LoadOps[] = {
 | 
						|
      LD->getChain(), LD->getBasePtr(),
 | 
						|
      DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
 | 
						|
 | 
						|
  return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
 | 
						|
                                 DAG.getVTList(MVT::v1i128, MVT::Other),
 | 
						|
                                 LoadOps, MemoryType, LD->getMemOperand());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  if (!Subtarget.hasVSX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The target independent DAG combiner will leave a build_vector of
 | 
						|
  // float-to-int conversions intact. We can generate MUCH better code for
 | 
						|
  // a float-to-int conversion of a vector of floats.
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  if (FirstInput.getOpcode() == PPCISD::MFVSR) {
 | 
						|
    SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
 | 
						|
    if (Reduced)
 | 
						|
      return Reduced;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're building a vector out of consecutive loads, just load that
 | 
						|
  // vector type.
 | 
						|
  SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
 | 
						|
  if (Reduced)
 | 
						|
    return Reduced;
 | 
						|
 | 
						|
  // If we're building a vector out of extended elements from another vector
 | 
						|
  // we have P9 vector integer extend instructions. The code assumes legal
 | 
						|
  // input types (i.e. it can't handle things like v4i16) so do not run before
 | 
						|
  // legalization.
 | 
						|
  if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
 | 
						|
    Reduced = combineBVOfVecSExt(N, DAG);
 | 
						|
    if (Reduced)
 | 
						|
      return Reduced;
 | 
						|
  }
 | 
						|
 | 
						|
  // On Power10, the Load VSX Vector Rightmost instructions can be utilized
 | 
						|
  // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
 | 
						|
  // is a load from <valid narrow width> to i128.
 | 
						|
  if (Subtarget.isISA3_1()) {
 | 
						|
    SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
 | 
						|
    if (BVOfZLoad)
 | 
						|
      return BVOfZLoad;
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::v2f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Looking for:
 | 
						|
  // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
 | 
						|
  if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
      FirstInput.getOpcode() != ISD::UINT_TO_FP)
 | 
						|
    return SDValue();
 | 
						|
  if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
 | 
						|
    return SDValue();
 | 
						|
  if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Ext1 = FirstInput.getOperand(0);
 | 
						|
  SDValue Ext2 = N->getOperand(1).getOperand(0);
 | 
						|
  if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
     Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
 | 
						|
  ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
 | 
						|
  if (!Ext1Op || !Ext2Op)
 | 
						|
    return SDValue();
 | 
						|
  if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
 | 
						|
      Ext1.getOperand(0) != Ext2.getOperand(0))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int FirstElem = Ext1Op->getZExtValue();
 | 
						|
  int SecondElem = Ext2Op->getZExtValue();
 | 
						|
  int SubvecIdx;
 | 
						|
  if (FirstElem == 0 && SecondElem == 1)
 | 
						|
    SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
 | 
						|
  else if (FirstElem == 2 && SecondElem == 3)
 | 
						|
    SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue SrcVec = Ext1.getOperand(0);
 | 
						|
  auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
 | 
						|
    PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
 | 
						|
  return DAG.getNode(NodeType, dl, MVT::v2f64,
 | 
						|
                     SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  assert((N->getOpcode() == ISD::SINT_TO_FP ||
 | 
						|
          N->getOpcode() == ISD::UINT_TO_FP) &&
 | 
						|
         "Need an int -> FP conversion node here");
 | 
						|
 | 
						|
  if (useSoftFloat() || !Subtarget.has64BitSupport())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Op(N, 0);
 | 
						|
 | 
						|
  // Don't handle ppc_fp128 here or conversions that are out-of-range capable
 | 
						|
  // from the hardware.
 | 
						|
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
  if (!Op.getOperand(0).getValueType().isSimple())
 | 
						|
    return SDValue();
 | 
						|
  if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
 | 
						|
      Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue FirstOperand(Op.getOperand(0));
 | 
						|
  bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
 | 
						|
    (FirstOperand.getValueType() == MVT::i8 ||
 | 
						|
     FirstOperand.getValueType() == MVT::i16);
 | 
						|
  if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
 | 
						|
    bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
 | 
						|
    bool DstDouble = Op.getValueType() == MVT::f64;
 | 
						|
    unsigned ConvOp = Signed ?
 | 
						|
      (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
 | 
						|
      (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
 | 
						|
    SDValue WidthConst =
 | 
						|
      DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
 | 
						|
                            dl, false);
 | 
						|
    LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
 | 
						|
    SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
 | 
						|
    SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
 | 
						|
                                         DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                         Ops, MVT::i8, LDN->getMemOperand());
 | 
						|
 | 
						|
    // For signed conversion, we need to sign-extend the value in the VSR
 | 
						|
    if (Signed) {
 | 
						|
      SDValue ExtOps[] = { Ld, WidthConst };
 | 
						|
      SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
 | 
						|
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
 | 
						|
    } else
 | 
						|
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // For i32 intermediate values, unfortunately, the conversion functions
 | 
						|
  // leave the upper 32 bits of the value are undefined. Within the set of
 | 
						|
  // scalar instructions, we have no method for zero- or sign-extending the
 | 
						|
  // value. Thus, we cannot handle i32 intermediate values here.
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
 | 
						|
         "UINT_TO_FP is supported only with FPCVT");
 | 
						|
 | 
						|
  // If we have FCFIDS, then use it when converting to single-precision.
 | 
						|
  // Otherwise, convert to double-precision and then round.
 | 
						|
  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
 | 
						|
                                                            : PPCISD::FCFIDS)
 | 
						|
                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
 | 
						|
                                                            : PPCISD::FCFID);
 | 
						|
  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                  ? MVT::f32
 | 
						|
                  : MVT::f64;
 | 
						|
 | 
						|
  // If we're converting from a float, to an int, and back to a float again,
 | 
						|
  // then we don't need the store/load pair at all.
 | 
						|
  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
 | 
						|
       Subtarget.hasFPCVT()) ||
 | 
						|
      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
 | 
						|
    SDValue Src = Op.getOperand(0).getOperand(0);
 | 
						|
    if (Src.getValueType() == MVT::f32) {
 | 
						|
      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | 
						|
      DCI.AddToWorklist(Src.getNode());
 | 
						|
    } else if (Src.getValueType() != MVT::f64) {
 | 
						|
      // Make sure that we don't pick up a ppc_fp128 source value.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned FCTOp =
 | 
						|
      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | 
						|
                                                        PPCISD::FCTIDUZ;
 | 
						|
 | 
						|
    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
 | 
						|
    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
 | 
						|
 | 
						|
    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
 | 
						|
      DCI.AddToWorklist(FP.getNode());
 | 
						|
    }
 | 
						|
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
 | 
						|
// builtins) into loads with swaps.
 | 
						|
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Chain;
 | 
						|
  SDValue Base;
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode for little endian VSX load");
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    Chain = LD->getChain();
 | 
						|
    Base = LD->getBasePtr();
 | 
						|
    MMO = LD->getMemOperand();
 | 
						|
    // If the MMO suggests this isn't a load of a full vector, leave
 | 
						|
    // things alone.  For a built-in, we have to make the change for
 | 
						|
    // correctness, so if there is a size problem that will be a bug.
 | 
						|
    if (MMO->getSize() < 16)
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | 
						|
    Chain = Intrin->getChain();
 | 
						|
    // Similarly to the store case below, Intrin->getBasePtr() doesn't get
 | 
						|
    // us what we want. Get operand 2 instead.
 | 
						|
    Base = Intrin->getOperand(2);
 | 
						|
    MMO = Intrin->getMemOperand();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  MVT VecTy = N->getValueType(0).getSimpleVT();
 | 
						|
 | 
						|
  // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
 | 
						|
  // aligned and the type is a vector with elements up to 4 bytes
 | 
						|
  if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
 | 
						|
      VecTy.getScalarSizeInBits() <= 32) {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LoadOps[] = { Chain, Base };
 | 
						|
  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
 | 
						|
                                         DAG.getVTList(MVT::v2f64, MVT::Other),
 | 
						|
                                         LoadOps, MVT::v2f64, MMO);
 | 
						|
 | 
						|
  DCI.AddToWorklist(Load.getNode());
 | 
						|
  Chain = Load.getValue(1);
 | 
						|
  SDValue Swap = DAG.getNode(
 | 
						|
      PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
 | 
						|
  DCI.AddToWorklist(Swap.getNode());
 | 
						|
 | 
						|
  // Add a bitcast if the resulting load type doesn't match v2f64.
 | 
						|
  if (VecTy != MVT::v2f64) {
 | 
						|
    SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
 | 
						|
    DCI.AddToWorklist(N.getNode());
 | 
						|
    // Package {bitcast value, swap's chain} to match Load's shape.
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
 | 
						|
                       N, Swap.getValue(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return Swap;
 | 
						|
}
 | 
						|
 | 
						|
// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
 | 
						|
// builtins) into stores with swaps.
 | 
						|
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Chain;
 | 
						|
  SDValue Base;
 | 
						|
  unsigned SrcOpnd;
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode for little endian VSX store");
 | 
						|
  case ISD::STORE: {
 | 
						|
    StoreSDNode *ST = cast<StoreSDNode>(N);
 | 
						|
    Chain = ST->getChain();
 | 
						|
    Base = ST->getBasePtr();
 | 
						|
    MMO = ST->getMemOperand();
 | 
						|
    SrcOpnd = 1;
 | 
						|
    // If the MMO suggests this isn't a store of a full vector, leave
 | 
						|
    // things alone.  For a built-in, we have to make the change for
 | 
						|
    // correctness, so if there is a size problem that will be a bug.
 | 
						|
    if (MMO->getSize() < 16)
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_VOID: {
 | 
						|
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | 
						|
    Chain = Intrin->getChain();
 | 
						|
    // Intrin->getBasePtr() oddly does not get what we want.
 | 
						|
    Base = Intrin->getOperand(3);
 | 
						|
    MMO = Intrin->getMemOperand();
 | 
						|
    SrcOpnd = 2;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Src = N->getOperand(SrcOpnd);
 | 
						|
  MVT VecTy = Src.getValueType().getSimpleVT();
 | 
						|
 | 
						|
  // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
 | 
						|
  // aligned and the type is a vector with elements up to 4 bytes
 | 
						|
  if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
 | 
						|
      VecTy.getScalarSizeInBits() <= 32) {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // All stores are done as v2f64 and possible bit cast.
 | 
						|
  if (VecTy != MVT::v2f64) {
 | 
						|
    Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
 | 
						|
    DCI.AddToWorklist(Src.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
 | 
						|
                             DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
 | 
						|
  DCI.AddToWorklist(Swap.getNode());
 | 
						|
  Chain = Swap.getValue(1);
 | 
						|
  SDValue StoreOps[] = { Chain, Swap, Base };
 | 
						|
  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
 | 
						|
                                          DAG.getVTList(MVT::Other),
 | 
						|
                                          StoreOps, VecTy, MMO);
 | 
						|
  DCI.AddToWorklist(Store.getNode());
 | 
						|
  return Store;
 | 
						|
}
 | 
						|
 | 
						|
// Handle DAG combine for STORE (FP_TO_INT F).
 | 
						|
SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned Opcode = N->getOperand(1).getOpcode();
 | 
						|
 | 
						|
  assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
 | 
						|
         && "Not a FP_TO_INT Instruction!");
 | 
						|
 | 
						|
  SDValue Val = N->getOperand(1).getOperand(0);
 | 
						|
  EVT Op1VT = N->getOperand(1).getValueType();
 | 
						|
  EVT ResVT = Val.getValueType();
 | 
						|
 | 
						|
  if (!isTypeLegal(ResVT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only perform combine for conversion to i64/i32 or power9 i16/i8.
 | 
						|
  bool ValidTypeForStoreFltAsInt =
 | 
						|
        (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
 | 
						|
         (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
 | 
						|
 | 
						|
  if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
 | 
						|
      cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Extend f32 values to f64
 | 
						|
  if (ResVT.getScalarSizeInBits() == 32) {
 | 
						|
    Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | 
						|
    DCI.AddToWorklist(Val.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  // Set signed or unsigned conversion opcode.
 | 
						|
  unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
 | 
						|
                          PPCISD::FP_TO_SINT_IN_VSR :
 | 
						|
                          PPCISD::FP_TO_UINT_IN_VSR;
 | 
						|
 | 
						|
  Val = DAG.getNode(ConvOpcode,
 | 
						|
                    dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
 | 
						|
  DCI.AddToWorklist(Val.getNode());
 | 
						|
 | 
						|
  // Set number of bytes being converted.
 | 
						|
  unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
 | 
						|
  SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
 | 
						|
                    DAG.getIntPtrConstant(ByteSize, dl, false),
 | 
						|
                    DAG.getValueType(Op1VT) };
 | 
						|
 | 
						|
  Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
 | 
						|
          DAG.getVTList(MVT::Other), Ops,
 | 
						|
          cast<StoreSDNode>(N)->getMemoryVT(),
 | 
						|
          cast<StoreSDNode>(N)->getMemOperand());
 | 
						|
 | 
						|
  DCI.AddToWorklist(Val.getNode());
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
 | 
						|
  // Check that the source of the element keeps flipping
 | 
						|
  // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
 | 
						|
  bool PrevElemFromFirstVec = Mask[0] < NumElts;
 | 
						|
  for (int i = 1, e = Mask.size(); i < e; i++) {
 | 
						|
    if (PrevElemFromFirstVec && Mask[i] < NumElts)
 | 
						|
      return false;
 | 
						|
    if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
 | 
						|
      return false;
 | 
						|
    PrevElemFromFirstVec = !PrevElemFromFirstVec;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isSplatBV(SDValue Op) {
 | 
						|
  if (Op.getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
    return false;
 | 
						|
  SDValue FirstOp;
 | 
						|
 | 
						|
  // Find first non-undef input.
 | 
						|
  for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
 | 
						|
    FirstOp = Op.getOperand(i);
 | 
						|
    if (!FirstOp.isUndef())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // All inputs are undef or the same as the first non-undef input.
 | 
						|
  for (int i = 1, e = Op.getNumOperands(); i < e; i++)
 | 
						|
    if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue isScalarToVec(SDValue Op) {
 | 
						|
  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | 
						|
    return Op;
 | 
						|
  if (Op.getOpcode() != ISD::BITCAST)
 | 
						|
    return SDValue();
 | 
						|
  Op = Op.getOperand(0);
 | 
						|
  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | 
						|
    return Op;
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Fix up the shuffle mask to account for the fact that the result of
 | 
						|
// scalar_to_vector is not in lane zero. This just takes all values in
 | 
						|
// the ranges specified by the min/max indices and adds the number of
 | 
						|
// elements required to ensure each element comes from the respective
 | 
						|
// position in the valid lane.
 | 
						|
// On little endian, that's just the corresponding element in the other
 | 
						|
// half of the vector. On big endian, it is in the same half but right
 | 
						|
// justified rather than left justified in that half.
 | 
						|
static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
 | 
						|
                                            int LHSMaxIdx, int RHSMinIdx,
 | 
						|
                                            int RHSMaxIdx, int HalfVec,
 | 
						|
                                            unsigned ValidLaneWidth,
 | 
						|
                                            const PPCSubtarget &Subtarget) {
 | 
						|
  for (int i = 0, e = ShuffV.size(); i < e; i++) {
 | 
						|
    int Idx = ShuffV[i];
 | 
						|
    if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
 | 
						|
      ShuffV[i] +=
 | 
						|
          Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
 | 
						|
// the original is:
 | 
						|
// (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
 | 
						|
// In such a case, just change the shuffle mask to extract the element
 | 
						|
// from the permuted index.
 | 
						|
static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
 | 
						|
                               const PPCSubtarget &Subtarget) {
 | 
						|
  SDLoc dl(OrigSToV);
 | 
						|
  EVT VT = OrigSToV.getValueType();
 | 
						|
  assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | 
						|
         "Expecting a SCALAR_TO_VECTOR here");
 | 
						|
  SDValue Input = OrigSToV.getOperand(0);
 | 
						|
 | 
						|
  if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
    ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
 | 
						|
    SDValue OrigVector = Input.getOperand(0);
 | 
						|
 | 
						|
    // Can't handle non-const element indices or different vector types
 | 
						|
    // for the input to the extract and the output of the scalar_to_vector.
 | 
						|
    if (Idx && VT == OrigVector.getValueType()) {
 | 
						|
      unsigned NumElts = VT.getVectorNumElements();
 | 
						|
      assert(
 | 
						|
          NumElts > 1 &&
 | 
						|
          "Cannot produce a permuted scalar_to_vector for one element vector");
 | 
						|
      SmallVector<int, 16> NewMask(NumElts, -1);
 | 
						|
      unsigned ResultInElt = NumElts / 2;
 | 
						|
      ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
 | 
						|
      NewMask[ResultInElt] = Idx->getZExtValue();
 | 
						|
      return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
 | 
						|
                     OrigSToV.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
// On little endian subtargets, combine shuffles such as:
 | 
						|
// vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
 | 
						|
// into:
 | 
						|
// vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
 | 
						|
// because the latter can be matched to a single instruction merge.
 | 
						|
// Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
 | 
						|
// to put the value into element zero. Adjust the shuffle mask so that the
 | 
						|
// vector can remain in permuted form (to prevent a swap prior to a shuffle).
 | 
						|
// On big endian targets, this is still useful for SCALAR_TO_VECTOR
 | 
						|
// nodes with elements smaller than doubleword because all the ways
 | 
						|
// of getting scalar data into a vector register put the value in the
 | 
						|
// rightmost element of the left half of the vector.
 | 
						|
SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDValue LHS = SVN->getOperand(0);
 | 
						|
  SDValue RHS = SVN->getOperand(1);
 | 
						|
  auto Mask = SVN->getMask();
 | 
						|
  int NumElts = LHS.getValueType().getVectorNumElements();
 | 
						|
  SDValue Res(SVN, 0);
 | 
						|
  SDLoc dl(SVN);
 | 
						|
  bool IsLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
  // On big endian targets this is only useful for subtargets with direct moves.
 | 
						|
  // On little endian targets it would be useful for all subtargets with VSX.
 | 
						|
  // However adding special handling for LE subtargets without direct moves
 | 
						|
  // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
 | 
						|
  // which includes direct moves.
 | 
						|
  if (!Subtarget.hasDirectMove())
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // If this is not a shuffle of a shuffle and the first element comes from
 | 
						|
  // the second vector, canonicalize to the commuted form. This will make it
 | 
						|
  // more likely to match one of the single instruction patterns.
 | 
						|
  if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
 | 
						|
      RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Res = DAG.getCommutedVectorShuffle(*SVN);
 | 
						|
    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the shuffle mask if either input vector comes from a
 | 
						|
  // SCALAR_TO_VECTOR and keep the respective input vector in permuted
 | 
						|
  // form (to prevent the need for a swap).
 | 
						|
  SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
 | 
						|
  SDValue SToVLHS = isScalarToVec(LHS);
 | 
						|
  SDValue SToVRHS = isScalarToVec(RHS);
 | 
						|
  if (SToVLHS || SToVRHS) {
 | 
						|
    int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
 | 
						|
                            : SToVRHS.getValueType().getVectorNumElements();
 | 
						|
    int NumEltsOut = ShuffV.size();
 | 
						|
    // The width of the "valid lane" (i.e. the lane that contains the value that
 | 
						|
    // is vectorized) needs to be expressed in terms of the number of elements
 | 
						|
    // of the shuffle. It is thereby the ratio of the values before and after
 | 
						|
    // any bitcast.
 | 
						|
    unsigned ValidLaneWidth =
 | 
						|
        SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
 | 
						|
                      LHS.getValueType().getScalarSizeInBits()
 | 
						|
                : SToVRHS.getValueType().getScalarSizeInBits() /
 | 
						|
                      RHS.getValueType().getScalarSizeInBits();
 | 
						|
 | 
						|
    // Initially assume that neither input is permuted. These will be adjusted
 | 
						|
    // accordingly if either input is.
 | 
						|
    int LHSMaxIdx = -1;
 | 
						|
    int RHSMinIdx = -1;
 | 
						|
    int RHSMaxIdx = -1;
 | 
						|
    int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
 | 
						|
 | 
						|
    // Get the permuted scalar to vector nodes for the source(s) that come from
 | 
						|
    // ISD::SCALAR_TO_VECTOR.
 | 
						|
    // On big endian systems, this only makes sense for element sizes smaller
 | 
						|
    // than 64 bits since for 64-bit elements, all instructions already put
 | 
						|
    // the value into element zero. Since scalar size of LHS and RHS may differ
 | 
						|
    // after isScalarToVec, this should be checked using their own sizes.
 | 
						|
    if (SToVLHS) {
 | 
						|
      if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
 | 
						|
        return Res;
 | 
						|
      // Set up the values for the shuffle vector fixup.
 | 
						|
      LHSMaxIdx = NumEltsOut / NumEltsIn;
 | 
						|
      SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
 | 
						|
      if (SToVLHS.getValueType() != LHS.getValueType())
 | 
						|
        SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
 | 
						|
      LHS = SToVLHS;
 | 
						|
    }
 | 
						|
    if (SToVRHS) {
 | 
						|
      if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
 | 
						|
        return Res;
 | 
						|
      RHSMinIdx = NumEltsOut;
 | 
						|
      RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
 | 
						|
      SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
 | 
						|
      if (SToVRHS.getValueType() != RHS.getValueType())
 | 
						|
        SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
 | 
						|
      RHS = SToVRHS;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fix up the shuffle mask to reflect where the desired element actually is.
 | 
						|
    // The minimum and maximum indices that correspond to element zero for both
 | 
						|
    // the LHS and RHS are computed and will control which shuffle mask entries
 | 
						|
    // are to be changed. For example, if the RHS is permuted, any shuffle mask
 | 
						|
    // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
 | 
						|
    fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
 | 
						|
                                    HalfVec, ValidLaneWidth, Subtarget);
 | 
						|
    Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
 | 
						|
 | 
						|
    // We may have simplified away the shuffle. We won't be able to do anything
 | 
						|
    // further with it here.
 | 
						|
    if (!isa<ShuffleVectorSDNode>(Res))
 | 
						|
      return Res;
 | 
						|
    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue TheSplat = IsLittleEndian ? RHS : LHS;
 | 
						|
  // The common case after we commuted the shuffle is that the RHS is a splat
 | 
						|
  // and we have elements coming in from the splat at indices that are not
 | 
						|
  // conducive to using a merge.
 | 
						|
  // Example:
 | 
						|
  // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
 | 
						|
  if (!isSplatBV(TheSplat))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // We are looking for a mask such that all even elements are from
 | 
						|
  // one vector and all odd elements from the other.
 | 
						|
  if (!isAlternatingShuffMask(Mask, NumElts))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Adjust the mask so we are pulling in the same index from the splat
 | 
						|
  // as the index from the interesting vector in consecutive elements.
 | 
						|
  if (IsLittleEndian) {
 | 
						|
    // Example (even elements from first vector):
 | 
						|
    // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
 | 
						|
    if (Mask[0] < NumElts)
 | 
						|
      for (int i = 1, e = Mask.size(); i < e; i += 2)
 | 
						|
        ShuffV[i] = (ShuffV[i - 1] + NumElts);
 | 
						|
    // Example (odd elements from first vector):
 | 
						|
    // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
 | 
						|
    else
 | 
						|
      for (int i = 0, e = Mask.size(); i < e; i += 2)
 | 
						|
        ShuffV[i] = (ShuffV[i + 1] + NumElts);
 | 
						|
  } else {
 | 
						|
    // Example (even elements from first vector):
 | 
						|
    // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
 | 
						|
    if (Mask[0] < NumElts)
 | 
						|
      for (int i = 0, e = Mask.size(); i < e; i += 2)
 | 
						|
        ShuffV[i] = ShuffV[i + 1] - NumElts;
 | 
						|
    // Example (odd elements from first vector):
 | 
						|
    // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
 | 
						|
    else
 | 
						|
      for (int i = 1, e = Mask.size(); i < e; i += 2)
 | 
						|
        ShuffV[i] = ShuffV[i - 1] - NumElts;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS has undefs, we need to remove them since we may have created
 | 
						|
  // a shuffle that adds those instead of the splat value.
 | 
						|
  SDValue SplatVal =
 | 
						|
      cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
 | 
						|
  TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
 | 
						|
 | 
						|
  if (IsLittleEndian)
 | 
						|
    RHS = TheSplat;
 | 
						|
  else
 | 
						|
    LHS = TheSplat;
 | 
						|
  return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
 | 
						|
                                                LSBaseSDNode *LSBase,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
 | 
						|
        "Not a reverse memop pattern!");
 | 
						|
 | 
						|
  auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
 | 
						|
    auto Mask = SVN->getMask();
 | 
						|
    int i = 0;
 | 
						|
    auto I = Mask.rbegin();
 | 
						|
    auto E = Mask.rend();
 | 
						|
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      if (*I != i)
 | 
						|
        return false;
 | 
						|
      i++;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = SVN->getValueType(0);
 | 
						|
 | 
						|
  if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
 | 
						|
  // See comment in PPCVSXSwapRemoval.cpp.
 | 
						|
  // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
 | 
						|
  if (!Subtarget.hasP9Vector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if(!IsElementReverse(SVN))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (LSBase->getOpcode() == ISD::LOAD) {
 | 
						|
    // If the load return value 0 has more than one user except the
 | 
						|
    // shufflevector instruction, it is not profitable to replace the
 | 
						|
    // shufflevector with a reverse load.
 | 
						|
    for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
 | 
						|
         UI != UE; ++UI)
 | 
						|
      if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
    SDLoc dl(LSBase);
 | 
						|
    SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
 | 
						|
    return DAG.getMemIntrinsicNode(
 | 
						|
        PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
 | 
						|
        LSBase->getMemoryVT(), LSBase->getMemOperand());
 | 
						|
  }
 | 
						|
 | 
						|
  if (LSBase->getOpcode() == ISD::STORE) {
 | 
						|
    // If there are other uses of the shuffle, the swap cannot be avoided.
 | 
						|
    // Forcing the use of an X-Form (since swapped stores only have
 | 
						|
    // X-Forms) without removing the swap is unprofitable.
 | 
						|
    if (!SVN->hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDLoc dl(LSBase);
 | 
						|
    SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
 | 
						|
                          LSBase->getBasePtr()};
 | 
						|
    return DAG.getMemIntrinsicNode(
 | 
						|
        PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
 | 
						|
        LSBase->getMemoryVT(), LSBase->getMemOperand());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Expected a load or store node here");
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                             DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::ADD:
 | 
						|
    return combineADD(N, DCI);
 | 
						|
  case ISD::SHL:
 | 
						|
    return combineSHL(N, DCI);
 | 
						|
  case ISD::SRA:
 | 
						|
    return combineSRA(N, DCI);
 | 
						|
  case ISD::SRL:
 | 
						|
    return combineSRL(N, DCI);
 | 
						|
  case ISD::MUL:
 | 
						|
    return combineMUL(N, DCI);
 | 
						|
  case ISD::FMA:
 | 
						|
  case PPCISD::FNMSUB:
 | 
						|
    return combineFMALike(N, DCI);
 | 
						|
  case PPCISD::SHL:
 | 
						|
    if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    break;
 | 
						|
  case PPCISD::SRL:
 | 
						|
    if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    break;
 | 
						|
  case PPCISD::SRA:
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | 
						|
      if (C->isZero() ||  //  0 >>s V -> 0.
 | 
						|
          C->isAllOnes()) // -1 >>s V -> -1.
 | 
						|
        return N->getOperand(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
    return DAGCombineExtBoolTrunc(N, DCI);
 | 
						|
  case ISD::TRUNCATE:
 | 
						|
    return combineTRUNCATE(N, DCI);
 | 
						|
  case ISD::SETCC:
 | 
						|
    if (SDValue CSCC = combineSetCC(N, DCI))
 | 
						|
      return CSCC;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SELECT_CC:
 | 
						|
    return DAGCombineTruncBoolExt(N, DCI);
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    return combineFPToIntToFP(N, DCI);
 | 
						|
  case ISD::VECTOR_SHUFFLE:
 | 
						|
    if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
 | 
						|
      LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
 | 
						|
      return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
 | 
						|
    }
 | 
						|
    return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
 | 
						|
  case ISD::STORE: {
 | 
						|
 | 
						|
    EVT Op1VT = N->getOperand(1).getValueType();
 | 
						|
    unsigned Opcode = N->getOperand(1).getOpcode();
 | 
						|
 | 
						|
    if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
 | 
						|
      SDValue Val= combineStoreFPToInt(N, DCI);
 | 
						|
      if (Val)
 | 
						|
        return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
 | 
						|
      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
 | 
						|
      SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
 | 
						|
      if (Val)
 | 
						|
        return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | 
						|
    if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
 | 
						|
        N->getOperand(1).getNode()->hasOneUse() &&
 | 
						|
        (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
 | 
						|
         (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
 | 
						|
 | 
						|
      // STBRX can only handle simple types and it makes no sense to store less
 | 
						|
      // two bytes in byte-reversed order.
 | 
						|
      EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
 | 
						|
      if (mVT.isExtended() || mVT.getSizeInBits() < 16)
 | 
						|
        break;
 | 
						|
 | 
						|
      SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | 
						|
      // Do an any-extend to 32-bits if this is a half-word input.
 | 
						|
      if (BSwapOp.getValueType() == MVT::i16)
 | 
						|
        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
 | 
						|
 | 
						|
      // If the type of BSWAP operand is wider than stored memory width
 | 
						|
      // it need to be shifted to the right side before STBRX.
 | 
						|
      if (Op1VT.bitsGT(mVT)) {
 | 
						|
        int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
 | 
						|
        BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
 | 
						|
                              DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
        // Need to truncate if this is a bswap of i64 stored as i32/i16.
 | 
						|
        if (Op1VT == MVT::i64)
 | 
						|
          BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Ops[] = {
 | 
						|
        N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
 | 
						|
      };
 | 
						|
      return
 | 
						|
        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
 | 
						|
                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
 | 
						|
                                cast<StoreSDNode>(N)->getMemOperand());
 | 
						|
    }
 | 
						|
 | 
						|
    // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
 | 
						|
    // So it can increase the chance of CSE constant construction.
 | 
						|
    if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
 | 
						|
        isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
 | 
						|
      // Need to sign-extended to 64-bits to handle negative values.
 | 
						|
      EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
 | 
						|
      uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
 | 
						|
                                    MemVT.getSizeInBits());
 | 
						|
      SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
 | 
						|
 | 
						|
      // DAG.getTruncStore() can't be used here because it doesn't accept
 | 
						|
      // the general (base + offset) addressing mode.
 | 
						|
      // So we use UpdateNodeOperands and setTruncatingStore instead.
 | 
						|
      DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
 | 
						|
                             N->getOperand(3));
 | 
						|
      cast<StoreSDNode>(N)->setTruncatingStore(true);
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // For little endian, VSX stores require generating xxswapd/lxvd2x.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | 
						|
    if (Op1VT.isSimple()) {
 | 
						|
      MVT StoreVT = Op1VT.getSimpleVT();
 | 
						|
      if (Subtarget.needsSwapsForVSXMemOps() &&
 | 
						|
          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
 | 
						|
           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
 | 
						|
        return expandVSXStoreForLE(N, DCI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    EVT VT = LD->getValueType(0);
 | 
						|
 | 
						|
    // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | 
						|
    if (VT.isSimple()) {
 | 
						|
      MVT LoadVT = VT.getSimpleVT();
 | 
						|
      if (Subtarget.needsSwapsForVSXMemOps() &&
 | 
						|
          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
 | 
						|
           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
 | 
						|
        return expandVSXLoadForLE(N, DCI);
 | 
						|
    }
 | 
						|
 | 
						|
    // We sometimes end up with a 64-bit integer load, from which we extract
 | 
						|
    // two single-precision floating-point numbers. This happens with
 | 
						|
    // std::complex<float>, and other similar structures, because of the way we
 | 
						|
    // canonicalize structure copies. However, if we lack direct moves,
 | 
						|
    // then the final bitcasts from the extracted integer values to the
 | 
						|
    // floating-point numbers turn into store/load pairs. Even with direct moves,
 | 
						|
    // just loading the two floating-point numbers is likely better.
 | 
						|
    auto ReplaceTwoFloatLoad = [&]() {
 | 
						|
      if (VT != MVT::i64)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
 | 
						|
          LD->isVolatile())
 | 
						|
        return false;
 | 
						|
 | 
						|
      //  We're looking for a sequence like this:
 | 
						|
      //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
 | 
						|
      //      t16: i64 = srl t13, Constant:i32<32>
 | 
						|
      //    t17: i32 = truncate t16
 | 
						|
      //  t18: f32 = bitcast t17
 | 
						|
      //    t19: i32 = truncate t13
 | 
						|
      //  t20: f32 = bitcast t19
 | 
						|
 | 
						|
      if (!LD->hasNUsesOfValue(2, 0))
 | 
						|
        return false;
 | 
						|
 | 
						|
      auto UI = LD->use_begin();
 | 
						|
      while (UI.getUse().getResNo() != 0) ++UI;
 | 
						|
      SDNode *Trunc = *UI++;
 | 
						|
      while (UI.getUse().getResNo() != 0) ++UI;
 | 
						|
      SDNode *RightShift = *UI;
 | 
						|
      if (Trunc->getOpcode() != ISD::TRUNCATE)
 | 
						|
        std::swap(Trunc, RightShift);
 | 
						|
 | 
						|
      if (Trunc->getOpcode() != ISD::TRUNCATE ||
 | 
						|
          Trunc->getValueType(0) != MVT::i32 ||
 | 
						|
          !Trunc->hasOneUse())
 | 
						|
        return false;
 | 
						|
      if (RightShift->getOpcode() != ISD::SRL ||
 | 
						|
          !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
 | 
						|
          RightShift->getConstantOperandVal(1) != 32 ||
 | 
						|
          !RightShift->hasOneUse())
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDNode *Trunc2 = *RightShift->use_begin();
 | 
						|
      if (Trunc2->getOpcode() != ISD::TRUNCATE ||
 | 
						|
          Trunc2->getValueType(0) != MVT::i32 ||
 | 
						|
          !Trunc2->hasOneUse())
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDNode *Bitcast = *Trunc->use_begin();
 | 
						|
      SDNode *Bitcast2 = *Trunc2->use_begin();
 | 
						|
 | 
						|
      if (Bitcast->getOpcode() != ISD::BITCAST ||
 | 
						|
          Bitcast->getValueType(0) != MVT::f32)
 | 
						|
        return false;
 | 
						|
      if (Bitcast2->getOpcode() != ISD::BITCAST ||
 | 
						|
          Bitcast2->getValueType(0) != MVT::f32)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (Subtarget.isLittleEndian())
 | 
						|
        std::swap(Bitcast, Bitcast2);
 | 
						|
 | 
						|
      // Bitcast has the second float (in memory-layout order) and Bitcast2
 | 
						|
      // has the first one.
 | 
						|
 | 
						|
      SDValue BasePtr = LD->getBasePtr();
 | 
						|
      if (LD->isIndexed()) {
 | 
						|
        assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
               "Non-pre-inc AM on PPC?");
 | 
						|
        BasePtr =
 | 
						|
          DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                      LD->getOffset());
 | 
						|
      }
 | 
						|
 | 
						|
      auto MMOFlags =
 | 
						|
          LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
 | 
						|
      SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
 | 
						|
                                      LD->getPointerInfo(), LD->getAlignment(),
 | 
						|
                                      MMOFlags, LD->getAAInfo());
 | 
						|
      SDValue AddPtr =
 | 
						|
        DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
 | 
						|
                    BasePtr, DAG.getIntPtrConstant(4, dl));
 | 
						|
      SDValue FloatLoad2 = DAG.getLoad(
 | 
						|
          MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
 | 
						|
          LD->getPointerInfo().getWithOffset(4),
 | 
						|
          MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
 | 
						|
 | 
						|
      if (LD->isIndexed()) {
 | 
						|
        // Note that DAGCombine should re-form any pre-increment load(s) from
 | 
						|
        // what is produced here if that makes sense.
 | 
						|
        DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
 | 
						|
      }
 | 
						|
 | 
						|
      DCI.CombineTo(Bitcast2, FloatLoad);
 | 
						|
      DCI.CombineTo(Bitcast, FloatLoad2);
 | 
						|
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
 | 
						|
                                    SDValue(FloatLoad2.getNode(), 1));
 | 
						|
      return true;
 | 
						|
    };
 | 
						|
 | 
						|
    if (ReplaceTwoFloatLoad())
 | 
						|
      return SDValue(N, 0);
 | 
						|
 | 
						|
    EVT MemVT = LD->getMemoryVT();
 | 
						|
    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
 | 
						|
    Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
 | 
						|
    if (LD->isUnindexed() && VT.isVector() &&
 | 
						|
        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
 | 
						|
          // P8 and later hardware should just use LOAD.
 | 
						|
          !Subtarget.hasP8Vector() &&
 | 
						|
          (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | 
						|
           VT == MVT::v4f32))) &&
 | 
						|
        LD->getAlign() < ABIAlignment) {
 | 
						|
      // This is a type-legal unaligned Altivec load.
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Ptr = LD->getBasePtr();
 | 
						|
      bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
      // This implements the loading of unaligned vectors as described in
 | 
						|
      // the venerable Apple Velocity Engine overview. Specifically:
 | 
						|
      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
 | 
						|
      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
 | 
						|
      //
 | 
						|
      // The general idea is to expand a sequence of one or more unaligned
 | 
						|
      // loads into an alignment-based permutation-control instruction (lvsl
 | 
						|
      // or lvsr), a series of regular vector loads (which always truncate
 | 
						|
      // their input address to an aligned address), and a series of
 | 
						|
      // permutations.  The results of these permutations are the requested
 | 
						|
      // loaded values.  The trick is that the last "extra" load is not taken
 | 
						|
      // from the address you might suspect (sizeof(vector) bytes after the
 | 
						|
      // last requested load), but rather sizeof(vector) - 1 bytes after the
 | 
						|
      // last requested vector. The point of this is to avoid a page fault if
 | 
						|
      // the base address happened to be aligned. This works because if the
 | 
						|
      // base address is aligned, then adding less than a full vector length
 | 
						|
      // will cause the last vector in the sequence to be (re)loaded.
 | 
						|
      // Otherwise, the next vector will be fetched as you might suspect was
 | 
						|
      // necessary.
 | 
						|
 | 
						|
      // We might be able to reuse the permutation generation from
 | 
						|
      // a different base address offset from this one by an aligned amount.
 | 
						|
      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
 | 
						|
      // optimization later.
 | 
						|
      Intrinsic::ID Intr, IntrLD, IntrPerm;
 | 
						|
      MVT PermCntlTy, PermTy, LDTy;
 | 
						|
      Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
 | 
						|
                            : Intrinsic::ppc_altivec_lvsl;
 | 
						|
      IntrLD = Intrinsic::ppc_altivec_lvx;
 | 
						|
      IntrPerm = Intrinsic::ppc_altivec_vperm;
 | 
						|
      PermCntlTy = MVT::v16i8;
 | 
						|
      PermTy = MVT::v4i32;
 | 
						|
      LDTy = MVT::v4i32;
 | 
						|
 | 
						|
      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
 | 
						|
 | 
						|
      // Create the new MMO for the new base load. It is like the original MMO,
 | 
						|
      // but represents an area in memory almost twice the vector size centered
 | 
						|
      // on the original address. If the address is unaligned, we might start
 | 
						|
      // reading up to (sizeof(vector)-1) bytes below the address of the
 | 
						|
      // original unaligned load.
 | 
						|
      MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
      MachineMemOperand *BaseMMO =
 | 
						|
        MF.getMachineMemOperand(LD->getMemOperand(),
 | 
						|
                                -(long)MemVT.getStoreSize()+1,
 | 
						|
                                2*MemVT.getStoreSize()-1);
 | 
						|
 | 
						|
      // Create the new base load.
 | 
						|
      SDValue LDXIntID =
 | 
						|
          DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
 | 
						|
      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
 | 
						|
      SDValue BaseLoad =
 | 
						|
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | 
						|
                                DAG.getVTList(PermTy, MVT::Other),
 | 
						|
                                BaseLoadOps, LDTy, BaseMMO);
 | 
						|
 | 
						|
      // Note that the value of IncOffset (which is provided to the next
 | 
						|
      // load's pointer info offset value, and thus used to calculate the
 | 
						|
      // alignment), and the value of IncValue (which is actually used to
 | 
						|
      // increment the pointer value) are different! This is because we
 | 
						|
      // require the next load to appear to be aligned, even though it
 | 
						|
      // is actually offset from the base pointer by a lesser amount.
 | 
						|
      int IncOffset = VT.getSizeInBits() / 8;
 | 
						|
      int IncValue = IncOffset;
 | 
						|
 | 
						|
      // Walk (both up and down) the chain looking for another load at the real
 | 
						|
      // (aligned) offset (the alignment of the other load does not matter in
 | 
						|
      // this case). If found, then do not use the offset reduction trick, as
 | 
						|
      // that will prevent the loads from being later combined (as they would
 | 
						|
      // otherwise be duplicates).
 | 
						|
      if (!findConsecutiveLoad(LD, DAG))
 | 
						|
        --IncValue;
 | 
						|
 | 
						|
      SDValue Increment =
 | 
						|
          DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
 | 
						|
      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | 
						|
 | 
						|
      MachineMemOperand *ExtraMMO =
 | 
						|
        MF.getMachineMemOperand(LD->getMemOperand(),
 | 
						|
                                1, 2*MemVT.getStoreSize()-1);
 | 
						|
      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
 | 
						|
      SDValue ExtraLoad =
 | 
						|
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | 
						|
                                DAG.getVTList(PermTy, MVT::Other),
 | 
						|
                                ExtraLoadOps, LDTy, ExtraMMO);
 | 
						|
 | 
						|
      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
        BaseLoad.getValue(1), ExtraLoad.getValue(1));
 | 
						|
 | 
						|
      // Because vperm has a big-endian bias, we must reverse the order
 | 
						|
      // of the input vectors and complement the permute control vector
 | 
						|
      // when generating little endian code.  We have already handled the
 | 
						|
      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
 | 
						|
      // and ExtraLoad here.
 | 
						|
      SDValue Perm;
 | 
						|
      if (isLittleEndian)
 | 
						|
        Perm = BuildIntrinsicOp(IntrPerm,
 | 
						|
                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
 | 
						|
      else
 | 
						|
        Perm = BuildIntrinsicOp(IntrPerm,
 | 
						|
                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);
 | 
						|
 | 
						|
      if (VT != PermTy)
 | 
						|
        Perm = Subtarget.hasAltivec()
 | 
						|
                   ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
 | 
						|
                   : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
 | 
						|
                                 DAG.getTargetConstant(1, dl, MVT::i64));
 | 
						|
                               // second argument is 1 because this rounding
 | 
						|
                               // is always exact.
 | 
						|
 | 
						|
      // The output of the permutation is our loaded result, the TokenFactor is
 | 
						|
      // our new chain.
 | 
						|
      DCI.CombineTo(N, Perm, TF);
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
      bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
 | 
						|
                                           : Intrinsic::ppc_altivec_lvsl);
 | 
						|
      if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
 | 
						|
        SDValue Add = N->getOperand(1);
 | 
						|
 | 
						|
        int Bits = 4 /* 16 byte alignment */;
 | 
						|
 | 
						|
        if (DAG.MaskedValueIsZero(Add->getOperand(1),
 | 
						|
                                  APInt::getAllOnes(Bits /* alignment */)
 | 
						|
                                      .zext(Add.getScalarValueSizeInBits()))) {
 | 
						|
          SDNode *BasePtr = Add->getOperand(0).getNode();
 | 
						|
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | 
						|
                                    UE = BasePtr->use_end();
 | 
						|
               UI != UE; ++UI) {
 | 
						|
            if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
                cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
 | 
						|
                    IID) {
 | 
						|
              // We've found another LVSL/LVSR, and this address is an aligned
 | 
						|
              // multiple of that one. The results will be the same, so use the
 | 
						|
              // one we've just found instead.
 | 
						|
 | 
						|
              return SDValue(*UI, 0);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (isa<ConstantSDNode>(Add->getOperand(1))) {
 | 
						|
          SDNode *BasePtr = Add->getOperand(0).getNode();
 | 
						|
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | 
						|
               UE = BasePtr->use_end(); UI != UE; ++UI) {
 | 
						|
            if (UI->getOpcode() == ISD::ADD &&
 | 
						|
                isa<ConstantSDNode>(UI->getOperand(1)) &&
 | 
						|
                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
 | 
						|
                 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
 | 
						|
                (1ULL << Bits) == 0) {
 | 
						|
              SDNode *OtherAdd = *UI;
 | 
						|
              for (SDNode::use_iterator VI = OtherAdd->use_begin(),
 | 
						|
                   VE = OtherAdd->use_end(); VI != VE; ++VI) {
 | 
						|
                if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
                    cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
 | 
						|
                  return SDValue(*VI, 0);
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Combine vmaxsw/h/b(a, a's negation) to abs(a)
 | 
						|
      // Expose the vabsduw/h/b opportunity for down stream
 | 
						|
      if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
 | 
						|
          (IID == Intrinsic::ppc_altivec_vmaxsw ||
 | 
						|
           IID == Intrinsic::ppc_altivec_vmaxsh ||
 | 
						|
           IID == Intrinsic::ppc_altivec_vmaxsb)) {
 | 
						|
        SDValue V1 = N->getOperand(1);
 | 
						|
        SDValue V2 = N->getOperand(2);
 | 
						|
        if ((V1.getSimpleValueType() == MVT::v4i32 ||
 | 
						|
             V1.getSimpleValueType() == MVT::v8i16 ||
 | 
						|
             V1.getSimpleValueType() == MVT::v16i8) &&
 | 
						|
            V1.getSimpleValueType() == V2.getSimpleValueType()) {
 | 
						|
          // (0-a, a)
 | 
						|
          if (V1.getOpcode() == ISD::SUB &&
 | 
						|
              ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
 | 
						|
              V1.getOperand(1) == V2) {
 | 
						|
            return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
 | 
						|
          }
 | 
						|
          // (a, 0-a)
 | 
						|
          if (V2.getOpcode() == ISD::SUB &&
 | 
						|
              ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
 | 
						|
              V2.getOperand(1) == V1) {
 | 
						|
            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
 | 
						|
          }
 | 
						|
          // (x-y, y-x)
 | 
						|
          if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
 | 
						|
              V1.getOperand(0) == V2.getOperand(1) &&
 | 
						|
              V1.getOperand(1) == V2.getOperand(0)) {
 | 
						|
            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:
 | 
						|
    // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | 
						|
    if (Subtarget.needsSwapsForVSXMemOps()) {
 | 
						|
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
      case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
        return expandVSXLoadForLE(N, DCI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
    // For little endian, VSX stores require generating xxswapd/stxvd2x.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | 
						|
    if (Subtarget.needsSwapsForVSXMemOps()) {
 | 
						|
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
      case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
        return expandVSXStoreForLE(N, DCI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BSWAP: {
 | 
						|
    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | 
						|
    // For subtargets without LDBRX, we can still do better than the default
 | 
						|
    // expansion even for 64-bit BSWAP (LOAD).
 | 
						|
    bool Is64BitBswapOn64BitTgt =
 | 
						|
        Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
 | 
						|
    bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
 | 
						|
                               N->getOperand(0).hasOneUse();
 | 
						|
    if (IsSingleUseNormalLd &&
 | 
						|
        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
 | 
						|
         (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
 | 
						|
      SDValue Load = N->getOperand(0);
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(Load);
 | 
						|
      // Create the byte-swapping load.
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LD->getChain(),    // Chain
 | 
						|
        LD->getBasePtr(),  // Ptr
 | 
						|
        DAG.getValueType(N->getValueType(0)) // VT
 | 
						|
      };
 | 
						|
      SDValue BSLoad =
 | 
						|
        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
 | 
						|
                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
 | 
						|
                                              MVT::i64 : MVT::i32, MVT::Other),
 | 
						|
                                Ops, LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
 | 
						|
      // If this is an i16 load, insert the truncate.
 | 
						|
      SDValue ResVal = BSLoad;
 | 
						|
      if (N->getValueType(0) == MVT::i16)
 | 
						|
        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
 | 
						|
 | 
						|
      // First, combine the bswap away.  This makes the value produced by the
 | 
						|
      // load dead.
 | 
						|
      DCI.CombineTo(N, ResVal);
 | 
						|
 | 
						|
      // Next, combine the load away, we give it a bogus result value but a real
 | 
						|
      // chain result.  The result value is dead because the bswap is dead.
 | 
						|
      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | 
						|
 | 
						|
      // Return N so it doesn't get rechecked!
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
    // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
 | 
						|
    // before legalization so that the BUILD_PAIR is handled correctly.
 | 
						|
    if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
 | 
						|
        !IsSingleUseNormalLd)
 | 
						|
      return SDValue();
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
 | 
						|
 | 
						|
    // Can't split volatile or atomic loads.
 | 
						|
    if (!LD->isSimple())
 | 
						|
      return SDValue();
 | 
						|
    SDValue BasePtr = LD->getBasePtr();
 | 
						|
    SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
 | 
						|
                             LD->getPointerInfo(), LD->getAlignment());
 | 
						|
    Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
 | 
						|
    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                          DAG.getIntPtrConstant(4, dl));
 | 
						|
    MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
 | 
						|
        LD->getMemOperand(), 4, 4);
 | 
						|
    SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
 | 
						|
    Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
 | 
						|
    SDValue Res;
 | 
						|
    if (Subtarget.isLittleEndian())
 | 
						|
      Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
 | 
						|
    else
 | 
						|
      Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | 
						|
    SDValue TF =
 | 
						|
        DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                    Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case PPCISD::VCMP:
 | 
						|
    // If a VCMP_rec node already exists with exactly the same operands as this
 | 
						|
    // node, use its result instead of this node (VCMP_rec computes both a CR6
 | 
						|
    // and a normal output).
 | 
						|
    //
 | 
						|
    if (!N->getOperand(0).hasOneUse() &&
 | 
						|
        !N->getOperand(1).hasOneUse() &&
 | 
						|
        !N->getOperand(2).hasOneUse()) {
 | 
						|
 | 
						|
      // Scan all of the users of the LHS, looking for VCMP_rec's that match.
 | 
						|
      SDNode *VCMPrecNode = nullptr;
 | 
						|
 | 
						|
      SDNode *LHSN = N->getOperand(0).getNode();
 | 
						|
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (UI->getOpcode() == PPCISD::VCMP_rec &&
 | 
						|
            UI->getOperand(1) == N->getOperand(1) &&
 | 
						|
            UI->getOperand(2) == N->getOperand(2) &&
 | 
						|
            UI->getOperand(0) == N->getOperand(0)) {
 | 
						|
          VCMPrecNode = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      // If there is no VCMP_rec node, or if the flag value has a single use,
 | 
						|
      // don't transform this.
 | 
						|
      if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Look at the (necessarily single) use of the flag value.  If it has a
 | 
						|
      // chain, this transformation is more complex.  Note that multiple things
 | 
						|
      // could use the value result, which we should ignore.
 | 
						|
      SDNode *FlagUser = nullptr;
 | 
						|
      for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
 | 
						|
           FlagUser == nullptr; ++UI) {
 | 
						|
        assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
 | 
						|
        SDNode *User = *UI;
 | 
						|
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | 
						|
          if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
 | 
						|
            FlagUser = User;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the user is a MFOCRF instruction, we know this is safe.
 | 
						|
      // Otherwise we give up for right now.
 | 
						|
      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
 | 
						|
        return SDValue(VCMPrecNode, 0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BRCOND: {
 | 
						|
    SDValue Cond = N->getOperand(1);
 | 
						|
    SDValue Target = N->getOperand(2);
 | 
						|
 | 
						|
    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::loop_decrement) {
 | 
						|
 | 
						|
      // We now need to make the intrinsic dead (it cannot be instruction
 | 
						|
      // selected).
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
 | 
						|
      assert(Cond.getNode()->hasOneUse() &&
 | 
						|
             "Counter decrement has more than one use");
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
 | 
						|
                         N->getOperand(0), Target);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    // If this is a branch on an altivec predicate comparison, lower this so
 | 
						|
    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
 | 
						|
    // lowering is done pre-legalize, because the legalizer lowers the predicate
 | 
						|
    // compare down to code that is difficult to reassemble.
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | 
						|
 | 
						|
    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
 | 
						|
    // value. If so, pass-through the AND to get to the intrinsic.
 | 
						|
    if (LHS.getOpcode() == ISD::AND &&
 | 
						|
        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::loop_decrement &&
 | 
						|
        isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | 
						|
        !isNullConstant(LHS.getOperand(1)))
 | 
						|
      LHS = LHS.getOperand(0);
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::loop_decrement &&
 | 
						|
        isa<ConstantSDNode>(RHS)) {
 | 
						|
      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
             "Counter decrement comparison is not EQ or NE");
 | 
						|
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | 
						|
      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
 | 
						|
                    (CC == ISD::SETNE && !Val);
 | 
						|
 | 
						|
      // We now need to make the intrinsic dead (it cannot be instruction
 | 
						|
      // selected).
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
 | 
						|
      assert(LHS.getNode()->hasOneUse() &&
 | 
						|
             "Counter decrement has more than one use");
 | 
						|
 | 
						|
      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
 | 
						|
                         N->getOperand(0), N->getOperand(4));
 | 
						|
    }
 | 
						|
 | 
						|
    int CompareOpc;
 | 
						|
    bool isDot;
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
        getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
 | 
						|
      assert(isDot && "Can't compare against a vector result!");
 | 
						|
 | 
						|
      // If this is a comparison against something other than 0/1, then we know
 | 
						|
      // that the condition is never/always true.
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | 
						|
      if (Val != 0 && Val != 1) {
 | 
						|
        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | 
						|
          return N->getOperand(0);
 | 
						|
        // Always !=, turn it into an unconditional branch.
 | 
						|
        return DAG.getNode(ISD::BR, dl, MVT::Other,
 | 
						|
                           N->getOperand(0), N->getOperand(4));
 | 
						|
      }
 | 
						|
 | 
						|
      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | 
						|
 | 
						|
      // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LHS.getOperand(2),  // LHS of compare
 | 
						|
        LHS.getOperand(3),  // RHS of compare
 | 
						|
        DAG.getConstant(CompareOpc, dl, MVT::i32)
 | 
						|
      };
 | 
						|
      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
 | 
						|
      SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
 | 
						|
 | 
						|
      // Unpack the result based on how the target uses it.
 | 
						|
      PPC::Predicate CompOpc;
 | 
						|
      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
 | 
						|
      default:  // Can't happen, don't crash on invalid number though.
 | 
						|
      case 0:   // Branch on the value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | 
						|
        break;
 | 
						|
      case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | 
						|
        break;
 | 
						|
      case 2:   // Branch on the value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | 
						|
        break;
 | 
						|
      case 3:   // Branch on the inverted value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
 | 
						|
                         DAG.getConstant(CompOpc, dl, MVT::i32),
 | 
						|
                         DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                         N->getOperand(4), CompNode.getValue(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::BUILD_VECTOR:
 | 
						|
    return DAGCombineBuildVector(N, DCI);
 | 
						|
  case ISD::ABS:
 | 
						|
    return combineABS(N, DCI);
 | 
						|
  case ISD::VSELECT:
 | 
						|
    return combineVSelect(N, DCI);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | 
						|
                                 SelectionDAG &DAG,
 | 
						|
                                 SmallVectorImpl<SDNode *> &Created) const {
 | 
						|
  // fold (sdiv X, pow2)
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT == MVT::i64 && !Subtarget.isPPC64())
 | 
						|
    return SDValue();
 | 
						|
  if ((VT != MVT::i32 && VT != MVT::i64) ||
 | 
						|
      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
  bool IsNegPow2 = (-Divisor).isPowerOf2();
 | 
						|
  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
 | 
						|
  SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
 | 
						|
 | 
						|
  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
 | 
						|
  Created.push_back(Op.getNode());
 | 
						|
 | 
						|
  if (IsNegPow2) {
 | 
						|
    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
 | 
						|
    Created.push_back(Op.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | 
						|
                                                      KnownBits &Known,
 | 
						|
                                                      const APInt &DemandedElts,
 | 
						|
                                                      const SelectionDAG &DAG,
 | 
						|
                                                      unsigned Depth) const {
 | 
						|
  Known.resetAll();
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case PPCISD::LBRX: {
 | 
						|
    // lhbrx is known to have the top bits cleared out.
 | 
						|
    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
 | 
						|
      Known.Zero = 0xFFFF0000;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequd_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequq_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsq_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtud_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuq_p:
 | 
						|
      Known.Zero = ~1U;  // All bits but the low one are known to be zero.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_load2r:
 | 
						|
      // Top bits are cleared for load2r (which is the same as lhbrx).
 | 
						|
      Known.Zero = 0xFFFF0000;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
 | 
						|
  switch (Subtarget.getCPUDirective()) {
 | 
						|
  default: break;
 | 
						|
  case PPC::DIR_970:
 | 
						|
  case PPC::DIR_PWR4:
 | 
						|
  case PPC::DIR_PWR5:
 | 
						|
  case PPC::DIR_PWR5X:
 | 
						|
  case PPC::DIR_PWR6:
 | 
						|
  case PPC::DIR_PWR6X:
 | 
						|
  case PPC::DIR_PWR7:
 | 
						|
  case PPC::DIR_PWR8:
 | 
						|
  case PPC::DIR_PWR9:
 | 
						|
  case PPC::DIR_PWR10:
 | 
						|
  case PPC::DIR_PWR_FUTURE: {
 | 
						|
    if (!ML)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (!DisableInnermostLoopAlign32) {
 | 
						|
      // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
 | 
						|
      // so that we can decrease cache misses and branch-prediction misses.
 | 
						|
      // Actual alignment of the loop will depend on the hotness check and other
 | 
						|
      // logic in alignBlocks.
 | 
						|
      if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
 | 
						|
        return Align(32);
 | 
						|
    }
 | 
						|
 | 
						|
    const PPCInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
    // For small loops (between 5 and 8 instructions), align to a 32-byte
 | 
						|
    // boundary so that the entire loop fits in one instruction-cache line.
 | 
						|
    uint64_t LoopSize = 0;
 | 
						|
    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
 | 
						|
      for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
 | 
						|
        LoopSize += TII->getInstSizeInBytes(*J);
 | 
						|
        if (LoopSize > 32)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (LoopSize > 16 && LoopSize <= 32)
 | 
						|
      return Align(32);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getPrefLoopAlignment(ML);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
PPCTargetLowering::ConstraintType
 | 
						|
PPCTargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default: break;
 | 
						|
    case 'b':
 | 
						|
    case 'r':
 | 
						|
    case 'f':
 | 
						|
    case 'd':
 | 
						|
    case 'v':
 | 
						|
    case 'y':
 | 
						|
      return C_RegisterClass;
 | 
						|
    case 'Z':
 | 
						|
      // FIXME: While Z does indicate a memory constraint, it specifically
 | 
						|
      // indicates an r+r address (used in conjunction with the 'y' modifier
 | 
						|
      // in the replacement string). Currently, we're forcing the base
 | 
						|
      // register to be r0 in the asm printer (which is interpreted as zero)
 | 
						|
      // and forming the complete address in the second register. This is
 | 
						|
      // suboptimal.
 | 
						|
      return C_Memory;
 | 
						|
    }
 | 
						|
  } else if (Constraint == "wc") { // individual CR bits.
 | 
						|
    return C_RegisterClass;
 | 
						|
  } else if (Constraint == "wa" || Constraint == "wd" ||
 | 
						|
             Constraint == "wf" || Constraint == "ws" ||
 | 
						|
             Constraint == "wi" || Constraint == "ww") {
 | 
						|
    return C_RegisterClass; // VSX registers.
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
/// Examine constraint type and operand type and determine a weight value.
 | 
						|
/// This object must already have been set up with the operand type
 | 
						|
/// and the current alternative constraint selected.
 | 
						|
TargetLowering::ConstraintWeight
 | 
						|
PPCTargetLowering::getSingleConstraintMatchWeight(
 | 
						|
    AsmOperandInfo &info, const char *constraint) const {
 | 
						|
  ConstraintWeight weight = CW_Invalid;
 | 
						|
  Value *CallOperandVal = info.CallOperandVal;
 | 
						|
    // If we don't have a value, we can't do a match,
 | 
						|
    // but allow it at the lowest weight.
 | 
						|
  if (!CallOperandVal)
 | 
						|
    return CW_Default;
 | 
						|
  Type *type = CallOperandVal->getType();
 | 
						|
 | 
						|
  // Look at the constraint type.
 | 
						|
  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
 | 
						|
    return CW_Register; // an individual CR bit.
 | 
						|
  else if ((StringRef(constraint) == "wa" ||
 | 
						|
            StringRef(constraint) == "wd" ||
 | 
						|
            StringRef(constraint) == "wf") &&
 | 
						|
           type->isVectorTy())
 | 
						|
    return CW_Register;
 | 
						|
  else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
 | 
						|
    return CW_Register; // just hold 64-bit integers data.
 | 
						|
  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
 | 
						|
    return CW_Register;
 | 
						|
  else if (StringRef(constraint) == "ww" && type->isFloatTy())
 | 
						|
    return CW_Register;
 | 
						|
 | 
						|
  switch (*constraint) {
 | 
						|
  default:
 | 
						|
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | 
						|
    break;
 | 
						|
  case 'b':
 | 
						|
    if (type->isIntegerTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
    if (type->isFloatTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'd':
 | 
						|
    if (type->isDoubleTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'v':
 | 
						|
    if (type->isVectorTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'y':
 | 
						|
    weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'Z':
 | 
						|
    weight = CW_Memory;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return weight;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass *>
 | 
						|
PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | 
						|
                                                StringRef Constraint,
 | 
						|
                                                MVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    // GCC RS6000 Constraint Letters
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'b':   // R1-R31
 | 
						|
      if (VT == MVT::i64 && Subtarget.isPPC64())
 | 
						|
        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
 | 
						|
      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
 | 
						|
    case 'r':   // R0-R31
 | 
						|
      if (VT == MVT::i64 && Subtarget.isPPC64())
 | 
						|
        return std::make_pair(0U, &PPC::G8RCRegClass);
 | 
						|
      return std::make_pair(0U, &PPC::GPRCRegClass);
 | 
						|
    // 'd' and 'f' constraints are both defined to be "the floating point
 | 
						|
    // registers", where one is for 32-bit and the other for 64-bit. We don't
 | 
						|
    // really care overly much here so just give them all the same reg classes.
 | 
						|
    case 'd':
 | 
						|
    case 'f':
 | 
						|
      if (Subtarget.hasSPE()) {
 | 
						|
        if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
          return std::make_pair(0U, &PPC::GPRCRegClass);
 | 
						|
        if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
          return std::make_pair(0U, &PPC::SPERCRegClass);
 | 
						|
      } else {
 | 
						|
        if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
          return std::make_pair(0U, &PPC::F4RCRegClass);
 | 
						|
        if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
          return std::make_pair(0U, &PPC::F8RCRegClass);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 'v':
 | 
						|
      if (Subtarget.hasAltivec())
 | 
						|
        return std::make_pair(0U, &PPC::VRRCRegClass);
 | 
						|
      break;
 | 
						|
    case 'y':   // crrc
 | 
						|
      return std::make_pair(0U, &PPC::CRRCRegClass);
 | 
						|
    }
 | 
						|
  } else if (Constraint == "wc" && Subtarget.useCRBits()) {
 | 
						|
    // An individual CR bit.
 | 
						|
    return std::make_pair(0U, &PPC::CRBITRCRegClass);
 | 
						|
  } else if ((Constraint == "wa" || Constraint == "wd" ||
 | 
						|
             Constraint == "wf" || Constraint == "wi") &&
 | 
						|
             Subtarget.hasVSX()) {
 | 
						|
    // A VSX register for either a scalar (FP) or vector. There is no
 | 
						|
    // support for single precision scalars on subtargets prior to Power8.
 | 
						|
    if (VT.isVector())
 | 
						|
      return std::make_pair(0U, &PPC::VSRCRegClass);
 | 
						|
    if (VT == MVT::f32 && Subtarget.hasP8Vector())
 | 
						|
      return std::make_pair(0U, &PPC::VSSRCRegClass);
 | 
						|
    return std::make_pair(0U, &PPC::VSFRCRegClass);
 | 
						|
  } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
 | 
						|
    if (VT == MVT::f32 && Subtarget.hasP8Vector())
 | 
						|
      return std::make_pair(0U, &PPC::VSSRCRegClass);
 | 
						|
    else
 | 
						|
      return std::make_pair(0U, &PPC::VSFRCRegClass);
 | 
						|
  } else if (Constraint == "lr") {
 | 
						|
    if (VT == MVT::i64)
 | 
						|
      return std::make_pair(0U, &PPC::LR8RCRegClass);
 | 
						|
    else
 | 
						|
      return std::make_pair(0U, &PPC::LRRCRegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle special cases of physical registers that are not properly handled
 | 
						|
  // by the base class.
 | 
						|
  if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
 | 
						|
    // If we name a VSX register, we can't defer to the base class because it
 | 
						|
    // will not recognize the correct register (their names will be VSL{0-31}
 | 
						|
    // and V{0-31} so they won't match). So we match them here.
 | 
						|
    if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
 | 
						|
      int VSNum = atoi(Constraint.data() + 3);
 | 
						|
      assert(VSNum >= 0 && VSNum <= 63 &&
 | 
						|
             "Attempted to access a vsr out of range");
 | 
						|
      if (VSNum < 32)
 | 
						|
        return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
 | 
						|
      return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
 | 
						|
    }
 | 
						|
 | 
						|
    // For float registers, we can't defer to the base class as it will match
 | 
						|
    // the SPILLTOVSRRC class.
 | 
						|
    if (Constraint.size() > 3 && Constraint[1] == 'f') {
 | 
						|
      int RegNum = atoi(Constraint.data() + 2);
 | 
						|
      if (RegNum > 31 || RegNum < 0)
 | 
						|
        report_fatal_error("Invalid floating point register number");
 | 
						|
      if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
        return Subtarget.hasSPE()
 | 
						|
                   ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
 | 
						|
                   : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
 | 
						|
      if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
        return Subtarget.hasSPE()
 | 
						|
                   ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
 | 
						|
                   : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<unsigned, const TargetRegisterClass *> R =
 | 
						|
      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
 | 
						|
  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
 | 
						|
  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
 | 
						|
  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
 | 
						|
  // register.
 | 
						|
  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
 | 
						|
  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
 | 
						|
  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
 | 
						|
      PPC::GPRCRegClass.contains(R.first))
 | 
						|
    return std::make_pair(TRI->getMatchingSuperReg(R.first,
 | 
						|
                            PPC::sub_32, &PPC::G8RCRegClass),
 | 
						|
                          &PPC::G8RCRegClass);
 | 
						|
 | 
						|
  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
 | 
						|
  if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
 | 
						|
    R.first = PPC::CR0;
 | 
						|
    R.second = &PPC::CRRCRegClass;
 | 
						|
  }
 | 
						|
  // FIXME: This warning should ideally be emitted in the front end.
 | 
						|
  const auto &TM = getTargetMachine();
 | 
						|
  if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
 | 
						|
    if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
 | 
						|
         (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
 | 
						|
        (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
 | 
						|
      errs() << "warning: vector registers 20 to 32 are reserved in the "
 | 
						|
                "default AIX AltiVec ABI and cannot be used\n";
 | 
						|
  }
 | 
						|
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | 
						|
/// vector.  If it is invalid, don't add anything to Ops.
 | 
						|
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | 
						|
                                                     std::string &Constraint,
 | 
						|
                                                     std::vector<SDValue>&Ops,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Result;
 | 
						|
 | 
						|
  // Only support length 1 constraints.
 | 
						|
  if (Constraint.length() > 1) return;
 | 
						|
 | 
						|
  char Letter = Constraint[0];
 | 
						|
  switch (Letter) {
 | 
						|
  default: break;
 | 
						|
  case 'I':
 | 
						|
  case 'J':
 | 
						|
  case 'K':
 | 
						|
  case 'L':
 | 
						|
  case 'M':
 | 
						|
  case 'N':
 | 
						|
  case 'O':
 | 
						|
  case 'P': {
 | 
						|
    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!CST) return; // Must be an immediate to match.
 | 
						|
    SDLoc dl(Op);
 | 
						|
    int64_t Value = CST->getSExtValue();
 | 
						|
    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
 | 
						|
                         // numbers are printed as such.
 | 
						|
    switch (Letter) {
 | 
						|
    default: llvm_unreachable("Unknown constraint letter!");
 | 
						|
    case 'I':  // "I" is a signed 16-bit constant.
 | 
						|
      if (isInt<16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | 
						|
      if (isShiftedUInt<16, 16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | 
						|
      if (isShiftedInt<16, 16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | 
						|
      if (isUInt<16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'M':  // "M" is a constant that is greater than 31.
 | 
						|
      if (Value > 31)
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'N':  // "N" is a positive constant that is an exact power of two.
 | 
						|
      if (Value > 0 && isPowerOf2_64(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'O':  // "O" is the constant zero.
 | 
						|
      if (Value == 0)
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | 
						|
      if (isInt<16>(-Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle standard constraint letters.
 | 
						|
  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
// isLegalAddressingMode - Return true if the addressing mode represented
 | 
						|
// by AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | 
						|
                                              const AddrMode &AM, Type *Ty,
 | 
						|
                                              unsigned AS,
 | 
						|
                                              Instruction *I) const {
 | 
						|
  // Vector type r+i form is supported since power9 as DQ form. We don't check
 | 
						|
  // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
 | 
						|
  // imm form is preferred and the offset can be adjusted to use imm form later
 | 
						|
  // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
 | 
						|
  // max offset to check legal addressing mode, we should be a little aggressive
 | 
						|
  // to contain other offsets for that LSRUse.
 | 
						|
  if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PPC only support r+r,
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | 
						|
      return false;
 | 
						|
    // Otherwise we have r+r or r+i.
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | 
						|
      return false;
 | 
						|
    // Allow 2*r as r+r.
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // No other scales are supported.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  // Make sure the function does not optimize away the store of the RA to
 | 
						|
  // the stack.
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setLRStoreRequired();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  if (Depth > 0) {
 | 
						|
    // The link register (return address) is saved in the caller's frame
 | 
						|
    // not the callee's stack frame. So we must get the caller's frame
 | 
						|
    // address and load the return address at the LR offset from there.
 | 
						|
    SDValue FrameAddr =
 | 
						|
        DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
 | 
						|
                    LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
 | 
						|
    SDValue Offset =
 | 
						|
        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Just load the return address off the stack.
 | 
						|
  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | 
						|
  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
 | 
						|
                     MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
 | 
						|
  // Naked functions never have a frame pointer, and so we use r1. For all
 | 
						|
  // other functions, this decision must be delayed until during PEI.
 | 
						|
  unsigned FrameReg;
 | 
						|
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
 | 
						|
    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  else
 | 
						|
    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
 | 
						|
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
 | 
						|
                                         PtrVT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
 | 
						|
                            FrameAddr, MachinePointerInfo());
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME? Maybe this could be a TableGen attribute on some registers and
 | 
						|
// this table could be generated automatically from RegInfo.
 | 
						|
Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
 | 
						|
                                              const MachineFunction &MF) const {
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
 | 
						|
  bool is64Bit = isPPC64 && VT == LLT::scalar(64);
 | 
						|
  if (!is64Bit && VT != LLT::scalar(32))
 | 
						|
    report_fatal_error("Invalid register global variable type");
 | 
						|
 | 
						|
  Register Reg = StringSwitch<Register>(RegName)
 | 
						|
                     .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
 | 
						|
                     .Case("r2", isPPC64 ? Register() : PPC::R2)
 | 
						|
                     .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
 | 
						|
                     .Default(Register());
 | 
						|
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
  report_fatal_error("Invalid register name global variable");
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
 | 
						|
  // 32-bit SVR4 ABI access everything as got-indirect.
 | 
						|
  if (Subtarget.is32BitELFABI())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // AIX accesses everything indirectly through the TOC, which is similar to
 | 
						|
  // the GOT.
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    return true;
 | 
						|
 | 
						|
  CodeModel::Model CModel = getTargetMachine().getCodeModel();
 | 
						|
  // If it is small or large code model, module locals are accessed
 | 
						|
  // indirectly by loading their address from .toc/.got.
 | 
						|
  if (CModel == CodeModel::Small || CModel == CodeModel::Large)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // JumpTable and BlockAddress are accessed as got-indirect.
 | 
						|
  if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
 | 
						|
    return Subtarget.isGVIndirectSymbol(G->getGlobal());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | 
						|
  // The PowerPC target isn't yet aware of offsets.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                           const CallInst &I,
 | 
						|
                                           MachineFunction &MF,
 | 
						|
                                           unsigned Intrinsic) const {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::ppc_atomicrmw_xchg_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_add_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_sub_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_nand_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_and_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_or_i128:
 | 
						|
  case Intrinsic::ppc_atomicrmw_xor_i128:
 | 
						|
  case Intrinsic::ppc_cmpxchg_i128:
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::i128;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = Align(16);
 | 
						|
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
 | 
						|
                 MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  case Intrinsic::ppc_atomic_load_i128:
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::i128;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = Align(16);
 | 
						|
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  case Intrinsic::ppc_atomic_store_i128:
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    Info.memVT = MVT::i128;
 | 
						|
    Info.ptrVal = I.getArgOperand(2);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = Align(16);
 | 
						|
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  case Intrinsic::ppc_altivec_lvx:
 | 
						|
  case Intrinsic::ppc_altivec_lvxl:
 | 
						|
  case Intrinsic::ppc_altivec_lvebx:
 | 
						|
  case Intrinsic::ppc_altivec_lvehx:
 | 
						|
  case Intrinsic::ppc_altivec_lvewx:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x_be:
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x_be:
 | 
						|
  case Intrinsic::ppc_vsx_lxvl:
 | 
						|
  case Intrinsic::ppc_vsx_lxvll: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_altivec_lvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = -VT.getStoreSize()+1;
 | 
						|
    Info.size = 2*VT.getStoreSize()-1;
 | 
						|
    Info.align = Align(1);
 | 
						|
    Info.flags = MachineMemOperand::MOLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_altivec_stvx:
 | 
						|
  case Intrinsic::ppc_altivec_stvxl:
 | 
						|
  case Intrinsic::ppc_altivec_stvebx:
 | 
						|
  case Intrinsic::ppc_altivec_stvehx:
 | 
						|
  case Intrinsic::ppc_altivec_stvewx:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x_be:
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x_be:
 | 
						|
  case Intrinsic::ppc_vsx_stxvl:
 | 
						|
  case Intrinsic::ppc_vsx_stxvll: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_altivec_stvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(1);
 | 
						|
    Info.offset = -VT.getStoreSize()+1;
 | 
						|
    Info.size = 2*VT.getStoreSize()-1;
 | 
						|
    Info.align = Align(1);
 | 
						|
    Info.flags = MachineMemOperand::MOStore;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// It returns EVT::Other if the type should be determined using generic
 | 
						|
/// target-independent logic.
 | 
						|
EVT PPCTargetLowering::getOptimalMemOpType(
 | 
						|
    const MemOp &Op, const AttributeList &FuncAttributes) const {
 | 
						|
  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
 | 
						|
    // We should use Altivec/VSX loads and stores when available. For unaligned
 | 
						|
    // addresses, unaligned VSX loads are only fast starting with the P8.
 | 
						|
    if (Subtarget.hasAltivec() && Op.size() >= 16 &&
 | 
						|
        (Op.isAligned(Align(16)) ||
 | 
						|
         ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
 | 
						|
      return MVT::v4i32;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isPPC64()) {
 | 
						|
    return MVT::i64;
 | 
						|
  }
 | 
						|
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if it is beneficial to convert a load of a constant
 | 
						|
/// to just the constant itself.
 | 
						|
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | 
						|
                                                          Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  return !(BitSize == 0 || BitSize > 64);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | 
						|
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | 
						|
  return NumBits1 == 64 && NumBits2 == 32;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (!VT1.isInteger() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = VT1.getSizeInBits();
 | 
						|
  unsigned NumBits2 = VT2.getSizeInBits();
 | 
						|
  return NumBits1 == 64 && NumBits2 == 32;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | 
						|
  // Generally speaking, zexts are not free, but they are free when they can be
 | 
						|
  // folded with other operations.
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
 | 
						|
    EVT MemVT = LD->getMemoryVT();
 | 
						|
    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
 | 
						|
         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
 | 
						|
        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
 | 
						|
         LD->getExtensionType() == ISD::ZEXTLOAD))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Add other cases...
 | 
						|
  //  - 32-bit shifts with a zext to i64
 | 
						|
  //  - zext after ctlz, bswap, etc.
 | 
						|
  //  - zext after and by a constant mask
 | 
						|
 | 
						|
  return TargetLowering::isZExtFree(Val, VT2);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
 | 
						|
  assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
 | 
						|
         "invalid fpext types");
 | 
						|
  // Extending to float128 is not free.
 | 
						|
  if (DestVT == MVT::f128)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return isInt<16>(Imm) || isUInt<16>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | 
						|
  return isInt<16>(Imm) || isUInt<16>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
 | 
						|
                                                       MachineMemOperand::Flags,
 | 
						|
                                                       bool *Fast) const {
 | 
						|
  if (DisablePPCUnaligned)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PowerPC supports unaligned memory access for simple non-vector types.
 | 
						|
  // Although accessing unaligned addresses is not as efficient as accessing
 | 
						|
  // aligned addresses, it is generally more efficient than manual expansion,
 | 
						|
  // and generally only traps for software emulation when crossing page
 | 
						|
  // boundaries.
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.isFloatingPoint() && !VT.isVector() &&
 | 
						|
      !Subtarget.allowsUnalignedFPAccess())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.getSimpleVT().isVector()) {
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
 | 
						|
          VT != MVT::v4f32 && VT != MVT::v4i32)
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::ppcf128)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Fast)
 | 
						|
    *Fast = true;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
 | 
						|
                                               SDValue C) const {
 | 
						|
  // Check integral scalar types.
 | 
						|
  if (!VT.isScalarInteger())
 | 
						|
    return false;
 | 
						|
  if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
 | 
						|
    if (!ConstNode->getAPIntValue().isSignedIntN(64))
 | 
						|
      return false;
 | 
						|
    // This transformation will generate >= 2 operations. But the following
 | 
						|
    // cases will generate <= 2 instructions during ISEL. So exclude them.
 | 
						|
    // 1. If the constant multiplier fits 16 bits, it can be handled by one
 | 
						|
    // HW instruction, ie. MULLI
 | 
						|
    // 2. If the multiplier after shifted fits 16 bits, an extra shift
 | 
						|
    // instruction is needed than case 1, ie. MULLI and RLDICR
 | 
						|
    int64_t Imm = ConstNode->getSExtValue();
 | 
						|
    unsigned Shift = countTrailingZeros<uint64_t>(Imm);
 | 
						|
    Imm >>= Shift;
 | 
						|
    if (isInt<16>(Imm))
 | 
						|
      return false;
 | 
						|
    uint64_t UImm = static_cast<uint64_t>(Imm);
 | 
						|
    if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
 | 
						|
        isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
 | 
						|
                                                   EVT VT) const {
 | 
						|
  return isFMAFasterThanFMulAndFAdd(
 | 
						|
      MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
 | 
						|
                                                   Type *Ty) const {
 | 
						|
  switch (Ty->getScalarType()->getTypeID()) {
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    return true;
 | 
						|
  case Type::FP128TyID:
 | 
						|
    return Subtarget.hasP9Vector();
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: add more patterns which are not profitable to hoist.
 | 
						|
bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
 | 
						|
  if (!I->hasOneUse())
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *User = I->user_back();
 | 
						|
  assert(User && "A single use instruction with no uses.");
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::FMul: {
 | 
						|
    // Don't break FMA, PowerPC prefers FMA.
 | 
						|
    if (User->getOpcode() != Instruction::FSub &&
 | 
						|
        User->getOpcode() != Instruction::FAdd)
 | 
						|
      return true;
 | 
						|
 | 
						|
    const TargetOptions &Options = getTargetMachine().Options;
 | 
						|
    const Function *F = I->getFunction();
 | 
						|
    const DataLayout &DL = F->getParent()->getDataLayout();
 | 
						|
    Type *Ty = User->getOperand(0)->getType();
 | 
						|
 | 
						|
    return !(
 | 
						|
        isFMAFasterThanFMulAndFAdd(*F, Ty) &&
 | 
						|
        isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
 | 
						|
        (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
 | 
						|
  }
 | 
						|
  case Instruction::Load: {
 | 
						|
    // Don't break "store (load float*)" pattern, this pattern will be combined
 | 
						|
    // to "store (load int32)" in later InstCombine pass. See function
 | 
						|
    // combineLoadToOperationType. On PowerPC, loading a float point takes more
 | 
						|
    // cycles than loading a 32 bit integer.
 | 
						|
    LoadInst *LI = cast<LoadInst>(I);
 | 
						|
    // For the loads that combineLoadToOperationType does nothing, like
 | 
						|
    // ordered load, it should be profitable to hoist them.
 | 
						|
    // For swifterror load, it can only be used for pointer to pointer type, so
 | 
						|
    // later type check should get rid of this case.
 | 
						|
    if (!LI->isUnordered())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (User->getOpcode() != Instruction::Store)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (I->getType()->getTypeID() != Type::FloatTyID)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const MCPhysReg *
 | 
						|
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
 | 
						|
  // LR is a callee-save register, but we must treat it as clobbered by any call
 | 
						|
  // site. Hence we include LR in the scratch registers, which are in turn added
 | 
						|
  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
 | 
						|
  // to CTR, which is used by any indirect call.
 | 
						|
  static const MCPhysReg ScratchRegs[] = {
 | 
						|
    PPC::X12, PPC::LR8, PPC::CTR8, 0
 | 
						|
  };
 | 
						|
 | 
						|
  return ScratchRegs;
 | 
						|
}
 | 
						|
 | 
						|
Register PPCTargetLowering::getExceptionPointerRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
 | 
						|
}
 | 
						|
 | 
						|
Register PPCTargetLowering::getExceptionSelectorRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
 | 
						|
                     EVT VT , unsigned DefinedValues) const {
 | 
						|
  if (VT == MVT::v2i64)
 | 
						|
    return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
 | 
						|
 | 
						|
  if (Subtarget.hasVSX())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
 | 
						|
}
 | 
						|
 | 
						|
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
 | 
						|
  if (DisableILPPref || Subtarget.enableMachineScheduler())
 | 
						|
    return TargetLowering::getSchedulingPreference(N);
 | 
						|
 | 
						|
  return Sched::ILP;
 | 
						|
}
 | 
						|
 | 
						|
// Create a fast isel object.
 | 
						|
FastISel *
 | 
						|
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
 | 
						|
                                  const TargetLibraryInfo *LibInfo) const {
 | 
						|
  return PPC::createFastISel(FuncInfo, LibInfo);
 | 
						|
}
 | 
						|
 | 
						|
// 'Inverted' means the FMA opcode after negating one multiplicand.
 | 
						|
// For example, (fma -a b c) = (fnmsub a b c)
 | 
						|
static unsigned invertFMAOpcode(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid FMA opcode for PowerPC!");
 | 
						|
  case ISD::FMA:
 | 
						|
    return PPCISD::FNMSUB;
 | 
						|
  case PPCISD::FNMSUB:
 | 
						|
    return ISD::FMA;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                                bool LegalOps, bool OptForSize,
 | 
						|
                                                NegatibleCost &Cost,
 | 
						|
                                                unsigned Depth) const {
 | 
						|
  if (Depth > SelectionDAG::MaxRecursionDepth)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDNodeFlags Flags = Op.getNode()->getFlags();
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
  case PPCISD::FNMSUB:
 | 
						|
    if (!Op.hasOneUse() || !isTypeLegal(VT))
 | 
						|
      break;
 | 
						|
 | 
						|
    const TargetOptions &Options = getTargetMachine().Options;
 | 
						|
    SDValue N0 = Op.getOperand(0);
 | 
						|
    SDValue N1 = Op.getOperand(1);
 | 
						|
    SDValue N2 = Op.getOperand(2);
 | 
						|
    SDLoc Loc(Op);
 | 
						|
 | 
						|
    NegatibleCost N2Cost = NegatibleCost::Expensive;
 | 
						|
    SDValue NegN2 =
 | 
						|
        getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
 | 
						|
 | 
						|
    if (!NegN2)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
 | 
						|
    // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
 | 
						|
    // These transformations may change sign of zeroes. For example,
 | 
						|
    // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
 | 
						|
    if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
 | 
						|
      // Try and choose the cheaper one to negate.
 | 
						|
      NegatibleCost N0Cost = NegatibleCost::Expensive;
 | 
						|
      SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
 | 
						|
                                           N0Cost, Depth + 1);
 | 
						|
 | 
						|
      NegatibleCost N1Cost = NegatibleCost::Expensive;
 | 
						|
      SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
 | 
						|
                                           N1Cost, Depth + 1);
 | 
						|
 | 
						|
      if (NegN0 && N0Cost <= N1Cost) {
 | 
						|
        Cost = std::min(N0Cost, N2Cost);
 | 
						|
        return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
 | 
						|
      } else if (NegN1) {
 | 
						|
        Cost = std::min(N1Cost, N2Cost);
 | 
						|
        return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // (fneg (fnmsub a b c)) => (fma a b (fneg c))
 | 
						|
    if (isOperationLegal(ISD::FMA, VT)) {
 | 
						|
      Cost = N2Cost;
 | 
						|
      return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
 | 
						|
                                              Cost, Depth);
 | 
						|
}
 | 
						|
 | 
						|
// Override to enable LOAD_STACK_GUARD lowering on Linux.
 | 
						|
bool PPCTargetLowering::useLoadStackGuardNode() const {
 | 
						|
  if (!Subtarget.isTargetLinux())
 | 
						|
    return TargetLowering::useLoadStackGuardNode();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Override to disable global variable loading on Linux and insert AIX canary
 | 
						|
// word declaration.
 | 
						|
void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
 | 
						|
  if (Subtarget.isAIXABI()) {
 | 
						|
    M.getOrInsertGlobal(AIXSSPCanaryWordName,
 | 
						|
                        Type::getInt8PtrTy(M.getContext()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!Subtarget.isTargetLinux())
 | 
						|
    return TargetLowering::insertSSPDeclarations(M);
 | 
						|
}
 | 
						|
 | 
						|
Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
 | 
						|
  if (Subtarget.isAIXABI())
 | 
						|
    return M.getGlobalVariable(AIXSSPCanaryWordName);
 | 
						|
  return TargetLowering::getSDagStackGuard(M);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
 | 
						|
                                     bool ForCodeSize) const {
 | 
						|
  if (!VT.isSimple() || !Subtarget.hasVSX())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch(VT.getSimpleVT().SimpleTy) {
 | 
						|
  default:
 | 
						|
    // For FP types that are currently not supported by PPC backend, return
 | 
						|
    // false. Examples: f16, f80.
 | 
						|
    return false;
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    if (Subtarget.hasPrefixInstrs()) {
 | 
						|
      // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case MVT::ppcf128:
 | 
						|
    return Imm.isPosZero();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For vector shift operation op, fold
 | 
						|
// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
 | 
						|
static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N0.getValueType();
 | 
						|
  unsigned OpSizeInBits = VT.getScalarSizeInBits();
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  unsigned TargetOpcode;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected shift operation");
 | 
						|
  case ISD::SHL:
 | 
						|
    TargetOpcode = PPCISD::SHL;
 | 
						|
    break;
 | 
						|
  case ISD::SRL:
 | 
						|
    TargetOpcode = PPCISD::SRL;
 | 
						|
    break;
 | 
						|
  case ISD::SRA:
 | 
						|
    TargetOpcode = PPCISD::SRA;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
 | 
						|
      N1->getOpcode() == ISD::AND)
 | 
						|
    if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
 | 
						|
      if (Mask->getZExtValue() == OpSizeInBits - 1)
 | 
						|
        return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
 | 
						|
      N0.getOpcode() != ISD::SIGN_EXTEND ||
 | 
						|
      N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
 | 
						|
      N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We can't save an operation here if the value is already extended, and
 | 
						|
  // the existing shift is easier to combine.
 | 
						|
  SDValue ExtsSrc = N0.getOperand(0);
 | 
						|
  if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
 | 
						|
      ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N0);
 | 
						|
  SDValue ShiftBy = SDValue(CN1, 0);
 | 
						|
  // We want the shift amount to be i32 on the extswli, but the shift could
 | 
						|
  // have an i64.
 | 
						|
  if (ShiftBy.getValueType() == MVT::i64)
 | 
						|
    ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
 | 
						|
 | 
						|
  return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
 | 
						|
                         ShiftBy);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
 | 
						|
// Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
 | 
						|
// When C is zero, the equation (addi Z, -C) can be simplified to Z
 | 
						|
// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
 | 
						|
static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 const PPCSubtarget &Subtarget) {
 | 
						|
  if (!Subtarget.isPPC64())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  auto isZextOfCompareWithConstant = [](SDValue Op) {
 | 
						|
    if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
 | 
						|
        Op.getValueType() != MVT::i64)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Cmp = Op.getOperand(0);
 | 
						|
    if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
 | 
						|
        Cmp.getOperand(0).getValueType() != MVT::i64)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
 | 
						|
      int64_t NegConstant = 0 - Constant->getSExtValue();
 | 
						|
      // Due to the limitations of the addi instruction,
 | 
						|
      // -C is required to be [-32768, 32767].
 | 
						|
      return isInt<16>(NegConstant);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
 | 
						|
  bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
 | 
						|
 | 
						|
  // If there is a pattern, canonicalize a zext operand to the RHS.
 | 
						|
  if (LHSHasPattern && !RHSHasPattern)
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  else if (!LHSHasPattern && !RHSHasPattern)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
 | 
						|
  SDValue Cmp = RHS.getOperand(0);
 | 
						|
  SDValue Z = Cmp.getOperand(0);
 | 
						|
  auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
 | 
						|
  int64_t NegConstant = 0 - Constant->getSExtValue();
 | 
						|
 | 
						|
  switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SETNE: {
 | 
						|
    //                                 when C == 0
 | 
						|
    //                             --> addze X, (addic Z, -1).carry
 | 
						|
    //                            /
 | 
						|
    // add X, (zext(setne Z, C))--
 | 
						|
    //                            \    when -32768 <= -C <= 32767 && C != 0
 | 
						|
    //                             --> addze X, (addic (addi Z, -C), -1).carry
 | 
						|
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | 
						|
                              DAG.getConstant(NegConstant, DL, MVT::i64));
 | 
						|
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | 
						|
    SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | 
						|
                               AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
 | 
						|
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                       SDValue(Addc.getNode(), 1));
 | 
						|
    }
 | 
						|
  case ISD::SETEQ: {
 | 
						|
    //                                 when C == 0
 | 
						|
    //                             --> addze X, (subfic Z, 0).carry
 | 
						|
    //                            /
 | 
						|
    // add X, (zext(sete  Z, C))--
 | 
						|
    //                            \    when -32768 <= -C <= 32767 && C != 0
 | 
						|
    //                             --> addze X, (subfic (addi Z, -C), 0).carry
 | 
						|
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | 
						|
                              DAG.getConstant(NegConstant, DL, MVT::i64));
 | 
						|
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | 
						|
    SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | 
						|
                               DAG.getConstant(0, DL, MVT::i64), AddOrZ);
 | 
						|
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                       SDValue(Subc.getNode(), 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Transform
 | 
						|
// (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
 | 
						|
// (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
 | 
						|
// In this case both C1 and C2 must be known constants.
 | 
						|
// C1+C2 must fit into a 34 bit signed integer.
 | 
						|
static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                          const PPCSubtarget &Subtarget) {
 | 
						|
  if (!Subtarget.isUsingPCRelativeCalls())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
 | 
						|
  // If we find that node try to cast the Global Address and the Constant.
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
 | 
						|
  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
 | 
						|
  GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
 | 
						|
  ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
 | 
						|
  // Check that both casts succeeded.
 | 
						|
  if (!GSDN || !ConstNode)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
 | 
						|
  SDLoc DL(GSDN);
 | 
						|
 | 
						|
  // The signed int offset needs to fit in 34 bits.
 | 
						|
  if (!isInt<34>(NewOffset))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The new global address is a copy of the old global address except
 | 
						|
  // that it has the updated Offset.
 | 
						|
  SDValue GA =
 | 
						|
      DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
 | 
						|
                                 NewOffset, GSDN->getTargetFlags());
 | 
						|
  SDValue MatPCRel =
 | 
						|
      DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
 | 
						|
  return MatPCRel;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Detect TRUNCATE operations on bitcasts of float128 values.
 | 
						|
// What we are looking for here is the situtation where we extract a subset
 | 
						|
// of bits from a 128 bit float.
 | 
						|
// This can be of two forms:
 | 
						|
// 1) BITCAST of f128 feeding TRUNCATE
 | 
						|
// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
 | 
						|
// The reason this is required is because we do not have a legal i128 type
 | 
						|
// and so we want to prevent having to store the f128 and then reload part
 | 
						|
// of it.
 | 
						|
SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
 | 
						|
                                           DAGCombinerInfo &DCI) const {
 | 
						|
  // If we are using CRBits then try that first.
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    // Check if CRBits did anything and return that if it did.
 | 
						|
    if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
 | 
						|
      return CRTruncValue;
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
 | 
						|
  // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
 | 
						|
  if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
 | 
						|
      return SDValue();
 | 
						|
    SDValue Sub = Op0.getOperand(0);
 | 
						|
    if (Sub.getOpcode() == ISD::SUB) {
 | 
						|
      SDValue SubOp0 = Sub.getOperand(0);
 | 
						|
      SDValue SubOp1 = Sub.getOperand(1);
 | 
						|
      if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
 | 
						|
          (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
 | 
						|
        return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
 | 
						|
                               SubOp1.getOperand(0),
 | 
						|
                               DCI.DAG.getTargetConstant(0, dl, MVT::i32));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Looking for a truncate of i128 to i64.
 | 
						|
  if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | 
						|
 | 
						|
  // SRL feeding TRUNCATE.
 | 
						|
  if (Op0.getOpcode() == ISD::SRL) {
 | 
						|
    ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
 | 
						|
    // The right shift has to be by 64 bits.
 | 
						|
    if (!ConstNode || ConstNode->getZExtValue() != 64)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Switch the element number to extract.
 | 
						|
    EltToExtract = EltToExtract ? 0 : 1;
 | 
						|
    // Update Op0 past the SRL.
 | 
						|
    Op0 = Op0.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // BITCAST feeding a TRUNCATE possibly via SRL.
 | 
						|
  if (Op0.getOpcode() == ISD::BITCAST &&
 | 
						|
      Op0.getValueType() == MVT::i128 &&
 | 
						|
      Op0.getOperand(0).getValueType() == MVT::f128) {
 | 
						|
    SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
 | 
						|
    return DCI.DAG.getNode(
 | 
						|
        ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
 | 
						|
        DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
 | 
						|
  if (!ConstOpOrElement)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // An imul is usually smaller than the alternative sequence for legal type.
 | 
						|
  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
 | 
						|
      isOperationLegal(ISD::MUL, N->getValueType(0)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
 | 
						|
    switch (this->Subtarget.getCPUDirective()) {
 | 
						|
    default:
 | 
						|
      // TODO: enhance the condition for subtarget before pwr8
 | 
						|
      return false;
 | 
						|
    case PPC::DIR_PWR8:
 | 
						|
      //  type        mul     add    shl
 | 
						|
      // scalar        4       1      1
 | 
						|
      // vector        7       2      2
 | 
						|
      return true;
 | 
						|
    case PPC::DIR_PWR9:
 | 
						|
    case PPC::DIR_PWR10:
 | 
						|
    case PPC::DIR_PWR_FUTURE:
 | 
						|
      //  type        mul     add    shl
 | 
						|
      // scalar        5       2      2
 | 
						|
      // vector        7       2      2
 | 
						|
 | 
						|
      // The cycle RATIO of related operations are showed as a table above.
 | 
						|
      // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
 | 
						|
      // scalar and vector type. For 2 instrs patterns, add/sub + shl
 | 
						|
      // are 4, it is always profitable; but for 3 instrs patterns
 | 
						|
      // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
 | 
						|
      // So we should only do it for vector type.
 | 
						|
      return IsAddOne && IsNeg ? VT.isVector() : true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
 | 
						|
  bool IsNeg = MulAmt.isNegative();
 | 
						|
  APInt MulAmtAbs = MulAmt.abs();
 | 
						|
 | 
						|
  if ((MulAmtAbs - 1).isPowerOf2()) {
 | 
						|
    // (mul x, 2^N + 1) => (add (shl x, N), x)
 | 
						|
    // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
 | 
						|
 | 
						|
    if (!IsProfitable(IsNeg, true, VT))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Op0 = N->getOperand(0);
 | 
						|
    SDValue Op1 =
 | 
						|
        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | 
						|
                    DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
 | 
						|
    SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
 | 
						|
 | 
						|
    if (!IsNeg)
 | 
						|
      return Res;
 | 
						|
 | 
						|
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
 | 
						|
  } else if ((MulAmtAbs + 1).isPowerOf2()) {
 | 
						|
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | 
						|
    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
 | 
						|
 | 
						|
    if (!IsProfitable(IsNeg, false, VT))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Op0 = N->getOperand(0);
 | 
						|
    SDValue Op1 =
 | 
						|
        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | 
						|
                    DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
 | 
						|
 | 
						|
    if (!IsNeg)
 | 
						|
      return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
 | 
						|
    else
 | 
						|
      return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
 | 
						|
 | 
						|
  } else {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
 | 
						|
// in combiner since we need to check SD flags and other subtarget features.
 | 
						|
SDValue PPCTargetLowering::combineFMALike(SDNode *N,
 | 
						|
                                          DAGCombinerInfo &DCI) const {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDValue N2 = N->getOperand(2);
 | 
						|
  SDNodeFlags Flags = N->getFlags();
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  const TargetOptions &Options = getTargetMachine().Options;
 | 
						|
  unsigned Opc = N->getOpcode();
 | 
						|
  bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
 | 
						|
  bool LegalOps = !DCI.isBeforeLegalizeOps();
 | 
						|
  SDLoc Loc(N);
 | 
						|
 | 
						|
  if (!isOperationLegal(ISD::FMA, VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
 | 
						|
  // since (fnmsub a b c)=-0 while c-ab=+0.
 | 
						|
  if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // (fma (fneg a) b c) => (fnmsub a b c)
 | 
						|
  // (fnmsub (fneg a) b c) => (fma a b c)
 | 
						|
  if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
 | 
						|
    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
 | 
						|
 | 
						|
  // (fma a (fneg b) c) => (fnmsub a b c)
 | 
						|
  // (fnmsub a (fneg b) c) => (fma a b c)
 | 
						|
  if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
 | 
						|
    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | 
						|
  // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
 | 
						|
  if (!Subtarget.is64BitELFABI())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If not a tail call then no need to proceed.
 | 
						|
  if (!CI->isTailCall())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If sibling calls have been disabled and tail-calls aren't guaranteed
 | 
						|
  // there is no reason to duplicate.
 | 
						|
  auto &TM = getTargetMachine();
 | 
						|
  if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't tail call a function called indirectly, or if it has variadic args.
 | 
						|
  const Function *Callee = CI->getCalledFunction();
 | 
						|
  if (!Callee || Callee->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the callee and caller calling conventions are eligible for tco.
 | 
						|
  const Function *Caller = CI->getParent()->getParent();
 | 
						|
  if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
 | 
						|
                                           CI->getCallingConv()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If the function is local then we have a good chance at tail-calling it
 | 
						|
  return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
 | 
						|
  if (!Subtarget.hasVSX())
 | 
						|
    return false;
 | 
						|
  if (Subtarget.hasP9Vector() && VT == MVT::f128)
 | 
						|
    return true;
 | 
						|
  return VT == MVT::f32 || VT == MVT::f64 ||
 | 
						|
    VT == MVT::v4f32 || VT == MVT::v2f64;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::
 | 
						|
isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
 | 
						|
  const Value *Mask = AndI.getOperand(1);
 | 
						|
  // If the mask is suitable for andi. or andis. we should sink the and.
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
 | 
						|
    // Can't handle constants wider than 64-bits.
 | 
						|
    if (CI->getBitWidth() > 64)
 | 
						|
      return false;
 | 
						|
    int64_t ConstVal = CI->getZExtValue();
 | 
						|
    return isUInt<16>(ConstVal) ||
 | 
						|
      (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
 | 
						|
  }
 | 
						|
 | 
						|
  // For non-constant masks, we can always use the record-form and.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
 | 
						|
// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
 | 
						|
// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
 | 
						|
// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
 | 
						|
// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
 | 
						|
SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
 | 
						|
  assert(Subtarget.hasP9Altivec() &&
 | 
						|
         "Only combine this when P9 altivec supported!");
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  if (N->getOperand(0).getOpcode() == ISD::SUB) {
 | 
						|
    // Even for signed integers, if it's known to be positive (as signed
 | 
						|
    // integer) due to zero-extended inputs.
 | 
						|
    unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
 | 
						|
    unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
 | 
						|
    if ((SubOpcd0 == ISD::ZERO_EXTEND ||
 | 
						|
         SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
 | 
						|
        (SubOpcd1 == ISD::ZERO_EXTEND ||
 | 
						|
         SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
 | 
						|
      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
 | 
						|
                         N->getOperand(0)->getOperand(0),
 | 
						|
                         N->getOperand(0)->getOperand(1),
 | 
						|
                         DAG.getTargetConstant(0, dl, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    // For type v4i32, it can be optimized with xvnegsp + vabsduw
 | 
						|
    if (N->getOperand(0).getValueType() == MVT::v4i32 &&
 | 
						|
        N->getOperand(0).hasOneUse()) {
 | 
						|
      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
 | 
						|
                         N->getOperand(0)->getOperand(0),
 | 
						|
                         N->getOperand(0)->getOperand(1),
 | 
						|
                         DAG.getTargetConstant(1, dl, MVT::i32));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// For type v4i32/v8ii16/v16i8, transform
 | 
						|
// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
 | 
						|
// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
 | 
						|
// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
 | 
						|
// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
 | 
						|
SDValue PPCTargetLowering::combineVSelect(SDNode *N,
 | 
						|
                                          DAGCombinerInfo &DCI) const {
 | 
						|
  assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
 | 
						|
  assert(Subtarget.hasP9Altivec() &&
 | 
						|
         "Only combine this when P9 altivec supported!");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  SDValue TrueOpnd = N->getOperand(1);
 | 
						|
  SDValue FalseOpnd = N->getOperand(2);
 | 
						|
  EVT VT = N->getOperand(1).getValueType();
 | 
						|
 | 
						|
  if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
 | 
						|
      FalseOpnd.getOpcode() != ISD::SUB)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // ABSD only available for type v4i32/v8i16/v16i8
 | 
						|
  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // At least to save one more dependent computation
 | 
						|
  if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | 
						|
 | 
						|
  // Can only handle unsigned comparison here
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETUGE:
 | 
						|
    break;
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETULE:
 | 
						|
    std::swap(TrueOpnd, FalseOpnd);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue CmpOpnd1 = Cond.getOperand(0);
 | 
						|
  SDValue CmpOpnd2 = Cond.getOperand(1);
 | 
						|
 | 
						|
  // SETCC CmpOpnd1 CmpOpnd2 cond
 | 
						|
  // TrueOpnd = CmpOpnd1 - CmpOpnd2
 | 
						|
  // FalseOpnd = CmpOpnd2 - CmpOpnd1
 | 
						|
  if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
 | 
						|
      TrueOpnd.getOperand(1) == CmpOpnd2 &&
 | 
						|
      FalseOpnd.getOperand(0) == CmpOpnd2 &&
 | 
						|
      FalseOpnd.getOperand(1) == CmpOpnd1) {
 | 
						|
    return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
 | 
						|
                       CmpOpnd1, CmpOpnd2,
 | 
						|
                       DAG.getTargetConstant(0, dl, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// getAddrModeForFlags - Based on the set of address flags, select the most
 | 
						|
/// optimal instruction format to match by.
 | 
						|
PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
 | 
						|
  // This is not a node we should be handling here.
 | 
						|
  if (Flags == PPC::MOF_None)
 | 
						|
    return PPC::AM_None;
 | 
						|
  // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
 | 
						|
  for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
 | 
						|
    if ((Flags & FlagSet) == FlagSet)
 | 
						|
      return PPC::AM_DForm;
 | 
						|
  for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
 | 
						|
    if ((Flags & FlagSet) == FlagSet)
 | 
						|
      return PPC::AM_DSForm;
 | 
						|
  for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
 | 
						|
    if ((Flags & FlagSet) == FlagSet)
 | 
						|
      return PPC::AM_DQForm;
 | 
						|
  for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
 | 
						|
    if ((Flags & FlagSet) == FlagSet)
 | 
						|
      return PPC::AM_PrefixDForm;
 | 
						|
  // If no other forms are selected, return an X-Form as it is the most
 | 
						|
  // general addressing mode.
 | 
						|
  return PPC::AM_XForm;
 | 
						|
}
 | 
						|
 | 
						|
/// Set alignment flags based on whether or not the Frame Index is aligned.
 | 
						|
/// Utilized when computing flags for address computation when selecting
 | 
						|
/// load and store instructions.
 | 
						|
static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
 | 
						|
  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
 | 
						|
  if (!FI)
 | 
						|
    return;
 | 
						|
  const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
 | 
						|
  // If this is (add $FI, $S16Imm), the alignment flags are already set
 | 
						|
  // based on the immediate. We just need to clear the alignment flags
 | 
						|
  // if the FI alignment is weaker.
 | 
						|
  if ((FrameIndexAlign % 4) != 0)
 | 
						|
    FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
 | 
						|
  if ((FrameIndexAlign % 16) != 0)
 | 
						|
    FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
 | 
						|
  // If the address is a plain FrameIndex, set alignment flags based on
 | 
						|
  // FI alignment.
 | 
						|
  if (!IsAdd) {
 | 
						|
    if ((FrameIndexAlign % 4) == 0)
 | 
						|
      FlagSet |= PPC::MOF_RPlusSImm16Mult4;
 | 
						|
    if ((FrameIndexAlign % 16) == 0)
 | 
						|
      FlagSet |= PPC::MOF_RPlusSImm16Mult16;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Given a node, compute flags that are used for address computation when
 | 
						|
/// selecting load and store instructions. The flags computed are stored in
 | 
						|
/// FlagSet. This function takes into account whether the node is a constant,
 | 
						|
/// an ADD, OR, or a constant, and computes the address flags accordingly.
 | 
						|
static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
  // Set the alignment flags for the node depending on if the node is
 | 
						|
  // 4-byte or 16-byte aligned.
 | 
						|
  auto SetAlignFlagsForImm = [&](uint64_t Imm) {
 | 
						|
    if ((Imm & 0x3) == 0)
 | 
						|
      FlagSet |= PPC::MOF_RPlusSImm16Mult4;
 | 
						|
    if ((Imm & 0xf) == 0)
 | 
						|
      FlagSet |= PPC::MOF_RPlusSImm16Mult16;
 | 
						|
  };
 | 
						|
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // All 32-bit constants can be computed as LIS + Disp.
 | 
						|
    const APInt &ConstImm = CN->getAPIntValue();
 | 
						|
    if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
 | 
						|
      FlagSet |= PPC::MOF_AddrIsSImm32;
 | 
						|
      SetAlignFlagsForImm(ConstImm.getZExtValue());
 | 
						|
      setAlignFlagsForFI(N, FlagSet, DAG);
 | 
						|
    }
 | 
						|
    if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
 | 
						|
      FlagSet |= PPC::MOF_RPlusSImm34;
 | 
						|
    else // Let constant materialization handle large constants.
 | 
						|
      FlagSet |= PPC::MOF_NotAddNorCst;
 | 
						|
  } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
 | 
						|
    // This address can be represented as an addition of:
 | 
						|
    // - Register + Imm16 (possibly a multiple of 4/16)
 | 
						|
    // - Register + Imm34
 | 
						|
    // - Register + PPCISD::Lo
 | 
						|
    // - Register + Register
 | 
						|
    // In any case, we won't have to match this as Base + Zero.
 | 
						|
    SDValue RHS = N.getOperand(1);
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
 | 
						|
      const APInt &ConstImm = CN->getAPIntValue();
 | 
						|
      if (ConstImm.isSignedIntN(16)) {
 | 
						|
        FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
 | 
						|
        SetAlignFlagsForImm(ConstImm.getZExtValue());
 | 
						|
        setAlignFlagsForFI(N, FlagSet, DAG);
 | 
						|
      }
 | 
						|
      if (ConstImm.isSignedIntN(34))
 | 
						|
        FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
 | 
						|
      else
 | 
						|
        FlagSet |= PPC::MOF_RPlusR; // Register.
 | 
						|
    } else if (RHS.getOpcode() == PPCISD::Lo &&
 | 
						|
               !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
 | 
						|
      FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
 | 
						|
    else
 | 
						|
      FlagSet |= PPC::MOF_RPlusR;
 | 
						|
  } else { // The address computation is not a constant or an addition.
 | 
						|
    setAlignFlagsForFI(N, FlagSet, DAG);
 | 
						|
    FlagSet |= PPC::MOF_NotAddNorCst;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isPCRelNode(SDValue N) {
 | 
						|
  return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
 | 
						|
      isValidPCRelNode<ConstantPoolSDNode>(N) ||
 | 
						|
      isValidPCRelNode<GlobalAddressSDNode>(N) ||
 | 
						|
      isValidPCRelNode<JumpTableSDNode>(N) ||
 | 
						|
      isValidPCRelNode<BlockAddressSDNode>(N));
 | 
						|
}
 | 
						|
 | 
						|
/// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
 | 
						|
/// the address flags of the load/store instruction that is to be matched.
 | 
						|
unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  unsigned FlagSet = PPC::MOF_None;
 | 
						|
 | 
						|
  // Compute subtarget flags.
 | 
						|
  if (!Subtarget.hasP9Vector())
 | 
						|
    FlagSet |= PPC::MOF_SubtargetBeforeP9;
 | 
						|
  else {
 | 
						|
    FlagSet |= PPC::MOF_SubtargetP9;
 | 
						|
    if (Subtarget.hasPrefixInstrs())
 | 
						|
      FlagSet |= PPC::MOF_SubtargetP10;
 | 
						|
  }
 | 
						|
  if (Subtarget.hasSPE())
 | 
						|
    FlagSet |= PPC::MOF_SubtargetSPE;
 | 
						|
 | 
						|
  // Check if we have a PCRel node and return early.
 | 
						|
  if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
 | 
						|
    return FlagSet;
 | 
						|
 | 
						|
  // If the node is the paired load/store intrinsics, compute flags for
 | 
						|
  // address computation and return early.
 | 
						|
  unsigned ParentOp = Parent->getOpcode();
 | 
						|
  if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
 | 
						|
                               (ParentOp == ISD::INTRINSIC_VOID))) {
 | 
						|
    unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
 | 
						|
    assert(
 | 
						|
        ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) &&
 | 
						|
        "Only the paired load and store (lxvp/stxvp) intrinsics are valid.");
 | 
						|
    SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) ? Parent->getOperand(2)
 | 
						|
                                                       : Parent->getOperand(3);
 | 
						|
    computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
 | 
						|
    FlagSet |= PPC::MOF_Vector;
 | 
						|
    return FlagSet;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark this as something we don't want to handle here if it is atomic
 | 
						|
  // or pre-increment instruction.
 | 
						|
  if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
 | 
						|
    if (LSB->isIndexed())
 | 
						|
      return PPC::MOF_None;
 | 
						|
 | 
						|
  // Compute in-memory type flags. This is based on if there are scalars,
 | 
						|
  // floats or vectors.
 | 
						|
  const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
 | 
						|
  assert(MN && "Parent should be a MemSDNode!");
 | 
						|
  EVT MemVT = MN->getMemoryVT();
 | 
						|
  unsigned Size = MemVT.getSizeInBits();
 | 
						|
  if (MemVT.isScalarInteger()) {
 | 
						|
    assert(Size <= 128 &&
 | 
						|
           "Not expecting scalar integers larger than 16 bytes!");
 | 
						|
    if (Size < 32)
 | 
						|
      FlagSet |= PPC::MOF_SubWordInt;
 | 
						|
    else if (Size == 32)
 | 
						|
      FlagSet |= PPC::MOF_WordInt;
 | 
						|
    else
 | 
						|
      FlagSet |= PPC::MOF_DoubleWordInt;
 | 
						|
  } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
 | 
						|
    if (Size == 128)
 | 
						|
      FlagSet |= PPC::MOF_Vector;
 | 
						|
    else if (Size == 256) {
 | 
						|
      assert(Subtarget.pairedVectorMemops() &&
 | 
						|
             "256-bit vectors are only available when paired vector memops is "
 | 
						|
             "enabled!");
 | 
						|
      FlagSet |= PPC::MOF_Vector;
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Not expecting illegal vectors!");
 | 
						|
  } else { // Floating point type: can be scalar, f128 or vector types.
 | 
						|
    if (Size == 32 || Size == 64)
 | 
						|
      FlagSet |= PPC::MOF_ScalarFloat;
 | 
						|
    else if (MemVT == MVT::f128 || MemVT.isVector())
 | 
						|
      FlagSet |= PPC::MOF_Vector;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Not expecting illegal scalar floats!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute flags for address computation.
 | 
						|
  computeFlagsForAddressComputation(N, FlagSet, DAG);
 | 
						|
 | 
						|
  // Compute type extension flags.
 | 
						|
  if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
 | 
						|
    switch (LN->getExtensionType()) {
 | 
						|
    case ISD::SEXTLOAD:
 | 
						|
      FlagSet |= PPC::MOF_SExt;
 | 
						|
      break;
 | 
						|
    case ISD::EXTLOAD:
 | 
						|
    case ISD::ZEXTLOAD:
 | 
						|
      FlagSet |= PPC::MOF_ZExt;
 | 
						|
      break;
 | 
						|
    case ISD::NON_EXTLOAD:
 | 
						|
      FlagSet |= PPC::MOF_NoExt;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    FlagSet |= PPC::MOF_NoExt;
 | 
						|
 | 
						|
  // For integers, no extension is the same as zero extension.
 | 
						|
  // We set the extension mode to zero extension so we don't have
 | 
						|
  // to add separate entries in AddrModesMap for loads and stores.
 | 
						|
  if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
 | 
						|
    FlagSet |= PPC::MOF_ZExt;
 | 
						|
    FlagSet &= ~PPC::MOF_NoExt;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't have prefixed instructions, 34-bit constants should be
 | 
						|
  // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
 | 
						|
  bool IsNonP1034BitConst =
 | 
						|
      ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
 | 
						|
       FlagSet) == PPC::MOF_RPlusSImm34;
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
 | 
						|
      IsNonP1034BitConst)
 | 
						|
    FlagSet |= PPC::MOF_NotAddNorCst;
 | 
						|
 | 
						|
  return FlagSet;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectForceXFormMode - Given the specified address, force it to be
 | 
						|
/// represented as an indexed [r+r] operation (an XForm instruction).
 | 
						|
PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
 | 
						|
                                                      SDValue &Base,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  PPC::AddrMode Mode = PPC::AM_XForm;
 | 
						|
  int16_t ForceXFormImm = 0;
 | 
						|
  if (provablyDisjointOr(DAG, N) &&
 | 
						|
      !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
 | 
						|
    Disp = N.getOperand(0);
 | 
						|
    Base = N.getOperand(1);
 | 
						|
    return Mode;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the address is the result of an add, we will utilize the fact that the
 | 
						|
  // address calculation includes an implicit add.  However, we can reduce
 | 
						|
  // register pressure if we do not materialize a constant just for use as the
 | 
						|
  // index register.  We only get rid of the add if it is not an add of a
 | 
						|
  // value and a 16-bit signed constant and both have a single use.
 | 
						|
  if (N.getOpcode() == ISD::ADD &&
 | 
						|
      (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
 | 
						|
       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
 | 
						|
    Disp = N.getOperand(0);
 | 
						|
    Base = N.getOperand(1);
 | 
						|
    return Mode;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, use R0 as the base register.
 | 
						|
  Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                         N.getValueType());
 | 
						|
  Base = N;
 | 
						|
 | 
						|
  return Mode;
 | 
						|
}
 | 
						|
 | 
						|
// If we happen to match to an aligned D-Form, check if the Frame Index is
 | 
						|
// adequately aligned. If it is not, reset the mode to match to X-Form.
 | 
						|
static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
 | 
						|
                                   PPC::AddrMode &Mode) {
 | 
						|
  if (!isa<FrameIndexSDNode>(N))
 | 
						|
    return;
 | 
						|
  if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
 | 
						|
      (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
 | 
						|
    Mode = PPC::AM_XForm;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
 | 
						|
/// compute the address flags of the node, get the optimal address mode based
 | 
						|
/// on the flags, and set the Base and Disp based on the address mode.
 | 
						|
PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
 | 
						|
                                                       SDValue N, SDValue &Disp,
 | 
						|
                                                       SDValue &Base,
 | 
						|
                                                       SelectionDAG &DAG,
 | 
						|
                                                       MaybeAlign Align) const {
 | 
						|
  SDLoc DL(Parent);
 | 
						|
 | 
						|
  // Compute the address flags.
 | 
						|
  unsigned Flags = computeMOFlags(Parent, N, DAG);
 | 
						|
 | 
						|
  // Get the optimal address mode based on the Flags.
 | 
						|
  PPC::AddrMode Mode = getAddrModeForFlags(Flags);
 | 
						|
 | 
						|
  // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
 | 
						|
  // Select an X-Form load if it is not.
 | 
						|
  setXFormForUnalignedFI(N, Flags, Mode);
 | 
						|
 | 
						|
  // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
 | 
						|
  if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
 | 
						|
    assert(Subtarget.isUsingPCRelativeCalls() &&
 | 
						|
           "Must be using PC-Relative calls when a valid PC-Relative node is "
 | 
						|
           "present!");
 | 
						|
    Mode = PPC::AM_PCRel;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set Base and Disp accordingly depending on the address mode.
 | 
						|
  switch (Mode) {
 | 
						|
  case PPC::AM_DForm:
 | 
						|
  case PPC::AM_DSForm:
 | 
						|
  case PPC::AM_DQForm: {
 | 
						|
    // This is a register plus a 16-bit immediate. The base will be the
 | 
						|
    // register and the displacement will be the immediate unless it
 | 
						|
    // isn't sufficiently aligned.
 | 
						|
    if (Flags & PPC::MOF_RPlusSImm16) {
 | 
						|
      SDValue Op0 = N.getOperand(0);
 | 
						|
      SDValue Op1 = N.getOperand(1);
 | 
						|
      int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
 | 
						|
      if (!Align || isAligned(*Align, Imm)) {
 | 
						|
        Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
 | 
						|
        Base = Op0;
 | 
						|
        if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
 | 
						|
          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // This is a register plus the @lo relocation. The base is the register
 | 
						|
    // and the displacement is the global address.
 | 
						|
    else if (Flags & PPC::MOF_RPlusLo) {
 | 
						|
      Disp = N.getOperand(1).getOperand(0); // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool ||
 | 
						|
             Disp.getOpcode() == ISD::TargetJumpTable);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // This is a constant address at most 32 bits. The base will be
 | 
						|
    // zero or load-immediate-shifted and the displacement will be
 | 
						|
    // the low 16 bits of the address.
 | 
						|
    else if (Flags & PPC::MOF_AddrIsSImm32) {
 | 
						|
      auto *CN = cast<ConstantSDNode>(N);
 | 
						|
      EVT CNType = CN->getValueType(0);
 | 
						|
      uint64_t CNImm = CN->getZExtValue();
 | 
						|
      // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
      // this as "d, 0".
 | 
						|
      int16_t Imm;
 | 
						|
      if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
 | 
						|
        Disp = DAG.getTargetConstant(Imm, DL, CNType);
 | 
						|
        Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                               CNType);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Handle 32-bit sext immediate with LIS + Addr mode.
 | 
						|
      if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
 | 
						|
          (!Align || isAligned(*Align, CNImm))) {
 | 
						|
        int32_t Addr = (int32_t)CNImm;
 | 
						|
        // Otherwise, break this down into LIS + Disp.
 | 
						|
        Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
 | 
						|
        Base =
 | 
						|
            DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
 | 
						|
        uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | 
						|
        Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
 | 
						|
    Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
 | 
						|
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
 | 
						|
      Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
      fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
    } else
 | 
						|
      Base = N;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case PPC::AM_PrefixDForm: {
 | 
						|
    int64_t Imm34 = 0;
 | 
						|
    unsigned Opcode = N.getOpcode();
 | 
						|
    if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
 | 
						|
        (isIntS34Immediate(N.getOperand(1), Imm34))) {
 | 
						|
      // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
 | 
						|
      Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
 | 
						|
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
      else
 | 
						|
        Base = N.getOperand(0);
 | 
						|
    } else if (isIntS34Immediate(N, Imm34)) {
 | 
						|
      // The address is a 34-bit signed immediate.
 | 
						|
      Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
 | 
						|
      Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case PPC::AM_PCRel: {
 | 
						|
    // When selecting PC-Relative instructions, "Base" is not utilized as
 | 
						|
    // we select the address as [PC+imm].
 | 
						|
    Disp = N;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case PPC::AM_None:
 | 
						|
    break;
 | 
						|
  default: { // By default, X-Form is always available to be selected.
 | 
						|
    // When a frame index is not aligned, we also match by XForm.
 | 
						|
    FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
 | 
						|
    Base = FI ? N : N.getOperand(1);
 | 
						|
    Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                                N.getValueType())
 | 
						|
              : N.getOperand(0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return Mode;
 | 
						|
}
 | 
						|
 | 
						|
CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
 | 
						|
                                                 bool Return,
 | 
						|
                                                 bool IsVarArg) const {
 | 
						|
  switch (CC) {
 | 
						|
  case CallingConv::Cold:
 | 
						|
    return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
 | 
						|
  default:
 | 
						|
    return CC_PPC64_ELF_FIS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | 
						|
  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
 | 
						|
  if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
 | 
						|
    return AtomicExpansionKind::MaskedIntrinsic;
 | 
						|
  return TargetLowering::shouldExpandAtomicRMWInIR(AI);
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
 | 
						|
  unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
 | 
						|
  if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
 | 
						|
    return AtomicExpansionKind::MaskedIntrinsic;
 | 
						|
  return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
 | 
						|
}
 | 
						|
 | 
						|
static Intrinsic::ID
 | 
						|
getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
 | 
						|
  switch (BinOp) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected AtomicRMW BinOp");
 | 
						|
  case AtomicRMWInst::Xchg:
 | 
						|
    return Intrinsic::ppc_atomicrmw_xchg_i128;
 | 
						|
  case AtomicRMWInst::Add:
 | 
						|
    return Intrinsic::ppc_atomicrmw_add_i128;
 | 
						|
  case AtomicRMWInst::Sub:
 | 
						|
    return Intrinsic::ppc_atomicrmw_sub_i128;
 | 
						|
  case AtomicRMWInst::And:
 | 
						|
    return Intrinsic::ppc_atomicrmw_and_i128;
 | 
						|
  case AtomicRMWInst::Or:
 | 
						|
    return Intrinsic::ppc_atomicrmw_or_i128;
 | 
						|
  case AtomicRMWInst::Xor:
 | 
						|
    return Intrinsic::ppc_atomicrmw_xor_i128;
 | 
						|
  case AtomicRMWInst::Nand:
 | 
						|
    return Intrinsic::ppc_atomicrmw_nand_i128;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
 | 
						|
    IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
 | 
						|
    Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
 | 
						|
  assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
 | 
						|
         "Only support quadword now");
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
 | 
						|
  assert(ValTy->getPrimitiveSizeInBits() == 128);
 | 
						|
  Function *RMW = Intrinsic::getDeclaration(
 | 
						|
      M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
 | 
						|
  Type *Int64Ty = Type::getInt64Ty(M->getContext());
 | 
						|
  Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
 | 
						|
  Value *IncrHi =
 | 
						|
      Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
 | 
						|
  Value *Addr =
 | 
						|
      Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
  Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
 | 
						|
  Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | 
						|
  Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | 
						|
  Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | 
						|
  Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | 
						|
  return Builder.CreateOr(
 | 
						|
      Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
 | 
						|
}
 | 
						|
 | 
						|
Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
 | 
						|
    IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
 | 
						|
    Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
 | 
						|
  assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
 | 
						|
         "Only support quadword now");
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
 | 
						|
  assert(ValTy->getPrimitiveSizeInBits() == 128);
 | 
						|
  Function *IntCmpXchg =
 | 
						|
      Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
 | 
						|
  Type *Int64Ty = Type::getInt64Ty(M->getContext());
 | 
						|
  Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
 | 
						|
  Value *CmpHi =
 | 
						|
      Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
 | 
						|
  Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
 | 
						|
  Value *NewHi =
 | 
						|
      Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
 | 
						|
  Value *Addr =
 | 
						|
      Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
  emitLeadingFence(Builder, CI, Ord);
 | 
						|
  Value *LoHi =
 | 
						|
      Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
 | 
						|
  emitTrailingFence(Builder, CI, Ord);
 | 
						|
  Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | 
						|
  Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | 
						|
  Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | 
						|
  Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | 
						|
  return Builder.CreateOr(
 | 
						|
      Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
 | 
						|
}
 |