9293 lines
		
	
	
		
			358 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			9293 lines
		
	
	
		
			358 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | 
						||
//
 | 
						||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						||
// See https://llvm.org/LICENSE.txt for license information.
 | 
						||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
//
 | 
						||
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | 
						||
// stores that can be put together into vector-stores. Next, it attempts to
 | 
						||
// construct vectorizable tree using the use-def chains. If a profitable tree
 | 
						||
// was found, the SLP vectorizer performs vectorization on the tree.
 | 
						||
//
 | 
						||
// The pass is inspired by the work described in the paper:
 | 
						||
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
 | 
						||
#include "llvm/ADT/DenseMap.h"
 | 
						||
#include "llvm/ADT/DenseSet.h"
 | 
						||
#include "llvm/ADT/Optional.h"
 | 
						||
#include "llvm/ADT/PostOrderIterator.h"
 | 
						||
#include "llvm/ADT/STLExtras.h"
 | 
						||
#include "llvm/ADT/SetOperations.h"
 | 
						||
#include "llvm/ADT/SetVector.h"
 | 
						||
#include "llvm/ADT/SmallBitVector.h"
 | 
						||
#include "llvm/ADT/SmallPtrSet.h"
 | 
						||
#include "llvm/ADT/SmallSet.h"
 | 
						||
#include "llvm/ADT/SmallString.h"
 | 
						||
#include "llvm/ADT/Statistic.h"
 | 
						||
#include "llvm/ADT/iterator.h"
 | 
						||
#include "llvm/ADT/iterator_range.h"
 | 
						||
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						||
#include "llvm/Analysis/AssumptionCache.h"
 | 
						||
#include "llvm/Analysis/CodeMetrics.h"
 | 
						||
#include "llvm/Analysis/DemandedBits.h"
 | 
						||
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						||
#include "llvm/Analysis/IVDescriptors.h"
 | 
						||
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						||
#include "llvm/Analysis/LoopInfo.h"
 | 
						||
#include "llvm/Analysis/MemoryLocation.h"
 | 
						||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						||
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						||
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						||
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						||
#include "llvm/Analysis/ValueTracking.h"
 | 
						||
#include "llvm/Analysis/VectorUtils.h"
 | 
						||
#include "llvm/IR/Attributes.h"
 | 
						||
#include "llvm/IR/BasicBlock.h"
 | 
						||
#include "llvm/IR/Constant.h"
 | 
						||
#include "llvm/IR/Constants.h"
 | 
						||
#include "llvm/IR/DataLayout.h"
 | 
						||
#include "llvm/IR/DebugLoc.h"
 | 
						||
#include "llvm/IR/DerivedTypes.h"
 | 
						||
#include "llvm/IR/Dominators.h"
 | 
						||
#include "llvm/IR/Function.h"
 | 
						||
#include "llvm/IR/IRBuilder.h"
 | 
						||
#include "llvm/IR/InstrTypes.h"
 | 
						||
#include "llvm/IR/Instruction.h"
 | 
						||
#include "llvm/IR/Instructions.h"
 | 
						||
#include "llvm/IR/IntrinsicInst.h"
 | 
						||
#include "llvm/IR/Intrinsics.h"
 | 
						||
#include "llvm/IR/Module.h"
 | 
						||
#include "llvm/IR/NoFolder.h"
 | 
						||
#include "llvm/IR/Operator.h"
 | 
						||
#include "llvm/IR/PatternMatch.h"
 | 
						||
#include "llvm/IR/Type.h"
 | 
						||
#include "llvm/IR/Use.h"
 | 
						||
#include "llvm/IR/User.h"
 | 
						||
#include "llvm/IR/Value.h"
 | 
						||
#include "llvm/IR/ValueHandle.h"
 | 
						||
#include "llvm/IR/Verifier.h"
 | 
						||
#include "llvm/InitializePasses.h"
 | 
						||
#include "llvm/Pass.h"
 | 
						||
#include "llvm/Support/Casting.h"
 | 
						||
#include "llvm/Support/CommandLine.h"
 | 
						||
#include "llvm/Support/Compiler.h"
 | 
						||
#include "llvm/Support/DOTGraphTraits.h"
 | 
						||
#include "llvm/Support/Debug.h"
 | 
						||
#include "llvm/Support/ErrorHandling.h"
 | 
						||
#include "llvm/Support/GraphWriter.h"
 | 
						||
#include "llvm/Support/InstructionCost.h"
 | 
						||
#include "llvm/Support/KnownBits.h"
 | 
						||
#include "llvm/Support/MathExtras.h"
 | 
						||
#include "llvm/Support/raw_ostream.h"
 | 
						||
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
 | 
						||
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						||
#include "llvm/Transforms/Vectorize.h"
 | 
						||
#include <algorithm>
 | 
						||
#include <cassert>
 | 
						||
#include <cstdint>
 | 
						||
#include <iterator>
 | 
						||
#include <memory>
 | 
						||
#include <set>
 | 
						||
#include <string>
 | 
						||
#include <tuple>
 | 
						||
#include <utility>
 | 
						||
#include <vector>
 | 
						||
 | 
						||
using namespace llvm;
 | 
						||
using namespace llvm::PatternMatch;
 | 
						||
using namespace slpvectorizer;
 | 
						||
 | 
						||
#define SV_NAME "slp-vectorizer"
 | 
						||
#define DEBUG_TYPE "SLP"
 | 
						||
 | 
						||
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
 | 
						||
 | 
						||
cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
 | 
						||
                                  cl::desc("Run the SLP vectorization passes"));
 | 
						||
 | 
						||
static cl::opt<int>
 | 
						||
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | 
						||
                     cl::desc("Only vectorize if you gain more than this "
 | 
						||
                              "number "));
 | 
						||
 | 
						||
static cl::opt<bool>
 | 
						||
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
 | 
						||
                   cl::desc("Attempt to vectorize horizontal reductions"));
 | 
						||
 | 
						||
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
 | 
						||
    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
 | 
						||
    cl::desc(
 | 
						||
        "Attempt to vectorize horizontal reductions feeding into a store"));
 | 
						||
 | 
						||
static cl::opt<int>
 | 
						||
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
 | 
						||
    cl::desc("Attempt to vectorize for this register size in bits"));
 | 
						||
 | 
						||
static cl::opt<unsigned>
 | 
						||
MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
 | 
						||
    cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
 | 
						||
 | 
						||
static cl::opt<int>
 | 
						||
MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
 | 
						||
    cl::desc("Maximum depth of the lookup for consecutive stores."));
 | 
						||
 | 
						||
/// Limits the size of scheduling regions in a block.
 | 
						||
/// It avoid long compile times for _very_ large blocks where vector
 | 
						||
/// instructions are spread over a wide range.
 | 
						||
/// This limit is way higher than needed by real-world functions.
 | 
						||
static cl::opt<int>
 | 
						||
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
 | 
						||
    cl::desc("Limit the size of the SLP scheduling region per block"));
 | 
						||
 | 
						||
static cl::opt<int> MinVectorRegSizeOption(
 | 
						||
    "slp-min-reg-size", cl::init(128), cl::Hidden,
 | 
						||
    cl::desc("Attempt to vectorize for this register size in bits"));
 | 
						||
 | 
						||
static cl::opt<unsigned> RecursionMaxDepth(
 | 
						||
    "slp-recursion-max-depth", cl::init(12), cl::Hidden,
 | 
						||
    cl::desc("Limit the recursion depth when building a vectorizable tree"));
 | 
						||
 | 
						||
static cl::opt<unsigned> MinTreeSize(
 | 
						||
    "slp-min-tree-size", cl::init(3), cl::Hidden,
 | 
						||
    cl::desc("Only vectorize small trees if they are fully vectorizable"));
 | 
						||
 | 
						||
// The maximum depth that the look-ahead score heuristic will explore.
 | 
						||
// The higher this value, the higher the compilation time overhead.
 | 
						||
static cl::opt<int> LookAheadMaxDepth(
 | 
						||
    "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
 | 
						||
    cl::desc("The maximum look-ahead depth for operand reordering scores"));
 | 
						||
 | 
						||
// The Look-ahead heuristic goes through the users of the bundle to calculate
 | 
						||
// the users cost in getExternalUsesCost(). To avoid compilation time increase
 | 
						||
// we limit the number of users visited to this value.
 | 
						||
static cl::opt<unsigned> LookAheadUsersBudget(
 | 
						||
    "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
 | 
						||
    cl::desc("The maximum number of users to visit while visiting the "
 | 
						||
             "predecessors. This prevents compilation time increase."));
 | 
						||
 | 
						||
static cl::opt<bool>
 | 
						||
    ViewSLPTree("view-slp-tree", cl::Hidden,
 | 
						||
                cl::desc("Display the SLP trees with Graphviz"));
 | 
						||
 | 
						||
// Limit the number of alias checks. The limit is chosen so that
 | 
						||
// it has no negative effect on the llvm benchmarks.
 | 
						||
static const unsigned AliasedCheckLimit = 10;
 | 
						||
 | 
						||
// Another limit for the alias checks: The maximum distance between load/store
 | 
						||
// instructions where alias checks are done.
 | 
						||
// This limit is useful for very large basic blocks.
 | 
						||
static const unsigned MaxMemDepDistance = 160;
 | 
						||
 | 
						||
/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
 | 
						||
/// regions to be handled.
 | 
						||
static const int MinScheduleRegionSize = 16;
 | 
						||
 | 
						||
/// Predicate for the element types that the SLP vectorizer supports.
 | 
						||
///
 | 
						||
/// The most important thing to filter here are types which are invalid in LLVM
 | 
						||
/// vectors. We also filter target specific types which have absolutely no
 | 
						||
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
 | 
						||
/// avoids spending time checking the cost model and realizing that they will
 | 
						||
/// be inevitably scalarized.
 | 
						||
static bool isValidElementType(Type *Ty) {
 | 
						||
  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
 | 
						||
         !Ty->isPPC_FP128Ty();
 | 
						||
}
 | 
						||
 | 
						||
/// \returns true if all of the instructions in \p VL are in the same block or
 | 
						||
/// false otherwise.
 | 
						||
static bool allSameBlock(ArrayRef<Value *> VL) {
 | 
						||
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						||
  if (!I0)
 | 
						||
    return false;
 | 
						||
  BasicBlock *BB = I0->getParent();
 | 
						||
  for (int I = 1, E = VL.size(); I < E; I++) {
 | 
						||
    auto *II = dyn_cast<Instruction>(VL[I]);
 | 
						||
    if (!II)
 | 
						||
      return false;
 | 
						||
 | 
						||
    if (BB != II->getParent())
 | 
						||
      return false;
 | 
						||
  }
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if the value is a constant (but not globals/constant
 | 
						||
/// expressions).
 | 
						||
static bool isConstant(Value *V) {
 | 
						||
  return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if all of the values in \p VL are constants (but not
 | 
						||
/// globals/constant expressions).
 | 
						||
static bool allConstant(ArrayRef<Value *> VL) {
 | 
						||
  // Constant expressions and globals can't be vectorized like normal integer/FP
 | 
						||
  // constants.
 | 
						||
  return all_of(VL, isConstant);
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if all of the values in \p VL are identical.
 | 
						||
static bool isSplat(ArrayRef<Value *> VL) {
 | 
						||
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | 
						||
    if (VL[i] != VL[0])
 | 
						||
      return false;
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
 | 
						||
static bool isCommutative(Instruction *I) {
 | 
						||
  if (auto *Cmp = dyn_cast<CmpInst>(I))
 | 
						||
    return Cmp->isCommutative();
 | 
						||
  if (auto *BO = dyn_cast<BinaryOperator>(I))
 | 
						||
    return BO->isCommutative();
 | 
						||
  // TODO: This should check for generic Instruction::isCommutative(), but
 | 
						||
  //       we need to confirm that the caller code correctly handles Intrinsics
 | 
						||
  //       for example (does not have 2 operands).
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
/// Checks if the vector of instructions can be represented as a shuffle, like:
 | 
						||
/// %x0 = extractelement <4 x i8> %x, i32 0
 | 
						||
/// %x3 = extractelement <4 x i8> %x, i32 3
 | 
						||
/// %y1 = extractelement <4 x i8> %y, i32 1
 | 
						||
/// %y2 = extractelement <4 x i8> %y, i32 2
 | 
						||
/// %x0x0 = mul i8 %x0, %x0
 | 
						||
/// %x3x3 = mul i8 %x3, %x3
 | 
						||
/// %y1y1 = mul i8 %y1, %y1
 | 
						||
/// %y2y2 = mul i8 %y2, %y2
 | 
						||
/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
 | 
						||
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
 | 
						||
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
 | 
						||
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
 | 
						||
/// ret <4 x i8> %ins4
 | 
						||
/// can be transformed into:
 | 
						||
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
 | 
						||
///                                                         i32 6>
 | 
						||
/// %2 = mul <4 x i8> %1, %1
 | 
						||
/// ret <4 x i8> %2
 | 
						||
/// We convert this initially to something like:
 | 
						||
/// %x0 = extractelement <4 x i8> %x, i32 0
 | 
						||
/// %x3 = extractelement <4 x i8> %x, i32 3
 | 
						||
/// %y1 = extractelement <4 x i8> %y, i32 1
 | 
						||
/// %y2 = extractelement <4 x i8> %y, i32 2
 | 
						||
/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
 | 
						||
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
 | 
						||
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
 | 
						||
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
 | 
						||
/// %5 = mul <4 x i8> %4, %4
 | 
						||
/// %6 = extractelement <4 x i8> %5, i32 0
 | 
						||
/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
 | 
						||
/// %7 = extractelement <4 x i8> %5, i32 1
 | 
						||
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
 | 
						||
/// %8 = extractelement <4 x i8> %5, i32 2
 | 
						||
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
 | 
						||
/// %9 = extractelement <4 x i8> %5, i32 3
 | 
						||
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
 | 
						||
/// ret <4 x i8> %ins4
 | 
						||
/// InstCombiner transforms this into a shuffle and vector mul
 | 
						||
/// Mask will return the Shuffle Mask equivalent to the extracted elements.
 | 
						||
/// TODO: Can we split off and reuse the shuffle mask detection from
 | 
						||
/// TargetTransformInfo::getInstructionThroughput?
 | 
						||
static Optional<TargetTransformInfo::ShuffleKind>
 | 
						||
isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
 | 
						||
  auto *EI0 = cast<ExtractElementInst>(VL[0]);
 | 
						||
  unsigned Size =
 | 
						||
      cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
 | 
						||
  Value *Vec1 = nullptr;
 | 
						||
  Value *Vec2 = nullptr;
 | 
						||
  enum ShuffleMode { Unknown, Select, Permute };
 | 
						||
  ShuffleMode CommonShuffleMode = Unknown;
 | 
						||
  for (unsigned I = 0, E = VL.size(); I < E; ++I) {
 | 
						||
    auto *EI = cast<ExtractElementInst>(VL[I]);
 | 
						||
    auto *Vec = EI->getVectorOperand();
 | 
						||
    // All vector operands must have the same number of vector elements.
 | 
						||
    if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
 | 
						||
      return None;
 | 
						||
    auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
 | 
						||
    if (!Idx)
 | 
						||
      return None;
 | 
						||
    // Undefined behavior if Idx is negative or >= Size.
 | 
						||
    if (Idx->getValue().uge(Size)) {
 | 
						||
      Mask.push_back(UndefMaskElem);
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
    unsigned IntIdx = Idx->getValue().getZExtValue();
 | 
						||
    Mask.push_back(IntIdx);
 | 
						||
    // We can extractelement from undef or poison vector.
 | 
						||
    if (isa<UndefValue>(Vec))
 | 
						||
      continue;
 | 
						||
    // For correct shuffling we have to have at most 2 different vector operands
 | 
						||
    // in all extractelement instructions.
 | 
						||
    if (!Vec1 || Vec1 == Vec)
 | 
						||
      Vec1 = Vec;
 | 
						||
    else if (!Vec2 || Vec2 == Vec)
 | 
						||
      Vec2 = Vec;
 | 
						||
    else
 | 
						||
      return None;
 | 
						||
    if (CommonShuffleMode == Permute)
 | 
						||
      continue;
 | 
						||
    // If the extract index is not the same as the operation number, it is a
 | 
						||
    // permutation.
 | 
						||
    if (IntIdx != I) {
 | 
						||
      CommonShuffleMode = Permute;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
    CommonShuffleMode = Select;
 | 
						||
  }
 | 
						||
  // If we're not crossing lanes in different vectors, consider it as blending.
 | 
						||
  if (CommonShuffleMode == Select && Vec2)
 | 
						||
    return TargetTransformInfo::SK_Select;
 | 
						||
  // If Vec2 was never used, we have a permutation of a single vector, otherwise
 | 
						||
  // we have permutation of 2 vectors.
 | 
						||
  return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
 | 
						||
              : TargetTransformInfo::SK_PermuteSingleSrc;
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
 | 
						||
/// Main data required for vectorization of instructions.
 | 
						||
struct InstructionsState {
 | 
						||
  /// The very first instruction in the list with the main opcode.
 | 
						||
  Value *OpValue = nullptr;
 | 
						||
 | 
						||
  /// The main/alternate instruction.
 | 
						||
  Instruction *MainOp = nullptr;
 | 
						||
  Instruction *AltOp = nullptr;
 | 
						||
 | 
						||
  /// The main/alternate opcodes for the list of instructions.
 | 
						||
  unsigned getOpcode() const {
 | 
						||
    return MainOp ? MainOp->getOpcode() : 0;
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned getAltOpcode() const {
 | 
						||
    return AltOp ? AltOp->getOpcode() : 0;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Some of the instructions in the list have alternate opcodes.
 | 
						||
  bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
 | 
						||
 | 
						||
  bool isOpcodeOrAlt(Instruction *I) const {
 | 
						||
    unsigned CheckedOpcode = I->getOpcode();
 | 
						||
    return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
 | 
						||
  }
 | 
						||
 | 
						||
  InstructionsState() = delete;
 | 
						||
  InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
 | 
						||
      : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
 | 
						||
};
 | 
						||
 | 
						||
} // end anonymous namespace
 | 
						||
 | 
						||
/// Chooses the correct key for scheduling data. If \p Op has the same (or
 | 
						||
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
 | 
						||
/// OpValue.
 | 
						||
static Value *isOneOf(const InstructionsState &S, Value *Op) {
 | 
						||
  auto *I = dyn_cast<Instruction>(Op);
 | 
						||
  if (I && S.isOpcodeOrAlt(I))
 | 
						||
    return Op;
 | 
						||
  return S.OpValue;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns true if \p Opcode is allowed as part of of the main/alternate
 | 
						||
/// instruction for SLP vectorization.
 | 
						||
///
 | 
						||
/// Example of unsupported opcode is SDIV that can potentially cause UB if the
 | 
						||
/// "shuffled out" lane would result in division by zero.
 | 
						||
static bool isValidForAlternation(unsigned Opcode) {
 | 
						||
  if (Instruction::isIntDivRem(Opcode))
 | 
						||
    return false;
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns analysis of the Instructions in \p VL described in
 | 
						||
/// InstructionsState, the Opcode that we suppose the whole list
 | 
						||
/// could be vectorized even if its structure is diverse.
 | 
						||
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
 | 
						||
                                       unsigned BaseIndex = 0) {
 | 
						||
  // Make sure these are all Instructions.
 | 
						||
  if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
 | 
						||
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
 | 
						||
 | 
						||
  bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
 | 
						||
  bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
 | 
						||
  unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
 | 
						||
  unsigned AltOpcode = Opcode;
 | 
						||
  unsigned AltIndex = BaseIndex;
 | 
						||
 | 
						||
  // Check for one alternate opcode from another BinaryOperator.
 | 
						||
  // TODO - generalize to support all operators (types, calls etc.).
 | 
						||
  for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
 | 
						||
    unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
 | 
						||
    if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
 | 
						||
      if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | 
						||
        continue;
 | 
						||
      if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
 | 
						||
          isValidForAlternation(Opcode)) {
 | 
						||
        AltOpcode = InstOpcode;
 | 
						||
        AltIndex = Cnt;
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
    } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
 | 
						||
      Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
 | 
						||
      Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
 | 
						||
      if (Ty0 == Ty1) {
 | 
						||
        if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | 
						||
          continue;
 | 
						||
        if (Opcode == AltOpcode) {
 | 
						||
          assert(isValidForAlternation(Opcode) &&
 | 
						||
                 isValidForAlternation(InstOpcode) &&
 | 
						||
                 "Cast isn't safe for alternation, logic needs to be updated!");
 | 
						||
          AltOpcode = InstOpcode;
 | 
						||
          AltIndex = Cnt;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | 
						||
      continue;
 | 
						||
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
 | 
						||
  }
 | 
						||
 | 
						||
  return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
 | 
						||
                           cast<Instruction>(VL[AltIndex]));
 | 
						||
}
 | 
						||
 | 
						||
/// \returns true if all of the values in \p VL have the same type or false
 | 
						||
/// otherwise.
 | 
						||
static bool allSameType(ArrayRef<Value *> VL) {
 | 
						||
  Type *Ty = VL[0]->getType();
 | 
						||
  for (int i = 1, e = VL.size(); i < e; i++)
 | 
						||
    if (VL[i]->getType() != Ty)
 | 
						||
      return false;
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if Extract{Value,Element} instruction extracts element Idx.
 | 
						||
static Optional<unsigned> getExtractIndex(Instruction *E) {
 | 
						||
  unsigned Opcode = E->getOpcode();
 | 
						||
  assert((Opcode == Instruction::ExtractElement ||
 | 
						||
          Opcode == Instruction::ExtractValue) &&
 | 
						||
         "Expected extractelement or extractvalue instruction.");
 | 
						||
  if (Opcode == Instruction::ExtractElement) {
 | 
						||
    auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | 
						||
    if (!CI)
 | 
						||
      return None;
 | 
						||
    return CI->getZExtValue();
 | 
						||
  }
 | 
						||
  ExtractValueInst *EI = cast<ExtractValueInst>(E);
 | 
						||
  if (EI->getNumIndices() != 1)
 | 
						||
    return None;
 | 
						||
  return *EI->idx_begin();
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if in-tree use also needs extract. This refers to
 | 
						||
/// possible scalar operand in vectorized instruction.
 | 
						||
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
 | 
						||
                                    TargetLibraryInfo *TLI) {
 | 
						||
  unsigned Opcode = UserInst->getOpcode();
 | 
						||
  switch (Opcode) {
 | 
						||
  case Instruction::Load: {
 | 
						||
    LoadInst *LI = cast<LoadInst>(UserInst);
 | 
						||
    return (LI->getPointerOperand() == Scalar);
 | 
						||
  }
 | 
						||
  case Instruction::Store: {
 | 
						||
    StoreInst *SI = cast<StoreInst>(UserInst);
 | 
						||
    return (SI->getPointerOperand() == Scalar);
 | 
						||
  }
 | 
						||
  case Instruction::Call: {
 | 
						||
    CallInst *CI = cast<CallInst>(UserInst);
 | 
						||
    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						||
    for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | 
						||
      if (hasVectorInstrinsicScalarOpd(ID, i))
 | 
						||
        return (CI->getArgOperand(i) == Scalar);
 | 
						||
    }
 | 
						||
    LLVM_FALLTHROUGH;
 | 
						||
  }
 | 
						||
  default:
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
/// \returns the AA location that is being access by the instruction.
 | 
						||
static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
 | 
						||
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						||
    return MemoryLocation::get(SI);
 | 
						||
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						||
    return MemoryLocation::get(LI);
 | 
						||
  return MemoryLocation();
 | 
						||
}
 | 
						||
 | 
						||
/// \returns True if the instruction is not a volatile or atomic load/store.
 | 
						||
static bool isSimple(Instruction *I) {
 | 
						||
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						||
    return LI->isSimple();
 | 
						||
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						||
    return SI->isSimple();
 | 
						||
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						||
    return !MI->isVolatile();
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
namespace llvm {
 | 
						||
 | 
						||
static void inversePermutation(ArrayRef<unsigned> Indices,
 | 
						||
                               SmallVectorImpl<int> &Mask) {
 | 
						||
  Mask.clear();
 | 
						||
  const unsigned E = Indices.size();
 | 
						||
  Mask.resize(E, E + 1);
 | 
						||
  for (unsigned I = 0; I < E; ++I)
 | 
						||
    Mask[Indices[I]] = I;
 | 
						||
}
 | 
						||
 | 
						||
/// \returns inserting index of InsertElement or InsertValue instruction,
 | 
						||
/// using Offset as base offset for index.
 | 
						||
static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
 | 
						||
  int Index = Offset;
 | 
						||
  if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
 | 
						||
    if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
 | 
						||
      auto *VT = cast<FixedVectorType>(IE->getType());
 | 
						||
      if (CI->getValue().uge(VT->getNumElements()))
 | 
						||
        return UndefMaskElem;
 | 
						||
      Index *= VT->getNumElements();
 | 
						||
      Index += CI->getZExtValue();
 | 
						||
      return Index;
 | 
						||
    }
 | 
						||
    if (isa<UndefValue>(IE->getOperand(2)))
 | 
						||
      return UndefMaskElem;
 | 
						||
    return None;
 | 
						||
  }
 | 
						||
 | 
						||
  auto *IV = cast<InsertValueInst>(InsertInst);
 | 
						||
  Type *CurrentType = IV->getType();
 | 
						||
  for (unsigned I : IV->indices()) {
 | 
						||
    if (auto *ST = dyn_cast<StructType>(CurrentType)) {
 | 
						||
      Index *= ST->getNumElements();
 | 
						||
      CurrentType = ST->getElementType(I);
 | 
						||
    } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
 | 
						||
      Index *= AT->getNumElements();
 | 
						||
      CurrentType = AT->getElementType();
 | 
						||
    } else {
 | 
						||
      return None;
 | 
						||
    }
 | 
						||
    Index += I;
 | 
						||
  }
 | 
						||
  return Index;
 | 
						||
}
 | 
						||
 | 
						||
/// Reorders the list of scalars in accordance with the given \p Order and then
 | 
						||
/// the \p Mask. \p Order - is the original order of the scalars, need to
 | 
						||
/// reorder scalars into an unordered state at first according to the given
 | 
						||
/// order. Then the ordered scalars are shuffled once again in accordance with
 | 
						||
/// the provided mask.
 | 
						||
static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
 | 
						||
                           ArrayRef<unsigned> Order, ArrayRef<int> Mask) {
 | 
						||
  assert(!Mask.empty() && "Expected non-empty mask.");
 | 
						||
  SmallVector<Value *> Prev(Scalars.size(),
 | 
						||
                            UndefValue::get(Scalars.front()->getType()));
 | 
						||
  Prev.swap(Scalars);
 | 
						||
  if (Order.empty()) {
 | 
						||
    for (unsigned I = 0, E = Prev.size(); I < E; ++I)
 | 
						||
      if (Mask[I] != UndefMaskElem)
 | 
						||
        Scalars[Mask[I]] = Prev[I];
 | 
						||
  } else {
 | 
						||
    for (unsigned I = 0, E = Prev.size(); I < E; ++I)
 | 
						||
      if (Mask[Order[I]] != UndefMaskElem)
 | 
						||
        Scalars[Mask[Order[I]]] = Prev[Order[I]];
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
namespace slpvectorizer {
 | 
						||
 | 
						||
/// Bottom Up SLP Vectorizer.
 | 
						||
class BoUpSLP {
 | 
						||
  struct TreeEntry;
 | 
						||
  struct ScheduleData;
 | 
						||
 | 
						||
public:
 | 
						||
  using ValueList = SmallVector<Value *, 8>;
 | 
						||
  using InstrList = SmallVector<Instruction *, 16>;
 | 
						||
  using ValueSet = SmallPtrSet<Value *, 16>;
 | 
						||
  using StoreList = SmallVector<StoreInst *, 8>;
 | 
						||
  using ExtraValueToDebugLocsMap =
 | 
						||
      MapVector<Value *, SmallVector<Instruction *, 2>>;
 | 
						||
  using OrdersType = SmallVector<unsigned, 4>;
 | 
						||
 | 
						||
  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
 | 
						||
          TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
 | 
						||
          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
 | 
						||
          const DataLayout *DL, OptimizationRemarkEmitter *ORE)
 | 
						||
      : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
 | 
						||
        DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
 | 
						||
    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
 | 
						||
    // Use the vector register size specified by the target unless overridden
 | 
						||
    // by a command-line option.
 | 
						||
    // TODO: It would be better to limit the vectorization factor based on
 | 
						||
    //       data type rather than just register size. For example, x86 AVX has
 | 
						||
    //       256-bit registers, but it does not support integer operations
 | 
						||
    //       at that width (that requires AVX2).
 | 
						||
    if (MaxVectorRegSizeOption.getNumOccurrences())
 | 
						||
      MaxVecRegSize = MaxVectorRegSizeOption;
 | 
						||
    else
 | 
						||
      MaxVecRegSize =
 | 
						||
          TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
 | 
						||
              .getFixedSize();
 | 
						||
 | 
						||
    if (MinVectorRegSizeOption.getNumOccurrences())
 | 
						||
      MinVecRegSize = MinVectorRegSizeOption;
 | 
						||
    else
 | 
						||
      MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
 | 
						||
  }
 | 
						||
 | 
						||
  /// Vectorize the tree that starts with the elements in \p VL.
 | 
						||
  /// Returns the vectorized root.
 | 
						||
  Value *vectorizeTree();
 | 
						||
 | 
						||
  /// Vectorize the tree but with the list of externally used values \p
 | 
						||
  /// ExternallyUsedValues. Values in this MapVector can be replaced but the
 | 
						||
  /// generated extractvalue instructions.
 | 
						||
  Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
 | 
						||
 | 
						||
  /// \returns the cost incurred by unwanted spills and fills, caused by
 | 
						||
  /// holding live values over call sites.
 | 
						||
  InstructionCost getSpillCost() const;
 | 
						||
 | 
						||
  /// \returns the vectorization cost of the subtree that starts at \p VL.
 | 
						||
  /// A negative number means that this is profitable.
 | 
						||
  InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
 | 
						||
 | 
						||
  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | 
						||
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
 | 
						||
  void buildTree(ArrayRef<Value *> Roots,
 | 
						||
                 ArrayRef<Value *> UserIgnoreLst = None);
 | 
						||
 | 
						||
  /// Builds external uses of the vectorized scalars, i.e. the list of
 | 
						||
  /// vectorized scalars to be extracted, their lanes and their scalar users. \p
 | 
						||
  /// ExternallyUsedValues contains additional list of external uses to handle
 | 
						||
  /// vectorization of reductions.
 | 
						||
  void
 | 
						||
  buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
 | 
						||
 | 
						||
  /// Clear the internal data structures that are created by 'buildTree'.
 | 
						||
  void deleteTree() {
 | 
						||
    VectorizableTree.clear();
 | 
						||
    ScalarToTreeEntry.clear();
 | 
						||
    MustGather.clear();
 | 
						||
    ExternalUses.clear();
 | 
						||
    for (auto &Iter : BlocksSchedules) {
 | 
						||
      BlockScheduling *BS = Iter.second.get();
 | 
						||
      BS->clear();
 | 
						||
    }
 | 
						||
    MinBWs.clear();
 | 
						||
    InstrElementSize.clear();
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned getTreeSize() const { return VectorizableTree.size(); }
 | 
						||
 | 
						||
  /// Perform LICM and CSE on the newly generated gather sequences.
 | 
						||
  void optimizeGatherSequence();
 | 
						||
 | 
						||
  /// Reorders the current graph to the most profitable order starting from the
 | 
						||
  /// root node to the leaf nodes. The best order is chosen only from the nodes
 | 
						||
  /// of the same size (vectorization factor). Smaller nodes are considered
 | 
						||
  /// parts of subgraph with smaller VF and they are reordered independently. We
 | 
						||
  /// can make it because we still need to extend smaller nodes to the wider VF
 | 
						||
  /// and we can merge reordering shuffles with the widening shuffles. If \p
 | 
						||
  /// FreeReorder is true, the reordering of the root node is considered free
 | 
						||
  /// and we don't need to shuffle it to restore its order.
 | 
						||
  void reorderTopToBottom(bool FreeReorder);
 | 
						||
 | 
						||
  /// Reorders the current graph to the most profitable order starting from
 | 
						||
  /// leaves to the root. It allows to rotate small subgraphs and reduce the
 | 
						||
  /// number of reshuffles if the leaf nodes use the same order. In this case we
 | 
						||
  /// can merge the orders and just shuffle user node instead of shuffling its
 | 
						||
  /// operands. Plus, even the leaf nodes have different orders, it allows to
 | 
						||
  /// sink reordering in the graph closer to the root node and merge it later
 | 
						||
  /// during analysis. If \p FreeReorder is true, it means that the root node of
 | 
						||
  /// the graph is free to reorder and no need to restore its original order.
 | 
						||
  void reorderBottomToTop(bool FreeReorder);
 | 
						||
 | 
						||
  /// \return The vector element size in bits to use when vectorizing the
 | 
						||
  /// expression tree ending at \p V. If V is a store, the size is the width of
 | 
						||
  /// the stored value. Otherwise, the size is the width of the largest loaded
 | 
						||
  /// value reaching V. This method is used by the vectorizer to calculate
 | 
						||
  /// vectorization factors.
 | 
						||
  unsigned getVectorElementSize(Value *V);
 | 
						||
 | 
						||
  /// Compute the minimum type sizes required to represent the entries in a
 | 
						||
  /// vectorizable tree.
 | 
						||
  void computeMinimumValueSizes();
 | 
						||
 | 
						||
  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
 | 
						||
  unsigned getMaxVecRegSize() const {
 | 
						||
    return MaxVecRegSize;
 | 
						||
  }
 | 
						||
 | 
						||
  // \returns minimum vector register size as set by cl::opt.
 | 
						||
  unsigned getMinVecRegSize() const {
 | 
						||
    return MinVecRegSize;
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned getMinVF(unsigned Sz) const {
 | 
						||
    return std::max(2U, getMinVecRegSize() / Sz);
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
 | 
						||
    unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
 | 
						||
      MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
 | 
						||
    return MaxVF ? MaxVF : UINT_MAX;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Check if homogeneous aggregate is isomorphic to some VectorType.
 | 
						||
  /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
 | 
						||
  /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
 | 
						||
  /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
 | 
						||
  ///
 | 
						||
  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
 | 
						||
  unsigned canMapToVector(Type *T, const DataLayout &DL) const;
 | 
						||
 | 
						||
  /// \returns True if the VectorizableTree is both tiny and not fully
 | 
						||
  /// vectorizable. We do not vectorize such trees.
 | 
						||
  bool isTreeTinyAndNotFullyVectorizable() const;
 | 
						||
 | 
						||
  /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
 | 
						||
  /// can be load combined in the backend. Load combining may not be allowed in
 | 
						||
  /// the IR optimizer, so we do not want to alter the pattern. For example,
 | 
						||
  /// partially transforming a scalar bswap() pattern into vector code is
 | 
						||
  /// effectively impossible for the backend to undo.
 | 
						||
  /// TODO: If load combining is allowed in the IR optimizer, this analysis
 | 
						||
  ///       may not be necessary.
 | 
						||
  bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
 | 
						||
 | 
						||
  /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
 | 
						||
  /// can be load combined in the backend. Load combining may not be allowed in
 | 
						||
  /// the IR optimizer, so we do not want to alter the pattern. For example,
 | 
						||
  /// partially transforming a scalar bswap() pattern into vector code is
 | 
						||
  /// effectively impossible for the backend to undo.
 | 
						||
  /// TODO: If load combining is allowed in the IR optimizer, this analysis
 | 
						||
  ///       may not be necessary.
 | 
						||
  bool isLoadCombineCandidate() const;
 | 
						||
 | 
						||
  OptimizationRemarkEmitter *getORE() { return ORE; }
 | 
						||
 | 
						||
  /// This structure holds any data we need about the edges being traversed
 | 
						||
  /// during buildTree_rec(). We keep track of:
 | 
						||
  /// (i) the user TreeEntry index, and
 | 
						||
  /// (ii) the index of the edge.
 | 
						||
  struct EdgeInfo {
 | 
						||
    EdgeInfo() = default;
 | 
						||
    EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
 | 
						||
        : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
 | 
						||
    /// The user TreeEntry.
 | 
						||
    TreeEntry *UserTE = nullptr;
 | 
						||
    /// The operand index of the use.
 | 
						||
    unsigned EdgeIdx = UINT_MAX;
 | 
						||
#ifndef NDEBUG
 | 
						||
    friend inline raw_ostream &operator<<(raw_ostream &OS,
 | 
						||
                                          const BoUpSLP::EdgeInfo &EI) {
 | 
						||
      EI.dump(OS);
 | 
						||
      return OS;
 | 
						||
    }
 | 
						||
    /// Debug print.
 | 
						||
    void dump(raw_ostream &OS) const {
 | 
						||
      OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
 | 
						||
         << " EdgeIdx:" << EdgeIdx << "}";
 | 
						||
    }
 | 
						||
    LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
 | 
						||
#endif
 | 
						||
  };
 | 
						||
 | 
						||
  /// A helper data structure to hold the operands of a vector of instructions.
 | 
						||
  /// This supports a fixed vector length for all operand vectors.
 | 
						||
  class VLOperands {
 | 
						||
    /// For each operand we need (i) the value, and (ii) the opcode that it
 | 
						||
    /// would be attached to if the expression was in a left-linearized form.
 | 
						||
    /// This is required to avoid illegal operand reordering.
 | 
						||
    /// For example:
 | 
						||
    /// \verbatim
 | 
						||
    ///                         0 Op1
 | 
						||
    ///                         |/
 | 
						||
    /// Op1 Op2   Linearized    + Op2
 | 
						||
    ///   \ /     ---------->   |/
 | 
						||
    ///    -                    -
 | 
						||
    ///
 | 
						||
    /// Op1 - Op2            (0 + Op1) - Op2
 | 
						||
    /// \endverbatim
 | 
						||
    ///
 | 
						||
    /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
 | 
						||
    ///
 | 
						||
    /// Another way to think of this is to track all the operations across the
 | 
						||
    /// path from the operand all the way to the root of the tree and to
 | 
						||
    /// calculate the operation that corresponds to this path. For example, the
 | 
						||
    /// path from Op2 to the root crosses the RHS of the '-', therefore the
 | 
						||
    /// corresponding operation is a '-' (which matches the one in the
 | 
						||
    /// linearized tree, as shown above).
 | 
						||
    ///
 | 
						||
    /// For lack of a better term, we refer to this operation as Accumulated
 | 
						||
    /// Path Operation (APO).
 | 
						||
    struct OperandData {
 | 
						||
      OperandData() = default;
 | 
						||
      OperandData(Value *V, bool APO, bool IsUsed)
 | 
						||
          : V(V), APO(APO), IsUsed(IsUsed) {}
 | 
						||
      /// The operand value.
 | 
						||
      Value *V = nullptr;
 | 
						||
      /// TreeEntries only allow a single opcode, or an alternate sequence of
 | 
						||
      /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
 | 
						||
      /// APO. It is set to 'true' if 'V' is attached to an inverse operation
 | 
						||
      /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
 | 
						||
      /// (e.g., Add/Mul)
 | 
						||
      bool APO = false;
 | 
						||
      /// Helper data for the reordering function.
 | 
						||
      bool IsUsed = false;
 | 
						||
    };
 | 
						||
 | 
						||
    /// During operand reordering, we are trying to select the operand at lane
 | 
						||
    /// that matches best with the operand at the neighboring lane. Our
 | 
						||
    /// selection is based on the type of value we are looking for. For example,
 | 
						||
    /// if the neighboring lane has a load, we need to look for a load that is
 | 
						||
    /// accessing a consecutive address. These strategies are summarized in the
 | 
						||
    /// 'ReorderingMode' enumerator.
 | 
						||
    enum class ReorderingMode {
 | 
						||
      Load,     ///< Matching loads to consecutive memory addresses
 | 
						||
      Opcode,   ///< Matching instructions based on opcode (same or alternate)
 | 
						||
      Constant, ///< Matching constants
 | 
						||
      Splat,    ///< Matching the same instruction multiple times (broadcast)
 | 
						||
      Failed,   ///< We failed to create a vectorizable group
 | 
						||
    };
 | 
						||
 | 
						||
    using OperandDataVec = SmallVector<OperandData, 2>;
 | 
						||
 | 
						||
    /// A vector of operand vectors.
 | 
						||
    SmallVector<OperandDataVec, 4> OpsVec;
 | 
						||
 | 
						||
    const DataLayout &DL;
 | 
						||
    ScalarEvolution &SE;
 | 
						||
    const BoUpSLP &R;
 | 
						||
 | 
						||
    /// \returns the operand data at \p OpIdx and \p Lane.
 | 
						||
    OperandData &getData(unsigned OpIdx, unsigned Lane) {
 | 
						||
      return OpsVec[OpIdx][Lane];
 | 
						||
    }
 | 
						||
 | 
						||
    /// \returns the operand data at \p OpIdx and \p Lane. Const version.
 | 
						||
    const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
 | 
						||
      return OpsVec[OpIdx][Lane];
 | 
						||
    }
 | 
						||
 | 
						||
    /// Clears the used flag for all entries.
 | 
						||
    void clearUsed() {
 | 
						||
      for (unsigned OpIdx = 0, NumOperands = getNumOperands();
 | 
						||
           OpIdx != NumOperands; ++OpIdx)
 | 
						||
        for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
 | 
						||
             ++Lane)
 | 
						||
          OpsVec[OpIdx][Lane].IsUsed = false;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
 | 
						||
    void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
 | 
						||
      std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
 | 
						||
    }
 | 
						||
 | 
						||
    // The hard-coded scores listed here are not very important. When computing
 | 
						||
    // the scores of matching one sub-tree with another, we are basically
 | 
						||
    // counting the number of values that are matching. So even if all scores
 | 
						||
    // are set to 1, we would still get a decent matching result.
 | 
						||
    // However, sometimes we have to break ties. For example we may have to
 | 
						||
    // choose between matching loads vs matching opcodes. This is what these
 | 
						||
    // scores are helping us with: they provide the order of preference.
 | 
						||
 | 
						||
    /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
 | 
						||
    static const int ScoreConsecutiveLoads = 3;
 | 
						||
    /// ExtractElementInst from same vector and consecutive indexes.
 | 
						||
    static const int ScoreConsecutiveExtracts = 3;
 | 
						||
    /// Constants.
 | 
						||
    static const int ScoreConstants = 2;
 | 
						||
    /// Instructions with the same opcode.
 | 
						||
    static const int ScoreSameOpcode = 2;
 | 
						||
    /// Instructions with alt opcodes (e.g, add + sub).
 | 
						||
    static const int ScoreAltOpcodes = 1;
 | 
						||
    /// Identical instructions (a.k.a. splat or broadcast).
 | 
						||
    static const int ScoreSplat = 1;
 | 
						||
    /// Matching with an undef is preferable to failing.
 | 
						||
    static const int ScoreUndef = 1;
 | 
						||
    /// Score for failing to find a decent match.
 | 
						||
    static const int ScoreFail = 0;
 | 
						||
    /// User exteranl to the vectorized code.
 | 
						||
    static const int ExternalUseCost = 1;
 | 
						||
    /// The user is internal but in a different lane.
 | 
						||
    static const int UserInDiffLaneCost = ExternalUseCost;
 | 
						||
 | 
						||
    /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
 | 
						||
    static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
 | 
						||
                               ScalarEvolution &SE) {
 | 
						||
      auto *LI1 = dyn_cast<LoadInst>(V1);
 | 
						||
      auto *LI2 = dyn_cast<LoadInst>(V2);
 | 
						||
      if (LI1 && LI2) {
 | 
						||
        if (LI1->getParent() != LI2->getParent())
 | 
						||
          return VLOperands::ScoreFail;
 | 
						||
 | 
						||
        Optional<int> Dist = getPointersDiff(
 | 
						||
            LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
 | 
						||
            LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
 | 
						||
        return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
 | 
						||
                                    : VLOperands::ScoreFail;
 | 
						||
      }
 | 
						||
 | 
						||
      auto *C1 = dyn_cast<Constant>(V1);
 | 
						||
      auto *C2 = dyn_cast<Constant>(V2);
 | 
						||
      if (C1 && C2)
 | 
						||
        return VLOperands::ScoreConstants;
 | 
						||
 | 
						||
      // Extracts from consecutive indexes of the same vector better score as
 | 
						||
      // the extracts could be optimized away.
 | 
						||
      Value *EV;
 | 
						||
      ConstantInt *Ex1Idx, *Ex2Idx;
 | 
						||
      if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
 | 
						||
          match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
 | 
						||
          Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
 | 
						||
        return VLOperands::ScoreConsecutiveExtracts;
 | 
						||
 | 
						||
      auto *I1 = dyn_cast<Instruction>(V1);
 | 
						||
      auto *I2 = dyn_cast<Instruction>(V2);
 | 
						||
      if (I1 && I2) {
 | 
						||
        if (I1 == I2)
 | 
						||
          return VLOperands::ScoreSplat;
 | 
						||
        InstructionsState S = getSameOpcode({I1, I2});
 | 
						||
        // Note: Only consider instructions with <= 2 operands to avoid
 | 
						||
        // complexity explosion.
 | 
						||
        if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
 | 
						||
          return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
 | 
						||
                                  : VLOperands::ScoreSameOpcode;
 | 
						||
      }
 | 
						||
 | 
						||
      if (isa<UndefValue>(V2))
 | 
						||
        return VLOperands::ScoreUndef;
 | 
						||
 | 
						||
      return VLOperands::ScoreFail;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Holds the values and their lane that are taking part in the look-ahead
 | 
						||
    /// score calculation. This is used in the external uses cost calculation.
 | 
						||
    SmallDenseMap<Value *, int> InLookAheadValues;
 | 
						||
 | 
						||
    /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
 | 
						||
    /// either external to the vectorized code, or require shuffling.
 | 
						||
    int getExternalUsesCost(const std::pair<Value *, int> &LHS,
 | 
						||
                            const std::pair<Value *, int> &RHS) {
 | 
						||
      int Cost = 0;
 | 
						||
      std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
 | 
						||
      for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
 | 
						||
        Value *V = Values[Idx].first;
 | 
						||
        if (isa<Constant>(V)) {
 | 
						||
          // Since this is a function pass, it doesn't make semantic sense to
 | 
						||
          // walk the users of a subclass of Constant. The users could be in
 | 
						||
          // another function, or even another module that happens to be in
 | 
						||
          // the same LLVMContext.
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
 | 
						||
        // Calculate the absolute lane, using the minimum relative lane of LHS
 | 
						||
        // and RHS as base and Idx as the offset.
 | 
						||
        int Ln = std::min(LHS.second, RHS.second) + Idx;
 | 
						||
        assert(Ln >= 0 && "Bad lane calculation");
 | 
						||
        unsigned UsersBudget = LookAheadUsersBudget;
 | 
						||
        for (User *U : V->users()) {
 | 
						||
          if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
 | 
						||
            // The user is in the VectorizableTree. Check if we need to insert.
 | 
						||
            auto It = llvm::find(UserTE->Scalars, U);
 | 
						||
            assert(It != UserTE->Scalars.end() && "U is in UserTE");
 | 
						||
            int UserLn = std::distance(UserTE->Scalars.begin(), It);
 | 
						||
            assert(UserLn >= 0 && "Bad lane");
 | 
						||
            if (UserLn != Ln)
 | 
						||
              Cost += UserInDiffLaneCost;
 | 
						||
          } else {
 | 
						||
            // Check if the user is in the look-ahead code.
 | 
						||
            auto It2 = InLookAheadValues.find(U);
 | 
						||
            if (It2 != InLookAheadValues.end()) {
 | 
						||
              // The user is in the look-ahead code. Check the lane.
 | 
						||
              if (It2->second != Ln)
 | 
						||
                Cost += UserInDiffLaneCost;
 | 
						||
            } else {
 | 
						||
              // The user is neither in SLP tree nor in the look-ahead code.
 | 
						||
              Cost += ExternalUseCost;
 | 
						||
            }
 | 
						||
          }
 | 
						||
          // Limit the number of visited uses to cap compilation time.
 | 
						||
          if (--UsersBudget == 0)
 | 
						||
            break;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      return Cost;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Go through the operands of \p LHS and \p RHS recursively until \p
 | 
						||
    /// MaxLevel, and return the cummulative score. For example:
 | 
						||
    /// \verbatim
 | 
						||
    ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
 | 
						||
    ///     \ /         \ /         \ /        \ /
 | 
						||
    ///      +           +           +          +
 | 
						||
    ///     G1          G2          G3         G4
 | 
						||
    /// \endverbatim
 | 
						||
    /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
 | 
						||
    /// each level recursively, accumulating the score. It starts from matching
 | 
						||
    /// the additions at level 0, then moves on to the loads (level 1). The
 | 
						||
    /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
 | 
						||
    /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
 | 
						||
    /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
 | 
						||
    /// Please note that the order of the operands does not matter, as we
 | 
						||
    /// evaluate the score of all profitable combinations of operands. In
 | 
						||
    /// other words the score of G1 and G4 is the same as G1 and G2. This
 | 
						||
    /// heuristic is based on ideas described in:
 | 
						||
    ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
 | 
						||
    ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
 | 
						||
    ///   Luís F. W. Góes
 | 
						||
    int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
 | 
						||
                           const std::pair<Value *, int> &RHS, int CurrLevel,
 | 
						||
                           int MaxLevel) {
 | 
						||
 | 
						||
      Value *V1 = LHS.first;
 | 
						||
      Value *V2 = RHS.first;
 | 
						||
      // Get the shallow score of V1 and V2.
 | 
						||
      int ShallowScoreAtThisLevel =
 | 
						||
          std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
 | 
						||
                                       getExternalUsesCost(LHS, RHS));
 | 
						||
      int Lane1 = LHS.second;
 | 
						||
      int Lane2 = RHS.second;
 | 
						||
 | 
						||
      // If reached MaxLevel,
 | 
						||
      //  or if V1 and V2 are not instructions,
 | 
						||
      //  or if they are SPLAT,
 | 
						||
      //  or if they are not consecutive, early return the current cost.
 | 
						||
      auto *I1 = dyn_cast<Instruction>(V1);
 | 
						||
      auto *I2 = dyn_cast<Instruction>(V2);
 | 
						||
      if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
 | 
						||
          ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
 | 
						||
          (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
 | 
						||
        return ShallowScoreAtThisLevel;
 | 
						||
      assert(I1 && I2 && "Should have early exited.");
 | 
						||
 | 
						||
      // Keep track of in-tree values for determining the external-use cost.
 | 
						||
      InLookAheadValues[V1] = Lane1;
 | 
						||
      InLookAheadValues[V2] = Lane2;
 | 
						||
 | 
						||
      // Contains the I2 operand indexes that got matched with I1 operands.
 | 
						||
      SmallSet<unsigned, 4> Op2Used;
 | 
						||
 | 
						||
      // Recursion towards the operands of I1 and I2. We are trying all possbile
 | 
						||
      // operand pairs, and keeping track of the best score.
 | 
						||
      for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
 | 
						||
           OpIdx1 != NumOperands1; ++OpIdx1) {
 | 
						||
        // Try to pair op1I with the best operand of I2.
 | 
						||
        int MaxTmpScore = 0;
 | 
						||
        unsigned MaxOpIdx2 = 0;
 | 
						||
        bool FoundBest = false;
 | 
						||
        // If I2 is commutative try all combinations.
 | 
						||
        unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
 | 
						||
        unsigned ToIdx = isCommutative(I2)
 | 
						||
                             ? I2->getNumOperands()
 | 
						||
                             : std::min(I2->getNumOperands(), OpIdx1 + 1);
 | 
						||
        assert(FromIdx <= ToIdx && "Bad index");
 | 
						||
        for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
 | 
						||
          // Skip operands already paired with OpIdx1.
 | 
						||
          if (Op2Used.count(OpIdx2))
 | 
						||
            continue;
 | 
						||
          // Recursively calculate the cost at each level
 | 
						||
          int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
 | 
						||
                                            {I2->getOperand(OpIdx2), Lane2},
 | 
						||
                                            CurrLevel + 1, MaxLevel);
 | 
						||
          // Look for the best score.
 | 
						||
          if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
 | 
						||
            MaxTmpScore = TmpScore;
 | 
						||
            MaxOpIdx2 = OpIdx2;
 | 
						||
            FoundBest = true;
 | 
						||
          }
 | 
						||
        }
 | 
						||
        if (FoundBest) {
 | 
						||
          // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
 | 
						||
          Op2Used.insert(MaxOpIdx2);
 | 
						||
          ShallowScoreAtThisLevel += MaxTmpScore;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      return ShallowScoreAtThisLevel;
 | 
						||
    }
 | 
						||
 | 
						||
    /// \Returns the look-ahead score, which tells us how much the sub-trees
 | 
						||
    /// rooted at \p LHS and \p RHS match, the more they match the higher the
 | 
						||
    /// score. This helps break ties in an informed way when we cannot decide on
 | 
						||
    /// the order of the operands by just considering the immediate
 | 
						||
    /// predecessors.
 | 
						||
    int getLookAheadScore(const std::pair<Value *, int> &LHS,
 | 
						||
                          const std::pair<Value *, int> &RHS) {
 | 
						||
      InLookAheadValues.clear();
 | 
						||
      return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
 | 
						||
    }
 | 
						||
 | 
						||
    // Search all operands in Ops[*][Lane] for the one that matches best
 | 
						||
    // Ops[OpIdx][LastLane] and return its opreand index.
 | 
						||
    // If no good match can be found, return None.
 | 
						||
    Optional<unsigned>
 | 
						||
    getBestOperand(unsigned OpIdx, int Lane, int LastLane,
 | 
						||
                   ArrayRef<ReorderingMode> ReorderingModes) {
 | 
						||
      unsigned NumOperands = getNumOperands();
 | 
						||
 | 
						||
      // The operand of the previous lane at OpIdx.
 | 
						||
      Value *OpLastLane = getData(OpIdx, LastLane).V;
 | 
						||
 | 
						||
      // Our strategy mode for OpIdx.
 | 
						||
      ReorderingMode RMode = ReorderingModes[OpIdx];
 | 
						||
 | 
						||
      // The linearized opcode of the operand at OpIdx, Lane.
 | 
						||
      bool OpIdxAPO = getData(OpIdx, Lane).APO;
 | 
						||
 | 
						||
      // The best operand index and its score.
 | 
						||
      // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
 | 
						||
      // are using the score to differentiate between the two.
 | 
						||
      struct BestOpData {
 | 
						||
        Optional<unsigned> Idx = None;
 | 
						||
        unsigned Score = 0;
 | 
						||
      } BestOp;
 | 
						||
 | 
						||
      // Iterate through all unused operands and look for the best.
 | 
						||
      for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
 | 
						||
        // Get the operand at Idx and Lane.
 | 
						||
        OperandData &OpData = getData(Idx, Lane);
 | 
						||
        Value *Op = OpData.V;
 | 
						||
        bool OpAPO = OpData.APO;
 | 
						||
 | 
						||
        // Skip already selected operands.
 | 
						||
        if (OpData.IsUsed)
 | 
						||
          continue;
 | 
						||
 | 
						||
        // Skip if we are trying to move the operand to a position with a
 | 
						||
        // different opcode in the linearized tree form. This would break the
 | 
						||
        // semantics.
 | 
						||
        if (OpAPO != OpIdxAPO)
 | 
						||
          continue;
 | 
						||
 | 
						||
        // Look for an operand that matches the current mode.
 | 
						||
        switch (RMode) {
 | 
						||
        case ReorderingMode::Load:
 | 
						||
        case ReorderingMode::Constant:
 | 
						||
        case ReorderingMode::Opcode: {
 | 
						||
          bool LeftToRight = Lane > LastLane;
 | 
						||
          Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
 | 
						||
          Value *OpRight = (LeftToRight) ? Op : OpLastLane;
 | 
						||
          unsigned Score =
 | 
						||
              getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
 | 
						||
          if (Score > BestOp.Score) {
 | 
						||
            BestOp.Idx = Idx;
 | 
						||
            BestOp.Score = Score;
 | 
						||
          }
 | 
						||
          break;
 | 
						||
        }
 | 
						||
        case ReorderingMode::Splat:
 | 
						||
          if (Op == OpLastLane)
 | 
						||
            BestOp.Idx = Idx;
 | 
						||
          break;
 | 
						||
        case ReorderingMode::Failed:
 | 
						||
          return None;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      if (BestOp.Idx) {
 | 
						||
        getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
 | 
						||
        return BestOp.Idx;
 | 
						||
      }
 | 
						||
      // If we could not find a good match return None.
 | 
						||
      return None;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Helper for reorderOperandVecs. \Returns the lane that we should start
 | 
						||
    /// reordering from. This is the one which has the least number of operands
 | 
						||
    /// that can freely move about.
 | 
						||
    unsigned getBestLaneToStartReordering() const {
 | 
						||
      unsigned BestLane = 0;
 | 
						||
      unsigned Min = UINT_MAX;
 | 
						||
      for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
 | 
						||
           ++Lane) {
 | 
						||
        unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
 | 
						||
        if (NumFreeOps < Min) {
 | 
						||
          Min = NumFreeOps;
 | 
						||
          BestLane = Lane;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      return BestLane;
 | 
						||
    }
 | 
						||
 | 
						||
    /// \Returns the maximum number of operands that are allowed to be reordered
 | 
						||
    /// for \p Lane. This is used as a heuristic for selecting the first lane to
 | 
						||
    /// start operand reordering.
 | 
						||
    unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
 | 
						||
      unsigned CntTrue = 0;
 | 
						||
      unsigned NumOperands = getNumOperands();
 | 
						||
      // Operands with the same APO can be reordered. We therefore need to count
 | 
						||
      // how many of them we have for each APO, like this: Cnt[APO] = x.
 | 
						||
      // Since we only have two APOs, namely true and false, we can avoid using
 | 
						||
      // a map. Instead we can simply count the number of operands that
 | 
						||
      // correspond to one of them (in this case the 'true' APO), and calculate
 | 
						||
      // the other by subtracting it from the total number of operands.
 | 
						||
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
 | 
						||
        if (getData(OpIdx, Lane).APO)
 | 
						||
          ++CntTrue;
 | 
						||
      unsigned CntFalse = NumOperands - CntTrue;
 | 
						||
      return std::max(CntTrue, CntFalse);
 | 
						||
    }
 | 
						||
 | 
						||
    /// Go through the instructions in VL and append their operands.
 | 
						||
    void appendOperandsOfVL(ArrayRef<Value *> VL) {
 | 
						||
      assert(!VL.empty() && "Bad VL");
 | 
						||
      assert((empty() || VL.size() == getNumLanes()) &&
 | 
						||
             "Expected same number of lanes");
 | 
						||
      assert(isa<Instruction>(VL[0]) && "Expected instruction");
 | 
						||
      unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
 | 
						||
      OpsVec.resize(NumOperands);
 | 
						||
      unsigned NumLanes = VL.size();
 | 
						||
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
 | 
						||
        OpsVec[OpIdx].resize(NumLanes);
 | 
						||
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | 
						||
          assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
 | 
						||
          // Our tree has just 3 nodes: the root and two operands.
 | 
						||
          // It is therefore trivial to get the APO. We only need to check the
 | 
						||
          // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
 | 
						||
          // RHS operand. The LHS operand of both add and sub is never attached
 | 
						||
          // to an inversese operation in the linearized form, therefore its APO
 | 
						||
          // is false. The RHS is true only if VL[Lane] is an inverse operation.
 | 
						||
 | 
						||
          // Since operand reordering is performed on groups of commutative
 | 
						||
          // operations or alternating sequences (e.g., +, -), we can safely
 | 
						||
          // tell the inverse operations by checking commutativity.
 | 
						||
          bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
 | 
						||
          bool APO = (OpIdx == 0) ? false : IsInverseOperation;
 | 
						||
          OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
 | 
						||
                                 APO, false};
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    /// \returns the number of operands.
 | 
						||
    unsigned getNumOperands() const { return OpsVec.size(); }
 | 
						||
 | 
						||
    /// \returns the number of lanes.
 | 
						||
    unsigned getNumLanes() const { return OpsVec[0].size(); }
 | 
						||
 | 
						||
    /// \returns the operand value at \p OpIdx and \p Lane.
 | 
						||
    Value *getValue(unsigned OpIdx, unsigned Lane) const {
 | 
						||
      return getData(OpIdx, Lane).V;
 | 
						||
    }
 | 
						||
 | 
						||
    /// \returns true if the data structure is empty.
 | 
						||
    bool empty() const { return OpsVec.empty(); }
 | 
						||
 | 
						||
    /// Clears the data.
 | 
						||
    void clear() { OpsVec.clear(); }
 | 
						||
 | 
						||
    /// \Returns true if there are enough operands identical to \p Op to fill
 | 
						||
    /// the whole vector.
 | 
						||
    /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
 | 
						||
    bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
 | 
						||
      bool OpAPO = getData(OpIdx, Lane).APO;
 | 
						||
      for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
 | 
						||
        if (Ln == Lane)
 | 
						||
          continue;
 | 
						||
        // This is set to true if we found a candidate for broadcast at Lane.
 | 
						||
        bool FoundCandidate = false;
 | 
						||
        for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
 | 
						||
          OperandData &Data = getData(OpI, Ln);
 | 
						||
          if (Data.APO != OpAPO || Data.IsUsed)
 | 
						||
            continue;
 | 
						||
          if (Data.V == Op) {
 | 
						||
            FoundCandidate = true;
 | 
						||
            Data.IsUsed = true;
 | 
						||
            break;
 | 
						||
          }
 | 
						||
        }
 | 
						||
        if (!FoundCandidate)
 | 
						||
          return false;
 | 
						||
      }
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
 | 
						||
  public:
 | 
						||
    /// Initialize with all the operands of the instruction vector \p RootVL.
 | 
						||
    VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
 | 
						||
               ScalarEvolution &SE, const BoUpSLP &R)
 | 
						||
        : DL(DL), SE(SE), R(R) {
 | 
						||
      // Append all the operands of RootVL.
 | 
						||
      appendOperandsOfVL(RootVL);
 | 
						||
    }
 | 
						||
 | 
						||
    /// \Returns a value vector with the operands across all lanes for the
 | 
						||
    /// opearnd at \p OpIdx.
 | 
						||
    ValueList getVL(unsigned OpIdx) const {
 | 
						||
      ValueList OpVL(OpsVec[OpIdx].size());
 | 
						||
      assert(OpsVec[OpIdx].size() == getNumLanes() &&
 | 
						||
             "Expected same num of lanes across all operands");
 | 
						||
      for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
 | 
						||
        OpVL[Lane] = OpsVec[OpIdx][Lane].V;
 | 
						||
      return OpVL;
 | 
						||
    }
 | 
						||
 | 
						||
    // Performs operand reordering for 2 or more operands.
 | 
						||
    // The original operands are in OrigOps[OpIdx][Lane].
 | 
						||
    // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
 | 
						||
    void reorder() {
 | 
						||
      unsigned NumOperands = getNumOperands();
 | 
						||
      unsigned NumLanes = getNumLanes();
 | 
						||
      // Each operand has its own mode. We are using this mode to help us select
 | 
						||
      // the instructions for each lane, so that they match best with the ones
 | 
						||
      // we have selected so far.
 | 
						||
      SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
 | 
						||
 | 
						||
      // This is a greedy single-pass algorithm. We are going over each lane
 | 
						||
      // once and deciding on the best order right away with no back-tracking.
 | 
						||
      // However, in order to increase its effectiveness, we start with the lane
 | 
						||
      // that has operands that can move the least. For example, given the
 | 
						||
      // following lanes:
 | 
						||
      //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
 | 
						||
      //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
 | 
						||
      //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
 | 
						||
      //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
 | 
						||
      // we will start at Lane 1, since the operands of the subtraction cannot
 | 
						||
      // be reordered. Then we will visit the rest of the lanes in a circular
 | 
						||
      // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
 | 
						||
 | 
						||
      // Find the first lane that we will start our search from.
 | 
						||
      unsigned FirstLane = getBestLaneToStartReordering();
 | 
						||
 | 
						||
      // Initialize the modes.
 | 
						||
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
 | 
						||
        Value *OpLane0 = getValue(OpIdx, FirstLane);
 | 
						||
        // Keep track if we have instructions with all the same opcode on one
 | 
						||
        // side.
 | 
						||
        if (isa<LoadInst>(OpLane0))
 | 
						||
          ReorderingModes[OpIdx] = ReorderingMode::Load;
 | 
						||
        else if (isa<Instruction>(OpLane0)) {
 | 
						||
          // Check if OpLane0 should be broadcast.
 | 
						||
          if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
 | 
						||
            ReorderingModes[OpIdx] = ReorderingMode::Splat;
 | 
						||
          else
 | 
						||
            ReorderingModes[OpIdx] = ReorderingMode::Opcode;
 | 
						||
        }
 | 
						||
        else if (isa<Constant>(OpLane0))
 | 
						||
          ReorderingModes[OpIdx] = ReorderingMode::Constant;
 | 
						||
        else if (isa<Argument>(OpLane0))
 | 
						||
          // Our best hope is a Splat. It may save some cost in some cases.
 | 
						||
          ReorderingModes[OpIdx] = ReorderingMode::Splat;
 | 
						||
        else
 | 
						||
          // NOTE: This should be unreachable.
 | 
						||
          ReorderingModes[OpIdx] = ReorderingMode::Failed;
 | 
						||
      }
 | 
						||
 | 
						||
      // If the initial strategy fails for any of the operand indexes, then we
 | 
						||
      // perform reordering again in a second pass. This helps avoid assigning
 | 
						||
      // high priority to the failed strategy, and should improve reordering for
 | 
						||
      // the non-failed operand indexes.
 | 
						||
      for (int Pass = 0; Pass != 2; ++Pass) {
 | 
						||
        // Skip the second pass if the first pass did not fail.
 | 
						||
        bool StrategyFailed = false;
 | 
						||
        // Mark all operand data as free to use.
 | 
						||
        clearUsed();
 | 
						||
        // We keep the original operand order for the FirstLane, so reorder the
 | 
						||
        // rest of the lanes. We are visiting the nodes in a circular fashion,
 | 
						||
        // using FirstLane as the center point and increasing the radius
 | 
						||
        // distance.
 | 
						||
        for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
 | 
						||
          // Visit the lane on the right and then the lane on the left.
 | 
						||
          for (int Direction : {+1, -1}) {
 | 
						||
            int Lane = FirstLane + Direction * Distance;
 | 
						||
            if (Lane < 0 || Lane >= (int)NumLanes)
 | 
						||
              continue;
 | 
						||
            int LastLane = Lane - Direction;
 | 
						||
            assert(LastLane >= 0 && LastLane < (int)NumLanes &&
 | 
						||
                   "Out of bounds");
 | 
						||
            // Look for a good match for each operand.
 | 
						||
            for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
 | 
						||
              // Search for the operand that matches SortedOps[OpIdx][Lane-1].
 | 
						||
              Optional<unsigned> BestIdx =
 | 
						||
                  getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
 | 
						||
              // By not selecting a value, we allow the operands that follow to
 | 
						||
              // select a better matching value. We will get a non-null value in
 | 
						||
              // the next run of getBestOperand().
 | 
						||
              if (BestIdx) {
 | 
						||
                // Swap the current operand with the one returned by
 | 
						||
                // getBestOperand().
 | 
						||
                swap(OpIdx, BestIdx.getValue(), Lane);
 | 
						||
              } else {
 | 
						||
                // We failed to find a best operand, set mode to 'Failed'.
 | 
						||
                ReorderingModes[OpIdx] = ReorderingMode::Failed;
 | 
						||
                // Enable the second pass.
 | 
						||
                StrategyFailed = true;
 | 
						||
              }
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
        // Skip second pass if the strategy did not fail.
 | 
						||
        if (!StrategyFailed)
 | 
						||
          break;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						||
    LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
 | 
						||
      switch (RMode) {
 | 
						||
      case ReorderingMode::Load:
 | 
						||
        return "Load";
 | 
						||
      case ReorderingMode::Opcode:
 | 
						||
        return "Opcode";
 | 
						||
      case ReorderingMode::Constant:
 | 
						||
        return "Constant";
 | 
						||
      case ReorderingMode::Splat:
 | 
						||
        return "Splat";
 | 
						||
      case ReorderingMode::Failed:
 | 
						||
        return "Failed";
 | 
						||
      }
 | 
						||
      llvm_unreachable("Unimplemented Reordering Type");
 | 
						||
    }
 | 
						||
 | 
						||
    LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
 | 
						||
                                                   raw_ostream &OS) {
 | 
						||
      return OS << getModeStr(RMode);
 | 
						||
    }
 | 
						||
 | 
						||
    /// Debug print.
 | 
						||
    LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
 | 
						||
      printMode(RMode, dbgs());
 | 
						||
    }
 | 
						||
 | 
						||
    friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
 | 
						||
      return printMode(RMode, OS);
 | 
						||
    }
 | 
						||
 | 
						||
    LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
 | 
						||
      const unsigned Indent = 2;
 | 
						||
      unsigned Cnt = 0;
 | 
						||
      for (const OperandDataVec &OpDataVec : OpsVec) {
 | 
						||
        OS << "Operand " << Cnt++ << "\n";
 | 
						||
        for (const OperandData &OpData : OpDataVec) {
 | 
						||
          OS.indent(Indent) << "{";
 | 
						||
          if (Value *V = OpData.V)
 | 
						||
            OS << *V;
 | 
						||
          else
 | 
						||
            OS << "null";
 | 
						||
          OS << ", APO:" << OpData.APO << "}\n";
 | 
						||
        }
 | 
						||
        OS << "\n";
 | 
						||
      }
 | 
						||
      return OS;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Debug print.
 | 
						||
    LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
 | 
						||
#endif
 | 
						||
  };
 | 
						||
 | 
						||
  /// Checks if the instruction is marked for deletion.
 | 
						||
  bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
 | 
						||
 | 
						||
  /// Marks values operands for later deletion by replacing them with Undefs.
 | 
						||
  void eraseInstructions(ArrayRef<Value *> AV);
 | 
						||
 | 
						||
  ~BoUpSLP();
 | 
						||
 | 
						||
private:
 | 
						||
  /// Checks if all users of \p I are the part of the vectorization tree.
 | 
						||
  bool areAllUsersVectorized(Instruction *I,
 | 
						||
                             ArrayRef<Value *> VectorizedVals) const;
 | 
						||
 | 
						||
  /// \returns the cost of the vectorizable entry.
 | 
						||
  InstructionCost getEntryCost(const TreeEntry *E,
 | 
						||
                               ArrayRef<Value *> VectorizedVals);
 | 
						||
 | 
						||
  /// This is the recursive part of buildTree.
 | 
						||
  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
 | 
						||
                     const EdgeInfo &EI);
 | 
						||
 | 
						||
  /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
 | 
						||
  /// be vectorized to use the original vector (or aggregate "bitcast" to a
 | 
						||
  /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
 | 
						||
  /// returns false, setting \p CurrentOrder to either an empty vector or a
 | 
						||
  /// non-identity permutation that allows to reuse extract instructions.
 | 
						||
  bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
 | 
						||
                       SmallVectorImpl<unsigned> &CurrentOrder) const;
 | 
						||
 | 
						||
  /// Vectorize a single entry in the tree.
 | 
						||
  Value *vectorizeTree(TreeEntry *E);
 | 
						||
 | 
						||
  /// Vectorize a single entry in the tree, starting in \p VL.
 | 
						||
  Value *vectorizeTree(ArrayRef<Value *> VL);
 | 
						||
 | 
						||
  /// \returns the scalarization cost for this type. Scalarization in this
 | 
						||
  /// context means the creation of vectors from a group of scalars.
 | 
						||
  InstructionCost
 | 
						||
  getGatherCost(FixedVectorType *Ty,
 | 
						||
                const DenseSet<unsigned> &ShuffledIndices) const;
 | 
						||
 | 
						||
  /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
 | 
						||
  /// tree entries.
 | 
						||
  /// \returns ShuffleKind, if gathered values can be represented as shuffles of
 | 
						||
  /// previous tree entries. \p Mask is filled with the shuffle mask.
 | 
						||
  Optional<TargetTransformInfo::ShuffleKind>
 | 
						||
  isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
 | 
						||
                        SmallVectorImpl<const TreeEntry *> &Entries);
 | 
						||
 | 
						||
  /// \returns the scalarization cost for this list of values. Assuming that
 | 
						||
  /// this subtree gets vectorized, we may need to extract the values from the
 | 
						||
  /// roots. This method calculates the cost of extracting the values.
 | 
						||
  InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
 | 
						||
 | 
						||
  /// Set the Builder insert point to one after the last instruction in
 | 
						||
  /// the bundle
 | 
						||
  void setInsertPointAfterBundle(const TreeEntry *E);
 | 
						||
 | 
						||
  /// \returns a vector from a collection of scalars in \p VL.
 | 
						||
  Value *gather(ArrayRef<Value *> VL);
 | 
						||
 | 
						||
  /// \returns whether the VectorizableTree is fully vectorizable and will
 | 
						||
  /// be beneficial even the tree height is tiny.
 | 
						||
  bool isFullyVectorizableTinyTree() const;
 | 
						||
 | 
						||
  /// Reorder commutative or alt operands to get better probability of
 | 
						||
  /// generating vectorized code.
 | 
						||
  static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | 
						||
                                             SmallVectorImpl<Value *> &Left,
 | 
						||
                                             SmallVectorImpl<Value *> &Right,
 | 
						||
                                             const DataLayout &DL,
 | 
						||
                                             ScalarEvolution &SE,
 | 
						||
                                             const BoUpSLP &R);
 | 
						||
  struct TreeEntry {
 | 
						||
    using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
 | 
						||
    TreeEntry(VecTreeTy &Container) : Container(Container) {}
 | 
						||
 | 
						||
    /// \returns true if the scalars in VL are equal to this entry.
 | 
						||
    bool isSame(ArrayRef<Value *> VL) const {
 | 
						||
      if (VL.size() == Scalars.size())
 | 
						||
        return std::equal(VL.begin(), VL.end(), Scalars.begin());
 | 
						||
      return VL.size() == ReuseShuffleIndices.size() &&
 | 
						||
             std::equal(
 | 
						||
                 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
 | 
						||
                 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
 | 
						||
    }
 | 
						||
 | 
						||
    /// A vector of scalars.
 | 
						||
    ValueList Scalars;
 | 
						||
 | 
						||
    /// The Scalars are vectorized into this value. It is initialized to Null.
 | 
						||
    Value *VectorizedValue = nullptr;
 | 
						||
 | 
						||
    /// Do we need to gather this sequence or vectorize it
 | 
						||
    /// (either with vector instruction or with scatter/gather
 | 
						||
    /// intrinsics for store/load)?
 | 
						||
    enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
 | 
						||
    EntryState State;
 | 
						||
 | 
						||
    /// Does this sequence require some shuffling?
 | 
						||
    SmallVector<int, 4> ReuseShuffleIndices;
 | 
						||
 | 
						||
    /// Does this entry require reordering?
 | 
						||
    SmallVector<unsigned, 4> ReorderIndices;
 | 
						||
 | 
						||
    /// Points back to the VectorizableTree.
 | 
						||
    ///
 | 
						||
    /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
 | 
						||
    /// to be a pointer and needs to be able to initialize the child iterator.
 | 
						||
    /// Thus we need a reference back to the container to translate the indices
 | 
						||
    /// to entries.
 | 
						||
    VecTreeTy &Container;
 | 
						||
 | 
						||
    /// The TreeEntry index containing the user of this entry.  We can actually
 | 
						||
    /// have multiple users so the data structure is not truly a tree.
 | 
						||
    SmallVector<EdgeInfo, 1> UserTreeIndices;
 | 
						||
 | 
						||
    /// The index of this treeEntry in VectorizableTree.
 | 
						||
    int Idx = -1;
 | 
						||
 | 
						||
  private:
 | 
						||
    /// The operands of each instruction in each lane Operands[op_index][lane].
 | 
						||
    /// Note: This helps avoid the replication of the code that performs the
 | 
						||
    /// reordering of operands during buildTree_rec() and vectorizeTree().
 | 
						||
    SmallVector<ValueList, 2> Operands;
 | 
						||
 | 
						||
    /// The main/alternate instruction.
 | 
						||
    Instruction *MainOp = nullptr;
 | 
						||
    Instruction *AltOp = nullptr;
 | 
						||
 | 
						||
  public:
 | 
						||
    /// Set this bundle's \p OpIdx'th operand to \p OpVL.
 | 
						||
    void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
 | 
						||
      if (Operands.size() < OpIdx + 1)
 | 
						||
        Operands.resize(OpIdx + 1);
 | 
						||
      assert(Operands[OpIdx].empty() && "Already resized?");
 | 
						||
      Operands[OpIdx].resize(Scalars.size());
 | 
						||
      for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
 | 
						||
        Operands[OpIdx][Lane] = OpVL[Lane];
 | 
						||
    }
 | 
						||
 | 
						||
    /// Set the operands of this bundle in their original order.
 | 
						||
    void setOperandsInOrder() {
 | 
						||
      assert(Operands.empty() && "Already initialized?");
 | 
						||
      auto *I0 = cast<Instruction>(Scalars[0]);
 | 
						||
      Operands.resize(I0->getNumOperands());
 | 
						||
      unsigned NumLanes = Scalars.size();
 | 
						||
      for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
 | 
						||
           OpIdx != NumOperands; ++OpIdx) {
 | 
						||
        Operands[OpIdx].resize(NumLanes);
 | 
						||
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | 
						||
          auto *I = cast<Instruction>(Scalars[Lane]);
 | 
						||
          assert(I->getNumOperands() == NumOperands &&
 | 
						||
                 "Expected same number of operands");
 | 
						||
          Operands[OpIdx][Lane] = I->getOperand(OpIdx);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    /// Reorders operands of the node to the given mask \p Mask.
 | 
						||
    void reorderOperands(ArrayRef<int> Mask) {
 | 
						||
      for (ValueList &Operand : Operands)
 | 
						||
        reorderScalars(Operand, ReorderIndices, Mask);
 | 
						||
    }
 | 
						||
 | 
						||
    /// \returns the \p OpIdx operand of this TreeEntry.
 | 
						||
    ValueList &getOperand(unsigned OpIdx) {
 | 
						||
      assert(OpIdx < Operands.size() && "Off bounds");
 | 
						||
      return Operands[OpIdx];
 | 
						||
    }
 | 
						||
 | 
						||
    /// \returns the number of operands.
 | 
						||
    unsigned getNumOperands() const { return Operands.size(); }
 | 
						||
 | 
						||
    /// \return the single \p OpIdx operand.
 | 
						||
    Value *getSingleOperand(unsigned OpIdx) const {
 | 
						||
      assert(OpIdx < Operands.size() && "Off bounds");
 | 
						||
      assert(!Operands[OpIdx].empty() && "No operand available");
 | 
						||
      return Operands[OpIdx][0];
 | 
						||
    }
 | 
						||
 | 
						||
    /// Some of the instructions in the list have alternate opcodes.
 | 
						||
    bool isAltShuffle() const {
 | 
						||
      return getOpcode() != getAltOpcode();
 | 
						||
    }
 | 
						||
 | 
						||
    bool isOpcodeOrAlt(Instruction *I) const {
 | 
						||
      unsigned CheckedOpcode = I->getOpcode();
 | 
						||
      return (getOpcode() == CheckedOpcode ||
 | 
						||
              getAltOpcode() == CheckedOpcode);
 | 
						||
    }
 | 
						||
 | 
						||
    /// Chooses the correct key for scheduling data. If \p Op has the same (or
 | 
						||
    /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
 | 
						||
    /// \p OpValue.
 | 
						||
    Value *isOneOf(Value *Op) const {
 | 
						||
      auto *I = dyn_cast<Instruction>(Op);
 | 
						||
      if (I && isOpcodeOrAlt(I))
 | 
						||
        return Op;
 | 
						||
      return MainOp;
 | 
						||
    }
 | 
						||
 | 
						||
    void setOperations(const InstructionsState &S) {
 | 
						||
      MainOp = S.MainOp;
 | 
						||
      AltOp = S.AltOp;
 | 
						||
    }
 | 
						||
 | 
						||
    Instruction *getMainOp() const {
 | 
						||
      return MainOp;
 | 
						||
    }
 | 
						||
 | 
						||
    Instruction *getAltOp() const {
 | 
						||
      return AltOp;
 | 
						||
    }
 | 
						||
 | 
						||
    /// The main/alternate opcodes for the list of instructions.
 | 
						||
    unsigned getOpcode() const {
 | 
						||
      return MainOp ? MainOp->getOpcode() : 0;
 | 
						||
    }
 | 
						||
 | 
						||
    unsigned getAltOpcode() const {
 | 
						||
      return AltOp ? AltOp->getOpcode() : 0;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Update operations state of this entry if reorder occurred.
 | 
						||
    bool updateStateIfReorder() {
 | 
						||
      if (ReorderIndices.empty())
 | 
						||
        return false;
 | 
						||
      InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
 | 
						||
      setOperations(S);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
    /// When ReuseShuffleIndices is empty it just returns position of \p V
 | 
						||
    /// within vector of Scalars. Otherwise, try to remap on its reuse index.
 | 
						||
    int findLaneForValue(Value *V) const {
 | 
						||
      unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
 | 
						||
      assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
 | 
						||
      if (!ReuseShuffleIndices.empty()) {
 | 
						||
        FoundLane = std::distance(ReuseShuffleIndices.begin(),
 | 
						||
                                  find(ReuseShuffleIndices, FoundLane));
 | 
						||
      }
 | 
						||
      return FoundLane;
 | 
						||
    }
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
    /// Debug printer.
 | 
						||
    LLVM_DUMP_METHOD void dump() const {
 | 
						||
      dbgs() << Idx << ".\n";
 | 
						||
      for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
 | 
						||
        dbgs() << "Operand " << OpI << ":\n";
 | 
						||
        for (const Value *V : Operands[OpI])
 | 
						||
          dbgs().indent(2) << *V << "\n";
 | 
						||
      }
 | 
						||
      dbgs() << "Scalars: \n";
 | 
						||
      for (Value *V : Scalars)
 | 
						||
        dbgs().indent(2) << *V << "\n";
 | 
						||
      dbgs() << "State: ";
 | 
						||
      switch (State) {
 | 
						||
      case Vectorize:
 | 
						||
        dbgs() << "Vectorize\n";
 | 
						||
        break;
 | 
						||
      case ScatterVectorize:
 | 
						||
        dbgs() << "ScatterVectorize\n";
 | 
						||
        break;
 | 
						||
      case NeedToGather:
 | 
						||
        dbgs() << "NeedToGather\n";
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      dbgs() << "MainOp: ";
 | 
						||
      if (MainOp)
 | 
						||
        dbgs() << *MainOp << "\n";
 | 
						||
      else
 | 
						||
        dbgs() << "NULL\n";
 | 
						||
      dbgs() << "AltOp: ";
 | 
						||
      if (AltOp)
 | 
						||
        dbgs() << *AltOp << "\n";
 | 
						||
      else
 | 
						||
        dbgs() << "NULL\n";
 | 
						||
      dbgs() << "VectorizedValue: ";
 | 
						||
      if (VectorizedValue)
 | 
						||
        dbgs() << *VectorizedValue << "\n";
 | 
						||
      else
 | 
						||
        dbgs() << "NULL\n";
 | 
						||
      dbgs() << "ReuseShuffleIndices: ";
 | 
						||
      if (ReuseShuffleIndices.empty())
 | 
						||
        dbgs() << "Empty";
 | 
						||
      else
 | 
						||
        for (unsigned ReuseIdx : ReuseShuffleIndices)
 | 
						||
          dbgs() << ReuseIdx << ", ";
 | 
						||
      dbgs() << "\n";
 | 
						||
      dbgs() << "ReorderIndices: ";
 | 
						||
      for (unsigned ReorderIdx : ReorderIndices)
 | 
						||
        dbgs() << ReorderIdx << ", ";
 | 
						||
      dbgs() << "\n";
 | 
						||
      dbgs() << "UserTreeIndices: ";
 | 
						||
      for (const auto &EInfo : UserTreeIndices)
 | 
						||
        dbgs() << EInfo << ", ";
 | 
						||
      dbgs() << "\n";
 | 
						||
    }
 | 
						||
#endif
 | 
						||
  };
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
  void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
 | 
						||
                     InstructionCost VecCost,
 | 
						||
                     InstructionCost ScalarCost) const {
 | 
						||
    dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
 | 
						||
    dbgs() << "SLP: Costs:\n";
 | 
						||
    dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
 | 
						||
    dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
 | 
						||
    dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
 | 
						||
    dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
 | 
						||
               ReuseShuffleCost + VecCost - ScalarCost << "\n";
 | 
						||
  }
 | 
						||
#endif
 | 
						||
 | 
						||
  /// Create a new VectorizableTree entry.
 | 
						||
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
 | 
						||
                          const InstructionsState &S,
 | 
						||
                          const EdgeInfo &UserTreeIdx,
 | 
						||
                          ArrayRef<unsigned> ReuseShuffleIndices = None,
 | 
						||
                          ArrayRef<unsigned> ReorderIndices = None) {
 | 
						||
    TreeEntry::EntryState EntryState =
 | 
						||
        Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
 | 
						||
    return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
 | 
						||
                        ReuseShuffleIndices, ReorderIndices);
 | 
						||
  }
 | 
						||
 | 
						||
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
 | 
						||
                          TreeEntry::EntryState EntryState,
 | 
						||
                          Optional<ScheduleData *> Bundle,
 | 
						||
                          const InstructionsState &S,
 | 
						||
                          const EdgeInfo &UserTreeIdx,
 | 
						||
                          ArrayRef<unsigned> ReuseShuffleIndices = None,
 | 
						||
                          ArrayRef<unsigned> ReorderIndices = None) {
 | 
						||
    assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
 | 
						||
            (Bundle && EntryState != TreeEntry::NeedToGather)) &&
 | 
						||
           "Need to vectorize gather entry?");
 | 
						||
    VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
 | 
						||
    TreeEntry *Last = VectorizableTree.back().get();
 | 
						||
    Last->Idx = VectorizableTree.size() - 1;
 | 
						||
    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | 
						||
    Last->State = EntryState;
 | 
						||
    Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
 | 
						||
                                     ReuseShuffleIndices.end());
 | 
						||
    Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
 | 
						||
    Last->setOperations(S);
 | 
						||
    if (Last->State != TreeEntry::NeedToGather) {
 | 
						||
      for (Value *V : VL) {
 | 
						||
        assert(!getTreeEntry(V) && "Scalar already in tree!");
 | 
						||
        ScalarToTreeEntry[V] = Last;
 | 
						||
      }
 | 
						||
      // Update the scheduler bundle to point to this TreeEntry.
 | 
						||
      unsigned Lane = 0;
 | 
						||
      for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
 | 
						||
           BundleMember = BundleMember->NextInBundle) {
 | 
						||
        BundleMember->TE = Last;
 | 
						||
        BundleMember->Lane = Lane;
 | 
						||
        ++Lane;
 | 
						||
      }
 | 
						||
      assert((!Bundle.getValue() || Lane == VL.size()) &&
 | 
						||
             "Bundle and VL out of sync");
 | 
						||
    } else {
 | 
						||
      MustGather.insert(VL.begin(), VL.end());
 | 
						||
    }
 | 
						||
 | 
						||
    if (UserTreeIdx.UserTE)
 | 
						||
      Last->UserTreeIndices.push_back(UserTreeIdx);
 | 
						||
 | 
						||
    return Last;
 | 
						||
  }
 | 
						||
 | 
						||
  /// -- Vectorization State --
 | 
						||
  /// Holds all of the tree entries.
 | 
						||
  TreeEntry::VecTreeTy VectorizableTree;
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
  /// Debug printer.
 | 
						||
  LLVM_DUMP_METHOD void dumpVectorizableTree() const {
 | 
						||
    for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
 | 
						||
      VectorizableTree[Id]->dump();
 | 
						||
      dbgs() << "\n";
 | 
						||
    }
 | 
						||
  }
 | 
						||
#endif
 | 
						||
 | 
						||
  TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
 | 
						||
 | 
						||
  const TreeEntry *getTreeEntry(Value *V) const {
 | 
						||
    return ScalarToTreeEntry.lookup(V);
 | 
						||
  }
 | 
						||
 | 
						||
  /// Maps a specific scalar to its tree entry.
 | 
						||
  SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
 | 
						||
 | 
						||
  /// Maps a value to the proposed vectorizable size.
 | 
						||
  SmallDenseMap<Value *, unsigned> InstrElementSize;
 | 
						||
 | 
						||
  /// A list of scalars that we found that we need to keep as scalars.
 | 
						||
  ValueSet MustGather;
 | 
						||
 | 
						||
  /// This POD struct describes one external user in the vectorized tree.
 | 
						||
  struct ExternalUser {
 | 
						||
    ExternalUser(Value *S, llvm::User *U, int L)
 | 
						||
        : Scalar(S), User(U), Lane(L) {}
 | 
						||
 | 
						||
    // Which scalar in our function.
 | 
						||
    Value *Scalar;
 | 
						||
 | 
						||
    // Which user that uses the scalar.
 | 
						||
    llvm::User *User;
 | 
						||
 | 
						||
    // Which lane does the scalar belong to.
 | 
						||
    int Lane;
 | 
						||
  };
 | 
						||
  using UserList = SmallVector<ExternalUser, 16>;
 | 
						||
 | 
						||
  /// Checks if two instructions may access the same memory.
 | 
						||
  ///
 | 
						||
  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
 | 
						||
  /// is invariant in the calling loop.
 | 
						||
  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
 | 
						||
                 Instruction *Inst2) {
 | 
						||
    // First check if the result is already in the cache.
 | 
						||
    AliasCacheKey key = std::make_pair(Inst1, Inst2);
 | 
						||
    Optional<bool> &result = AliasCache[key];
 | 
						||
    if (result.hasValue()) {
 | 
						||
      return result.getValue();
 | 
						||
    }
 | 
						||
    MemoryLocation Loc2 = getLocation(Inst2, AA);
 | 
						||
    bool aliased = true;
 | 
						||
    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
 | 
						||
      // Do the alias check.
 | 
						||
      aliased = !AA->isNoAlias(Loc1, Loc2);
 | 
						||
    }
 | 
						||
    // Store the result in the cache.
 | 
						||
    result = aliased;
 | 
						||
    return aliased;
 | 
						||
  }
 | 
						||
 | 
						||
  using AliasCacheKey = std::pair<Instruction *, Instruction *>;
 | 
						||
 | 
						||
  /// Cache for alias results.
 | 
						||
  /// TODO: consider moving this to the AliasAnalysis itself.
 | 
						||
  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
 | 
						||
 | 
						||
  /// Removes an instruction from its block and eventually deletes it.
 | 
						||
  /// It's like Instruction::eraseFromParent() except that the actual deletion
 | 
						||
  /// is delayed until BoUpSLP is destructed.
 | 
						||
  /// This is required to ensure that there are no incorrect collisions in the
 | 
						||
  /// AliasCache, which can happen if a new instruction is allocated at the
 | 
						||
  /// same address as a previously deleted instruction.
 | 
						||
  void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
 | 
						||
    auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
 | 
						||
    It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Temporary store for deleted instructions. Instructions will be deleted
 | 
						||
  /// eventually when the BoUpSLP is destructed.
 | 
						||
  DenseMap<Instruction *, bool> DeletedInstructions;
 | 
						||
 | 
						||
  /// A list of values that need to extracted out of the tree.
 | 
						||
  /// This list holds pairs of (Internal Scalar : External User). External User
 | 
						||
  /// can be nullptr, it means that this Internal Scalar will be used later,
 | 
						||
  /// after vectorization.
 | 
						||
  UserList ExternalUses;
 | 
						||
 | 
						||
  /// Values used only by @llvm.assume calls.
 | 
						||
  SmallPtrSet<const Value *, 32> EphValues;
 | 
						||
 | 
						||
  /// Holds all of the instructions that we gathered.
 | 
						||
  SetVector<Instruction *> GatherSeq;
 | 
						||
 | 
						||
  /// A list of blocks that we are going to CSE.
 | 
						||
  SetVector<BasicBlock *> CSEBlocks;
 | 
						||
 | 
						||
  /// Contains all scheduling relevant data for an instruction.
 | 
						||
  /// A ScheduleData either represents a single instruction or a member of an
 | 
						||
  /// instruction bundle (= a group of instructions which is combined into a
 | 
						||
  /// vector instruction).
 | 
						||
  struct ScheduleData {
 | 
						||
    // The initial value for the dependency counters. It means that the
 | 
						||
    // dependencies are not calculated yet.
 | 
						||
    enum { InvalidDeps = -1 };
 | 
						||
 | 
						||
    ScheduleData() = default;
 | 
						||
 | 
						||
    void init(int BlockSchedulingRegionID, Value *OpVal) {
 | 
						||
      FirstInBundle = this;
 | 
						||
      NextInBundle = nullptr;
 | 
						||
      NextLoadStore = nullptr;
 | 
						||
      IsScheduled = false;
 | 
						||
      SchedulingRegionID = BlockSchedulingRegionID;
 | 
						||
      UnscheduledDepsInBundle = UnscheduledDeps;
 | 
						||
      clearDependencies();
 | 
						||
      OpValue = OpVal;
 | 
						||
      TE = nullptr;
 | 
						||
      Lane = -1;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Returns true if the dependency information has been calculated.
 | 
						||
    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
 | 
						||
 | 
						||
    /// Returns true for single instructions and for bundle representatives
 | 
						||
    /// (= the head of a bundle).
 | 
						||
    bool isSchedulingEntity() const { return FirstInBundle == this; }
 | 
						||
 | 
						||
    /// Returns true if it represents an instruction bundle and not only a
 | 
						||
    /// single instruction.
 | 
						||
    bool isPartOfBundle() const {
 | 
						||
      return NextInBundle != nullptr || FirstInBundle != this;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Returns true if it is ready for scheduling, i.e. it has no more
 | 
						||
    /// unscheduled depending instructions/bundles.
 | 
						||
    bool isReady() const {
 | 
						||
      assert(isSchedulingEntity() &&
 | 
						||
             "can't consider non-scheduling entity for ready list");
 | 
						||
      return UnscheduledDepsInBundle == 0 && !IsScheduled;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Modifies the number of unscheduled dependencies, also updating it for
 | 
						||
    /// the whole bundle.
 | 
						||
    int incrementUnscheduledDeps(int Incr) {
 | 
						||
      UnscheduledDeps += Incr;
 | 
						||
      return FirstInBundle->UnscheduledDepsInBundle += Incr;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Sets the number of unscheduled dependencies to the number of
 | 
						||
    /// dependencies.
 | 
						||
    void resetUnscheduledDeps() {
 | 
						||
      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
 | 
						||
    }
 | 
						||
 | 
						||
    /// Clears all dependency information.
 | 
						||
    void clearDependencies() {
 | 
						||
      Dependencies = InvalidDeps;
 | 
						||
      resetUnscheduledDeps();
 | 
						||
      MemoryDependencies.clear();
 | 
						||
    }
 | 
						||
 | 
						||
    void dump(raw_ostream &os) const {
 | 
						||
      if (!isSchedulingEntity()) {
 | 
						||
        os << "/ " << *Inst;
 | 
						||
      } else if (NextInBundle) {
 | 
						||
        os << '[' << *Inst;
 | 
						||
        ScheduleData *SD = NextInBundle;
 | 
						||
        while (SD) {
 | 
						||
          os << ';' << *SD->Inst;
 | 
						||
          SD = SD->NextInBundle;
 | 
						||
        }
 | 
						||
        os << ']';
 | 
						||
      } else {
 | 
						||
        os << *Inst;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    Instruction *Inst = nullptr;
 | 
						||
 | 
						||
    /// Points to the head in an instruction bundle (and always to this for
 | 
						||
    /// single instructions).
 | 
						||
    ScheduleData *FirstInBundle = nullptr;
 | 
						||
 | 
						||
    /// Single linked list of all instructions in a bundle. Null if it is a
 | 
						||
    /// single instruction.
 | 
						||
    ScheduleData *NextInBundle = nullptr;
 | 
						||
 | 
						||
    /// Single linked list of all memory instructions (e.g. load, store, call)
 | 
						||
    /// in the block - until the end of the scheduling region.
 | 
						||
    ScheduleData *NextLoadStore = nullptr;
 | 
						||
 | 
						||
    /// The dependent memory instructions.
 | 
						||
    /// This list is derived on demand in calculateDependencies().
 | 
						||
    SmallVector<ScheduleData *, 4> MemoryDependencies;
 | 
						||
 | 
						||
    /// This ScheduleData is in the current scheduling region if this matches
 | 
						||
    /// the current SchedulingRegionID of BlockScheduling.
 | 
						||
    int SchedulingRegionID = 0;
 | 
						||
 | 
						||
    /// Used for getting a "good" final ordering of instructions.
 | 
						||
    int SchedulingPriority = 0;
 | 
						||
 | 
						||
    /// The number of dependencies. Constitutes of the number of users of the
 | 
						||
    /// instruction plus the number of dependent memory instructions (if any).
 | 
						||
    /// This value is calculated on demand.
 | 
						||
    /// If InvalidDeps, the number of dependencies is not calculated yet.
 | 
						||
    int Dependencies = InvalidDeps;
 | 
						||
 | 
						||
    /// The number of dependencies minus the number of dependencies of scheduled
 | 
						||
    /// instructions. As soon as this is zero, the instruction/bundle gets ready
 | 
						||
    /// for scheduling.
 | 
						||
    /// Note that this is negative as long as Dependencies is not calculated.
 | 
						||
    int UnscheduledDeps = InvalidDeps;
 | 
						||
 | 
						||
    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
 | 
						||
    /// single instructions.
 | 
						||
    int UnscheduledDepsInBundle = InvalidDeps;
 | 
						||
 | 
						||
    /// True if this instruction is scheduled (or considered as scheduled in the
 | 
						||
    /// dry-run).
 | 
						||
    bool IsScheduled = false;
 | 
						||
 | 
						||
    /// Opcode of the current instruction in the schedule data.
 | 
						||
    Value *OpValue = nullptr;
 | 
						||
 | 
						||
    /// The TreeEntry that this instruction corresponds to.
 | 
						||
    TreeEntry *TE = nullptr;
 | 
						||
 | 
						||
    /// The lane of this node in the TreeEntry.
 | 
						||
    int Lane = -1;
 | 
						||
  };
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
  friend inline raw_ostream &operator<<(raw_ostream &os,
 | 
						||
                                        const BoUpSLP::ScheduleData &SD) {
 | 
						||
    SD.dump(os);
 | 
						||
    return os;
 | 
						||
  }
 | 
						||
#endif
 | 
						||
 | 
						||
  friend struct GraphTraits<BoUpSLP *>;
 | 
						||
  friend struct DOTGraphTraits<BoUpSLP *>;
 | 
						||
 | 
						||
  /// Contains all scheduling data for a basic block.
 | 
						||
  struct BlockScheduling {
 | 
						||
    BlockScheduling(BasicBlock *BB)
 | 
						||
        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
 | 
						||
 | 
						||
    void clear() {
 | 
						||
      ReadyInsts.clear();
 | 
						||
      ScheduleStart = nullptr;
 | 
						||
      ScheduleEnd = nullptr;
 | 
						||
      FirstLoadStoreInRegion = nullptr;
 | 
						||
      LastLoadStoreInRegion = nullptr;
 | 
						||
 | 
						||
      // Reduce the maximum schedule region size by the size of the
 | 
						||
      // previous scheduling run.
 | 
						||
      ScheduleRegionSizeLimit -= ScheduleRegionSize;
 | 
						||
      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
 | 
						||
        ScheduleRegionSizeLimit = MinScheduleRegionSize;
 | 
						||
      ScheduleRegionSize = 0;
 | 
						||
 | 
						||
      // Make a new scheduling region, i.e. all existing ScheduleData is not
 | 
						||
      // in the new region yet.
 | 
						||
      ++SchedulingRegionID;
 | 
						||
    }
 | 
						||
 | 
						||
    ScheduleData *getScheduleData(Value *V) {
 | 
						||
      ScheduleData *SD = ScheduleDataMap[V];
 | 
						||
      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | 
						||
        return SD;
 | 
						||
      return nullptr;
 | 
						||
    }
 | 
						||
 | 
						||
    ScheduleData *getScheduleData(Value *V, Value *Key) {
 | 
						||
      if (V == Key)
 | 
						||
        return getScheduleData(V);
 | 
						||
      auto I = ExtraScheduleDataMap.find(V);
 | 
						||
      if (I != ExtraScheduleDataMap.end()) {
 | 
						||
        ScheduleData *SD = I->second[Key];
 | 
						||
        if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | 
						||
          return SD;
 | 
						||
      }
 | 
						||
      return nullptr;
 | 
						||
    }
 | 
						||
 | 
						||
    bool isInSchedulingRegion(ScheduleData *SD) const {
 | 
						||
      return SD->SchedulingRegionID == SchedulingRegionID;
 | 
						||
    }
 | 
						||
 | 
						||
    /// Marks an instruction as scheduled and puts all dependent ready
 | 
						||
    /// instructions into the ready-list.
 | 
						||
    template <typename ReadyListType>
 | 
						||
    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
 | 
						||
      SD->IsScheduled = true;
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
 | 
						||
 | 
						||
      ScheduleData *BundleMember = SD;
 | 
						||
      while (BundleMember) {
 | 
						||
        if (BundleMember->Inst != BundleMember->OpValue) {
 | 
						||
          BundleMember = BundleMember->NextInBundle;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
        // Handle the def-use chain dependencies.
 | 
						||
 | 
						||
        // Decrement the unscheduled counter and insert to ready list if ready.
 | 
						||
        auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
 | 
						||
          doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
 | 
						||
            if (OpDef && OpDef->hasValidDependencies() &&
 | 
						||
                OpDef->incrementUnscheduledDeps(-1) == 0) {
 | 
						||
              // There are no more unscheduled dependencies after
 | 
						||
              // decrementing, so we can put the dependent instruction
 | 
						||
              // into the ready list.
 | 
						||
              ScheduleData *DepBundle = OpDef->FirstInBundle;
 | 
						||
              assert(!DepBundle->IsScheduled &&
 | 
						||
                     "already scheduled bundle gets ready");
 | 
						||
              ReadyList.insert(DepBundle);
 | 
						||
              LLVM_DEBUG(dbgs()
 | 
						||
                         << "SLP:    gets ready (def): " << *DepBundle << "\n");
 | 
						||
            }
 | 
						||
          });
 | 
						||
        };
 | 
						||
 | 
						||
        // If BundleMember is a vector bundle, its operands may have been
 | 
						||
        // reordered duiring buildTree(). We therefore need to get its operands
 | 
						||
        // through the TreeEntry.
 | 
						||
        if (TreeEntry *TE = BundleMember->TE) {
 | 
						||
          int Lane = BundleMember->Lane;
 | 
						||
          assert(Lane >= 0 && "Lane not set");
 | 
						||
 | 
						||
          // Since vectorization tree is being built recursively this assertion
 | 
						||
          // ensures that the tree entry has all operands set before reaching
 | 
						||
          // this code. Couple of exceptions known at the moment are extracts
 | 
						||
          // where their second (immediate) operand is not added. Since
 | 
						||
          // immediates do not affect scheduler behavior this is considered
 | 
						||
          // okay.
 | 
						||
          auto *In = TE->getMainOp();
 | 
						||
          assert(In &&
 | 
						||
                 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
 | 
						||
                  In->getNumOperands() == TE->getNumOperands()) &&
 | 
						||
                 "Missed TreeEntry operands?");
 | 
						||
          (void)In; // fake use to avoid build failure when assertions disabled
 | 
						||
 | 
						||
          for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
 | 
						||
               OpIdx != NumOperands; ++OpIdx)
 | 
						||
            if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
 | 
						||
              DecrUnsched(I);
 | 
						||
        } else {
 | 
						||
          // If BundleMember is a stand-alone instruction, no operand reordering
 | 
						||
          // has taken place, so we directly access its operands.
 | 
						||
          for (Use &U : BundleMember->Inst->operands())
 | 
						||
            if (auto *I = dyn_cast<Instruction>(U.get()))
 | 
						||
              DecrUnsched(I);
 | 
						||
        }
 | 
						||
        // Handle the memory dependencies.
 | 
						||
        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
 | 
						||
          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
 | 
						||
            // There are no more unscheduled dependencies after decrementing,
 | 
						||
            // so we can put the dependent instruction into the ready list.
 | 
						||
            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
 | 
						||
            assert(!DepBundle->IsScheduled &&
 | 
						||
                   "already scheduled bundle gets ready");
 | 
						||
            ReadyList.insert(DepBundle);
 | 
						||
            LLVM_DEBUG(dbgs()
 | 
						||
                       << "SLP:    gets ready (mem): " << *DepBundle << "\n");
 | 
						||
          }
 | 
						||
        }
 | 
						||
        BundleMember = BundleMember->NextInBundle;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    void doForAllOpcodes(Value *V,
 | 
						||
                         function_ref<void(ScheduleData *SD)> Action) {
 | 
						||
      if (ScheduleData *SD = getScheduleData(V))
 | 
						||
        Action(SD);
 | 
						||
      auto I = ExtraScheduleDataMap.find(V);
 | 
						||
      if (I != ExtraScheduleDataMap.end())
 | 
						||
        for (auto &P : I->second)
 | 
						||
          if (P.second->SchedulingRegionID == SchedulingRegionID)
 | 
						||
            Action(P.second);
 | 
						||
    }
 | 
						||
 | 
						||
    /// Put all instructions into the ReadyList which are ready for scheduling.
 | 
						||
    template <typename ReadyListType>
 | 
						||
    void initialFillReadyList(ReadyListType &ReadyList) {
 | 
						||
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						||
        doForAllOpcodes(I, [&](ScheduleData *SD) {
 | 
						||
          if (SD->isSchedulingEntity() && SD->isReady()) {
 | 
						||
            ReadyList.insert(SD);
 | 
						||
            LLVM_DEBUG(dbgs()
 | 
						||
                       << "SLP:    initially in ready list: " << *I << "\n");
 | 
						||
          }
 | 
						||
        });
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    /// Checks if a bundle of instructions can be scheduled, i.e. has no
 | 
						||
    /// cyclic dependencies. This is only a dry-run, no instructions are
 | 
						||
    /// actually moved at this stage.
 | 
						||
    /// \returns the scheduling bundle. The returned Optional value is non-None
 | 
						||
    /// if \p VL is allowed to be scheduled.
 | 
						||
    Optional<ScheduleData *>
 | 
						||
    tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
 | 
						||
                      const InstructionsState &S);
 | 
						||
 | 
						||
    /// Un-bundles a group of instructions.
 | 
						||
    void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
 | 
						||
 | 
						||
    /// Allocates schedule data chunk.
 | 
						||
    ScheduleData *allocateScheduleDataChunks();
 | 
						||
 | 
						||
    /// Extends the scheduling region so that V is inside the region.
 | 
						||
    /// \returns true if the region size is within the limit.
 | 
						||
    bool extendSchedulingRegion(Value *V, const InstructionsState &S);
 | 
						||
 | 
						||
    /// Initialize the ScheduleData structures for new instructions in the
 | 
						||
    /// scheduling region.
 | 
						||
    void initScheduleData(Instruction *FromI, Instruction *ToI,
 | 
						||
                          ScheduleData *PrevLoadStore,
 | 
						||
                          ScheduleData *NextLoadStore);
 | 
						||
 | 
						||
    /// Updates the dependency information of a bundle and of all instructions/
 | 
						||
    /// bundles which depend on the original bundle.
 | 
						||
    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
 | 
						||
                               BoUpSLP *SLP);
 | 
						||
 | 
						||
    /// Sets all instruction in the scheduling region to un-scheduled.
 | 
						||
    void resetSchedule();
 | 
						||
 | 
						||
    BasicBlock *BB;
 | 
						||
 | 
						||
    /// Simple memory allocation for ScheduleData.
 | 
						||
    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
 | 
						||
 | 
						||
    /// The size of a ScheduleData array in ScheduleDataChunks.
 | 
						||
    int ChunkSize;
 | 
						||
 | 
						||
    /// The allocator position in the current chunk, which is the last entry
 | 
						||
    /// of ScheduleDataChunks.
 | 
						||
    int ChunkPos;
 | 
						||
 | 
						||
    /// Attaches ScheduleData to Instruction.
 | 
						||
    /// Note that the mapping survives during all vectorization iterations, i.e.
 | 
						||
    /// ScheduleData structures are recycled.
 | 
						||
    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
 | 
						||
 | 
						||
    /// Attaches ScheduleData to Instruction with the leading key.
 | 
						||
    DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
 | 
						||
        ExtraScheduleDataMap;
 | 
						||
 | 
						||
    struct ReadyList : SmallVector<ScheduleData *, 8> {
 | 
						||
      void insert(ScheduleData *SD) { push_back(SD); }
 | 
						||
    };
 | 
						||
 | 
						||
    /// The ready-list for scheduling (only used for the dry-run).
 | 
						||
    ReadyList ReadyInsts;
 | 
						||
 | 
						||
    /// The first instruction of the scheduling region.
 | 
						||
    Instruction *ScheduleStart = nullptr;
 | 
						||
 | 
						||
    /// The first instruction _after_ the scheduling region.
 | 
						||
    Instruction *ScheduleEnd = nullptr;
 | 
						||
 | 
						||
    /// The first memory accessing instruction in the scheduling region
 | 
						||
    /// (can be null).
 | 
						||
    ScheduleData *FirstLoadStoreInRegion = nullptr;
 | 
						||
 | 
						||
    /// The last memory accessing instruction in the scheduling region
 | 
						||
    /// (can be null).
 | 
						||
    ScheduleData *LastLoadStoreInRegion = nullptr;
 | 
						||
 | 
						||
    /// The current size of the scheduling region.
 | 
						||
    int ScheduleRegionSize = 0;
 | 
						||
 | 
						||
    /// The maximum size allowed for the scheduling region.
 | 
						||
    int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
 | 
						||
 | 
						||
    /// The ID of the scheduling region. For a new vectorization iteration this
 | 
						||
    /// is incremented which "removes" all ScheduleData from the region.
 | 
						||
    // Make sure that the initial SchedulingRegionID is greater than the
 | 
						||
    // initial SchedulingRegionID in ScheduleData (which is 0).
 | 
						||
    int SchedulingRegionID = 1;
 | 
						||
  };
 | 
						||
 | 
						||
  /// Attaches the BlockScheduling structures to basic blocks.
 | 
						||
  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
 | 
						||
 | 
						||
  /// Performs the "real" scheduling. Done before vectorization is actually
 | 
						||
  /// performed in a basic block.
 | 
						||
  void scheduleBlock(BlockScheduling *BS);
 | 
						||
 | 
						||
  /// List of users to ignore during scheduling and that don't need extracting.
 | 
						||
  ArrayRef<Value *> UserIgnoreList;
 | 
						||
 | 
						||
  /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
 | 
						||
  /// sorted SmallVectors of unsigned.
 | 
						||
  struct OrdersTypeDenseMapInfo {
 | 
						||
    static OrdersType getEmptyKey() {
 | 
						||
      OrdersType V;
 | 
						||
      V.push_back(~1U);
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
 | 
						||
    static OrdersType getTombstoneKey() {
 | 
						||
      OrdersType V;
 | 
						||
      V.push_back(~2U);
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
 | 
						||
    static unsigned getHashValue(const OrdersType &V) {
 | 
						||
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
 | 
						||
    }
 | 
						||
 | 
						||
    static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
 | 
						||
      return LHS == RHS;
 | 
						||
    }
 | 
						||
  };
 | 
						||
 | 
						||
  // Analysis and block reference.
 | 
						||
  Function *F;
 | 
						||
  ScalarEvolution *SE;
 | 
						||
  TargetTransformInfo *TTI;
 | 
						||
  TargetLibraryInfo *TLI;
 | 
						||
  AAResults *AA;
 | 
						||
  LoopInfo *LI;
 | 
						||
  DominatorTree *DT;
 | 
						||
  AssumptionCache *AC;
 | 
						||
  DemandedBits *DB;
 | 
						||
  const DataLayout *DL;
 | 
						||
  OptimizationRemarkEmitter *ORE;
 | 
						||
 | 
						||
  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
 | 
						||
  unsigned MinVecRegSize; // Set by cl::opt (default: 128).
 | 
						||
 | 
						||
  /// Instruction builder to construct the vectorized tree.
 | 
						||
  IRBuilder<> Builder;
 | 
						||
 | 
						||
  /// A map of scalar integer values to the smallest bit width with which they
 | 
						||
  /// can legally be represented. The values map to (width, signed) pairs,
 | 
						||
  /// where "width" indicates the minimum bit width and "signed" is True if the
 | 
						||
  /// value must be signed-extended, rather than zero-extended, back to its
 | 
						||
  /// original width.
 | 
						||
  MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
 | 
						||
};
 | 
						||
 | 
						||
} // end namespace slpvectorizer
 | 
						||
 | 
						||
template <> struct GraphTraits<BoUpSLP *> {
 | 
						||
  using TreeEntry = BoUpSLP::TreeEntry;
 | 
						||
 | 
						||
  /// NodeRef has to be a pointer per the GraphWriter.
 | 
						||
  using NodeRef = TreeEntry *;
 | 
						||
 | 
						||
  using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
 | 
						||
 | 
						||
  /// Add the VectorizableTree to the index iterator to be able to return
 | 
						||
  /// TreeEntry pointers.
 | 
						||
  struct ChildIteratorType
 | 
						||
      : public iterator_adaptor_base<
 | 
						||
            ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
 | 
						||
    ContainerTy &VectorizableTree;
 | 
						||
 | 
						||
    ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
 | 
						||
                      ContainerTy &VT)
 | 
						||
        : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
 | 
						||
 | 
						||
    NodeRef operator*() { return I->UserTE; }
 | 
						||
  };
 | 
						||
 | 
						||
  static NodeRef getEntryNode(BoUpSLP &R) {
 | 
						||
    return R.VectorizableTree[0].get();
 | 
						||
  }
 | 
						||
 | 
						||
  static ChildIteratorType child_begin(NodeRef N) {
 | 
						||
    return {N->UserTreeIndices.begin(), N->Container};
 | 
						||
  }
 | 
						||
 | 
						||
  static ChildIteratorType child_end(NodeRef N) {
 | 
						||
    return {N->UserTreeIndices.end(), N->Container};
 | 
						||
  }
 | 
						||
 | 
						||
  /// For the node iterator we just need to turn the TreeEntry iterator into a
 | 
						||
  /// TreeEntry* iterator so that it dereferences to NodeRef.
 | 
						||
  class nodes_iterator {
 | 
						||
    using ItTy = ContainerTy::iterator;
 | 
						||
    ItTy It;
 | 
						||
 | 
						||
  public:
 | 
						||
    nodes_iterator(const ItTy &It2) : It(It2) {}
 | 
						||
    NodeRef operator*() { return It->get(); }
 | 
						||
    nodes_iterator operator++() {
 | 
						||
      ++It;
 | 
						||
      return *this;
 | 
						||
    }
 | 
						||
    bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
 | 
						||
  };
 | 
						||
 | 
						||
  static nodes_iterator nodes_begin(BoUpSLP *R) {
 | 
						||
    return nodes_iterator(R->VectorizableTree.begin());
 | 
						||
  }
 | 
						||
 | 
						||
  static nodes_iterator nodes_end(BoUpSLP *R) {
 | 
						||
    return nodes_iterator(R->VectorizableTree.end());
 | 
						||
  }
 | 
						||
 | 
						||
  static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
 | 
						||
};
 | 
						||
 | 
						||
template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
 | 
						||
  using TreeEntry = BoUpSLP::TreeEntry;
 | 
						||
 | 
						||
  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
 | 
						||
 | 
						||
  std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
 | 
						||
    std::string Str;
 | 
						||
    raw_string_ostream OS(Str);
 | 
						||
    if (isSplat(Entry->Scalars)) {
 | 
						||
      OS << "<splat> " << *Entry->Scalars[0];
 | 
						||
      return Str;
 | 
						||
    }
 | 
						||
    for (auto V : Entry->Scalars) {
 | 
						||
      OS << *V;
 | 
						||
      if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
 | 
						||
            return EU.Scalar == V;
 | 
						||
          }))
 | 
						||
        OS << " <extract>";
 | 
						||
      OS << "\n";
 | 
						||
    }
 | 
						||
    return Str;
 | 
						||
  }
 | 
						||
 | 
						||
  static std::string getNodeAttributes(const TreeEntry *Entry,
 | 
						||
                                       const BoUpSLP *) {
 | 
						||
    if (Entry->State == TreeEntry::NeedToGather)
 | 
						||
      return "color=red";
 | 
						||
    return "";
 | 
						||
  }
 | 
						||
};
 | 
						||
 | 
						||
} // end namespace llvm
 | 
						||
 | 
						||
BoUpSLP::~BoUpSLP() {
 | 
						||
  for (const auto &Pair : DeletedInstructions) {
 | 
						||
    // Replace operands of ignored instructions with Undefs in case if they were
 | 
						||
    // marked for deletion.
 | 
						||
    if (Pair.getSecond()) {
 | 
						||
      Value *Undef = UndefValue::get(Pair.getFirst()->getType());
 | 
						||
      Pair.getFirst()->replaceAllUsesWith(Undef);
 | 
						||
    }
 | 
						||
    Pair.getFirst()->dropAllReferences();
 | 
						||
  }
 | 
						||
  for (const auto &Pair : DeletedInstructions) {
 | 
						||
    assert(Pair.getFirst()->use_empty() &&
 | 
						||
           "trying to erase instruction with users.");
 | 
						||
    Pair.getFirst()->eraseFromParent();
 | 
						||
  }
 | 
						||
#ifdef EXPENSIVE_CHECKS
 | 
						||
  // If we could guarantee that this call is not extremely slow, we could
 | 
						||
  // remove the ifdef limitation (see PR47712).
 | 
						||
  assert(!verifyFunction(*F, &dbgs()));
 | 
						||
#endif
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
 | 
						||
  for (auto *V : AV) {
 | 
						||
    if (auto *I = dyn_cast<Instruction>(V))
 | 
						||
      eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
 | 
						||
  };
 | 
						||
}
 | 
						||
 | 
						||
/// Reorders the given \p Order according to the given \p Mask. \p Order - is
 | 
						||
/// the original order of the scalars. Procedure transforms the provided order
 | 
						||
/// in accordance with the given \p Mask. If the resulting \p Order is just an
 | 
						||
/// identity order, \p Order is cleared.
 | 
						||
static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
 | 
						||
  assert(!Mask.empty() && "Expected non-empty mask.");
 | 
						||
  if (Order.empty()) {
 | 
						||
    Order.resize(Mask.size());
 | 
						||
    std::iota(Order.begin(), Order.end(), 0);
 | 
						||
  }
 | 
						||
  SmallVector<unsigned> Prev(Order.size(), Order.size());
 | 
						||
  Prev.swap(Order);
 | 
						||
  for (unsigned I = 0, E = Prev.size(); I < E; ++I)
 | 
						||
    if (Mask[Prev[I]] != UndefMaskElem)
 | 
						||
      Order[Mask[Prev[I]]] = I;
 | 
						||
  auto &&IsIdentity = [](ArrayRef<unsigned> Order) {
 | 
						||
    for (unsigned I = 0, E = Order.size(); I < E; ++I) {
 | 
						||
      if (Order[I] != I)
 | 
						||
        return false;
 | 
						||
    }
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
  if (IsIdentity(Order))
 | 
						||
    Order.clear();
 | 
						||
}
 | 
						||
 | 
						||
/// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
 | 
						||
/// contains original mask for the scalars reused in the node. Procedure
 | 
						||
/// transform this mask in accordance with the given \p Mask.
 | 
						||
static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
 | 
						||
  assert(!Reuses.empty() && !Mask.empty() &&
 | 
						||
         "Expected non-empty mask and reuses mask.");
 | 
						||
  SmallVector<int> Prev(Reuses.size(), UndefMaskElem);
 | 
						||
  Prev.swap(Reuses);
 | 
						||
  for (unsigned I = 0, E = Prev.size(); I < E; ++I)
 | 
						||
    if (Mask[I] != UndefMaskElem)
 | 
						||
      Reuses[Mask[I]] = Prev[I];
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::reorderTopToBottom(bool FreeReorder) {
 | 
						||
  // Maps VF to the graph nodes.
 | 
						||
  DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries;
 | 
						||
  // ExtractElement gather nodes which can be vectorized and need to handle
 | 
						||
  // their ordering.
 | 
						||
  DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
 | 
						||
  // Find all reorderable nodes with the given VF.
 | 
						||
  // Currently the are vectorized loads,extracts + some gathering of extracts.
 | 
						||
  for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
 | 
						||
                                 const std::unique_ptr<TreeEntry> &TE) {
 | 
						||
    if (TE->State == TreeEntry::Vectorize &&
 | 
						||
        isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) {
 | 
						||
      VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
 | 
						||
    } else if (TE->State == TreeEntry::NeedToGather &&
 | 
						||
               TE->getOpcode() == Instruction::ExtractElement &&
 | 
						||
               isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp())
 | 
						||
                                        ->getVectorOperandType()) &&
 | 
						||
               allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) {
 | 
						||
      // Check that gather of extractelements can be represented as
 | 
						||
      // just a shuffle of a single vector.
 | 
						||
      OrdersType CurrentOrder;
 | 
						||
      bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder);
 | 
						||
      if (Reuse || !CurrentOrder.empty()) {
 | 
						||
        VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
 | 
						||
        GathersToOrders.try_emplace(TE.get(), CurrentOrder);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  });
 | 
						||
 | 
						||
  // Reorder the graph nodes according to their vectorization factor.
 | 
						||
  for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
 | 
						||
       VF /= 2) {
 | 
						||
    auto It = VFToOrderedEntries.find(VF);
 | 
						||
    if (It == VFToOrderedEntries.end())
 | 
						||
      continue;
 | 
						||
    // Try to find the most profitable order. We just are looking for the most
 | 
						||
    // used order and reorder scalar elements in the nodes according to this
 | 
						||
    // mostly used order.
 | 
						||
    const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond();
 | 
						||
    // All operands are reordered and used only in this node - propagate the
 | 
						||
    // most used order to the user node.
 | 
						||
    DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses;
 | 
						||
    SmallPtrSet<const TreeEntry *, 4> VisitedOps;
 | 
						||
    for (const TreeEntry *OpTE : OrderedEntries) {
 | 
						||
      // No need to reorder this nodes, still need to extend and to use shuffle,
 | 
						||
      // just need to merge reordering shuffle and the reuse shuffle.
 | 
						||
      if (!OpTE->ReuseShuffleIndices.empty())
 | 
						||
        continue;
 | 
						||
      // Count number of orders uses.
 | 
						||
      const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
 | 
						||
        if (OpTE->State == TreeEntry::NeedToGather)
 | 
						||
          return GathersToOrders.find(OpTE)->second;
 | 
						||
        return OpTE->ReorderIndices;
 | 
						||
      }();
 | 
						||
      ++OrdersUses.try_emplace(Order).first->getSecond();
 | 
						||
    }
 | 
						||
    // Set order of the user node.
 | 
						||
    if (OrdersUses.empty())
 | 
						||
      continue;
 | 
						||
    // If need to reorder the root node, it means it also requires to keep its
 | 
						||
    // original order.
 | 
						||
    if (VF == VectorizableTree.front()->Scalars.size() && !FreeReorder)
 | 
						||
      ++OrdersUses[VectorizableTree.front()->ReorderIndices];
 | 
						||
    // Choose the most used order.
 | 
						||
    ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first;
 | 
						||
    unsigned Cnt = OrdersUses.begin()->second;
 | 
						||
    for (const auto &Pair : llvm::drop_begin(OrdersUses)) {
 | 
						||
      if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
 | 
						||
        BestOrder = Pair.first;
 | 
						||
        Cnt = Pair.second;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    // Set order of the user node.
 | 
						||
    if (BestOrder.empty())
 | 
						||
      continue;
 | 
						||
    SmallVector<int> Mask;
 | 
						||
    inversePermutation(BestOrder, Mask);
 | 
						||
    SmallPtrSet<TreeEntry *, 4> SmallOperandsToReorder;
 | 
						||
    // Do an actual reordering, if profitable.
 | 
						||
    for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
 | 
						||
      // Just do the reordering for the nodes with the given VF.
 | 
						||
      if (TE->Scalars.size() != VF) {
 | 
						||
        if (TE->ReuseShuffleIndices.size() == VF) {
 | 
						||
          // Need to reorder the reuses masks of the operands with smaller VF to
 | 
						||
          // be able to find the match between the graph nodes and scalar
 | 
						||
          // operands of the given node during vectorization/cost estimation.
 | 
						||
          // Build a list of such operands for future reordering.
 | 
						||
          assert(all_of(TE->UserTreeIndices,
 | 
						||
                        [VF, &TE](const EdgeInfo &EI) {
 | 
						||
                          return EI.UserTE->Scalars.size() == VF ||
 | 
						||
                                 EI.UserTE->Scalars.size() ==
 | 
						||
                                     TE->Scalars.size();
 | 
						||
                        }) &&
 | 
						||
                 "All users must be of VF size.");
 | 
						||
          SmallOperandsToReorder.insert(TE.get());
 | 
						||
        }
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // Reorder the node and its operands.
 | 
						||
      TE->updateStateIfReorder();
 | 
						||
      TE->reorderOperands(Mask);
 | 
						||
      if (TE->ReuseShuffleIndices.empty()) {
 | 
						||
        reorderScalars(TE->Scalars, TE->ReorderIndices, Mask);
 | 
						||
        if (TE->State == TreeEntry::Vectorize &&
 | 
						||
            (TE.get() != VectorizableTree.front().get() || !FreeReorder) &&
 | 
						||
            isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst>(
 | 
						||
                TE->getMainOp())) {
 | 
						||
          // Build correct orders for extract{element,value}, loads and stores.
 | 
						||
          reorderOrder(TE->ReorderIndices, Mask);
 | 
						||
          // For stores the order is actually a mask.
 | 
						||
          if (isa<StoreInst>(TE->getMainOp()) && !TE->ReorderIndices.empty()) {
 | 
						||
            SmallVector<int> StoreOrder;
 | 
						||
            inversePermutation(TE->ReorderIndices, StoreOrder);
 | 
						||
            copy(StoreOrder, TE->ReorderIndices.begin());
 | 
						||
          }
 | 
						||
        } else {
 | 
						||
          TE->ReorderIndices.clear();
 | 
						||
        }
 | 
						||
      } else {
 | 
						||
        // Build correct order for nodes with reused shuffles.
 | 
						||
        reorderOrder(TE->ReorderIndices, Mask);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    // Update ordering of the operands with the smaller VF than the given one.
 | 
						||
    for (TreeEntry *TE : SmallOperandsToReorder)
 | 
						||
      reorderReuses(TE->ReuseShuffleIndices, Mask);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::reorderBottomToTop(bool FreeReorder) {
 | 
						||
  SetVector<TreeEntry *> OrderedEntries;
 | 
						||
  DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
 | 
						||
  // Find all reorderable nodes with the given VF.
 | 
						||
  // Currently the are vectorized loads,extracts without alternate operands +
 | 
						||
  // some gathering of extracts.
 | 
						||
  SmallVector<TreeEntry *> NonVectorized;
 | 
						||
  for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
 | 
						||
                              &NonVectorized](
 | 
						||
                                 const std::unique_ptr<TreeEntry> &TE) {
 | 
						||
    if (TE->State == TreeEntry::Vectorize &&
 | 
						||
        isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) {
 | 
						||
      OrderedEntries.insert(TE.get());
 | 
						||
    } else if (TE->State == TreeEntry::NeedToGather &&
 | 
						||
               TE->getOpcode() == Instruction::ExtractElement &&
 | 
						||
               isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp())
 | 
						||
                                        ->getVectorOperandType()) &&
 | 
						||
               allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) {
 | 
						||
      // Check that gather of extractelements can be represented as
 | 
						||
      // just a shuffle of a single vector with a single user only.
 | 
						||
      OrdersType CurrentOrder;
 | 
						||
      bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder);
 | 
						||
      if ((Reuse || !CurrentOrder.empty()) &&
 | 
						||
          !any_of(
 | 
						||
              VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) {
 | 
						||
                return Entry->State == TreeEntry::NeedToGather &&
 | 
						||
                       Entry.get() != TE.get() && Entry->isSame(TE->Scalars);
 | 
						||
              })) {
 | 
						||
        OrderedEntries.insert(TE.get());
 | 
						||
        GathersToOrders.try_emplace(TE.get(), CurrentOrder);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    if (TE->State != TreeEntry::Vectorize)
 | 
						||
      NonVectorized.push_back(TE.get());
 | 
						||
  });
 | 
						||
 | 
						||
  // Checks if the operands of the users are reordarable and have only single
 | 
						||
  // use.
 | 
						||
  auto &&CheckOperands =
 | 
						||
      [this, &NonVectorized](const auto &Data,
 | 
						||
                             SmallVectorImpl<TreeEntry *> &GatherOps) {
 | 
						||
        for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) {
 | 
						||
          if (any_of(Data.second,
 | 
						||
                     [I](const std::pair<unsigned, TreeEntry *> &OpData) {
 | 
						||
                       return OpData.first == I;
 | 
						||
                     }))
 | 
						||
            continue;
 | 
						||
          ArrayRef<Value *> VL = Data.first->getOperand(I);
 | 
						||
          const TreeEntry *TE = nullptr;
 | 
						||
          const auto *It = find_if(VL, [this, &TE](Value *V) {
 | 
						||
            TE = getTreeEntry(V);
 | 
						||
            return TE;
 | 
						||
          });
 | 
						||
          if (It != VL.end() && TE->isSame(VL))
 | 
						||
            return false;
 | 
						||
          TreeEntry *Gather = nullptr;
 | 
						||
          if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) {
 | 
						||
                assert(TE->State != TreeEntry::Vectorize &&
 | 
						||
                       "Only non-vectorized nodes are expected.");
 | 
						||
                if (TE->isSame(VL)) {
 | 
						||
                  Gather = TE;
 | 
						||
                  return true;
 | 
						||
                }
 | 
						||
                return false;
 | 
						||
              }) != 1)
 | 
						||
            return false;
 | 
						||
          GatherOps.push_back(Gather);
 | 
						||
        }
 | 
						||
        return true;
 | 
						||
      };
 | 
						||
  // 1. Propagate order to the graph nodes, which use only reordered nodes.
 | 
						||
  // I.e., if the node has operands, that are reordered, try to make at least
 | 
						||
  // one operand order in the natural order and reorder others + reorder the
 | 
						||
  // user node itself.
 | 
						||
  SmallPtrSet<const TreeEntry *, 4> Visited;
 | 
						||
  while (!OrderedEntries.empty()) {
 | 
						||
    // 1. Filter out only reordered nodes.
 | 
						||
    // 2. If the entry has multiple uses - skip it and jump to the next node.
 | 
						||
    MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
 | 
						||
    SmallVector<TreeEntry *> Filtered;
 | 
						||
    for (TreeEntry *TE : OrderedEntries) {
 | 
						||
      if (!(TE->State == TreeEntry::Vectorize ||
 | 
						||
            (TE->State == TreeEntry::NeedToGather &&
 | 
						||
             TE->getOpcode() == Instruction::ExtractElement)) ||
 | 
						||
          TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
 | 
						||
          !all_of(drop_begin(TE->UserTreeIndices),
 | 
						||
                  [TE](const EdgeInfo &EI) {
 | 
						||
                    return EI.UserTE == TE->UserTreeIndices.front().UserTE;
 | 
						||
                  }) ||
 | 
						||
          !Visited.insert(TE).second) {
 | 
						||
        Filtered.push_back(TE);
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // Build a map between user nodes and their operands order to speedup
 | 
						||
      // search. The graph currently  does not provide this dependency directly.
 | 
						||
      for (EdgeInfo &EI : TE->UserTreeIndices) {
 | 
						||
        TreeEntry *UserTE = EI.UserTE;
 | 
						||
        auto It = Users.find(UserTE);
 | 
						||
        if (It == Users.end())
 | 
						||
          It = Users.insert({UserTE, {}}).first;
 | 
						||
        It->second.emplace_back(EI.EdgeIdx, TE);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    // Erase filtered entries.
 | 
						||
    for_each(Filtered,
 | 
						||
             [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
 | 
						||
    for (const auto &Data : Users) {
 | 
						||
      // Check that operands are used only in the User node.
 | 
						||
      SmallVector<TreeEntry *> GatherOps;
 | 
						||
      if (!CheckOperands(Data, GatherOps)) {
 | 
						||
        for_each(Data.second,
 | 
						||
                 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
 | 
						||
                   OrderedEntries.remove(Op.second);
 | 
						||
                 });
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // All operands are reordered and used only in this node - propagate the
 | 
						||
      // most used order to the user node.
 | 
						||
      DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses;
 | 
						||
      SmallPtrSet<const TreeEntry *, 4> VisitedOps;
 | 
						||
      for (const auto &Op : Data.second) {
 | 
						||
        TreeEntry *OpTE = Op.second;
 | 
						||
        if (!OpTE->ReuseShuffleIndices.empty())
 | 
						||
          continue;
 | 
						||
        const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
 | 
						||
          if (OpTE->State == TreeEntry::NeedToGather)
 | 
						||
            return GathersToOrders.find(OpTE)->second;
 | 
						||
          return OpTE->ReorderIndices;
 | 
						||
        }();
 | 
						||
        ++OrdersUses.try_emplace(Order).first->getSecond();
 | 
						||
        if (VisitedOps.insert(OpTE).second)
 | 
						||
          OrdersUses.try_emplace({}, 0).first->getSecond() +=
 | 
						||
              OpTE->UserTreeIndices.size();
 | 
						||
        --OrdersUses[{}];
 | 
						||
      }
 | 
						||
      // If no orders - skip current nodes and jump to the next one, if any.
 | 
						||
      if (OrdersUses.empty()) {
 | 
						||
        for_each(Data.second,
 | 
						||
                 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
 | 
						||
                   OrderedEntries.remove(Op.second);
 | 
						||
                 });
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // Choose the best order.
 | 
						||
      ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first;
 | 
						||
      unsigned Cnt = OrdersUses.begin()->second;
 | 
						||
      for (const auto &Pair : llvm::drop_begin(OrdersUses)) {
 | 
						||
        if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
 | 
						||
          BestOrder = Pair.first;
 | 
						||
          Cnt = Pair.second;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      // Set order of the user node (reordering of operands and user nodes).
 | 
						||
      if (BestOrder.empty()) {
 | 
						||
        for_each(Data.second,
 | 
						||
                 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
 | 
						||
                   OrderedEntries.remove(Op.second);
 | 
						||
                 });
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // Erase operands from OrderedEntries list and adjust their orders.
 | 
						||
      VisitedOps.clear();
 | 
						||
      SmallVector<int> Mask;
 | 
						||
      inversePermutation(BestOrder, Mask);
 | 
						||
      for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
 | 
						||
        TreeEntry *TE = Op.second;
 | 
						||
        OrderedEntries.remove(TE);
 | 
						||
        if (!VisitedOps.insert(TE).second)
 | 
						||
          continue;
 | 
						||
        if (!TE->ReuseShuffleIndices.empty()) {
 | 
						||
          // Just reorder reuses indices.
 | 
						||
          reorderReuses(TE->ReuseShuffleIndices, Mask);
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
        // Gathers are processed separately.
 | 
						||
        if (TE->State != TreeEntry::Vectorize)
 | 
						||
          continue;
 | 
						||
        assert((BestOrder.size() == TE->ReorderIndices.size() ||
 | 
						||
                TE->ReorderIndices.empty()) &&
 | 
						||
               "Non-matching sizes of user/operand entries.");
 | 
						||
        TE->updateStateIfReorder();
 | 
						||
        reorderScalars(TE->Scalars, TE->ReorderIndices, Mask);
 | 
						||
        reorderOrder(TE->ReorderIndices, Mask);
 | 
						||
      }
 | 
						||
      // For gathers just need to reorder its scalars.
 | 
						||
      for (TreeEntry *Gather : GatherOps) {
 | 
						||
        if (!Gather->ReuseShuffleIndices.empty())
 | 
						||
          continue;
 | 
						||
        reorderScalars(Gather->Scalars, None, Mask);
 | 
						||
        OrderedEntries.remove(Gather);
 | 
						||
      }
 | 
						||
      // Reorder operands of the user node and set the ordering for the user
 | 
						||
      // node itself.
 | 
						||
      Data.first->updateStateIfReorder();
 | 
						||
      Data.first->reorderOperands(Mask);
 | 
						||
      if (!FreeReorder || Data.first != VectorizableTree.front().get()) {
 | 
						||
        reorderOrder(Data.first->ReorderIndices, Mask);
 | 
						||
        // For stores the order is actually a mask.
 | 
						||
        if (isa<StoreInst>(Data.first->getMainOp()) &&
 | 
						||
            !Data.first->ReorderIndices.empty()) {
 | 
						||
          SmallVector<int> StoreOrder;
 | 
						||
          inversePermutation(Data.first->ReorderIndices, StoreOrder);
 | 
						||
          copy(StoreOrder, Data.first->ReorderIndices.begin());
 | 
						||
        }
 | 
						||
        // Insert user node to the list to try to sink reordering deeper in the
 | 
						||
        // graph.
 | 
						||
        OrderedEntries.insert(Data.first);
 | 
						||
      } else {
 | 
						||
        reorderScalars(Data.first->Scalars, Data.first->ReorderIndices, Mask);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::buildExternalUses(
 | 
						||
    const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
 | 
						||
  // Collect the values that we need to extract from the tree.
 | 
						||
  for (auto &TEPtr : VectorizableTree) {
 | 
						||
    TreeEntry *Entry = TEPtr.get();
 | 
						||
 | 
						||
    // No need to handle users of gathered values.
 | 
						||
    if (Entry->State == TreeEntry::NeedToGather)
 | 
						||
      continue;
 | 
						||
 | 
						||
    // For each lane:
 | 
						||
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						||
      Value *Scalar = Entry->Scalars[Lane];
 | 
						||
      int FoundLane = Entry->findLaneForValue(Scalar);
 | 
						||
 | 
						||
      // Check if the scalar is externally used as an extra arg.
 | 
						||
      auto ExtI = ExternallyUsedValues.find(Scalar);
 | 
						||
      if (ExtI != ExternallyUsedValues.end()) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
 | 
						||
                          << Lane << " from " << *Scalar << ".\n");
 | 
						||
        ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
 | 
						||
      }
 | 
						||
      for (User *U : Scalar->users()) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
 | 
						||
 | 
						||
        Instruction *UserInst = dyn_cast<Instruction>(U);
 | 
						||
        if (!UserInst)
 | 
						||
          continue;
 | 
						||
 | 
						||
        if (isDeleted(UserInst))
 | 
						||
          continue;
 | 
						||
 | 
						||
        // Skip in-tree scalars that become vectors
 | 
						||
        if (TreeEntry *UseEntry = getTreeEntry(U)) {
 | 
						||
          Value *UseScalar = UseEntry->Scalars[0];
 | 
						||
          // Some in-tree scalars will remain as scalar in vectorized
 | 
						||
          // instructions. If that is the case, the one in Lane 0 will
 | 
						||
          // be used.
 | 
						||
          if (UseScalar != U ||
 | 
						||
              UseEntry->State == TreeEntry::ScatterVectorize ||
 | 
						||
              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
 | 
						||
            LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
 | 
						||
                              << ".\n");
 | 
						||
            assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
 | 
						||
            continue;
 | 
						||
          }
 | 
						||
        }
 | 
						||
 | 
						||
        // Ignore users in the user ignore list.
 | 
						||
        if (is_contained(UserIgnoreList, UserInst))
 | 
						||
          continue;
 | 
						||
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
 | 
						||
                          << Lane << " from " << *Scalar << ".\n");
 | 
						||
        ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | 
						||
                        ArrayRef<Value *> UserIgnoreLst) {
 | 
						||
  deleteTree();
 | 
						||
  UserIgnoreList = UserIgnoreLst;
 | 
						||
  if (!allSameType(Roots))
 | 
						||
    return;
 | 
						||
  buildTree_rec(Roots, 0, EdgeInfo());
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
/// Tracks the state we can represent the loads in the given sequence.
 | 
						||
enum class LoadsState { Gather, Vectorize, ScatterVectorize };
 | 
						||
} // anonymous namespace
 | 
						||
 | 
						||
/// Checks if the given array of loads can be represented as a vectorized,
 | 
						||
/// scatter or just simple gather.
 | 
						||
static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
 | 
						||
                                    const TargetTransformInfo &TTI,
 | 
						||
                                    const DataLayout &DL, ScalarEvolution &SE,
 | 
						||
                                    SmallVectorImpl<unsigned> &Order,
 | 
						||
                                    SmallVectorImpl<Value *> &PointerOps) {
 | 
						||
  // Check that a vectorized load would load the same memory as a scalar
 | 
						||
  // load. For example, we don't want to vectorize loads that are smaller
 | 
						||
  // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
 | 
						||
  // treats loading/storing it as an i8 struct. If we vectorize loads/stores
 | 
						||
  // from such a struct, we read/write packed bits disagreeing with the
 | 
						||
  // unvectorized version.
 | 
						||
  Type *ScalarTy = VL0->getType();
 | 
						||
 | 
						||
  if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
 | 
						||
    return LoadsState::Gather;
 | 
						||
 | 
						||
  // Make sure all loads in the bundle are simple - we can't vectorize
 | 
						||
  // atomic or volatile loads.
 | 
						||
  PointerOps.clear();
 | 
						||
  PointerOps.resize(VL.size());
 | 
						||
  auto *POIter = PointerOps.begin();
 | 
						||
  for (Value *V : VL) {
 | 
						||
    auto *L = cast<LoadInst>(V);
 | 
						||
    if (!L->isSimple())
 | 
						||
      return LoadsState::Gather;
 | 
						||
    *POIter = L->getPointerOperand();
 | 
						||
    ++POIter;
 | 
						||
  }
 | 
						||
 | 
						||
  Order.clear();
 | 
						||
  // Check the order of pointer operands.
 | 
						||
  if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
 | 
						||
    Value *Ptr0;
 | 
						||
    Value *PtrN;
 | 
						||
    if (Order.empty()) {
 | 
						||
      Ptr0 = PointerOps.front();
 | 
						||
      PtrN = PointerOps.back();
 | 
						||
    } else {
 | 
						||
      Ptr0 = PointerOps[Order.front()];
 | 
						||
      PtrN = PointerOps[Order.back()];
 | 
						||
    }
 | 
						||
    Optional<int> Diff =
 | 
						||
        getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
 | 
						||
    // Check that the sorted loads are consecutive.
 | 
						||
    if (static_cast<unsigned>(*Diff) == VL.size() - 1)
 | 
						||
      return LoadsState::Vectorize;
 | 
						||
    Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
 | 
						||
    for (Value *V : VL)
 | 
						||
      CommonAlignment =
 | 
						||
          commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
 | 
						||
    if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
 | 
						||
                                CommonAlignment))
 | 
						||
      return LoadsState::ScatterVectorize;
 | 
						||
  }
 | 
						||
 | 
						||
  return LoadsState::Gather;
 | 
						||
}
 | 
						||
 | 
						||
/// Order may have elements assigned special value (size) which is out of
 | 
						||
/// bounds. Such indices only appear on places which correspond to undef values
 | 
						||
/// (see canReuseExtract for details) and used in order to avoid undef values
 | 
						||
/// have effect on operands ordering.
 | 
						||
/// The first loop below simply finds all unused indices and then the next loop
 | 
						||
/// nest assigns these indices for undef values positions.
 | 
						||
/// As an example below Order has two undef positions and they have assigned
 | 
						||
/// values 3 and 7 respectively:
 | 
						||
/// before:  6 9 5 4 9 2 1 0
 | 
						||
/// after:   6 3 5 4 7 2 1 0
 | 
						||
/// \returns Fixed ordering.
 | 
						||
static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
 | 
						||
  const unsigned Sz = Order.size();
 | 
						||
  SmallBitVector UsedIndices(Sz);
 | 
						||
  SmallVector<int> MaskedIndices;
 | 
						||
  for (unsigned I = 0; I < Sz; ++I) {
 | 
						||
    if (Order[I] < Sz)
 | 
						||
      UsedIndices.set(Order[I]);
 | 
						||
    else
 | 
						||
      MaskedIndices.push_back(I);
 | 
						||
  }
 | 
						||
  if (MaskedIndices.empty())
 | 
						||
    return;
 | 
						||
  SmallVector<int> AvailableIndices(MaskedIndices.size());
 | 
						||
  unsigned Cnt = 0;
 | 
						||
  int Idx = UsedIndices.find_first();
 | 
						||
  do {
 | 
						||
    AvailableIndices[Cnt] = Idx;
 | 
						||
    Idx = UsedIndices.find_next(Idx);
 | 
						||
    ++Cnt;
 | 
						||
  } while (Idx > 0);
 | 
						||
  assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
 | 
						||
  for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
 | 
						||
    Order[MaskedIndices[I]] = AvailableIndices[I];
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
 | 
						||
                            const EdgeInfo &UserTreeIdx) {
 | 
						||
  assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
 | 
						||
 | 
						||
  InstructionsState S = getSameOpcode(VL);
 | 
						||
  if (Depth == RecursionMaxDepth) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Don't handle scalable vectors
 | 
						||
  if (S.getOpcode() == Instruction::ExtractElement &&
 | 
						||
      isa<ScalableVectorType>(
 | 
						||
          cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Don't handle vectors.
 | 
						||
  if (S.OpValue->getType()->isVectorTy() &&
 | 
						||
      !isa<InsertElementInst>(S.OpValue)) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
 | 
						||
    if (SI->getValueOperand()->getType()->isVectorTy()) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
 | 
						||
  // If all of the operands are identical or constant we have a simple solution.
 | 
						||
  if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // We now know that this is a vector of instructions of the same type from
 | 
						||
  // the same block.
 | 
						||
 | 
						||
  // Don't vectorize ephemeral values.
 | 
						||
  for (Value *V : VL) {
 | 
						||
    if (EphValues.count(V)) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
 | 
						||
                        << ") is ephemeral.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Check if this is a duplicate of another entry.
 | 
						||
  if (TreeEntry *E = getTreeEntry(S.OpValue)) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
 | 
						||
    if (!E->isSame(VL)) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    // Record the reuse of the tree node.  FIXME, currently this is only used to
 | 
						||
    // properly draw the graph rather than for the actual vectorization.
 | 
						||
    E->UserTreeIndices.push_back(UserTreeIdx);
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
 | 
						||
                      << ".\n");
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Check that none of the instructions in the bundle are already in the tree.
 | 
						||
  for (Value *V : VL) {
 | 
						||
    auto *I = dyn_cast<Instruction>(V);
 | 
						||
    if (!I)
 | 
						||
      continue;
 | 
						||
    if (getTreeEntry(I)) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
 | 
						||
                        << ") is already in tree.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // If any of the scalars is marked as a value that needs to stay scalar, then
 | 
						||
  // we need to gather the scalars.
 | 
						||
  // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
 | 
						||
  for (Value *V : VL) {
 | 
						||
    if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Check that all of the users of the scalars that we want to vectorize are
 | 
						||
  // schedulable.
 | 
						||
  auto *VL0 = cast<Instruction>(S.OpValue);
 | 
						||
  BasicBlock *BB = VL0->getParent();
 | 
						||
 | 
						||
  if (!DT->isReachableFromEntry(BB)) {
 | 
						||
    // Don't go into unreachable blocks. They may contain instructions with
 | 
						||
    // dependency cycles which confuse the final scheduling.
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Check that every instruction appears once in this bundle.
 | 
						||
  SmallVector<unsigned, 4> ReuseShuffleIndicies;
 | 
						||
  SmallVector<Value *, 4> UniqueValues;
 | 
						||
  DenseMap<Value *, unsigned> UniquePositions;
 | 
						||
  for (Value *V : VL) {
 | 
						||
    auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
 | 
						||
    ReuseShuffleIndicies.emplace_back(Res.first->second);
 | 
						||
    if (Res.second)
 | 
						||
      UniqueValues.emplace_back(V);
 | 
						||
  }
 | 
						||
  size_t NumUniqueScalarValues = UniqueValues.size();
 | 
						||
  if (NumUniqueScalarValues == VL.size()) {
 | 
						||
    ReuseShuffleIndicies.clear();
 | 
						||
  } else {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
 | 
						||
    if (NumUniqueScalarValues <= 1 ||
 | 
						||
        !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    VL = UniqueValues;
 | 
						||
  }
 | 
						||
 | 
						||
  auto &BSRef = BlocksSchedules[BB];
 | 
						||
  if (!BSRef)
 | 
						||
    BSRef = std::make_unique<BlockScheduling>(BB);
 | 
						||
 | 
						||
  BlockScheduling &BS = *BSRef.get();
 | 
						||
 | 
						||
  Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
 | 
						||
  if (!Bundle) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
 | 
						||
    assert((!BS.getScheduleData(VL0) ||
 | 
						||
            !BS.getScheduleData(VL0)->isPartOfBundle()) &&
 | 
						||
           "tryScheduleBundle should cancelScheduling on failure");
 | 
						||
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                 ReuseShuffleIndicies);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | 
						||
 | 
						||
  unsigned ShuffleOrOp = S.isAltShuffle() ?
 | 
						||
                (unsigned) Instruction::ShuffleVector : S.getOpcode();
 | 
						||
  switch (ShuffleOrOp) {
 | 
						||
    case Instruction::PHI: {
 | 
						||
      auto *PH = cast<PHINode>(VL0);
 | 
						||
 | 
						||
      // Check for terminator values (e.g. invoke).
 | 
						||
      for (Value *V : VL)
 | 
						||
        for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
 | 
						||
          Instruction *Term = dyn_cast<Instruction>(
 | 
						||
              cast<PHINode>(V)->getIncomingValueForBlock(
 | 
						||
                  PH->getIncomingBlock(I)));
 | 
						||
          if (Term && Term->isTerminator()) {
 | 
						||
            LLVM_DEBUG(dbgs()
 | 
						||
                       << "SLP: Need to swizzle PHINodes (terminator use).\n");
 | 
						||
            BS.cancelScheduling(VL, VL0);
 | 
						||
            newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                         ReuseShuffleIndicies);
 | 
						||
            return;
 | 
						||
          }
 | 
						||
        }
 | 
						||
 | 
						||
      TreeEntry *TE =
 | 
						||
          newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | 
						||
 | 
						||
      // Keeps the reordered operands to avoid code duplication.
 | 
						||
      SmallVector<ValueList, 2> OperandsVec;
 | 
						||
      for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
 | 
						||
        if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
 | 
						||
          ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
 | 
						||
          TE->setOperand(I, Operands);
 | 
						||
          OperandsVec.push_back(Operands);
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL)
 | 
						||
          Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
 | 
						||
              PH->getIncomingBlock(I)));
 | 
						||
        TE->setOperand(I, Operands);
 | 
						||
        OperandsVec.push_back(Operands);
 | 
						||
      }
 | 
						||
      for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
 | 
						||
        buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::ExtractValue:
 | 
						||
    case Instruction::ExtractElement: {
 | 
						||
      OrdersType CurrentOrder;
 | 
						||
      bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
 | 
						||
      if (Reuse) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
 | 
						||
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
        // This is a special case, as it does not gather, but at the same time
 | 
						||
        // we are not extending buildTree_rec() towards the operands.
 | 
						||
        ValueList Op0;
 | 
						||
        Op0.assign(VL.size(), VL0->getOperand(0));
 | 
						||
        VectorizableTree.back()->setOperand(0, Op0);
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      if (!CurrentOrder.empty()) {
 | 
						||
        LLVM_DEBUG({
 | 
						||
          dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
 | 
						||
                    "with order";
 | 
						||
          for (unsigned Idx : CurrentOrder)
 | 
						||
            dbgs() << " " << Idx;
 | 
						||
          dbgs() << "\n";
 | 
						||
        });
 | 
						||
        fixupOrderingIndices(CurrentOrder);
 | 
						||
        // Insert new order with initial value 0, if it does not exist,
 | 
						||
        // otherwise return the iterator to the existing one.
 | 
						||
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies, CurrentOrder);
 | 
						||
        // This is a special case, as it does not gather, but at the same time
 | 
						||
        // we are not extending buildTree_rec() towards the operands.
 | 
						||
        ValueList Op0;
 | 
						||
        Op0.assign(VL.size(), VL0->getOperand(0));
 | 
						||
        VectorizableTree.back()->setOperand(0, Op0);
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                   ReuseShuffleIndicies);
 | 
						||
      BS.cancelScheduling(VL, VL0);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::InsertElement: {
 | 
						||
      assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
 | 
						||
 | 
						||
      // Check that we have a buildvector and not a shuffle of 2 or more
 | 
						||
      // different vectors.
 | 
						||
      ValueSet SourceVectors;
 | 
						||
      for (Value *V : VL)
 | 
						||
        SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
 | 
						||
 | 
						||
      if (count_if(VL, [&SourceVectors](Value *V) {
 | 
						||
            return !SourceVectors.contains(V);
 | 
						||
          }) >= 2) {
 | 
						||
        // Found 2nd source vector - cancel.
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
 | 
						||
                             "different source vectors.\n");
 | 
						||
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
        BS.cancelScheduling(VL, VL0);
 | 
						||
        return;
 | 
						||
      }
 | 
						||
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
 | 
						||
 | 
						||
      constexpr int NumOps = 2;
 | 
						||
      ValueList VectorOperands[NumOps];
 | 
						||
      for (int I = 0; I < NumOps; ++I) {
 | 
						||
        for (Value *V : VL)
 | 
						||
          VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
 | 
						||
 | 
						||
        TE->setOperand(I, VectorOperands[I]);
 | 
						||
      }
 | 
						||
      buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::Load: {
 | 
						||
      // Check that a vectorized load would load the same memory as a scalar
 | 
						||
      // load. For example, we don't want to vectorize loads that are smaller
 | 
						||
      // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
 | 
						||
      // treats loading/storing it as an i8 struct. If we vectorize loads/stores
 | 
						||
      // from such a struct, we read/write packed bits disagreeing with the
 | 
						||
      // unvectorized version.
 | 
						||
      SmallVector<Value *> PointerOps;
 | 
						||
      OrdersType CurrentOrder;
 | 
						||
      TreeEntry *TE = nullptr;
 | 
						||
      switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
 | 
						||
                                PointerOps)) {
 | 
						||
      case LoadsState::Vectorize:
 | 
						||
        if (CurrentOrder.empty()) {
 | 
						||
          // Original loads are consecutive and does not require reordering.
 | 
						||
          TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                            ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | 
						||
        } else {
 | 
						||
          fixupOrderingIndices(CurrentOrder);
 | 
						||
          // Need to reorder.
 | 
						||
          TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                            ReuseShuffleIndicies, CurrentOrder);
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
 | 
						||
        }
 | 
						||
        TE->setOperandsInOrder();
 | 
						||
        break;
 | 
						||
      case LoadsState::ScatterVectorize:
 | 
						||
        // Vectorizing non-consecutive loads with `llvm.masked.gather`.
 | 
						||
        TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
 | 
						||
                          UserTreeIdx, ReuseShuffleIndicies);
 | 
						||
        TE->setOperandsInOrder();
 | 
						||
        buildTree_rec(PointerOps, Depth + 1, {TE, 0});
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
 | 
						||
        break;
 | 
						||
      case LoadsState::Gather:
 | 
						||
        BS.cancelScheduling(VL, VL0);
 | 
						||
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
#ifndef NDEBUG
 | 
						||
        Type *ScalarTy = VL0->getType();
 | 
						||
        if (DL->getTypeSizeInBits(ScalarTy) !=
 | 
						||
            DL->getTypeAllocSizeInBits(ScalarTy))
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
 | 
						||
        else if (any_of(VL, [](Value *V) {
 | 
						||
                   return !cast<LoadInst>(V)->isSimple();
 | 
						||
                 }))
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
 | 
						||
        else
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
 | 
						||
#endif // NDEBUG
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::ZExt:
 | 
						||
    case Instruction::SExt:
 | 
						||
    case Instruction::FPToUI:
 | 
						||
    case Instruction::FPToSI:
 | 
						||
    case Instruction::FPExt:
 | 
						||
    case Instruction::PtrToInt:
 | 
						||
    case Instruction::IntToPtr:
 | 
						||
    case Instruction::SIToFP:
 | 
						||
    case Instruction::UIToFP:
 | 
						||
    case Instruction::Trunc:
 | 
						||
    case Instruction::FPTrunc:
 | 
						||
    case Instruction::BitCast: {
 | 
						||
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						||
      for (Value *V : VL) {
 | 
						||
        Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
 | 
						||
        if (Ty != SrcTy || !isValidElementType(Ty)) {
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs()
 | 
						||
                     << "SLP: Gathering casts with different src types.\n");
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | 
						||
 | 
						||
      TE->setOperandsInOrder();
 | 
						||
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL)
 | 
						||
          Operands.push_back(cast<Instruction>(V)->getOperand(i));
 | 
						||
 | 
						||
        buildTree_rec(Operands, Depth + 1, {TE, i});
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::ICmp:
 | 
						||
    case Instruction::FCmp: {
 | 
						||
      // Check that all of the compares have the same predicate.
 | 
						||
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | 
						||
      CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
 | 
						||
      Type *ComparedTy = VL0->getOperand(0)->getType();
 | 
						||
      for (Value *V : VL) {
 | 
						||
        CmpInst *Cmp = cast<CmpInst>(V);
 | 
						||
        if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
 | 
						||
            Cmp->getOperand(0)->getType() != ComparedTy) {
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs()
 | 
						||
                     << "SLP: Gathering cmp with different predicate.\n");
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | 
						||
 | 
						||
      ValueList Left, Right;
 | 
						||
      if (cast<CmpInst>(VL0)->isCommutative()) {
 | 
						||
        // Commutative predicate - collect + sort operands of the instructions
 | 
						||
        // so that each side is more likely to have the same opcode.
 | 
						||
        assert(P0 == SwapP0 && "Commutative Predicate mismatch");
 | 
						||
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
 | 
						||
      } else {
 | 
						||
        // Collect operands - commute if it uses the swapped predicate.
 | 
						||
        for (Value *V : VL) {
 | 
						||
          auto *Cmp = cast<CmpInst>(V);
 | 
						||
          Value *LHS = Cmp->getOperand(0);
 | 
						||
          Value *RHS = Cmp->getOperand(1);
 | 
						||
          if (Cmp->getPredicate() != P0)
 | 
						||
            std::swap(LHS, RHS);
 | 
						||
          Left.push_back(LHS);
 | 
						||
          Right.push_back(RHS);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      TE->setOperand(0, Left);
 | 
						||
      TE->setOperand(1, Right);
 | 
						||
      buildTree_rec(Left, Depth + 1, {TE, 0});
 | 
						||
      buildTree_rec(Right, Depth + 1, {TE, 1});
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::Select:
 | 
						||
    case Instruction::FNeg:
 | 
						||
    case Instruction::Add:
 | 
						||
    case Instruction::FAdd:
 | 
						||
    case Instruction::Sub:
 | 
						||
    case Instruction::FSub:
 | 
						||
    case Instruction::Mul:
 | 
						||
    case Instruction::FMul:
 | 
						||
    case Instruction::UDiv:
 | 
						||
    case Instruction::SDiv:
 | 
						||
    case Instruction::FDiv:
 | 
						||
    case Instruction::URem:
 | 
						||
    case Instruction::SRem:
 | 
						||
    case Instruction::FRem:
 | 
						||
    case Instruction::Shl:
 | 
						||
    case Instruction::LShr:
 | 
						||
    case Instruction::AShr:
 | 
						||
    case Instruction::And:
 | 
						||
    case Instruction::Or:
 | 
						||
    case Instruction::Xor: {
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
 | 
						||
 | 
						||
      // Sort operands of the instructions so that each side is more likely to
 | 
						||
      // have the same opcode.
 | 
						||
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
 | 
						||
        ValueList Left, Right;
 | 
						||
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
 | 
						||
        TE->setOperand(0, Left);
 | 
						||
        TE->setOperand(1, Right);
 | 
						||
        buildTree_rec(Left, Depth + 1, {TE, 0});
 | 
						||
        buildTree_rec(Right, Depth + 1, {TE, 1});
 | 
						||
        return;
 | 
						||
      }
 | 
						||
 | 
						||
      TE->setOperandsInOrder();
 | 
						||
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL)
 | 
						||
          Operands.push_back(cast<Instruction>(V)->getOperand(i));
 | 
						||
 | 
						||
        buildTree_rec(Operands, Depth + 1, {TE, i});
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::GetElementPtr: {
 | 
						||
      // We don't combine GEPs with complicated (nested) indexing.
 | 
						||
      for (Value *V : VL) {
 | 
						||
        if (cast<Instruction>(V)->getNumOperands() != 2) {
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // We can't combine several GEPs into one vector if they operate on
 | 
						||
      // different types.
 | 
						||
      Type *Ty0 = VL0->getOperand(0)->getType();
 | 
						||
      for (Value *V : VL) {
 | 
						||
        Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
 | 
						||
        if (Ty0 != CurTy) {
 | 
						||
          LLVM_DEBUG(dbgs()
 | 
						||
                     << "SLP: not-vectorizable GEP (different types).\n");
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // We don't combine GEPs with non-constant indexes.
 | 
						||
      Type *Ty1 = VL0->getOperand(1)->getType();
 | 
						||
      for (Value *V : VL) {
 | 
						||
        auto Op = cast<Instruction>(V)->getOperand(1);
 | 
						||
        if (!isa<ConstantInt>(Op) ||
 | 
						||
            (Op->getType() != Ty1 &&
 | 
						||
             Op->getType()->getScalarSizeInBits() >
 | 
						||
                 DL->getIndexSizeInBits(
 | 
						||
                     V->getType()->getPointerAddressSpace()))) {
 | 
						||
          LLVM_DEBUG(dbgs()
 | 
						||
                     << "SLP: not-vectorizable GEP (non-constant indexes).\n");
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
 | 
						||
      TE->setOperandsInOrder();
 | 
						||
      for (unsigned i = 0, e = 2; i < e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL)
 | 
						||
          Operands.push_back(cast<Instruction>(V)->getOperand(i));
 | 
						||
 | 
						||
        buildTree_rec(Operands, Depth + 1, {TE, i});
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::Store: {
 | 
						||
      // Check if the stores are consecutive or if we need to swizzle them.
 | 
						||
      llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
 | 
						||
      // Avoid types that are padded when being allocated as scalars, while
 | 
						||
      // being packed together in a vector (such as i1).
 | 
						||
      if (DL->getTypeSizeInBits(ScalarTy) !=
 | 
						||
          DL->getTypeAllocSizeInBits(ScalarTy)) {
 | 
						||
        BS.cancelScheduling(VL, VL0);
 | 
						||
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      // Make sure all stores in the bundle are simple - we can't vectorize
 | 
						||
      // atomic or volatile stores.
 | 
						||
      SmallVector<Value *, 4> PointerOps(VL.size());
 | 
						||
      ValueList Operands(VL.size());
 | 
						||
      auto POIter = PointerOps.begin();
 | 
						||
      auto OIter = Operands.begin();
 | 
						||
      for (Value *V : VL) {
 | 
						||
        auto *SI = cast<StoreInst>(V);
 | 
						||
        if (!SI->isSimple()) {
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
 | 
						||
          return;
 | 
						||
        }
 | 
						||
        *POIter = SI->getPointerOperand();
 | 
						||
        *OIter = SI->getValueOperand();
 | 
						||
        ++POIter;
 | 
						||
        ++OIter;
 | 
						||
      }
 | 
						||
 | 
						||
      OrdersType CurrentOrder;
 | 
						||
      // Check the order of pointer operands.
 | 
						||
      if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
 | 
						||
        Value *Ptr0;
 | 
						||
        Value *PtrN;
 | 
						||
        if (CurrentOrder.empty()) {
 | 
						||
          Ptr0 = PointerOps.front();
 | 
						||
          PtrN = PointerOps.back();
 | 
						||
        } else {
 | 
						||
          Ptr0 = PointerOps[CurrentOrder.front()];
 | 
						||
          PtrN = PointerOps[CurrentOrder.back()];
 | 
						||
        }
 | 
						||
        Optional<int> Dist =
 | 
						||
            getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
 | 
						||
        // Check that the sorted pointer operands are consecutive.
 | 
						||
        if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
 | 
						||
          if (CurrentOrder.empty()) {
 | 
						||
            // Original stores are consecutive and does not require reordering.
 | 
						||
            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
 | 
						||
                                         UserTreeIdx, ReuseShuffleIndicies);
 | 
						||
            TE->setOperandsInOrder();
 | 
						||
            buildTree_rec(Operands, Depth + 1, {TE, 0});
 | 
						||
            LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | 
						||
          } else {
 | 
						||
            fixupOrderingIndices(CurrentOrder);
 | 
						||
            TreeEntry *TE =
 | 
						||
                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                             ReuseShuffleIndicies, CurrentOrder);
 | 
						||
            TE->setOperandsInOrder();
 | 
						||
            buildTree_rec(Operands, Depth + 1, {TE, 0});
 | 
						||
            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
 | 
						||
          }
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      BS.cancelScheduling(VL, VL0);
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::Call: {
 | 
						||
      // Check if the calls are all to the same vectorizable intrinsic or
 | 
						||
      // library function.
 | 
						||
      CallInst *CI = cast<CallInst>(VL0);
 | 
						||
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						||
 | 
						||
      VFShape Shape = VFShape::get(
 | 
						||
          *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
 | 
						||
          false /*HasGlobalPred*/);
 | 
						||
      Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
 | 
						||
 | 
						||
      if (!VecFunc && !isTriviallyVectorizable(ID)) {
 | 
						||
        BS.cancelScheduling(VL, VL0);
 | 
						||
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      Function *F = CI->getCalledFunction();
 | 
						||
      unsigned NumArgs = CI->getNumArgOperands();
 | 
						||
      SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
 | 
						||
      for (unsigned j = 0; j != NumArgs; ++j)
 | 
						||
        if (hasVectorInstrinsicScalarOpd(ID, j))
 | 
						||
          ScalarArgs[j] = CI->getArgOperand(j);
 | 
						||
      for (Value *V : VL) {
 | 
						||
        CallInst *CI2 = dyn_cast<CallInst>(V);
 | 
						||
        if (!CI2 || CI2->getCalledFunction() != F ||
 | 
						||
            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
 | 
						||
            (VecFunc &&
 | 
						||
             VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
 | 
						||
            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
 | 
						||
                            << "\n");
 | 
						||
          return;
 | 
						||
        }
 | 
						||
        // Some intrinsics have scalar arguments and should be same in order for
 | 
						||
        // them to be vectorized.
 | 
						||
        for (unsigned j = 0; j != NumArgs; ++j) {
 | 
						||
          if (hasVectorInstrinsicScalarOpd(ID, j)) {
 | 
						||
            Value *A1J = CI2->getArgOperand(j);
 | 
						||
            if (ScalarArgs[j] != A1J) {
 | 
						||
              BS.cancelScheduling(VL, VL0);
 | 
						||
              newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                           ReuseShuffleIndicies);
 | 
						||
              LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
 | 
						||
                                << " argument " << ScalarArgs[j] << "!=" << A1J
 | 
						||
                                << "\n");
 | 
						||
              return;
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
        // Verify that the bundle operands are identical between the two calls.
 | 
						||
        if (CI->hasOperandBundles() &&
 | 
						||
            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
 | 
						||
                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
 | 
						||
                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
 | 
						||
          BS.cancelScheduling(VL, VL0);
 | 
						||
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                       ReuseShuffleIndicies);
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
 | 
						||
                            << *CI << "!=" << *V << '\n');
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      TE->setOperandsInOrder();
 | 
						||
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL) {
 | 
						||
          auto *CI2 = cast<CallInst>(V);
 | 
						||
          Operands.push_back(CI2->getArgOperand(i));
 | 
						||
        }
 | 
						||
        buildTree_rec(Operands, Depth + 1, {TE, i});
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    case Instruction::ShuffleVector: {
 | 
						||
      // If this is not an alternate sequence of opcode like add-sub
 | 
						||
      // then do not vectorize this instruction.
 | 
						||
      if (!S.isAltShuffle()) {
 | 
						||
        BS.cancelScheduling(VL, VL0);
 | 
						||
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                     ReuseShuffleIndicies);
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
 | 
						||
                                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
 | 
						||
 | 
						||
      // Reorder operands if reordering would enable vectorization.
 | 
						||
      if (isa<BinaryOperator>(VL0)) {
 | 
						||
        ValueList Left, Right;
 | 
						||
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
 | 
						||
        TE->setOperand(0, Left);
 | 
						||
        TE->setOperand(1, Right);
 | 
						||
        buildTree_rec(Left, Depth + 1, {TE, 0});
 | 
						||
        buildTree_rec(Right, Depth + 1, {TE, 1});
 | 
						||
        return;
 | 
						||
      }
 | 
						||
 | 
						||
      TE->setOperandsInOrder();
 | 
						||
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        // Prepare the operand vector.
 | 
						||
        for (Value *V : VL)
 | 
						||
          Operands.push_back(cast<Instruction>(V)->getOperand(i));
 | 
						||
 | 
						||
        buildTree_rec(Operands, Depth + 1, {TE, i});
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    default:
 | 
						||
      BS.cancelScheduling(VL, VL0);
 | 
						||
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
 | 
						||
                   ReuseShuffleIndicies);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | 
						||
      return;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
 | 
						||
  unsigned N = 1;
 | 
						||
  Type *EltTy = T;
 | 
						||
 | 
						||
  while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
 | 
						||
         isa<VectorType>(EltTy)) {
 | 
						||
    if (auto *ST = dyn_cast<StructType>(EltTy)) {
 | 
						||
      // Check that struct is homogeneous.
 | 
						||
      for (const auto *Ty : ST->elements())
 | 
						||
        if (Ty != *ST->element_begin())
 | 
						||
          return 0;
 | 
						||
      N *= ST->getNumElements();
 | 
						||
      EltTy = *ST->element_begin();
 | 
						||
    } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
 | 
						||
      N *= AT->getNumElements();
 | 
						||
      EltTy = AT->getElementType();
 | 
						||
    } else {
 | 
						||
      auto *VT = cast<FixedVectorType>(EltTy);
 | 
						||
      N *= VT->getNumElements();
 | 
						||
      EltTy = VT->getElementType();
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (!isValidElementType(EltTy))
 | 
						||
    return 0;
 | 
						||
  uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
 | 
						||
  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
 | 
						||
    return 0;
 | 
						||
  return N;
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
 | 
						||
                              SmallVectorImpl<unsigned> &CurrentOrder) const {
 | 
						||
  Instruction *E0 = cast<Instruction>(OpValue);
 | 
						||
  assert(E0->getOpcode() == Instruction::ExtractElement ||
 | 
						||
         E0->getOpcode() == Instruction::ExtractValue);
 | 
						||
  assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
 | 
						||
  // Check if all of the extracts come from the same vector and from the
 | 
						||
  // correct offset.
 | 
						||
  Value *Vec = E0->getOperand(0);
 | 
						||
 | 
						||
  CurrentOrder.clear();
 | 
						||
 | 
						||
  // We have to extract from a vector/aggregate with the same number of elements.
 | 
						||
  unsigned NElts;
 | 
						||
  if (E0->getOpcode() == Instruction::ExtractValue) {
 | 
						||
    const DataLayout &DL = E0->getModule()->getDataLayout();
 | 
						||
    NElts = canMapToVector(Vec->getType(), DL);
 | 
						||
    if (!NElts)
 | 
						||
      return false;
 | 
						||
    // Check if load can be rewritten as load of vector.
 | 
						||
    LoadInst *LI = dyn_cast<LoadInst>(Vec);
 | 
						||
    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
 | 
						||
      return false;
 | 
						||
  } else {
 | 
						||
    NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
 | 
						||
  }
 | 
						||
 | 
						||
  if (NElts != VL.size())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Check that all of the indices extract from the correct offset.
 | 
						||
  bool ShouldKeepOrder = true;
 | 
						||
  unsigned E = VL.size();
 | 
						||
  // Assign to all items the initial value E + 1 so we can check if the extract
 | 
						||
  // instruction index was used already.
 | 
						||
  // Also, later we can check that all the indices are used and we have a
 | 
						||
  // consecutive access in the extract instructions, by checking that no
 | 
						||
  // element of CurrentOrder still has value E + 1.
 | 
						||
  CurrentOrder.assign(E, E + 1);
 | 
						||
  unsigned I = 0;
 | 
						||
  for (; I < E; ++I) {
 | 
						||
    auto *Inst = cast<Instruction>(VL[I]);
 | 
						||
    if (Inst->getOperand(0) != Vec)
 | 
						||
      break;
 | 
						||
    Optional<unsigned> Idx = getExtractIndex(Inst);
 | 
						||
    if (!Idx)
 | 
						||
      break;
 | 
						||
    const unsigned ExtIdx = *Idx;
 | 
						||
    if (ExtIdx != I) {
 | 
						||
      if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
 | 
						||
        break;
 | 
						||
      ShouldKeepOrder = false;
 | 
						||
      CurrentOrder[ExtIdx] = I;
 | 
						||
    } else {
 | 
						||
      if (CurrentOrder[I] != E + 1)
 | 
						||
        break;
 | 
						||
      CurrentOrder[I] = I;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (I < E) {
 | 
						||
    CurrentOrder.clear();
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  return ShouldKeepOrder;
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::areAllUsersVectorized(Instruction *I,
 | 
						||
                                    ArrayRef<Value *> VectorizedVals) const {
 | 
						||
  return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
 | 
						||
         llvm::all_of(I->users(), [this](User *U) {
 | 
						||
           return ScalarToTreeEntry.count(U) > 0;
 | 
						||
         });
 | 
						||
}
 | 
						||
 | 
						||
static std::pair<InstructionCost, InstructionCost>
 | 
						||
getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
 | 
						||
                   TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
 | 
						||
  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						||
 | 
						||
  // Calculate the cost of the scalar and vector calls.
 | 
						||
  SmallVector<Type *, 4> VecTys;
 | 
						||
  for (Use &Arg : CI->args())
 | 
						||
    VecTys.push_back(
 | 
						||
        FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
 | 
						||
  FastMathFlags FMF;
 | 
						||
  if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
 | 
						||
    FMF = FPCI->getFastMathFlags();
 | 
						||
  SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
 | 
						||
  IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
 | 
						||
                                    dyn_cast<IntrinsicInst>(CI));
 | 
						||
  auto IntrinsicCost =
 | 
						||
    TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
 | 
						||
 | 
						||
  auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
 | 
						||
                                     VecTy->getNumElements())),
 | 
						||
                            false /*HasGlobalPred*/);
 | 
						||
  Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
 | 
						||
  auto LibCost = IntrinsicCost;
 | 
						||
  if (!CI->isNoBuiltin() && VecFunc) {
 | 
						||
    // Calculate the cost of the vector library call.
 | 
						||
    // If the corresponding vector call is cheaper, return its cost.
 | 
						||
    LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
 | 
						||
                                    TTI::TCK_RecipThroughput);
 | 
						||
  }
 | 
						||
  return {IntrinsicCost, LibCost};
 | 
						||
}
 | 
						||
 | 
						||
/// Compute the cost of creating a vector of type \p VecTy containing the
 | 
						||
/// extracted values from \p VL.
 | 
						||
static InstructionCost
 | 
						||
computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
 | 
						||
                   TargetTransformInfo::ShuffleKind ShuffleKind,
 | 
						||
                   ArrayRef<int> Mask, TargetTransformInfo &TTI) {
 | 
						||
  unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
 | 
						||
 | 
						||
  if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
 | 
						||
      VecTy->getNumElements() < NumOfParts)
 | 
						||
    return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
 | 
						||
 | 
						||
  bool AllConsecutive = true;
 | 
						||
  unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
 | 
						||
  unsigned Idx = -1;
 | 
						||
  InstructionCost Cost = 0;
 | 
						||
 | 
						||
  // Process extracts in blocks of EltsPerVector to check if the source vector
 | 
						||
  // operand can be re-used directly. If not, add the cost of creating a shuffle
 | 
						||
  // to extract the values into a vector register.
 | 
						||
  for (auto *V : VL) {
 | 
						||
    ++Idx;
 | 
						||
 | 
						||
    // Reached the start of a new vector registers.
 | 
						||
    if (Idx % EltsPerVector == 0) {
 | 
						||
      AllConsecutive = true;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    // Check all extracts for a vector register on the target directly
 | 
						||
    // extract values in order.
 | 
						||
    unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
 | 
						||
    unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
 | 
						||
    AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
 | 
						||
                      CurrentIdx % EltsPerVector == Idx % EltsPerVector;
 | 
						||
 | 
						||
    if (AllConsecutive)
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Skip all indices, except for the last index per vector block.
 | 
						||
    if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
 | 
						||
      continue;
 | 
						||
 | 
						||
    // If we have a series of extracts which are not consecutive and hence
 | 
						||
    // cannot re-use the source vector register directly, compute the shuffle
 | 
						||
    // cost to extract the a vector with EltsPerVector elements.
 | 
						||
    Cost += TTI.getShuffleCost(
 | 
						||
        TargetTransformInfo::SK_PermuteSingleSrc,
 | 
						||
        FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
 | 
						||
  }
 | 
						||
  return Cost;
 | 
						||
}
 | 
						||
 | 
						||
/// Shuffles \p Mask in accordance with the given \p SubMask.
 | 
						||
static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
 | 
						||
  if (SubMask.empty())
 | 
						||
    return;
 | 
						||
  if (Mask.empty()) {
 | 
						||
    Mask.append(SubMask.begin(), SubMask.end());
 | 
						||
    return;
 | 
						||
  }
 | 
						||
  SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
 | 
						||
  int TermValue = std::min(Mask.size(), SubMask.size());
 | 
						||
  for (int I = 0, E = SubMask.size(); I < E; ++I) {
 | 
						||
    if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
 | 
						||
        Mask[SubMask[I]] >= TermValue) {
 | 
						||
      NewMask[I] = UndefMaskElem;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
    NewMask[I] = Mask[SubMask[I]];
 | 
						||
  }
 | 
						||
  Mask.swap(NewMask);
 | 
						||
}
 | 
						||
 | 
						||
InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
 | 
						||
                                      ArrayRef<Value *> VectorizedVals) {
 | 
						||
  ArrayRef<Value*> VL = E->Scalars;
 | 
						||
 | 
						||
  Type *ScalarTy = VL[0]->getType();
 | 
						||
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						||
    ScalarTy = SI->getValueOperand()->getType();
 | 
						||
  else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
 | 
						||
    ScalarTy = CI->getOperand(0)->getType();
 | 
						||
  else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
 | 
						||
    ScalarTy = IE->getOperand(1)->getType();
 | 
						||
  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
 | 
						||
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
 | 
						||
 | 
						||
  // If we have computed a smaller type for the expression, update VecTy so
 | 
						||
  // that the costs will be accurate.
 | 
						||
  if (MinBWs.count(VL[0]))
 | 
						||
    VecTy = FixedVectorType::get(
 | 
						||
        IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
 | 
						||
  auto *FinalVecTy = VecTy;
 | 
						||
 | 
						||
  unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
 | 
						||
  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
 | 
						||
  if (NeedToShuffleReuses)
 | 
						||
    FinalVecTy =
 | 
						||
        FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers);
 | 
						||
  // FIXME: it tries to fix a problem with MSVC buildbots.
 | 
						||
  TargetTransformInfo &TTIRef = *TTI;
 | 
						||
  auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
 | 
						||
                               VectorizedVals](InstructionCost &Cost,
 | 
						||
                                               bool IsGather) {
 | 
						||
    DenseMap<Value *, int> ExtractVectorsTys;
 | 
						||
    for (auto *V : VL) {
 | 
						||
      // If all users of instruction are going to be vectorized and this
 | 
						||
      // instruction itself is not going to be vectorized, consider this
 | 
						||
      // instruction as dead and remove its cost from the final cost of the
 | 
						||
      // vectorized tree.
 | 
						||
      if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
 | 
						||
          (IsGather && ScalarToTreeEntry.count(V)))
 | 
						||
        continue;
 | 
						||
      auto *EE = cast<ExtractElementInst>(V);
 | 
						||
      unsigned Idx = *getExtractIndex(EE);
 | 
						||
      if (TTIRef.getNumberOfParts(VecTy) !=
 | 
						||
          TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
 | 
						||
        auto It =
 | 
						||
            ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
 | 
						||
        It->getSecond() = std::min<int>(It->second, Idx);
 | 
						||
      }
 | 
						||
      // Take credit for instruction that will become dead.
 | 
						||
      if (EE->hasOneUse()) {
 | 
						||
        Instruction *Ext = EE->user_back();
 | 
						||
        if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | 
						||
            all_of(Ext->users(),
 | 
						||
                   [](User *U) { return isa<GetElementPtrInst>(U); })) {
 | 
						||
          // Use getExtractWithExtendCost() to calculate the cost of
 | 
						||
          // extractelement/ext pair.
 | 
						||
          Cost -=
 | 
						||
              TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
 | 
						||
                                              EE->getVectorOperandType(), Idx);
 | 
						||
          // Add back the cost of s|zext which is subtracted separately.
 | 
						||
          Cost += TTIRef.getCastInstrCost(
 | 
						||
              Ext->getOpcode(), Ext->getType(), EE->getType(),
 | 
						||
              TTI::getCastContextHint(Ext), CostKind, Ext);
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
 | 
						||
                                        EE->getVectorOperandType(), Idx);
 | 
						||
    }
 | 
						||
    // Add a cost for subvector extracts/inserts if required.
 | 
						||
    for (const auto &Data : ExtractVectorsTys) {
 | 
						||
      auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
 | 
						||
      unsigned NumElts = VecTy->getNumElements();
 | 
						||
      if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
 | 
						||
        unsigned Idx = (Data.second / NumElts) * NumElts;
 | 
						||
        unsigned EENumElts = EEVTy->getNumElements();
 | 
						||
        if (Idx + NumElts <= EENumElts) {
 | 
						||
          Cost +=
 | 
						||
              TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
 | 
						||
                                    EEVTy, None, Idx, VecTy);
 | 
						||
        } else {
 | 
						||
          // Need to round up the subvector type vectorization factor to avoid a
 | 
						||
          // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
 | 
						||
          // <= EENumElts.
 | 
						||
          auto *SubVT =
 | 
						||
              FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
 | 
						||
          Cost +=
 | 
						||
              TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
 | 
						||
                                    EEVTy, None, Idx, SubVT);
 | 
						||
        }
 | 
						||
      } else {
 | 
						||
        Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
 | 
						||
                                      VecTy, None, 0, EEVTy);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  };
 | 
						||
  if (E->State == TreeEntry::NeedToGather) {
 | 
						||
    if (allConstant(VL))
 | 
						||
      return 0;
 | 
						||
    if (isa<InsertElementInst>(VL[0]))
 | 
						||
      return InstructionCost::getInvalid();
 | 
						||
    SmallVector<int> Mask;
 | 
						||
    SmallVector<const TreeEntry *> Entries;
 | 
						||
    Optional<TargetTransformInfo::ShuffleKind> Shuffle =
 | 
						||
        isGatherShuffledEntry(E, Mask, Entries);
 | 
						||
    if (Shuffle.hasValue()) {
 | 
						||
      InstructionCost GatherCost = 0;
 | 
						||
      if (ShuffleVectorInst::isIdentityMask(Mask)) {
 | 
						||
        // Perfect match in the graph, will reuse the previously vectorized
 | 
						||
        // node. Cost is 0.
 | 
						||
        LLVM_DEBUG(
 | 
						||
            dbgs()
 | 
						||
            << "SLP: perfect diamond match for gather bundle that starts with "
 | 
						||
            << *VL.front() << ".\n");
 | 
						||
        if (NeedToShuffleReuses)
 | 
						||
          GatherCost =
 | 
						||
              TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
 | 
						||
                                  FinalVecTy, E->ReuseShuffleIndices);
 | 
						||
      } else {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
 | 
						||
                          << " entries for bundle that starts with "
 | 
						||
                          << *VL.front() << ".\n");
 | 
						||
        // Detected that instead of gather we can emit a shuffle of single/two
 | 
						||
        // previously vectorized nodes. Add the cost of the permutation rather
 | 
						||
        // than gather.
 | 
						||
        ::addMask(Mask, E->ReuseShuffleIndices);
 | 
						||
        GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
 | 
						||
      }
 | 
						||
      return GatherCost;
 | 
						||
    }
 | 
						||
    if (isSplat(VL)) {
 | 
						||
      // Found the broadcasting of the single scalar, calculate the cost as the
 | 
						||
      // broadcast.
 | 
						||
      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
 | 
						||
    }
 | 
						||
    if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
 | 
						||
        allSameBlock(VL) &&
 | 
						||
        !isa<ScalableVectorType>(
 | 
						||
            cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) {
 | 
						||
      // Check that gather of extractelements can be represented as just a
 | 
						||
      // shuffle of a single/two vectors the scalars are extracted from.
 | 
						||
      SmallVector<int> Mask;
 | 
						||
      Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
 | 
						||
          isShuffle(VL, Mask);
 | 
						||
      if (ShuffleKind.hasValue()) {
 | 
						||
        // Found the bunch of extractelement instructions that must be gathered
 | 
						||
        // into a vector and can be represented as a permutation elements in a
 | 
						||
        // single input vector or of 2 input vectors.
 | 
						||
        InstructionCost Cost =
 | 
						||
            computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
 | 
						||
        AdjustExtractsCost(Cost, /*IsGather=*/true);
 | 
						||
        if (NeedToShuffleReuses)
 | 
						||
          Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
 | 
						||
                                      FinalVecTy, E->ReuseShuffleIndices);
 | 
						||
        return Cost;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    InstructionCost ReuseShuffleCost = 0;
 | 
						||
    if (NeedToShuffleReuses)
 | 
						||
      ReuseShuffleCost = TTI->getShuffleCost(
 | 
						||
          TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
 | 
						||
    // Improve gather cost for gather of loads, if we can group some of the
 | 
						||
    // loads into vector loads.
 | 
						||
    if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
 | 
						||
        !E->isAltShuffle()) {
 | 
						||
      BoUpSLP::ValueSet VectorizedLoads;
 | 
						||
      unsigned StartIdx = 0;
 | 
						||
      unsigned VF = VL.size() / 2;
 | 
						||
      unsigned VectorizedCnt = 0;
 | 
						||
      unsigned ScatterVectorizeCnt = 0;
 | 
						||
      const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
 | 
						||
      for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
 | 
						||
        for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
 | 
						||
             Cnt += VF) {
 | 
						||
          ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
 | 
						||
          if (!VectorizedLoads.count(Slice.front()) &&
 | 
						||
              !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
 | 
						||
            SmallVector<Value *> PointerOps;
 | 
						||
            OrdersType CurrentOrder;
 | 
						||
            LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
 | 
						||
                                              *SE, CurrentOrder, PointerOps);
 | 
						||
            switch (LS) {
 | 
						||
            case LoadsState::Vectorize:
 | 
						||
            case LoadsState::ScatterVectorize:
 | 
						||
              // Mark the vectorized loads so that we don't vectorize them
 | 
						||
              // again.
 | 
						||
              if (LS == LoadsState::Vectorize)
 | 
						||
                ++VectorizedCnt;
 | 
						||
              else
 | 
						||
                ++ScatterVectorizeCnt;
 | 
						||
              VectorizedLoads.insert(Slice.begin(), Slice.end());
 | 
						||
              // If we vectorized initial block, no need to try to vectorize it
 | 
						||
              // again.
 | 
						||
              if (Cnt == StartIdx)
 | 
						||
                StartIdx += VF;
 | 
						||
              break;
 | 
						||
            case LoadsState::Gather:
 | 
						||
              break;
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
        // Check if the whole array was vectorized already - exit.
 | 
						||
        if (StartIdx >= VL.size())
 | 
						||
          break;
 | 
						||
        // Found vectorizable parts - exit.
 | 
						||
        if (!VectorizedLoads.empty())
 | 
						||
          break;
 | 
						||
      }
 | 
						||
      if (!VectorizedLoads.empty()) {
 | 
						||
        InstructionCost GatherCost = 0;
 | 
						||
        // Get the cost for gathered loads.
 | 
						||
        for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
 | 
						||
          if (VectorizedLoads.contains(VL[I]))
 | 
						||
            continue;
 | 
						||
          GatherCost += getGatherCost(VL.slice(I, VF));
 | 
						||
        }
 | 
						||
        // The cost for vectorized loads.
 | 
						||
        InstructionCost ScalarsCost = 0;
 | 
						||
        for (Value *V : VectorizedLoads) {
 | 
						||
          auto *LI = cast<LoadInst>(V);
 | 
						||
          ScalarsCost += TTI->getMemoryOpCost(
 | 
						||
              Instruction::Load, LI->getType(), LI->getAlign(),
 | 
						||
              LI->getPointerAddressSpace(), CostKind, LI);
 | 
						||
        }
 | 
						||
        auto *LI = cast<LoadInst>(E->getMainOp());
 | 
						||
        auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
 | 
						||
        Align Alignment = LI->getAlign();
 | 
						||
        GatherCost +=
 | 
						||
            VectorizedCnt *
 | 
						||
            TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
 | 
						||
                                 LI->getPointerAddressSpace(), CostKind, LI);
 | 
						||
        GatherCost += ScatterVectorizeCnt *
 | 
						||
                      TTI->getGatherScatterOpCost(
 | 
						||
                          Instruction::Load, LoadTy, LI->getPointerOperand(),
 | 
						||
                          /*VariableMask=*/false, Alignment, CostKind, LI);
 | 
						||
        // Add the cost for the subvectors shuffling.
 | 
						||
        GatherCost += ((VL.size() - VF) / VF) *
 | 
						||
                      TTI->getShuffleCost(TTI::SK_Select, VecTy);
 | 
						||
        return ReuseShuffleCost + GatherCost - ScalarsCost;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    return ReuseShuffleCost + getGatherCost(VL);
 | 
						||
  }
 | 
						||
  InstructionCost CommonCost = 0;
 | 
						||
  SmallVector<int> Mask;
 | 
						||
  if (!E->ReorderIndices.empty()) {
 | 
						||
    SmallVector<int> NewMask;
 | 
						||
    if (E->getOpcode() == Instruction::Store) {
 | 
						||
      // For stores the order is actually a mask.
 | 
						||
      NewMask.resize(E->ReorderIndices.size());
 | 
						||
      copy(E->ReorderIndices, NewMask.begin());
 | 
						||
    } else {
 | 
						||
      inversePermutation(E->ReorderIndices, NewMask);
 | 
						||
    }
 | 
						||
    ::addMask(Mask, NewMask);
 | 
						||
  }
 | 
						||
  if (NeedToShuffleReuses)
 | 
						||
    ::addMask(Mask, E->ReuseShuffleIndices);
 | 
						||
  if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
 | 
						||
    CommonCost =
 | 
						||
        TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
 | 
						||
  assert((E->State == TreeEntry::Vectorize ||
 | 
						||
          E->State == TreeEntry::ScatterVectorize) &&
 | 
						||
         "Unhandled state");
 | 
						||
  assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
 | 
						||
  Instruction *VL0 = E->getMainOp();
 | 
						||
  unsigned ShuffleOrOp =
 | 
						||
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
 | 
						||
  switch (ShuffleOrOp) {
 | 
						||
    case Instruction::PHI:
 | 
						||
      return 0;
 | 
						||
 | 
						||
    case Instruction::ExtractValue:
 | 
						||
    case Instruction::ExtractElement: {
 | 
						||
      // The common cost of removal ExtractElement/ExtractValue instructions +
 | 
						||
      // the cost of shuffles, if required to resuffle the original vector.
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        unsigned Idx = 0;
 | 
						||
        for (unsigned I : E->ReuseShuffleIndices) {
 | 
						||
          if (ShuffleOrOp == Instruction::ExtractElement) {
 | 
						||
            auto *EE = cast<ExtractElementInst>(VL[I]);
 | 
						||
            CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
 | 
						||
                                                  EE->getVectorOperandType(),
 | 
						||
                                                  *getExtractIndex(EE));
 | 
						||
          } else {
 | 
						||
            CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
 | 
						||
                                                  VecTy, Idx);
 | 
						||
            ++Idx;
 | 
						||
          }
 | 
						||
        }
 | 
						||
        Idx = ReuseShuffleNumbers;
 | 
						||
        for (Value *V : VL) {
 | 
						||
          if (ShuffleOrOp == Instruction::ExtractElement) {
 | 
						||
            auto *EE = cast<ExtractElementInst>(V);
 | 
						||
            CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
 | 
						||
                                                  EE->getVectorOperandType(),
 | 
						||
                                                  *getExtractIndex(EE));
 | 
						||
          } else {
 | 
						||
            --Idx;
 | 
						||
            CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
 | 
						||
                                                  VecTy, Idx);
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (ShuffleOrOp == Instruction::ExtractValue) {
 | 
						||
        for (unsigned I = 0, E = VL.size(); I < E; ++I) {
 | 
						||
          auto *EI = cast<Instruction>(VL[I]);
 | 
						||
          // Take credit for instruction that will become dead.
 | 
						||
          if (EI->hasOneUse()) {
 | 
						||
            Instruction *Ext = EI->user_back();
 | 
						||
            if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | 
						||
                all_of(Ext->users(),
 | 
						||
                       [](User *U) { return isa<GetElementPtrInst>(U); })) {
 | 
						||
              // Use getExtractWithExtendCost() to calculate the cost of
 | 
						||
              // extractelement/ext pair.
 | 
						||
              CommonCost -= TTI->getExtractWithExtendCost(
 | 
						||
                  Ext->getOpcode(), Ext->getType(), VecTy, I);
 | 
						||
              // Add back the cost of s|zext which is subtracted separately.
 | 
						||
              CommonCost += TTI->getCastInstrCost(
 | 
						||
                  Ext->getOpcode(), Ext->getType(), EI->getType(),
 | 
						||
                  TTI::getCastContextHint(Ext), CostKind, Ext);
 | 
						||
              continue;
 | 
						||
            }
 | 
						||
          }
 | 
						||
          CommonCost -=
 | 
						||
              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
 | 
						||
        }
 | 
						||
      } else {
 | 
						||
        AdjustExtractsCost(CommonCost, /*IsGather=*/false);
 | 
						||
      }
 | 
						||
      return CommonCost;
 | 
						||
    }
 | 
						||
    case Instruction::InsertElement: {
 | 
						||
      assert(E->ReuseShuffleIndices.empty() &&
 | 
						||
             "Unique insertelements only are expected.");
 | 
						||
      assert(E->ReorderIndices.empty() &&
 | 
						||
             "No reordering expected for insertelements.");
 | 
						||
      auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
 | 
						||
 | 
						||
      unsigned const NumElts = SrcVecTy->getNumElements();
 | 
						||
      unsigned const NumScalars = VL.size();
 | 
						||
      APInt DemandedElts = APInt::getNullValue(NumElts);
 | 
						||
      // TODO: Add support for Instruction::InsertValue.
 | 
						||
      unsigned Offset = UINT_MAX;
 | 
						||
      bool IsIdentity = true;
 | 
						||
      SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
 | 
						||
      for (unsigned I = 0; I < NumScalars; ++I) {
 | 
						||
        Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
 | 
						||
        if (!InsertIdx || *InsertIdx == UndefMaskElem)
 | 
						||
          continue;
 | 
						||
        unsigned Idx = *InsertIdx;
 | 
						||
        DemandedElts.setBit(Idx);
 | 
						||
        if (Idx < Offset) {
 | 
						||
          Offset = Idx;
 | 
						||
          IsIdentity &= I == 0;
 | 
						||
        } else {
 | 
						||
          assert(Idx >= Offset && "Failed to find vector index offset");
 | 
						||
          IsIdentity &= Idx - Offset == I;
 | 
						||
        }
 | 
						||
        ShuffleMask[Idx] = I;
 | 
						||
      }
 | 
						||
      assert(Offset < NumElts && "Failed to find vector index offset");
 | 
						||
 | 
						||
      InstructionCost Cost = 0;
 | 
						||
      Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
 | 
						||
                                            /*Insert*/ true, /*Extract*/ false);
 | 
						||
 | 
						||
      if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
 | 
						||
        // FIXME: Replace with SK_InsertSubvector once it is properly supported.
 | 
						||
        unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
 | 
						||
        Cost += TTI->getShuffleCost(
 | 
						||
            TargetTransformInfo::SK_PermuteSingleSrc,
 | 
						||
            FixedVectorType::get(SrcVecTy->getElementType(), Sz));
 | 
						||
      } else if (!IsIdentity) {
 | 
						||
        Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
 | 
						||
                                    ShuffleMask);
 | 
						||
      }
 | 
						||
 | 
						||
      return Cost;
 | 
						||
    }
 | 
						||
    case Instruction::ZExt:
 | 
						||
    case Instruction::SExt:
 | 
						||
    case Instruction::FPToUI:
 | 
						||
    case Instruction::FPToSI:
 | 
						||
    case Instruction::FPExt:
 | 
						||
    case Instruction::PtrToInt:
 | 
						||
    case Instruction::IntToPtr:
 | 
						||
    case Instruction::SIToFP:
 | 
						||
    case Instruction::UIToFP:
 | 
						||
    case Instruction::Trunc:
 | 
						||
    case Instruction::FPTrunc:
 | 
						||
    case Instruction::BitCast: {
 | 
						||
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						||
      InstructionCost ScalarEltCost =
 | 
						||
          TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
 | 
						||
                                TTI::getCastContextHint(VL0), CostKind, VL0);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
 | 
						||
      // Calculate the cost of this instruction.
 | 
						||
      InstructionCost ScalarCost = VL.size() * ScalarEltCost;
 | 
						||
 | 
						||
      auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
 | 
						||
      InstructionCost VecCost = 0;
 | 
						||
      // Check if the values are candidates to demote.
 | 
						||
      if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
 | 
						||
        VecCost = CommonCost + TTI->getCastInstrCost(
 | 
						||
                                   E->getOpcode(), VecTy, SrcVecTy,
 | 
						||
                                   TTI::getCastContextHint(VL0), CostKind, VL0);
 | 
						||
      }
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
 | 
						||
      return VecCost - ScalarCost;
 | 
						||
    }
 | 
						||
    case Instruction::FCmp:
 | 
						||
    case Instruction::ICmp:
 | 
						||
    case Instruction::Select: {
 | 
						||
      // Calculate the cost of this instruction.
 | 
						||
      InstructionCost ScalarEltCost =
 | 
						||
          TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
 | 
						||
                                  CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
      auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
 | 
						||
      InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
 | 
						||
      // Check if all entries in VL are either compares or selects with compares
 | 
						||
      // as condition that have the same predicates.
 | 
						||
      CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
 | 
						||
      bool First = true;
 | 
						||
      for (auto *V : VL) {
 | 
						||
        CmpInst::Predicate CurrentPred;
 | 
						||
        auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
 | 
						||
        if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
 | 
						||
             !match(V, MatchCmp)) ||
 | 
						||
            (!First && VecPred != CurrentPred)) {
 | 
						||
          VecPred = CmpInst::BAD_ICMP_PREDICATE;
 | 
						||
          break;
 | 
						||
        }
 | 
						||
        First = false;
 | 
						||
        VecPred = CurrentPred;
 | 
						||
      }
 | 
						||
 | 
						||
      InstructionCost VecCost = TTI->getCmpSelInstrCost(
 | 
						||
          E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
 | 
						||
      // Check if it is possible and profitable to use min/max for selects in
 | 
						||
      // VL.
 | 
						||
      //
 | 
						||
      auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
 | 
						||
      if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
 | 
						||
        IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
 | 
						||
                                          {VecTy, VecTy});
 | 
						||
        InstructionCost IntrinsicCost =
 | 
						||
            TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
 | 
						||
        // If the selects are the only uses of the compares, they will be dead
 | 
						||
        // and we can adjust the cost by removing their cost.
 | 
						||
        if (IntrinsicAndUse.second)
 | 
						||
          IntrinsicCost -=
 | 
						||
              TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
 | 
						||
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind);
 | 
						||
        VecCost = std::min(VecCost, IntrinsicCost);
 | 
						||
      }
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
 | 
						||
      return CommonCost + VecCost - ScalarCost;
 | 
						||
    }
 | 
						||
    case Instruction::FNeg:
 | 
						||
    case Instruction::Add:
 | 
						||
    case Instruction::FAdd:
 | 
						||
    case Instruction::Sub:
 | 
						||
    case Instruction::FSub:
 | 
						||
    case Instruction::Mul:
 | 
						||
    case Instruction::FMul:
 | 
						||
    case Instruction::UDiv:
 | 
						||
    case Instruction::SDiv:
 | 
						||
    case Instruction::FDiv:
 | 
						||
    case Instruction::URem:
 | 
						||
    case Instruction::SRem:
 | 
						||
    case Instruction::FRem:
 | 
						||
    case Instruction::Shl:
 | 
						||
    case Instruction::LShr:
 | 
						||
    case Instruction::AShr:
 | 
						||
    case Instruction::And:
 | 
						||
    case Instruction::Or:
 | 
						||
    case Instruction::Xor: {
 | 
						||
      // Certain instructions can be cheaper to vectorize if they have a
 | 
						||
      // constant second vector operand.
 | 
						||
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						||
          TargetTransformInfo::OK_AnyValue;
 | 
						||
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						||
          TargetTransformInfo::OK_UniformConstantValue;
 | 
						||
      TargetTransformInfo::OperandValueProperties Op1VP =
 | 
						||
          TargetTransformInfo::OP_None;
 | 
						||
      TargetTransformInfo::OperandValueProperties Op2VP =
 | 
						||
          TargetTransformInfo::OP_PowerOf2;
 | 
						||
 | 
						||
      // If all operands are exactly the same ConstantInt then set the
 | 
						||
      // operand kind to OK_UniformConstantValue.
 | 
						||
      // If instead not all operands are constants, then set the operand kind
 | 
						||
      // to OK_AnyValue. If all operands are constants but not the same,
 | 
						||
      // then set the operand kind to OK_NonUniformConstantValue.
 | 
						||
      ConstantInt *CInt0 = nullptr;
 | 
						||
      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | 
						||
        const Instruction *I = cast<Instruction>(VL[i]);
 | 
						||
        unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
 | 
						||
        ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
 | 
						||
        if (!CInt) {
 | 
						||
          Op2VK = TargetTransformInfo::OK_AnyValue;
 | 
						||
          Op2VP = TargetTransformInfo::OP_None;
 | 
						||
          break;
 | 
						||
        }
 | 
						||
        if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
 | 
						||
            !CInt->getValue().isPowerOf2())
 | 
						||
          Op2VP = TargetTransformInfo::OP_None;
 | 
						||
        if (i == 0) {
 | 
						||
          CInt0 = CInt;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
        if (CInt0 != CInt)
 | 
						||
          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | 
						||
      }
 | 
						||
 | 
						||
      SmallVector<const Value *, 4> Operands(VL0->operand_values());
 | 
						||
      InstructionCost ScalarEltCost =
 | 
						||
          TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
 | 
						||
                                      Op2VK, Op1VP, Op2VP, Operands, VL0);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
      InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
      InstructionCost VecCost =
 | 
						||
          TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
 | 
						||
                                      Op2VK, Op1VP, Op2VP, Operands, VL0);
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
 | 
						||
      return CommonCost + VecCost - ScalarCost;
 | 
						||
    }
 | 
						||
    case Instruction::GetElementPtr: {
 | 
						||
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						||
          TargetTransformInfo::OK_AnyValue;
 | 
						||
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						||
          TargetTransformInfo::OK_UniformConstantValue;
 | 
						||
 | 
						||
      InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
 | 
						||
          Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
      InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
      InstructionCost VecCost = TTI->getArithmeticInstrCost(
 | 
						||
          Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
 | 
						||
      return CommonCost + VecCost - ScalarCost;
 | 
						||
    }
 | 
						||
    case Instruction::Load: {
 | 
						||
      // Cost of wide load - cost of scalar loads.
 | 
						||
      Align Alignment = cast<LoadInst>(VL0)->getAlign();
 | 
						||
      InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
 | 
						||
          Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
      InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
      InstructionCost VecLdCost;
 | 
						||
      if (E->State == TreeEntry::Vectorize) {
 | 
						||
        VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
 | 
						||
                                         CostKind, VL0);
 | 
						||
      } else {
 | 
						||
        assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
 | 
						||
        Align CommonAlignment = Alignment;
 | 
						||
        for (Value *V : VL)
 | 
						||
          CommonAlignment =
 | 
						||
              commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
 | 
						||
        VecLdCost = TTI->getGatherScatterOpCost(
 | 
						||
            Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
 | 
						||
            /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
 | 
						||
      }
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
 | 
						||
      return CommonCost + VecLdCost - ScalarLdCost;
 | 
						||
    }
 | 
						||
    case Instruction::Store: {
 | 
						||
      // We know that we can merge the stores. Calculate the cost.
 | 
						||
      bool IsReorder = !E->ReorderIndices.empty();
 | 
						||
      auto *SI =
 | 
						||
          cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
 | 
						||
      Align Alignment = SI->getAlign();
 | 
						||
      InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
 | 
						||
          Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
 | 
						||
      InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
      InstructionCost VecStCost = TTI->getMemoryOpCost(
 | 
						||
          Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
 | 
						||
      return CommonCost + VecStCost - ScalarStCost;
 | 
						||
    }
 | 
						||
    case Instruction::Call: {
 | 
						||
      CallInst *CI = cast<CallInst>(VL0);
 | 
						||
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						||
 | 
						||
      // Calculate the cost of the scalar and vector calls.
 | 
						||
      IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
 | 
						||
      InstructionCost ScalarEltCost =
 | 
						||
          TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | 
						||
      }
 | 
						||
      InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
 | 
						||
 | 
						||
      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
 | 
						||
      InstructionCost VecCallCost =
 | 
						||
          std::min(VecCallCosts.first, VecCallCosts.second);
 | 
						||
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
 | 
						||
                        << " (" << VecCallCost << "-" << ScalarCallCost << ")"
 | 
						||
                        << " for " << *CI << "\n");
 | 
						||
 | 
						||
      return CommonCost + VecCallCost - ScalarCallCost;
 | 
						||
    }
 | 
						||
    case Instruction::ShuffleVector: {
 | 
						||
      assert(E->isAltShuffle() &&
 | 
						||
             ((Instruction::isBinaryOp(E->getOpcode()) &&
 | 
						||
               Instruction::isBinaryOp(E->getAltOpcode())) ||
 | 
						||
              (Instruction::isCast(E->getOpcode()) &&
 | 
						||
               Instruction::isCast(E->getAltOpcode()))) &&
 | 
						||
             "Invalid Shuffle Vector Operand");
 | 
						||
      InstructionCost ScalarCost = 0;
 | 
						||
      if (NeedToShuffleReuses) {
 | 
						||
        for (unsigned Idx : E->ReuseShuffleIndices) {
 | 
						||
          Instruction *I = cast<Instruction>(VL[Idx]);
 | 
						||
          CommonCost -= TTI->getInstructionCost(I, CostKind);
 | 
						||
        }
 | 
						||
        for (Value *V : VL) {
 | 
						||
          Instruction *I = cast<Instruction>(V);
 | 
						||
          CommonCost += TTI->getInstructionCost(I, CostKind);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      for (Value *V : VL) {
 | 
						||
        Instruction *I = cast<Instruction>(V);
 | 
						||
        assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
 | 
						||
        ScalarCost += TTI->getInstructionCost(I, CostKind);
 | 
						||
      }
 | 
						||
      // VecCost is equal to sum of the cost of creating 2 vectors
 | 
						||
      // and the cost of creating shuffle.
 | 
						||
      InstructionCost VecCost = 0;
 | 
						||
      if (Instruction::isBinaryOp(E->getOpcode())) {
 | 
						||
        VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
 | 
						||
        VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
 | 
						||
                                               CostKind);
 | 
						||
      } else {
 | 
						||
        Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
 | 
						||
        Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
 | 
						||
        auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
 | 
						||
        auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
 | 
						||
        VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
 | 
						||
                                        TTI::CastContextHint::None, CostKind);
 | 
						||
        VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
 | 
						||
                                         TTI::CastContextHint::None, CostKind);
 | 
						||
      }
 | 
						||
 | 
						||
      SmallVector<int> Mask(E->Scalars.size());
 | 
						||
      for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
 | 
						||
        auto *OpInst = cast<Instruction>(E->Scalars[I]);
 | 
						||
        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
 | 
						||
        Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
 | 
						||
      }
 | 
						||
      if (!E->ReorderIndices.empty()) {
 | 
						||
        SmallVector<int> NewMask;
 | 
						||
        inversePermutation(E->ReorderIndices, NewMask);
 | 
						||
        ::addMask(Mask, NewMask);
 | 
						||
      }
 | 
						||
      if (NeedToShuffleReuses)
 | 
						||
        ::addMask(Mask, E->ReuseShuffleIndices);
 | 
						||
      CommonCost =
 | 
						||
          TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
 | 
						||
      LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
 | 
						||
      return CommonCost + VecCost - ScalarCost;
 | 
						||
    }
 | 
						||
    default:
 | 
						||
      llvm_unreachable("Unknown instruction");
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::isFullyVectorizableTinyTree() const {
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
 | 
						||
                    << VectorizableTree.size() << " is fully vectorizable .\n");
 | 
						||
 | 
						||
  // We only handle trees of heights 1 and 2.
 | 
						||
  if (VectorizableTree.size() == 1 &&
 | 
						||
      VectorizableTree[0]->State == TreeEntry::Vectorize)
 | 
						||
    return true;
 | 
						||
 | 
						||
  if (VectorizableTree.size() != 2)
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Handle splat and all-constants stores. Also try to vectorize tiny trees
 | 
						||
  // with the second gather nodes if they have less scalar operands rather than
 | 
						||
  // the initial tree element (may be profitable to shuffle the second gather)
 | 
						||
  // or they are extractelements, which form shuffle.
 | 
						||
  SmallVector<int> Mask;
 | 
						||
  if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
 | 
						||
      (allConstant(VectorizableTree[1]->Scalars) ||
 | 
						||
       isSplat(VectorizableTree[1]->Scalars) ||
 | 
						||
       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
 | 
						||
        VectorizableTree[1]->Scalars.size() <
 | 
						||
            VectorizableTree[0]->Scalars.size()) ||
 | 
						||
       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
 | 
						||
        VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
 | 
						||
        isShuffle(VectorizableTree[1]->Scalars, Mask))))
 | 
						||
    return true;
 | 
						||
 | 
						||
  // Gathering cost would be too much for tiny trees.
 | 
						||
  if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
 | 
						||
      VectorizableTree[1]->State == TreeEntry::NeedToGather)
 | 
						||
    return false;
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
 | 
						||
                                       TargetTransformInfo *TTI,
 | 
						||
                                       bool MustMatchOrInst) {
 | 
						||
  // Look past the root to find a source value. Arbitrarily follow the
 | 
						||
  // path through operand 0 of any 'or'. Also, peek through optional
 | 
						||
  // shift-left-by-multiple-of-8-bits.
 | 
						||
  Value *ZextLoad = Root;
 | 
						||
  const APInt *ShAmtC;
 | 
						||
  bool FoundOr = false;
 | 
						||
  while (!isa<ConstantExpr>(ZextLoad) &&
 | 
						||
         (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
 | 
						||
          (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
 | 
						||
           ShAmtC->urem(8) == 0))) {
 | 
						||
    auto *BinOp = cast<BinaryOperator>(ZextLoad);
 | 
						||
    ZextLoad = BinOp->getOperand(0);
 | 
						||
    if (BinOp->getOpcode() == Instruction::Or)
 | 
						||
      FoundOr = true;
 | 
						||
  }
 | 
						||
  // Check if the input is an extended load of the required or/shift expression.
 | 
						||
  Value *LoadPtr;
 | 
						||
  if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
 | 
						||
      !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Require that the total load bit width is a legal integer type.
 | 
						||
  // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
 | 
						||
  // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
 | 
						||
  Type *SrcTy = LoadPtr->getType()->getPointerElementType();
 | 
						||
  unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
 | 
						||
  if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Everything matched - assume that we can fold the whole sequence using
 | 
						||
  // load combining.
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
 | 
						||
             << *(cast<Instruction>(Root)) << "\n");
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
 | 
						||
  if (RdxKind != RecurKind::Or)
 | 
						||
    return false;
 | 
						||
 | 
						||
  unsigned NumElts = VectorizableTree[0]->Scalars.size();
 | 
						||
  Value *FirstReduced = VectorizableTree[0]->Scalars[0];
 | 
						||
  return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
 | 
						||
                                    /* MatchOr */ false);
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::isLoadCombineCandidate() const {
 | 
						||
  // Peek through a final sequence of stores and check if all operations are
 | 
						||
  // likely to be load-combined.
 | 
						||
  unsigned NumElts = VectorizableTree[0]->Scalars.size();
 | 
						||
  for (Value *Scalar : VectorizableTree[0]->Scalars) {
 | 
						||
    Value *X;
 | 
						||
    if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
 | 
						||
        !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
 | 
						||
      return false;
 | 
						||
  }
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
 | 
						||
  // No need to vectorize inserts of gathered values.
 | 
						||
  if (VectorizableTree.size() == 2 &&
 | 
						||
      isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
 | 
						||
      VectorizableTree[1]->State == TreeEntry::NeedToGather)
 | 
						||
    return true;
 | 
						||
 | 
						||
  // We can vectorize the tree if its size is greater than or equal to the
 | 
						||
  // minimum size specified by the MinTreeSize command line option.
 | 
						||
  if (VectorizableTree.size() >= MinTreeSize)
 | 
						||
    return false;
 | 
						||
 | 
						||
  // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
 | 
						||
  // can vectorize it if we can prove it fully vectorizable.
 | 
						||
  if (isFullyVectorizableTinyTree())
 | 
						||
    return false;
 | 
						||
 | 
						||
  assert(VectorizableTree.empty()
 | 
						||
             ? ExternalUses.empty()
 | 
						||
             : true && "We shouldn't have any external users");
 | 
						||
 | 
						||
  // Otherwise, we can't vectorize the tree. It is both tiny and not fully
 | 
						||
  // vectorizable.
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
InstructionCost BoUpSLP::getSpillCost() const {
 | 
						||
  // Walk from the bottom of the tree to the top, tracking which values are
 | 
						||
  // live. When we see a call instruction that is not part of our tree,
 | 
						||
  // query TTI to see if there is a cost to keeping values live over it
 | 
						||
  // (for example, if spills and fills are required).
 | 
						||
  unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
 | 
						||
  InstructionCost Cost = 0;
 | 
						||
 | 
						||
  SmallPtrSet<Instruction*, 4> LiveValues;
 | 
						||
  Instruction *PrevInst = nullptr;
 | 
						||
 | 
						||
  // The entries in VectorizableTree are not necessarily ordered by their
 | 
						||
  // position in basic blocks. Collect them and order them by dominance so later
 | 
						||
  // instructions are guaranteed to be visited first. For instructions in
 | 
						||
  // different basic blocks, we only scan to the beginning of the block, so
 | 
						||
  // their order does not matter, as long as all instructions in a basic block
 | 
						||
  // are grouped together. Using dominance ensures a deterministic order.
 | 
						||
  SmallVector<Instruction *, 16> OrderedScalars;
 | 
						||
  for (const auto &TEPtr : VectorizableTree) {
 | 
						||
    Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
 | 
						||
    if (!Inst)
 | 
						||
      continue;
 | 
						||
    OrderedScalars.push_back(Inst);
 | 
						||
  }
 | 
						||
  llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
 | 
						||
    auto *NodeA = DT->getNode(A->getParent());
 | 
						||
    auto *NodeB = DT->getNode(B->getParent());
 | 
						||
    assert(NodeA && "Should only process reachable instructions");
 | 
						||
    assert(NodeB && "Should only process reachable instructions");
 | 
						||
    assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
 | 
						||
           "Different nodes should have different DFS numbers");
 | 
						||
    if (NodeA != NodeB)
 | 
						||
      return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
 | 
						||
    return B->comesBefore(A);
 | 
						||
  });
 | 
						||
 | 
						||
  for (Instruction *Inst : OrderedScalars) {
 | 
						||
    if (!PrevInst) {
 | 
						||
      PrevInst = Inst;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    // Update LiveValues.
 | 
						||
    LiveValues.erase(PrevInst);
 | 
						||
    for (auto &J : PrevInst->operands()) {
 | 
						||
      if (isa<Instruction>(&*J) && getTreeEntry(&*J))
 | 
						||
        LiveValues.insert(cast<Instruction>(&*J));
 | 
						||
    }
 | 
						||
 | 
						||
    LLVM_DEBUG({
 | 
						||
      dbgs() << "SLP: #LV: " << LiveValues.size();
 | 
						||
      for (auto *X : LiveValues)
 | 
						||
        dbgs() << " " << X->getName();
 | 
						||
      dbgs() << ", Looking at ";
 | 
						||
      Inst->dump();
 | 
						||
    });
 | 
						||
 | 
						||
    // Now find the sequence of instructions between PrevInst and Inst.
 | 
						||
    unsigned NumCalls = 0;
 | 
						||
    BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
 | 
						||
                                 PrevInstIt =
 | 
						||
                                     PrevInst->getIterator().getReverse();
 | 
						||
    while (InstIt != PrevInstIt) {
 | 
						||
      if (PrevInstIt == PrevInst->getParent()->rend()) {
 | 
						||
        PrevInstIt = Inst->getParent()->rbegin();
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
 | 
						||
      // Debug information does not impact spill cost.
 | 
						||
      if ((isa<CallInst>(&*PrevInstIt) &&
 | 
						||
           !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
 | 
						||
          &*PrevInstIt != PrevInst)
 | 
						||
        NumCalls++;
 | 
						||
 | 
						||
      ++PrevInstIt;
 | 
						||
    }
 | 
						||
 | 
						||
    if (NumCalls) {
 | 
						||
      SmallVector<Type*, 4> V;
 | 
						||
      for (auto *II : LiveValues) {
 | 
						||
        auto *ScalarTy = II->getType();
 | 
						||
        if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
 | 
						||
          ScalarTy = VectorTy->getElementType();
 | 
						||
        V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
 | 
						||
      }
 | 
						||
      Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
 | 
						||
    }
 | 
						||
 | 
						||
    PrevInst = Inst;
 | 
						||
  }
 | 
						||
 | 
						||
  return Cost;
 | 
						||
}
 | 
						||
 | 
						||
InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
 | 
						||
  InstructionCost Cost = 0;
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
 | 
						||
                    << VectorizableTree.size() << ".\n");
 | 
						||
 | 
						||
  unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
 | 
						||
 | 
						||
  for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
 | 
						||
    TreeEntry &TE = *VectorizableTree[I].get();
 | 
						||
 | 
						||
    InstructionCost C = getEntryCost(&TE, VectorizedVals);
 | 
						||
    Cost += C;
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
 | 
						||
                      << " for bundle that starts with " << *TE.Scalars[0]
 | 
						||
                      << ".\n"
 | 
						||
                      << "SLP: Current total cost = " << Cost << "\n");
 | 
						||
  }
 | 
						||
 | 
						||
  SmallPtrSet<Value *, 16> ExtractCostCalculated;
 | 
						||
  InstructionCost ExtractCost = 0;
 | 
						||
  SmallVector<unsigned> VF;
 | 
						||
  SmallVector<SmallVector<int>> ShuffleMask;
 | 
						||
  SmallVector<Value *> FirstUsers;
 | 
						||
  SmallVector<APInt> DemandedElts;
 | 
						||
  for (ExternalUser &EU : ExternalUses) {
 | 
						||
    // We only add extract cost once for the same scalar.
 | 
						||
    if (!ExtractCostCalculated.insert(EU.Scalar).second)
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Uses by ephemeral values are free (because the ephemeral value will be
 | 
						||
    // removed prior to code generation, and so the extraction will be
 | 
						||
    // removed as well).
 | 
						||
    if (EphValues.count(EU.User))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // No extract cost for vector "scalar"
 | 
						||
    if (isa<FixedVectorType>(EU.Scalar->getType()))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Already counted the cost for external uses when tried to adjust the cost
 | 
						||
    // for extractelements, no need to add it again.
 | 
						||
    if (isa<ExtractElementInst>(EU.Scalar))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // If found user is an insertelement, do not calculate extract cost but try
 | 
						||
    // to detect it as a final shuffled/identity match.
 | 
						||
    if (EU.User && isa<InsertElementInst>(EU.User)) {
 | 
						||
      if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
 | 
						||
        Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
 | 
						||
        if (!InsertIdx || *InsertIdx == UndefMaskElem)
 | 
						||
          continue;
 | 
						||
        Value *VU = EU.User;
 | 
						||
        auto *It = find_if(FirstUsers, [VU](Value *V) {
 | 
						||
          // Checks if 2 insertelements are from the same buildvector.
 | 
						||
          if (VU->getType() != V->getType())
 | 
						||
            return false;
 | 
						||
          auto *IE1 = cast<InsertElementInst>(VU);
 | 
						||
          auto *IE2 = cast<InsertElementInst>(V);
 | 
						||
          // Go though of insertelement instructions trying to find either VU as
 | 
						||
          // the original vector for IE2 or V as the original vector for IE1.
 | 
						||
          do {
 | 
						||
            if (IE1 == VU || IE2 == V)
 | 
						||
              return true;
 | 
						||
            if (IE1)
 | 
						||
              IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
 | 
						||
            if (IE2)
 | 
						||
              IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
 | 
						||
          } while (IE1 || IE2);
 | 
						||
          return false;
 | 
						||
        });
 | 
						||
        int VecId = -1;
 | 
						||
        if (It == FirstUsers.end()) {
 | 
						||
          VF.push_back(FTy->getNumElements());
 | 
						||
          ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
 | 
						||
          FirstUsers.push_back(EU.User);
 | 
						||
          DemandedElts.push_back(APInt::getNullValue(VF.back()));
 | 
						||
          VecId = FirstUsers.size() - 1;
 | 
						||
        } else {
 | 
						||
          VecId = std::distance(FirstUsers.begin(), It);
 | 
						||
        }
 | 
						||
        int Idx = *InsertIdx;
 | 
						||
        ShuffleMask[VecId][Idx] = EU.Lane;
 | 
						||
        DemandedElts[VecId].setBit(Idx);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If we plan to rewrite the tree in a smaller type, we will need to sign
 | 
						||
    // extend the extracted value back to the original type. Here, we account
 | 
						||
    // for the extract and the added cost of the sign extend if needed.
 | 
						||
    auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
 | 
						||
    auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
 | 
						||
    if (MinBWs.count(ScalarRoot)) {
 | 
						||
      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
 | 
						||
      auto Extend =
 | 
						||
          MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
 | 
						||
      VecTy = FixedVectorType::get(MinTy, BundleWidth);
 | 
						||
      ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
 | 
						||
                                                   VecTy, EU.Lane);
 | 
						||
    } else {
 | 
						||
      ExtractCost +=
 | 
						||
          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  InstructionCost SpillCost = getSpillCost();
 | 
						||
  Cost += SpillCost + ExtractCost;
 | 
						||
  for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
 | 
						||
    // For the very first element - simple shuffle of the source vector.
 | 
						||
    int Limit = ShuffleMask[I].size() * 2;
 | 
						||
    if (I == 0 &&
 | 
						||
        all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) &&
 | 
						||
        !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) {
 | 
						||
      InstructionCost C = TTI->getShuffleCost(
 | 
						||
          TTI::SK_PermuteSingleSrc,
 | 
						||
          cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
 | 
						||
                        << " for final shuffle of insertelement external users "
 | 
						||
                        << *VectorizableTree.front()->Scalars.front() << ".\n"
 | 
						||
                        << "SLP: Current total cost = " << Cost << "\n");
 | 
						||
      Cost += C;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
    // Other elements - permutation of 2 vectors (the initial one and the next
 | 
						||
    // Ith incoming vector).
 | 
						||
    unsigned VF = ShuffleMask[I].size();
 | 
						||
    for (unsigned Idx = 0; Idx < VF; ++Idx) {
 | 
						||
      int &Mask = ShuffleMask[I][Idx];
 | 
						||
      Mask = Mask == UndefMaskElem ? Idx : VF + Mask;
 | 
						||
    }
 | 
						||
    InstructionCost C = TTI->getShuffleCost(
 | 
						||
        TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
 | 
						||
        ShuffleMask[I]);
 | 
						||
    LLVM_DEBUG(
 | 
						||
        dbgs()
 | 
						||
        << "SLP: Adding cost " << C
 | 
						||
        << " for final shuffle of vector node and external insertelement users "
 | 
						||
        << *VectorizableTree.front()->Scalars.front() << ".\n"
 | 
						||
        << "SLP: Current total cost = " << Cost << "\n");
 | 
						||
    Cost += C;
 | 
						||
    InstructionCost InsertCost = TTI->getScalarizationOverhead(
 | 
						||
        cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
 | 
						||
        /*Insert*/ true,
 | 
						||
        /*Extract*/ false);
 | 
						||
    Cost -= InsertCost;
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
 | 
						||
                      << " for insertelements gather.\n"
 | 
						||
                      << "SLP: Current total cost = " << Cost << "\n");
 | 
						||
  }
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
  SmallString<256> Str;
 | 
						||
  {
 | 
						||
    raw_svector_ostream OS(Str);
 | 
						||
    OS << "SLP: Spill Cost = " << SpillCost << ".\n"
 | 
						||
       << "SLP: Extract Cost = " << ExtractCost << ".\n"
 | 
						||
       << "SLP: Total Cost = " << Cost << ".\n";
 | 
						||
  }
 | 
						||
  LLVM_DEBUG(dbgs() << Str);
 | 
						||
  if (ViewSLPTree)
 | 
						||
    ViewGraph(this, "SLP" + F->getName(), false, Str);
 | 
						||
#endif
 | 
						||
 | 
						||
  return Cost;
 | 
						||
}
 | 
						||
 | 
						||
Optional<TargetTransformInfo::ShuffleKind>
 | 
						||
BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
 | 
						||
                               SmallVectorImpl<const TreeEntry *> &Entries) {
 | 
						||
  // TODO: currently checking only for Scalars in the tree entry, need to count
 | 
						||
  // reused elements too for better cost estimation.
 | 
						||
  Mask.assign(TE->Scalars.size(), UndefMaskElem);
 | 
						||
  Entries.clear();
 | 
						||
  // Build a lists of values to tree entries.
 | 
						||
  DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
 | 
						||
  for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
 | 
						||
    if (EntryPtr.get() == TE)
 | 
						||
      break;
 | 
						||
    if (EntryPtr->State != TreeEntry::NeedToGather)
 | 
						||
      continue;
 | 
						||
    for (Value *V : EntryPtr->Scalars)
 | 
						||
      ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
 | 
						||
  }
 | 
						||
  // Find all tree entries used by the gathered values. If no common entries
 | 
						||
  // found - not a shuffle.
 | 
						||
  // Here we build a set of tree nodes for each gathered value and trying to
 | 
						||
  // find the intersection between these sets. If we have at least one common
 | 
						||
  // tree node for each gathered value - we have just a permutation of the
 | 
						||
  // single vector. If we have 2 different sets, we're in situation where we
 | 
						||
  // have a permutation of 2 input vectors.
 | 
						||
  SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
 | 
						||
  DenseMap<Value *, int> UsedValuesEntry;
 | 
						||
  for (Value *V : TE->Scalars) {
 | 
						||
    if (isa<UndefValue>(V))
 | 
						||
      continue;
 | 
						||
    // Build a list of tree entries where V is used.
 | 
						||
    SmallPtrSet<const TreeEntry *, 4> VToTEs;
 | 
						||
    auto It = ValueToTEs.find(V);
 | 
						||
    if (It != ValueToTEs.end())
 | 
						||
      VToTEs = It->second;
 | 
						||
    if (const TreeEntry *VTE = getTreeEntry(V))
 | 
						||
      VToTEs.insert(VTE);
 | 
						||
    if (VToTEs.empty())
 | 
						||
      return None;
 | 
						||
    if (UsedTEs.empty()) {
 | 
						||
      // The first iteration, just insert the list of nodes to vector.
 | 
						||
      UsedTEs.push_back(VToTEs);
 | 
						||
    } else {
 | 
						||
      // Need to check if there are any previously used tree nodes which use V.
 | 
						||
      // If there are no such nodes, consider that we have another one input
 | 
						||
      // vector.
 | 
						||
      SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
 | 
						||
      unsigned Idx = 0;
 | 
						||
      for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
 | 
						||
        // Do we have a non-empty intersection of previously listed tree entries
 | 
						||
        // and tree entries using current V?
 | 
						||
        set_intersect(VToTEs, Set);
 | 
						||
        if (!VToTEs.empty()) {
 | 
						||
          // Yes, write the new subset and continue analysis for the next
 | 
						||
          // scalar.
 | 
						||
          Set.swap(VToTEs);
 | 
						||
          break;
 | 
						||
        }
 | 
						||
        VToTEs = SavedVToTEs;
 | 
						||
        ++Idx;
 | 
						||
      }
 | 
						||
      // No non-empty intersection found - need to add a second set of possible
 | 
						||
      // source vectors.
 | 
						||
      if (Idx == UsedTEs.size()) {
 | 
						||
        // If the number of input vectors is greater than 2 - not a permutation,
 | 
						||
        // fallback to the regular gather.
 | 
						||
        if (UsedTEs.size() == 2)
 | 
						||
          return None;
 | 
						||
        UsedTEs.push_back(SavedVToTEs);
 | 
						||
        Idx = UsedTEs.size() - 1;
 | 
						||
      }
 | 
						||
      UsedValuesEntry.try_emplace(V, Idx);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned VF = 0;
 | 
						||
  if (UsedTEs.size() == 1) {
 | 
						||
    // Try to find the perfect match in another gather node at first.
 | 
						||
    auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
 | 
						||
      return EntryPtr->isSame(TE->Scalars);
 | 
						||
    });
 | 
						||
    if (It != UsedTEs.front().end()) {
 | 
						||
      Entries.push_back(*It);
 | 
						||
      std::iota(Mask.begin(), Mask.end(), 0);
 | 
						||
      return TargetTransformInfo::SK_PermuteSingleSrc;
 | 
						||
    }
 | 
						||
    // No perfect match, just shuffle, so choose the first tree node.
 | 
						||
    Entries.push_back(*UsedTEs.front().begin());
 | 
						||
  } else {
 | 
						||
    // Try to find nodes with the same vector factor.
 | 
						||
    assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
 | 
						||
    // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
 | 
						||
    // landed.
 | 
						||
    auto &&GetVF = [](const TreeEntry *TE) {
 | 
						||
      if (!TE->ReuseShuffleIndices.empty())
 | 
						||
        return TE->ReuseShuffleIndices.size();
 | 
						||
      return TE->Scalars.size();
 | 
						||
    };
 | 
						||
    DenseMap<int, const TreeEntry *> VFToTE;
 | 
						||
    for (const TreeEntry *TE : UsedTEs.front())
 | 
						||
      VFToTE.try_emplace(GetVF(TE), TE);
 | 
						||
    for (const TreeEntry *TE : UsedTEs.back()) {
 | 
						||
      auto It = VFToTE.find(GetVF(TE));
 | 
						||
      if (It != VFToTE.end()) {
 | 
						||
        VF = It->first;
 | 
						||
        Entries.push_back(It->second);
 | 
						||
        Entries.push_back(TE);
 | 
						||
        break;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    // No 2 source vectors with the same vector factor - give up and do regular
 | 
						||
    // gather.
 | 
						||
    if (Entries.empty())
 | 
						||
      return None;
 | 
						||
  }
 | 
						||
 | 
						||
  // Build a shuffle mask for better cost estimation and vector emission.
 | 
						||
  for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
 | 
						||
    Value *V = TE->Scalars[I];
 | 
						||
    if (isa<UndefValue>(V))
 | 
						||
      continue;
 | 
						||
    unsigned Idx = UsedValuesEntry.lookup(V);
 | 
						||
    const TreeEntry *VTE = Entries[Idx];
 | 
						||
    int FoundLane = VTE->findLaneForValue(V);
 | 
						||
    Mask[I] = Idx * VF + FoundLane;
 | 
						||
    // Extra check required by isSingleSourceMaskImpl function (called by
 | 
						||
    // ShuffleVectorInst::isSingleSourceMask).
 | 
						||
    if (Mask[I] >= 2 * E)
 | 
						||
      return None;
 | 
						||
  }
 | 
						||
  switch (Entries.size()) {
 | 
						||
  case 1:
 | 
						||
    return TargetTransformInfo::SK_PermuteSingleSrc;
 | 
						||
  case 2:
 | 
						||
    return TargetTransformInfo::SK_PermuteTwoSrc;
 | 
						||
  default:
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  return None;
 | 
						||
}
 | 
						||
 | 
						||
InstructionCost
 | 
						||
BoUpSLP::getGatherCost(FixedVectorType *Ty,
 | 
						||
                       const DenseSet<unsigned> &ShuffledIndices) const {
 | 
						||
  unsigned NumElts = Ty->getNumElements();
 | 
						||
  APInt DemandedElts = APInt::getNullValue(NumElts);
 | 
						||
  for (unsigned I = 0; I < NumElts; ++I)
 | 
						||
    if (!ShuffledIndices.count(I))
 | 
						||
      DemandedElts.setBit(I);
 | 
						||
  InstructionCost Cost =
 | 
						||
      TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
 | 
						||
                                    /*Extract*/ false);
 | 
						||
  if (!ShuffledIndices.empty())
 | 
						||
    Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
 | 
						||
  return Cost;
 | 
						||
}
 | 
						||
 | 
						||
InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
 | 
						||
  // Find the type of the operands in VL.
 | 
						||
  Type *ScalarTy = VL[0]->getType();
 | 
						||
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						||
    ScalarTy = SI->getValueOperand()->getType();
 | 
						||
  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
 | 
						||
  // Find the cost of inserting/extracting values from the vector.
 | 
						||
  // Check if the same elements are inserted several times and count them as
 | 
						||
  // shuffle candidates.
 | 
						||
  DenseSet<unsigned> ShuffledElements;
 | 
						||
  DenseSet<Value *> UniqueElements;
 | 
						||
  // Iterate in reverse order to consider insert elements with the high cost.
 | 
						||
  for (unsigned I = VL.size(); I > 0; --I) {
 | 
						||
    unsigned Idx = I - 1;
 | 
						||
    if (isConstant(VL[Idx]))
 | 
						||
      continue;
 | 
						||
    if (!UniqueElements.insert(VL[Idx]).second)
 | 
						||
      ShuffledElements.insert(Idx);
 | 
						||
  }
 | 
						||
  return getGatherCost(VecTy, ShuffledElements);
 | 
						||
}
 | 
						||
 | 
						||
// Perform operand reordering on the instructions in VL and return the reordered
 | 
						||
// operands in Left and Right.
 | 
						||
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | 
						||
                                             SmallVectorImpl<Value *> &Left,
 | 
						||
                                             SmallVectorImpl<Value *> &Right,
 | 
						||
                                             const DataLayout &DL,
 | 
						||
                                             ScalarEvolution &SE,
 | 
						||
                                             const BoUpSLP &R) {
 | 
						||
  if (VL.empty())
 | 
						||
    return;
 | 
						||
  VLOperands Ops(VL, DL, SE, R);
 | 
						||
  // Reorder the operands in place.
 | 
						||
  Ops.reorder();
 | 
						||
  Left = Ops.getVL(0);
 | 
						||
  Right = Ops.getVL(1);
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
 | 
						||
  // Get the basic block this bundle is in. All instructions in the bundle
 | 
						||
  // should be in this block.
 | 
						||
  auto *Front = E->getMainOp();
 | 
						||
  auto *BB = Front->getParent();
 | 
						||
  assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
 | 
						||
    auto *I = cast<Instruction>(V);
 | 
						||
    return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
 | 
						||
  }));
 | 
						||
 | 
						||
  // The last instruction in the bundle in program order.
 | 
						||
  Instruction *LastInst = nullptr;
 | 
						||
 | 
						||
  // Find the last instruction. The common case should be that BB has been
 | 
						||
  // scheduled, and the last instruction is VL.back(). So we start with
 | 
						||
  // VL.back() and iterate over schedule data until we reach the end of the
 | 
						||
  // bundle. The end of the bundle is marked by null ScheduleData.
 | 
						||
  if (BlocksSchedules.count(BB)) {
 | 
						||
    auto *Bundle =
 | 
						||
        BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
 | 
						||
    if (Bundle && Bundle->isPartOfBundle())
 | 
						||
      for (; Bundle; Bundle = Bundle->NextInBundle)
 | 
						||
        if (Bundle->OpValue == Bundle->Inst)
 | 
						||
          LastInst = Bundle->Inst;
 | 
						||
  }
 | 
						||
 | 
						||
  // LastInst can still be null at this point if there's either not an entry
 | 
						||
  // for BB in BlocksSchedules or there's no ScheduleData available for
 | 
						||
  // VL.back(). This can be the case if buildTree_rec aborts for various
 | 
						||
  // reasons (e.g., the maximum recursion depth is reached, the maximum region
 | 
						||
  // size is reached, etc.). ScheduleData is initialized in the scheduling
 | 
						||
  // "dry-run".
 | 
						||
  //
 | 
						||
  // If this happens, we can still find the last instruction by brute force. We
 | 
						||
  // iterate forwards from Front (inclusive) until we either see all
 | 
						||
  // instructions in the bundle or reach the end of the block. If Front is the
 | 
						||
  // last instruction in program order, LastInst will be set to Front, and we
 | 
						||
  // will visit all the remaining instructions in the block.
 | 
						||
  //
 | 
						||
  // One of the reasons we exit early from buildTree_rec is to place an upper
 | 
						||
  // bound on compile-time. Thus, taking an additional compile-time hit here is
 | 
						||
  // not ideal. However, this should be exceedingly rare since it requires that
 | 
						||
  // we both exit early from buildTree_rec and that the bundle be out-of-order
 | 
						||
  // (causing us to iterate all the way to the end of the block).
 | 
						||
  if (!LastInst) {
 | 
						||
    SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
 | 
						||
    for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
 | 
						||
      if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
 | 
						||
        LastInst = &I;
 | 
						||
      if (Bundle.empty())
 | 
						||
        break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  assert(LastInst && "Failed to find last instruction in bundle");
 | 
						||
 | 
						||
  // Set the insertion point after the last instruction in the bundle. Set the
 | 
						||
  // debug location to Front.
 | 
						||
  Builder.SetInsertPoint(BB, ++LastInst->getIterator());
 | 
						||
  Builder.SetCurrentDebugLocation(Front->getDebugLoc());
 | 
						||
}
 | 
						||
 | 
						||
Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
 | 
						||
  // List of instructions/lanes from current block and/or the blocks which are
 | 
						||
  // part of the current loop. These instructions will be inserted at the end to
 | 
						||
  // make it possible to optimize loops and hoist invariant instructions out of
 | 
						||
  // the loops body with better chances for success.
 | 
						||
  SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
 | 
						||
  SmallSet<int, 4> PostponedIndices;
 | 
						||
  Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
 | 
						||
  auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
 | 
						||
    SmallPtrSet<BasicBlock *, 4> Visited;
 | 
						||
    while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
 | 
						||
      InsertBB = InsertBB->getSinglePredecessor();
 | 
						||
    return InsertBB && InsertBB == InstBB;
 | 
						||
  };
 | 
						||
  for (int I = 0, E = VL.size(); I < E; ++I) {
 | 
						||
    if (auto *Inst = dyn_cast<Instruction>(VL[I]))
 | 
						||
      if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
 | 
						||
           getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
 | 
						||
          PostponedIndices.insert(I).second)
 | 
						||
        PostponedInsts.emplace_back(Inst, I);
 | 
						||
  }
 | 
						||
 | 
						||
  auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
 | 
						||
    Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
 | 
						||
    auto *InsElt = dyn_cast<InsertElementInst>(Vec);
 | 
						||
    if (!InsElt)
 | 
						||
      return Vec;
 | 
						||
    GatherSeq.insert(InsElt);
 | 
						||
    CSEBlocks.insert(InsElt->getParent());
 | 
						||
    // Add to our 'need-to-extract' list.
 | 
						||
    if (TreeEntry *Entry = getTreeEntry(V)) {
 | 
						||
      // Find which lane we need to extract.
 | 
						||
      unsigned FoundLane = Entry->findLaneForValue(V);
 | 
						||
      ExternalUses.emplace_back(V, InsElt, FoundLane);
 | 
						||
    }
 | 
						||
    return Vec;
 | 
						||
  };
 | 
						||
  Value *Val0 =
 | 
						||
      isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
 | 
						||
  FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
 | 
						||
  Value *Vec = PoisonValue::get(VecTy);
 | 
						||
  SmallVector<int> NonConsts;
 | 
						||
  // Insert constant values at first.
 | 
						||
  for (int I = 0, E = VL.size(); I < E; ++I) {
 | 
						||
    if (PostponedIndices.contains(I))
 | 
						||
      continue;
 | 
						||
    if (!isConstant(VL[I])) {
 | 
						||
      NonConsts.push_back(I);
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
    Vec = CreateInsertElement(Vec, VL[I], I);
 | 
						||
  }
 | 
						||
  // Insert non-constant values.
 | 
						||
  for (int I : NonConsts)
 | 
						||
    Vec = CreateInsertElement(Vec, VL[I], I);
 | 
						||
  // Append instructions, which are/may be part of the loop, in the end to make
 | 
						||
  // it possible to hoist non-loop-based instructions.
 | 
						||
  for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
 | 
						||
    Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
 | 
						||
 | 
						||
  return Vec;
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
/// Merges shuffle masks and emits final shuffle instruction, if required.
 | 
						||
class ShuffleInstructionBuilder {
 | 
						||
  IRBuilderBase &Builder;
 | 
						||
  const unsigned VF = 0;
 | 
						||
  bool IsFinalized = false;
 | 
						||
  SmallVector<int, 4> Mask;
 | 
						||
 | 
						||
public:
 | 
						||
  ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
 | 
						||
      : Builder(Builder), VF(VF) {}
 | 
						||
 | 
						||
  /// Adds a mask, inverting it before applying.
 | 
						||
  void addInversedMask(ArrayRef<unsigned> SubMask) {
 | 
						||
    if (SubMask.empty())
 | 
						||
      return;
 | 
						||
    SmallVector<int, 4> NewMask;
 | 
						||
    inversePermutation(SubMask, NewMask);
 | 
						||
    addMask(NewMask);
 | 
						||
  }
 | 
						||
 | 
						||
  /// Functions adds masks, merging them into  single one.
 | 
						||
  void addMask(ArrayRef<unsigned> SubMask) {
 | 
						||
    SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
 | 
						||
    addMask(NewMask);
 | 
						||
  }
 | 
						||
 | 
						||
  void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
 | 
						||
 | 
						||
  Value *finalize(Value *V) {
 | 
						||
    IsFinalized = true;
 | 
						||
    unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
 | 
						||
    if (VF == ValueVF && Mask.empty())
 | 
						||
      return V;
 | 
						||
    SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
 | 
						||
    std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
 | 
						||
    addMask(NormalizedMask);
 | 
						||
 | 
						||
    if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
 | 
						||
      return V;
 | 
						||
    return Builder.CreateShuffleVector(V, Mask, "shuffle");
 | 
						||
  }
 | 
						||
 | 
						||
  ~ShuffleInstructionBuilder() {
 | 
						||
    assert((IsFinalized || Mask.empty()) &&
 | 
						||
           "Shuffle construction must be finalized.");
 | 
						||
  }
 | 
						||
};
 | 
						||
} // namespace
 | 
						||
 | 
						||
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | 
						||
  unsigned VF = VL.size();
 | 
						||
  InstructionsState S = getSameOpcode(VL);
 | 
						||
  if (S.getOpcode()) {
 | 
						||
    if (TreeEntry *E = getTreeEntry(S.OpValue))
 | 
						||
      if (E->isSame(VL)) {
 | 
						||
        Value *V = vectorizeTree(E);
 | 
						||
        if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
 | 
						||
          if (!E->ReuseShuffleIndices.empty()) {
 | 
						||
            // Reshuffle to get only unique values.
 | 
						||
            // If some of the scalars are duplicated in the vectorization tree
 | 
						||
            // entry, we do not vectorize them but instead generate a mask for
 | 
						||
            // the reuses. But if there are several users of the same entry,
 | 
						||
            // they may have different vectorization factors. This is especially
 | 
						||
            // important for PHI nodes. In this case, we need to adapt the
 | 
						||
            // resulting instruction for the user vectorization factor and have
 | 
						||
            // to reshuffle it again to take only unique elements of the vector.
 | 
						||
            // Without this code the function incorrectly returns reduced vector
 | 
						||
            // instruction with the same elements, not with the unique ones.
 | 
						||
 | 
						||
            // block:
 | 
						||
            // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
 | 
						||
            // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
 | 
						||
            // ... (use %2)
 | 
						||
            // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
 | 
						||
            // br %block
 | 
						||
            SmallVector<int> UniqueIdxs;
 | 
						||
            SmallSet<int, 4> UsedIdxs;
 | 
						||
            int Pos = 0;
 | 
						||
            int Sz = VL.size();
 | 
						||
            for (int Idx : E->ReuseShuffleIndices) {
 | 
						||
              if (Idx != Sz && UsedIdxs.insert(Idx).second)
 | 
						||
                UniqueIdxs.emplace_back(Pos);
 | 
						||
              ++Pos;
 | 
						||
            }
 | 
						||
            assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
 | 
						||
                                            "less than original vector size.");
 | 
						||
            UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
 | 
						||
            V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
 | 
						||
          } else {
 | 
						||
            assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
 | 
						||
                   "Expected vectorization factor less "
 | 
						||
                   "than original vector size.");
 | 
						||
            SmallVector<int> UniformMask(VF, 0);
 | 
						||
            std::iota(UniformMask.begin(), UniformMask.end(), 0);
 | 
						||
            V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
 | 
						||
          }
 | 
						||
        }
 | 
						||
        return V;
 | 
						||
      }
 | 
						||
  }
 | 
						||
 | 
						||
  // Check that every instruction appears once in this bundle.
 | 
						||
  SmallVector<int> ReuseShuffleIndicies;
 | 
						||
  SmallVector<Value *> UniqueValues;
 | 
						||
  if (VL.size() > 2) {
 | 
						||
    DenseMap<Value *, unsigned> UniquePositions;
 | 
						||
    unsigned NumValues =
 | 
						||
        std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
 | 
						||
                                    return !isa<UndefValue>(V);
 | 
						||
                                  }).base());
 | 
						||
    VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
 | 
						||
    int UniqueVals = 0;
 | 
						||
    bool HasUndefs = false;
 | 
						||
    for (Value *V : VL.drop_back(VL.size() - VF)) {
 | 
						||
      if (isa<UndefValue>(V)) {
 | 
						||
        ReuseShuffleIndicies.emplace_back(UndefMaskElem);
 | 
						||
        HasUndefs = true;
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      if (isConstant(V)) {
 | 
						||
        ReuseShuffleIndicies.emplace_back(UniqueValues.size());
 | 
						||
        UniqueValues.emplace_back(V);
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
 | 
						||
      ReuseShuffleIndicies.emplace_back(Res.first->second);
 | 
						||
      if (Res.second) {
 | 
						||
        UniqueValues.emplace_back(V);
 | 
						||
        ++UniqueVals;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
 | 
						||
      // Emit pure splat vector.
 | 
						||
      // FIXME: why it is not identified as an identity.
 | 
						||
      unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
 | 
						||
      if (NumUndefs == ReuseShuffleIndicies.size() - 1)
 | 
						||
        ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
 | 
						||
                                    UndefMaskElem);
 | 
						||
      else
 | 
						||
        ReuseShuffleIndicies.assign(VF, 0);
 | 
						||
    } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
 | 
						||
      ReuseShuffleIndicies.clear();
 | 
						||
      UniqueValues.clear();
 | 
						||
      UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
 | 
						||
    }
 | 
						||
    UniqueValues.append(VF - UniqueValues.size(),
 | 
						||
                        PoisonValue::get(VL[0]->getType()));
 | 
						||
    VL = UniqueValues;
 | 
						||
  }
 | 
						||
 | 
						||
  ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
 | 
						||
  Value *Vec = gather(VL);
 | 
						||
  if (!ReuseShuffleIndicies.empty()) {
 | 
						||
    ShuffleBuilder.addMask(ReuseShuffleIndicies);
 | 
						||
    Vec = ShuffleBuilder.finalize(Vec);
 | 
						||
    if (auto *I = dyn_cast<Instruction>(Vec)) {
 | 
						||
      GatherSeq.insert(I);
 | 
						||
      CSEBlocks.insert(I->getParent());
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return Vec;
 | 
						||
}
 | 
						||
 | 
						||
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | 
						||
  IRBuilder<>::InsertPointGuard Guard(Builder);
 | 
						||
 | 
						||
  if (E->VectorizedValue) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | 
						||
    return E->VectorizedValue;
 | 
						||
  }
 | 
						||
 | 
						||
  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
 | 
						||
  unsigned VF = E->Scalars.size();
 | 
						||
  if (NeedToShuffleReuses)
 | 
						||
    VF = E->ReuseShuffleIndices.size();
 | 
						||
  ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
 | 
						||
  if (E->State == TreeEntry::NeedToGather) {
 | 
						||
    setInsertPointAfterBundle(E);
 | 
						||
    Value *Vec;
 | 
						||
    SmallVector<int> Mask;
 | 
						||
    SmallVector<const TreeEntry *> Entries;
 | 
						||
    Optional<TargetTransformInfo::ShuffleKind> Shuffle =
 | 
						||
        isGatherShuffledEntry(E, Mask, Entries);
 | 
						||
    if (Shuffle.hasValue()) {
 | 
						||
      assert((Entries.size() == 1 || Entries.size() == 2) &&
 | 
						||
             "Expected shuffle of 1 or 2 entries.");
 | 
						||
      Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
 | 
						||
                                        Entries.back()->VectorizedValue, Mask);
 | 
						||
    } else {
 | 
						||
      Vec = gather(E->Scalars);
 | 
						||
    }
 | 
						||
    if (NeedToShuffleReuses) {
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      Vec = ShuffleBuilder.finalize(Vec);
 | 
						||
      if (auto *I = dyn_cast<Instruction>(Vec)) {
 | 
						||
        GatherSeq.insert(I);
 | 
						||
        CSEBlocks.insert(I->getParent());
 | 
						||
      }
 | 
						||
    }
 | 
						||
    E->VectorizedValue = Vec;
 | 
						||
    return Vec;
 | 
						||
  }
 | 
						||
 | 
						||
  assert((E->State == TreeEntry::Vectorize ||
 | 
						||
          E->State == TreeEntry::ScatterVectorize) &&
 | 
						||
         "Unhandled state");
 | 
						||
  unsigned ShuffleOrOp =
 | 
						||
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
 | 
						||
  Instruction *VL0 = E->getMainOp();
 | 
						||
  Type *ScalarTy = VL0->getType();
 | 
						||
  if (auto *Store = dyn_cast<StoreInst>(VL0))
 | 
						||
    ScalarTy = Store->getValueOperand()->getType();
 | 
						||
  else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
 | 
						||
    ScalarTy = IE->getOperand(1)->getType();
 | 
						||
  auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
 | 
						||
  switch (ShuffleOrOp) {
 | 
						||
    case Instruction::PHI: {
 | 
						||
      assert(
 | 
						||
          (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
 | 
						||
          "PHI reordering is free.");
 | 
						||
      auto *PH = cast<PHINode>(VL0);
 | 
						||
      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
 | 
						||
      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						||
      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | 
						||
      Value *V = NewPhi;
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
 | 
						||
      // PHINodes may have multiple entries from the same block. We want to
 | 
						||
      // visit every block once.
 | 
						||
      SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | 
						||
 | 
						||
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						||
        ValueList Operands;
 | 
						||
        BasicBlock *IBB = PH->getIncomingBlock(i);
 | 
						||
 | 
						||
        if (!VisitedBBs.insert(IBB).second) {
 | 
						||
          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
 | 
						||
        Builder.SetInsertPoint(IBB->getTerminator());
 | 
						||
        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						||
        Value *Vec = vectorizeTree(E->getOperand(i));
 | 
						||
        NewPhi->addIncoming(Vec, IBB);
 | 
						||
      }
 | 
						||
 | 
						||
      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | 
						||
             "Invalid number of incoming values");
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
 | 
						||
    case Instruction::ExtractElement: {
 | 
						||
      Value *V = E->getSingleOperand(0);
 | 
						||
      Builder.SetInsertPoint(VL0);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::ExtractValue: {
 | 
						||
      auto *LI = cast<LoadInst>(E->getSingleOperand(0));
 | 
						||
      Builder.SetInsertPoint(LI);
 | 
						||
      auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
 | 
						||
      Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
 | 
						||
      LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
 | 
						||
      Value *NewV = propagateMetadata(V, E->Scalars);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      NewV = ShuffleBuilder.finalize(NewV);
 | 
						||
      E->VectorizedValue = NewV;
 | 
						||
      return NewV;
 | 
						||
    }
 | 
						||
    case Instruction::InsertElement: {
 | 
						||
      assert(E->ReorderIndices.empty() && "InsertElements reordering is free.");
 | 
						||
      Builder.SetInsertPoint(VL0);
 | 
						||
      Value *V = vectorizeTree(E->getOperand(1));
 | 
						||
 | 
						||
      const unsigned NumElts =
 | 
						||
          cast<FixedVectorType>(VL0->getType())->getNumElements();
 | 
						||
      const unsigned NumScalars = E->Scalars.size();
 | 
						||
 | 
						||
      // Create InsertVector shuffle if necessary
 | 
						||
      Instruction *FirstInsert = nullptr;
 | 
						||
      bool IsIdentity = true;
 | 
						||
      unsigned Offset = UINT_MAX;
 | 
						||
      for (unsigned I = 0; I < NumScalars; ++I) {
 | 
						||
        Value *Scalar = E->Scalars[I];
 | 
						||
        if (!FirstInsert &&
 | 
						||
            !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
 | 
						||
          FirstInsert = cast<Instruction>(Scalar);
 | 
						||
        Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
 | 
						||
        if (!InsertIdx || *InsertIdx == UndefMaskElem)
 | 
						||
          continue;
 | 
						||
        unsigned Idx = *InsertIdx;
 | 
						||
        if (Idx < Offset) {
 | 
						||
          Offset = Idx;
 | 
						||
          IsIdentity &= I == 0;
 | 
						||
        } else {
 | 
						||
          assert(Idx >= Offset && "Failed to find vector index offset");
 | 
						||
          IsIdentity &= Idx - Offset == I;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      assert(Offset < NumElts && "Failed to find vector index offset");
 | 
						||
 | 
						||
      // Create shuffle to resize vector
 | 
						||
      SmallVector<int> Mask(NumElts, UndefMaskElem);
 | 
						||
      if (!IsIdentity) {
 | 
						||
        for (unsigned I = 0; I < NumScalars; ++I) {
 | 
						||
          Value *Scalar = E->Scalars[I];
 | 
						||
          Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
 | 
						||
          if (!InsertIdx || *InsertIdx == UndefMaskElem)
 | 
						||
            continue;
 | 
						||
          Mask[*InsertIdx - Offset] = I;
 | 
						||
        }
 | 
						||
      } else {
 | 
						||
        std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
 | 
						||
      }
 | 
						||
      if (!IsIdentity || NumElts != NumScalars)
 | 
						||
        V = Builder.CreateShuffleVector(V, Mask);
 | 
						||
 | 
						||
      if (NumElts != NumScalars) {
 | 
						||
        SmallVector<int> InsertMask(NumElts);
 | 
						||
        std::iota(InsertMask.begin(), InsertMask.end(), 0);
 | 
						||
        for (unsigned I = 0; I < NumElts; I++) {
 | 
						||
          if (Mask[I] != UndefMaskElem)
 | 
						||
            InsertMask[Offset + I] = NumElts + I;
 | 
						||
        }
 | 
						||
 | 
						||
        V = Builder.CreateShuffleVector(
 | 
						||
            FirstInsert->getOperand(0), V, InsertMask,
 | 
						||
            cast<Instruction>(E->Scalars.back())->getName());
 | 
						||
      }
 | 
						||
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::ZExt:
 | 
						||
    case Instruction::SExt:
 | 
						||
    case Instruction::FPToUI:
 | 
						||
    case Instruction::FPToSI:
 | 
						||
    case Instruction::FPExt:
 | 
						||
    case Instruction::PtrToInt:
 | 
						||
    case Instruction::IntToPtr:
 | 
						||
    case Instruction::SIToFP:
 | 
						||
    case Instruction::UIToFP:
 | 
						||
    case Instruction::Trunc:
 | 
						||
    case Instruction::FPTrunc:
 | 
						||
    case Instruction::BitCast: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *InVec = vectorizeTree(E->getOperand(0));
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      auto *CI = cast<CastInst>(VL0);
 | 
						||
      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::FCmp:
 | 
						||
    case Instruction::ICmp: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *L = vectorizeTree(E->getOperand(0));
 | 
						||
      Value *R = vectorizeTree(E->getOperand(1));
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | 
						||
      Value *V = Builder.CreateCmp(P0, L, R);
 | 
						||
      propagateIRFlags(V, E->Scalars, VL0);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::Select: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *Cond = vectorizeTree(E->getOperand(0));
 | 
						||
      Value *True = vectorizeTree(E->getOperand(1));
 | 
						||
      Value *False = vectorizeTree(E->getOperand(2));
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      Value *V = Builder.CreateSelect(Cond, True, False);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::FNeg: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *Op = vectorizeTree(E->getOperand(0));
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      Value *V = Builder.CreateUnOp(
 | 
						||
          static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
 | 
						||
      propagateIRFlags(V, E->Scalars, VL0);
 | 
						||
      if (auto *I = dyn_cast<Instruction>(V))
 | 
						||
        V = propagateMetadata(I, E->Scalars);
 | 
						||
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::Add:
 | 
						||
    case Instruction::FAdd:
 | 
						||
    case Instruction::Sub:
 | 
						||
    case Instruction::FSub:
 | 
						||
    case Instruction::Mul:
 | 
						||
    case Instruction::FMul:
 | 
						||
    case Instruction::UDiv:
 | 
						||
    case Instruction::SDiv:
 | 
						||
    case Instruction::FDiv:
 | 
						||
    case Instruction::URem:
 | 
						||
    case Instruction::SRem:
 | 
						||
    case Instruction::FRem:
 | 
						||
    case Instruction::Shl:
 | 
						||
    case Instruction::LShr:
 | 
						||
    case Instruction::AShr:
 | 
						||
    case Instruction::And:
 | 
						||
    case Instruction::Or:
 | 
						||
    case Instruction::Xor: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *LHS = vectorizeTree(E->getOperand(0));
 | 
						||
      Value *RHS = vectorizeTree(E->getOperand(1));
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      Value *V = Builder.CreateBinOp(
 | 
						||
          static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
 | 
						||
          RHS);
 | 
						||
      propagateIRFlags(V, E->Scalars, VL0);
 | 
						||
      if (auto *I = dyn_cast<Instruction>(V))
 | 
						||
        V = propagateMetadata(I, E->Scalars);
 | 
						||
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::Load: {
 | 
						||
      // Loads are inserted at the head of the tree because we don't want to
 | 
						||
      // sink them all the way down past store instructions.
 | 
						||
      bool IsReorder = E->updateStateIfReorder();
 | 
						||
      if (IsReorder)
 | 
						||
        VL0 = E->getMainOp();
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      LoadInst *LI = cast<LoadInst>(VL0);
 | 
						||
      Instruction *NewLI;
 | 
						||
      unsigned AS = LI->getPointerAddressSpace();
 | 
						||
      Value *PO = LI->getPointerOperand();
 | 
						||
      if (E->State == TreeEntry::Vectorize) {
 | 
						||
 | 
						||
        Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
 | 
						||
 | 
						||
        // The pointer operand uses an in-tree scalar so we add the new BitCast
 | 
						||
        // to ExternalUses list to make sure that an extract will be generated
 | 
						||
        // in the future.
 | 
						||
        if (getTreeEntry(PO))
 | 
						||
          ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
 | 
						||
 | 
						||
        NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
 | 
						||
      } else {
 | 
						||
        assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
 | 
						||
        Value *VecPtr = vectorizeTree(E->getOperand(0));
 | 
						||
        // Use the minimum alignment of the gathered loads.
 | 
						||
        Align CommonAlignment = LI->getAlign();
 | 
						||
        for (Value *V : E->Scalars)
 | 
						||
          CommonAlignment =
 | 
						||
              commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
 | 
						||
        NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
 | 
						||
      }
 | 
						||
      Value *V = propagateMetadata(NewLI, E->Scalars);
 | 
						||
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::Store: {
 | 
						||
      bool IsReorder = !E->ReorderIndices.empty();
 | 
						||
      auto *SI = cast<StoreInst>(
 | 
						||
          IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
 | 
						||
      unsigned AS = SI->getPointerAddressSpace();
 | 
						||
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *VecValue = vectorizeTree(E->getOperand(0));
 | 
						||
      ShuffleBuilder.addMask(E->ReorderIndices);
 | 
						||
      VecValue = ShuffleBuilder.finalize(VecValue);
 | 
						||
 | 
						||
      Value *ScalarPtr = SI->getPointerOperand();
 | 
						||
      Value *VecPtr = Builder.CreateBitCast(
 | 
						||
          ScalarPtr, VecValue->getType()->getPointerTo(AS));
 | 
						||
      StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
 | 
						||
                                                 SI->getAlign());
 | 
						||
 | 
						||
      // The pointer operand uses an in-tree scalar, so add the new BitCast to
 | 
						||
      // ExternalUses to make sure that an extract will be generated in the
 | 
						||
      // future.
 | 
						||
      if (getTreeEntry(ScalarPtr))
 | 
						||
        ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
 | 
						||
 | 
						||
      Value *V = propagateMetadata(ST, E->Scalars);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::GetElementPtr: {
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Value *Op0 = vectorizeTree(E->getOperand(0));
 | 
						||
 | 
						||
      std::vector<Value *> OpVecs;
 | 
						||
      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
 | 
						||
           ++j) {
 | 
						||
        ValueList &VL = E->getOperand(j);
 | 
						||
        // Need to cast all elements to the same type before vectorization to
 | 
						||
        // avoid crash.
 | 
						||
        Type *VL0Ty = VL0->getOperand(j)->getType();
 | 
						||
        Type *Ty = llvm::all_of(
 | 
						||
                       VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
 | 
						||
                       ? VL0Ty
 | 
						||
                       : DL->getIndexType(cast<GetElementPtrInst>(VL0)
 | 
						||
                                              ->getPointerOperandType()
 | 
						||
                                              ->getScalarType());
 | 
						||
        for (Value *&V : VL) {
 | 
						||
          auto *CI = cast<ConstantInt>(V);
 | 
						||
          V = ConstantExpr::getIntegerCast(CI, Ty,
 | 
						||
                                           CI->getValue().isSignBitSet());
 | 
						||
        }
 | 
						||
        Value *OpVec = vectorizeTree(VL);
 | 
						||
        OpVecs.push_back(OpVec);
 | 
						||
      }
 | 
						||
 | 
						||
      Value *V = Builder.CreateGEP(
 | 
						||
          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
 | 
						||
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						||
        V = propagateMetadata(I, E->Scalars);
 | 
						||
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::Call: {
 | 
						||
      CallInst *CI = cast<CallInst>(VL0);
 | 
						||
      setInsertPointAfterBundle(E);
 | 
						||
 | 
						||
      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
 | 
						||
      if (Function *FI = CI->getCalledFunction())
 | 
						||
        IID = FI->getIntrinsicID();
 | 
						||
 | 
						||
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						||
 | 
						||
      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
 | 
						||
      bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
 | 
						||
                          VecCallCosts.first <= VecCallCosts.second;
 | 
						||
 | 
						||
      Value *ScalarArg = nullptr;
 | 
						||
      std::vector<Value *> OpVecs;
 | 
						||
      SmallVector<Type *, 2> TysForDecl =
 | 
						||
          {FixedVectorType::get(CI->getType(), E->Scalars.size())};
 | 
						||
      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
 | 
						||
        ValueList OpVL;
 | 
						||
        // Some intrinsics have scalar arguments. This argument should not be
 | 
						||
        // vectorized.
 | 
						||
        if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
 | 
						||
          CallInst *CEI = cast<CallInst>(VL0);
 | 
						||
          ScalarArg = CEI->getArgOperand(j);
 | 
						||
          OpVecs.push_back(CEI->getArgOperand(j));
 | 
						||
          if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
 | 
						||
            TysForDecl.push_back(ScalarArg->getType());
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
 | 
						||
        Value *OpVec = vectorizeTree(E->getOperand(j));
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
 | 
						||
        OpVecs.push_back(OpVec);
 | 
						||
      }
 | 
						||
 | 
						||
      Function *CF;
 | 
						||
      if (!UseIntrinsic) {
 | 
						||
        VFShape Shape =
 | 
						||
            VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
 | 
						||
                                  VecTy->getNumElements())),
 | 
						||
                         false /*HasGlobalPred*/);
 | 
						||
        CF = VFDatabase(*CI).getVectorizedFunction(Shape);
 | 
						||
      } else {
 | 
						||
        CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
 | 
						||
      }
 | 
						||
 | 
						||
      SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						||
      CI->getOperandBundlesAsDefs(OpBundles);
 | 
						||
      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
 | 
						||
 | 
						||
      // The scalar argument uses an in-tree scalar so we add the new vectorized
 | 
						||
      // call to ExternalUses list to make sure that an extract will be
 | 
						||
      // generated in the future.
 | 
						||
      if (ScalarArg && getTreeEntry(ScalarArg))
 | 
						||
        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
 | 
						||
 | 
						||
      propagateIRFlags(V, E->Scalars, VL0);
 | 
						||
      ShuffleBuilder.addInversedMask(E->ReorderIndices);
 | 
						||
      ShuffleBuilder.addMask(E->ReuseShuffleIndices);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    case Instruction::ShuffleVector: {
 | 
						||
      assert(E->isAltShuffle() &&
 | 
						||
             ((Instruction::isBinaryOp(E->getOpcode()) &&
 | 
						||
               Instruction::isBinaryOp(E->getAltOpcode())) ||
 | 
						||
              (Instruction::isCast(E->getOpcode()) &&
 | 
						||
               Instruction::isCast(E->getAltOpcode()))) &&
 | 
						||
             "Invalid Shuffle Vector Operand");
 | 
						||
 | 
						||
      Value *LHS = nullptr, *RHS = nullptr;
 | 
						||
      if (Instruction::isBinaryOp(E->getOpcode())) {
 | 
						||
        setInsertPointAfterBundle(E);
 | 
						||
        LHS = vectorizeTree(E->getOperand(0));
 | 
						||
        RHS = vectorizeTree(E->getOperand(1));
 | 
						||
      } else {
 | 
						||
        setInsertPointAfterBundle(E);
 | 
						||
        LHS = vectorizeTree(E->getOperand(0));
 | 
						||
      }
 | 
						||
 | 
						||
      if (E->VectorizedValue) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | 
						||
        return E->VectorizedValue;
 | 
						||
      }
 | 
						||
 | 
						||
      Value *V0, *V1;
 | 
						||
      if (Instruction::isBinaryOp(E->getOpcode())) {
 | 
						||
        V0 = Builder.CreateBinOp(
 | 
						||
            static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
 | 
						||
        V1 = Builder.CreateBinOp(
 | 
						||
            static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
 | 
						||
      } else {
 | 
						||
        V0 = Builder.CreateCast(
 | 
						||
            static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
 | 
						||
        V1 = Builder.CreateCast(
 | 
						||
            static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
 | 
						||
      }
 | 
						||
 | 
						||
      // Create shuffle to take alternate operations from the vector.
 | 
						||
      // Also, gather up main and alt scalar ops to propagate IR flags to
 | 
						||
      // each vector operation.
 | 
						||
      ValueList OpScalars, AltScalars;
 | 
						||
      unsigned Sz = E->Scalars.size();
 | 
						||
      SmallVector<int> Mask(Sz);
 | 
						||
      for (unsigned I = 0; I < Sz; ++I) {
 | 
						||
        unsigned Idx = I;
 | 
						||
        if (!E->ReorderIndices.empty())
 | 
						||
          Idx = E->ReorderIndices[I];
 | 
						||
        auto *OpInst = cast<Instruction>(E->Scalars[Idx]);
 | 
						||
        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
 | 
						||
        if (OpInst->getOpcode() == E->getAltOpcode()) {
 | 
						||
          Mask[Idx] = Sz + I;
 | 
						||
          AltScalars.push_back(OpInst);
 | 
						||
        } else {
 | 
						||
          Mask[Idx] = I;
 | 
						||
          OpScalars.push_back(OpInst);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (!E->ReuseShuffleIndices.empty()) {
 | 
						||
        SmallVector<int> NewMask(E->ReuseShuffleIndices.size());
 | 
						||
        transform(E->ReuseShuffleIndices, NewMask.begin(),
 | 
						||
                  [&Mask](int Idx) { return Mask[Idx]; });
 | 
						||
        Mask.swap(NewMask);
 | 
						||
      }
 | 
						||
 | 
						||
      propagateIRFlags(V0, OpScalars);
 | 
						||
      propagateIRFlags(V1, AltScalars);
 | 
						||
 | 
						||
      Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
 | 
						||
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						||
        V = propagateMetadata(I, E->Scalars);
 | 
						||
      V = ShuffleBuilder.finalize(V);
 | 
						||
 | 
						||
      E->VectorizedValue = V;
 | 
						||
      ++NumVectorInstructions;
 | 
						||
 | 
						||
      return V;
 | 
						||
    }
 | 
						||
    default:
 | 
						||
    llvm_unreachable("unknown inst");
 | 
						||
  }
 | 
						||
  return nullptr;
 | 
						||
}
 | 
						||
 | 
						||
Value *BoUpSLP::vectorizeTree() {
 | 
						||
  ExtraValueToDebugLocsMap ExternallyUsedValues;
 | 
						||
  return vectorizeTree(ExternallyUsedValues);
 | 
						||
}
 | 
						||
 | 
						||
Value *
 | 
						||
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
 | 
						||
  // All blocks must be scheduled before any instructions are inserted.
 | 
						||
  for (auto &BSIter : BlocksSchedules) {
 | 
						||
    scheduleBlock(BSIter.second.get());
 | 
						||
  }
 | 
						||
 | 
						||
  Builder.SetInsertPoint(&F->getEntryBlock().front());
 | 
						||
  auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
 | 
						||
 | 
						||
  // If the vectorized tree can be rewritten in a smaller type, we truncate the
 | 
						||
  // vectorized root. InstCombine will then rewrite the entire expression. We
 | 
						||
  // sign extend the extracted values below.
 | 
						||
  auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
 | 
						||
  if (MinBWs.count(ScalarRoot)) {
 | 
						||
    if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
 | 
						||
      // If current instr is a phi and not the last phi, insert it after the
 | 
						||
      // last phi node.
 | 
						||
      if (isa<PHINode>(I))
 | 
						||
        Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
 | 
						||
      else
 | 
						||
        Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
 | 
						||
    }
 | 
						||
    auto BundleWidth = VectorizableTree[0]->Scalars.size();
 | 
						||
    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
 | 
						||
    auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
 | 
						||
    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
 | 
						||
    VectorizableTree[0]->VectorizedValue = Trunc;
 | 
						||
  }
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
 | 
						||
                    << " values .\n");
 | 
						||
 | 
						||
  // Extract all of the elements with the external uses.
 | 
						||
  for (const auto &ExternalUse : ExternalUses) {
 | 
						||
    Value *Scalar = ExternalUse.Scalar;
 | 
						||
    llvm::User *User = ExternalUse.User;
 | 
						||
 | 
						||
    // Skip users that we already RAUW. This happens when one instruction
 | 
						||
    // has multiple uses of the same value.
 | 
						||
    if (User && !is_contained(Scalar->users(), User))
 | 
						||
      continue;
 | 
						||
    TreeEntry *E = getTreeEntry(Scalar);
 | 
						||
    assert(E && "Invalid scalar");
 | 
						||
    assert(E->State != TreeEntry::NeedToGather &&
 | 
						||
           "Extracting from a gather list");
 | 
						||
 | 
						||
    Value *Vec = E->VectorizedValue;
 | 
						||
    assert(Vec && "Can't find vectorizable value");
 | 
						||
 | 
						||
    Value *Lane = Builder.getInt32(ExternalUse.Lane);
 | 
						||
    auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
 | 
						||
      if (Scalar->getType() != Vec->getType()) {
 | 
						||
        Value *Ex;
 | 
						||
        // "Reuse" the existing extract to improve final codegen.
 | 
						||
        if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
 | 
						||
          Ex = Builder.CreateExtractElement(ES->getOperand(0),
 | 
						||
                                            ES->getOperand(1));
 | 
						||
        } else {
 | 
						||
          Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						||
        }
 | 
						||
        // If necessary, sign-extend or zero-extend ScalarRoot
 | 
						||
        // to the larger type.
 | 
						||
        if (!MinBWs.count(ScalarRoot))
 | 
						||
          return Ex;
 | 
						||
        if (MinBWs[ScalarRoot].second)
 | 
						||
          return Builder.CreateSExt(Ex, Scalar->getType());
 | 
						||
        return Builder.CreateZExt(Ex, Scalar->getType());
 | 
						||
      }
 | 
						||
      assert(isa<FixedVectorType>(Scalar->getType()) &&
 | 
						||
             isa<InsertElementInst>(Scalar) &&
 | 
						||
             "In-tree scalar of vector type is not insertelement?");
 | 
						||
      return Vec;
 | 
						||
    };
 | 
						||
    // If User == nullptr, the Scalar is used as extra arg. Generate
 | 
						||
    // ExtractElement instruction and update the record for this scalar in
 | 
						||
    // ExternallyUsedValues.
 | 
						||
    if (!User) {
 | 
						||
      assert(ExternallyUsedValues.count(Scalar) &&
 | 
						||
             "Scalar with nullptr as an external user must be registered in "
 | 
						||
             "ExternallyUsedValues map");
 | 
						||
      if (auto *VecI = dyn_cast<Instruction>(Vec)) {
 | 
						||
        Builder.SetInsertPoint(VecI->getParent(),
 | 
						||
                               std::next(VecI->getIterator()));
 | 
						||
      } else {
 | 
						||
        Builder.SetInsertPoint(&F->getEntryBlock().front());
 | 
						||
      }
 | 
						||
      Value *NewInst = ExtractAndExtendIfNeeded(Vec);
 | 
						||
      CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
 | 
						||
      auto &NewInstLocs = ExternallyUsedValues[NewInst];
 | 
						||
      auto It = ExternallyUsedValues.find(Scalar);
 | 
						||
      assert(It != ExternallyUsedValues.end() &&
 | 
						||
             "Externally used scalar is not found in ExternallyUsedValues");
 | 
						||
      NewInstLocs.append(It->second);
 | 
						||
      ExternallyUsedValues.erase(Scalar);
 | 
						||
      // Required to update internally referenced instructions.
 | 
						||
      Scalar->replaceAllUsesWith(NewInst);
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    // Generate extracts for out-of-tree users.
 | 
						||
    // Find the insertion point for the extractelement lane.
 | 
						||
    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
 | 
						||
      if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | 
						||
        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | 
						||
          if (PH->getIncomingValue(i) == Scalar) {
 | 
						||
            Instruction *IncomingTerminator =
 | 
						||
                PH->getIncomingBlock(i)->getTerminator();
 | 
						||
            if (isa<CatchSwitchInst>(IncomingTerminator)) {
 | 
						||
              Builder.SetInsertPoint(VecI->getParent(),
 | 
						||
                                     std::next(VecI->getIterator()));
 | 
						||
            } else {
 | 
						||
              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | 
						||
            }
 | 
						||
            Value *NewInst = ExtractAndExtendIfNeeded(Vec);
 | 
						||
            CSEBlocks.insert(PH->getIncomingBlock(i));
 | 
						||
            PH->setOperand(i, NewInst);
 | 
						||
          }
 | 
						||
        }
 | 
						||
      } else {
 | 
						||
        Builder.SetInsertPoint(cast<Instruction>(User));
 | 
						||
        Value *NewInst = ExtractAndExtendIfNeeded(Vec);
 | 
						||
        CSEBlocks.insert(cast<Instruction>(User)->getParent());
 | 
						||
        User->replaceUsesOfWith(Scalar, NewInst);
 | 
						||
      }
 | 
						||
    } else {
 | 
						||
      Builder.SetInsertPoint(&F->getEntryBlock().front());
 | 
						||
      Value *NewInst = ExtractAndExtendIfNeeded(Vec);
 | 
						||
      CSEBlocks.insert(&F->getEntryBlock());
 | 
						||
      User->replaceUsesOfWith(Scalar, NewInst);
 | 
						||
    }
 | 
						||
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | 
						||
  }
 | 
						||
 | 
						||
  // For each vectorized value:
 | 
						||
  for (auto &TEPtr : VectorizableTree) {
 | 
						||
    TreeEntry *Entry = TEPtr.get();
 | 
						||
 | 
						||
    // No need to handle users of gathered values.
 | 
						||
    if (Entry->State == TreeEntry::NeedToGather)
 | 
						||
      continue;
 | 
						||
 | 
						||
    assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | 
						||
 | 
						||
    // For each lane:
 | 
						||
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						||
      Value *Scalar = Entry->Scalars[Lane];
 | 
						||
 | 
						||
#ifndef NDEBUG
 | 
						||
      Type *Ty = Scalar->getType();
 | 
						||
      if (!Ty->isVoidTy()) {
 | 
						||
        for (User *U : Scalar->users()) {
 | 
						||
          LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
 | 
						||
 | 
						||
          // It is legal to delete users in the ignorelist.
 | 
						||
          assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
 | 
						||
                  (isa_and_nonnull<Instruction>(U) &&
 | 
						||
                   isDeleted(cast<Instruction>(U)))) &&
 | 
						||
                 "Deleting out-of-tree value");
 | 
						||
        }
 | 
						||
      }
 | 
						||
#endif
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | 
						||
      eraseInstruction(cast<Instruction>(Scalar));
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  Builder.ClearInsertionPoint();
 | 
						||
  InstrElementSize.clear();
 | 
						||
 | 
						||
  return VectorizableTree[0]->VectorizedValue;
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::optimizeGatherSequence() {
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | 
						||
                    << " gather sequences instructions.\n");
 | 
						||
  // LICM InsertElementInst sequences.
 | 
						||
  for (Instruction *I : GatherSeq) {
 | 
						||
    if (isDeleted(I))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Check if this block is inside a loop.
 | 
						||
    Loop *L = LI->getLoopFor(I->getParent());
 | 
						||
    if (!L)
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Check if it has a preheader.
 | 
						||
    BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						||
    if (!PreHeader)
 | 
						||
      continue;
 | 
						||
 | 
						||
    // If the vector or the element that we insert into it are
 | 
						||
    // instructions that are defined in this basic block then we can't
 | 
						||
    // hoist this instruction.
 | 
						||
    auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
 | 
						||
    auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
 | 
						||
    if (Op0 && L->contains(Op0))
 | 
						||
      continue;
 | 
						||
    if (Op1 && L->contains(Op1))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // We can hoist this instruction. Move it to the pre-header.
 | 
						||
    I->moveBefore(PreHeader->getTerminator());
 | 
						||
  }
 | 
						||
 | 
						||
  // Make a list of all reachable blocks in our CSE queue.
 | 
						||
  SmallVector<const DomTreeNode *, 8> CSEWorkList;
 | 
						||
  CSEWorkList.reserve(CSEBlocks.size());
 | 
						||
  for (BasicBlock *BB : CSEBlocks)
 | 
						||
    if (DomTreeNode *N = DT->getNode(BB)) {
 | 
						||
      assert(DT->isReachableFromEntry(N));
 | 
						||
      CSEWorkList.push_back(N);
 | 
						||
    }
 | 
						||
 | 
						||
  // Sort blocks by domination. This ensures we visit a block after all blocks
 | 
						||
  // dominating it are visited.
 | 
						||
  llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
 | 
						||
    assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
 | 
						||
           "Different nodes should have different DFS numbers");
 | 
						||
    return A->getDFSNumIn() < B->getDFSNumIn();
 | 
						||
  });
 | 
						||
 | 
						||
  // Perform O(N^2) search over the gather sequences and merge identical
 | 
						||
  // instructions. TODO: We can further optimize this scan if we split the
 | 
						||
  // instructions into different buckets based on the insert lane.
 | 
						||
  SmallVector<Instruction *, 16> Visited;
 | 
						||
  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
 | 
						||
    assert(*I &&
 | 
						||
           (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
 | 
						||
           "Worklist not sorted properly!");
 | 
						||
    BasicBlock *BB = (*I)->getBlock();
 | 
						||
    // For all instructions in blocks containing gather sequences:
 | 
						||
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
 | 
						||
      Instruction *In = &*it++;
 | 
						||
      if (isDeleted(In))
 | 
						||
        continue;
 | 
						||
      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
 | 
						||
        continue;
 | 
						||
 | 
						||
      // Check if we can replace this instruction with any of the
 | 
						||
      // visited instructions.
 | 
						||
      for (Instruction *v : Visited) {
 | 
						||
        if (In->isIdenticalTo(v) &&
 | 
						||
            DT->dominates(v->getParent(), In->getParent())) {
 | 
						||
          In->replaceAllUsesWith(v);
 | 
						||
          eraseInstruction(In);
 | 
						||
          In = nullptr;
 | 
						||
          break;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (In) {
 | 
						||
        assert(!is_contained(Visited, In));
 | 
						||
        Visited.push_back(In);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  CSEBlocks.clear();
 | 
						||
  GatherSeq.clear();
 | 
						||
}
 | 
						||
 | 
						||
// Groups the instructions to a bundle (which is then a single scheduling entity)
 | 
						||
// and schedules instructions until the bundle gets ready.
 | 
						||
Optional<BoUpSLP::ScheduleData *>
 | 
						||
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
 | 
						||
                                            const InstructionsState &S) {
 | 
						||
  if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
 | 
						||
    return nullptr;
 | 
						||
 | 
						||
  // Initialize the instruction bundle.
 | 
						||
  Instruction *OldScheduleEnd = ScheduleEnd;
 | 
						||
  ScheduleData *PrevInBundle = nullptr;
 | 
						||
  ScheduleData *Bundle = nullptr;
 | 
						||
  bool ReSchedule = false;
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
 | 
						||
 | 
						||
  auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
 | 
						||
                                                         ScheduleData *Bundle) {
 | 
						||
    // The scheduling region got new instructions at the lower end (or it is a
 | 
						||
    // new region for the first bundle). This makes it necessary to
 | 
						||
    // recalculate all dependencies.
 | 
						||
    // It is seldom that this needs to be done a second time after adding the
 | 
						||
    // initial bundle to the region.
 | 
						||
    if (ScheduleEnd != OldScheduleEnd) {
 | 
						||
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
 | 
						||
        doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
 | 
						||
      ReSchedule = true;
 | 
						||
    }
 | 
						||
    if (ReSchedule) {
 | 
						||
      resetSchedule();
 | 
						||
      initialFillReadyList(ReadyInsts);
 | 
						||
    }
 | 
						||
    if (Bundle) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
 | 
						||
                        << " in block " << BB->getName() << "\n");
 | 
						||
      calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
 | 
						||
    }
 | 
						||
 | 
						||
    // Now try to schedule the new bundle or (if no bundle) just calculate
 | 
						||
    // dependencies. As soon as the bundle is "ready" it means that there are no
 | 
						||
    // cyclic dependencies and we can schedule it. Note that's important that we
 | 
						||
    // don't "schedule" the bundle yet (see cancelScheduling).
 | 
						||
    while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
 | 
						||
           !ReadyInsts.empty()) {
 | 
						||
      ScheduleData *Picked = ReadyInsts.pop_back_val();
 | 
						||
      if (Picked->isSchedulingEntity() && Picked->isReady())
 | 
						||
        schedule(Picked, ReadyInsts);
 | 
						||
    }
 | 
						||
  };
 | 
						||
 | 
						||
  // Make sure that the scheduling region contains all
 | 
						||
  // instructions of the bundle.
 | 
						||
  for (Value *V : VL) {
 | 
						||
    if (!extendSchedulingRegion(V, S)) {
 | 
						||
      // If the scheduling region got new instructions at the lower end (or it
 | 
						||
      // is a new region for the first bundle). This makes it necessary to
 | 
						||
      // recalculate all dependencies.
 | 
						||
      // Otherwise the compiler may crash trying to incorrectly calculate
 | 
						||
      // dependencies and emit instruction in the wrong order at the actual
 | 
						||
      // scheduling.
 | 
						||
      TryScheduleBundle(/*ReSchedule=*/false, nullptr);
 | 
						||
      return None;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  for (Value *V : VL) {
 | 
						||
    ScheduleData *BundleMember = getScheduleData(V);
 | 
						||
    assert(BundleMember &&
 | 
						||
           "no ScheduleData for bundle member (maybe not in same basic block)");
 | 
						||
    if (BundleMember->IsScheduled) {
 | 
						||
      // A bundle member was scheduled as single instruction before and now
 | 
						||
      // needs to be scheduled as part of the bundle. We just get rid of the
 | 
						||
      // existing schedule.
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
 | 
						||
                        << " was already scheduled\n");
 | 
						||
      ReSchedule = true;
 | 
						||
    }
 | 
						||
    assert(BundleMember->isSchedulingEntity() &&
 | 
						||
           "bundle member already part of other bundle");
 | 
						||
    if (PrevInBundle) {
 | 
						||
      PrevInBundle->NextInBundle = BundleMember;
 | 
						||
    } else {
 | 
						||
      Bundle = BundleMember;
 | 
						||
    }
 | 
						||
    BundleMember->UnscheduledDepsInBundle = 0;
 | 
						||
    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
 | 
						||
 | 
						||
    // Group the instructions to a bundle.
 | 
						||
    BundleMember->FirstInBundle = Bundle;
 | 
						||
    PrevInBundle = BundleMember;
 | 
						||
  }
 | 
						||
  assert(Bundle && "Failed to find schedule bundle");
 | 
						||
  TryScheduleBundle(ReSchedule, Bundle);
 | 
						||
  if (!Bundle->isReady()) {
 | 
						||
    cancelScheduling(VL, S.OpValue);
 | 
						||
    return None;
 | 
						||
  }
 | 
						||
  return Bundle;
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
 | 
						||
                                                Value *OpValue) {
 | 
						||
  if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
 | 
						||
    return;
 | 
						||
 | 
						||
  ScheduleData *Bundle = getScheduleData(OpValue);
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
 | 
						||
  assert(!Bundle->IsScheduled &&
 | 
						||
         "Can't cancel bundle which is already scheduled");
 | 
						||
  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
 | 
						||
         "tried to unbundle something which is not a bundle");
 | 
						||
 | 
						||
  // Un-bundle: make single instructions out of the bundle.
 | 
						||
  ScheduleData *BundleMember = Bundle;
 | 
						||
  while (BundleMember) {
 | 
						||
    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
 | 
						||
    BundleMember->FirstInBundle = BundleMember;
 | 
						||
    ScheduleData *Next = BundleMember->NextInBundle;
 | 
						||
    BundleMember->NextInBundle = nullptr;
 | 
						||
    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
 | 
						||
    if (BundleMember->UnscheduledDepsInBundle == 0) {
 | 
						||
      ReadyInsts.insert(BundleMember);
 | 
						||
    }
 | 
						||
    BundleMember = Next;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
 | 
						||
  // Allocate a new ScheduleData for the instruction.
 | 
						||
  if (ChunkPos >= ChunkSize) {
 | 
						||
    ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
 | 
						||
    ChunkPos = 0;
 | 
						||
  }
 | 
						||
  return &(ScheduleDataChunks.back()[ChunkPos++]);
 | 
						||
}
 | 
						||
 | 
						||
bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
 | 
						||
                                                      const InstructionsState &S) {
 | 
						||
  if (getScheduleData(V, isOneOf(S, V)))
 | 
						||
    return true;
 | 
						||
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						||
  assert(I && "bundle member must be an instruction");
 | 
						||
  assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
 | 
						||
         "phi nodes/insertelements don't need to be scheduled");
 | 
						||
  auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
 | 
						||
    ScheduleData *ISD = getScheduleData(I);
 | 
						||
    if (!ISD)
 | 
						||
      return false;
 | 
						||
    assert(isInSchedulingRegion(ISD) &&
 | 
						||
           "ScheduleData not in scheduling region");
 | 
						||
    ScheduleData *SD = allocateScheduleDataChunks();
 | 
						||
    SD->Inst = I;
 | 
						||
    SD->init(SchedulingRegionID, S.OpValue);
 | 
						||
    ExtraScheduleDataMap[I][S.OpValue] = SD;
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
  if (CheckSheduleForI(I))
 | 
						||
    return true;
 | 
						||
  if (!ScheduleStart) {
 | 
						||
    // It's the first instruction in the new region.
 | 
						||
    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
 | 
						||
    ScheduleStart = I;
 | 
						||
    ScheduleEnd = I->getNextNode();
 | 
						||
    if (isOneOf(S, I) != I)
 | 
						||
      CheckSheduleForI(I);
 | 
						||
    assert(ScheduleEnd && "tried to vectorize a terminator?");
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
  // Search up and down at the same time, because we don't know if the new
 | 
						||
  // instruction is above or below the existing scheduling region.
 | 
						||
  BasicBlock::reverse_iterator UpIter =
 | 
						||
      ++ScheduleStart->getIterator().getReverse();
 | 
						||
  BasicBlock::reverse_iterator UpperEnd = BB->rend();
 | 
						||
  BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
 | 
						||
  BasicBlock::iterator LowerEnd = BB->end();
 | 
						||
  while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
 | 
						||
         &*DownIter != I) {
 | 
						||
    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
 | 
						||
      return false;
 | 
						||
    }
 | 
						||
 | 
						||
    ++UpIter;
 | 
						||
    ++DownIter;
 | 
						||
  }
 | 
						||
  if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
 | 
						||
    assert(I->getParent() == ScheduleStart->getParent() &&
 | 
						||
           "Instruction is in wrong basic block.");
 | 
						||
    initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
 | 
						||
    ScheduleStart = I;
 | 
						||
    if (isOneOf(S, I) != I)
 | 
						||
      CheckSheduleForI(I);
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
 | 
						||
                      << "\n");
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
  assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
 | 
						||
         "Expected to reach top of the basic block or instruction down the "
 | 
						||
         "lower end.");
 | 
						||
  assert(I->getParent() == ScheduleEnd->getParent() &&
 | 
						||
         "Instruction is in wrong basic block.");
 | 
						||
  initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
 | 
						||
                   nullptr);
 | 
						||
  ScheduleEnd = I->getNextNode();
 | 
						||
  if (isOneOf(S, I) != I)
 | 
						||
    CheckSheduleForI(I);
 | 
						||
  assert(ScheduleEnd && "tried to vectorize a terminator?");
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
 | 
						||
                                                Instruction *ToI,
 | 
						||
                                                ScheduleData *PrevLoadStore,
 | 
						||
                                                ScheduleData *NextLoadStore) {
 | 
						||
  ScheduleData *CurrentLoadStore = PrevLoadStore;
 | 
						||
  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
 | 
						||
    ScheduleData *SD = ScheduleDataMap[I];
 | 
						||
    if (!SD) {
 | 
						||
      SD = allocateScheduleDataChunks();
 | 
						||
      ScheduleDataMap[I] = SD;
 | 
						||
      SD->Inst = I;
 | 
						||
    }
 | 
						||
    assert(!isInSchedulingRegion(SD) &&
 | 
						||
           "new ScheduleData already in scheduling region");
 | 
						||
    SD->init(SchedulingRegionID, I);
 | 
						||
 | 
						||
    if (I->mayReadOrWriteMemory() &&
 | 
						||
        (!isa<IntrinsicInst>(I) ||
 | 
						||
         (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
 | 
						||
          cast<IntrinsicInst>(I)->getIntrinsicID() !=
 | 
						||
              Intrinsic::pseudoprobe))) {
 | 
						||
      // Update the linked list of memory accessing instructions.
 | 
						||
      if (CurrentLoadStore) {
 | 
						||
        CurrentLoadStore->NextLoadStore = SD;
 | 
						||
      } else {
 | 
						||
        FirstLoadStoreInRegion = SD;
 | 
						||
      }
 | 
						||
      CurrentLoadStore = SD;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (NextLoadStore) {
 | 
						||
    if (CurrentLoadStore)
 | 
						||
      CurrentLoadStore->NextLoadStore = NextLoadStore;
 | 
						||
  } else {
 | 
						||
    LastLoadStoreInRegion = CurrentLoadStore;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
 | 
						||
                                                     bool InsertInReadyList,
 | 
						||
                                                     BoUpSLP *SLP) {
 | 
						||
  assert(SD->isSchedulingEntity());
 | 
						||
 | 
						||
  SmallVector<ScheduleData *, 10> WorkList;
 | 
						||
  WorkList.push_back(SD);
 | 
						||
 | 
						||
  while (!WorkList.empty()) {
 | 
						||
    ScheduleData *SD = WorkList.pop_back_val();
 | 
						||
 | 
						||
    ScheduleData *BundleMember = SD;
 | 
						||
    while (BundleMember) {
 | 
						||
      assert(isInSchedulingRegion(BundleMember));
 | 
						||
      if (!BundleMember->hasValidDependencies()) {
 | 
						||
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
 | 
						||
                          << "\n");
 | 
						||
        BundleMember->Dependencies = 0;
 | 
						||
        BundleMember->resetUnscheduledDeps();
 | 
						||
 | 
						||
        // Handle def-use chain dependencies.
 | 
						||
        if (BundleMember->OpValue != BundleMember->Inst) {
 | 
						||
          ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
 | 
						||
          if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | 
						||
            BundleMember->Dependencies++;
 | 
						||
            ScheduleData *DestBundle = UseSD->FirstInBundle;
 | 
						||
            if (!DestBundle->IsScheduled)
 | 
						||
              BundleMember->incrementUnscheduledDeps(1);
 | 
						||
            if (!DestBundle->hasValidDependencies())
 | 
						||
              WorkList.push_back(DestBundle);
 | 
						||
          }
 | 
						||
        } else {
 | 
						||
          for (User *U : BundleMember->Inst->users()) {
 | 
						||
            if (isa<Instruction>(U)) {
 | 
						||
              ScheduleData *UseSD = getScheduleData(U);
 | 
						||
              if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | 
						||
                BundleMember->Dependencies++;
 | 
						||
                ScheduleData *DestBundle = UseSD->FirstInBundle;
 | 
						||
                if (!DestBundle->IsScheduled)
 | 
						||
                  BundleMember->incrementUnscheduledDeps(1);
 | 
						||
                if (!DestBundle->hasValidDependencies())
 | 
						||
                  WorkList.push_back(DestBundle);
 | 
						||
              }
 | 
						||
            } else {
 | 
						||
              // I'm not sure if this can ever happen. But we need to be safe.
 | 
						||
              // This lets the instruction/bundle never be scheduled and
 | 
						||
              // eventually disable vectorization.
 | 
						||
              BundleMember->Dependencies++;
 | 
						||
              BundleMember->incrementUnscheduledDeps(1);
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
 | 
						||
        // Handle the memory dependencies.
 | 
						||
        ScheduleData *DepDest = BundleMember->NextLoadStore;
 | 
						||
        if (DepDest) {
 | 
						||
          Instruction *SrcInst = BundleMember->Inst;
 | 
						||
          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
 | 
						||
          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
 | 
						||
          unsigned numAliased = 0;
 | 
						||
          unsigned DistToSrc = 1;
 | 
						||
 | 
						||
          while (DepDest) {
 | 
						||
            assert(isInSchedulingRegion(DepDest));
 | 
						||
 | 
						||
            // We have two limits to reduce the complexity:
 | 
						||
            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
 | 
						||
            //    SLP->isAliased (which is the expensive part in this loop).
 | 
						||
            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
 | 
						||
            //    the whole loop (even if the loop is fast, it's quadratic).
 | 
						||
            //    It's important for the loop break condition (see below) to
 | 
						||
            //    check this limit even between two read-only instructions.
 | 
						||
            if (DistToSrc >= MaxMemDepDistance ||
 | 
						||
                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
 | 
						||
                     (numAliased >= AliasedCheckLimit ||
 | 
						||
                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
 | 
						||
 | 
						||
              // We increment the counter only if the locations are aliased
 | 
						||
              // (instead of counting all alias checks). This gives a better
 | 
						||
              // balance between reduced runtime and accurate dependencies.
 | 
						||
              numAliased++;
 | 
						||
 | 
						||
              DepDest->MemoryDependencies.push_back(BundleMember);
 | 
						||
              BundleMember->Dependencies++;
 | 
						||
              ScheduleData *DestBundle = DepDest->FirstInBundle;
 | 
						||
              if (!DestBundle->IsScheduled) {
 | 
						||
                BundleMember->incrementUnscheduledDeps(1);
 | 
						||
              }
 | 
						||
              if (!DestBundle->hasValidDependencies()) {
 | 
						||
                WorkList.push_back(DestBundle);
 | 
						||
              }
 | 
						||
            }
 | 
						||
            DepDest = DepDest->NextLoadStore;
 | 
						||
 | 
						||
            // Example, explaining the loop break condition: Let's assume our
 | 
						||
            // starting instruction is i0 and MaxMemDepDistance = 3.
 | 
						||
            //
 | 
						||
            //                      +--------v--v--v
 | 
						||
            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
 | 
						||
            //             +--------^--^--^
 | 
						||
            //
 | 
						||
            // MaxMemDepDistance let us stop alias-checking at i3 and we add
 | 
						||
            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
 | 
						||
            // Previously we already added dependencies from i3 to i6,i7,i8
 | 
						||
            // (because of MaxMemDepDistance). As we added a dependency from
 | 
						||
            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
 | 
						||
            // and we can abort this loop at i6.
 | 
						||
            if (DistToSrc >= 2 * MaxMemDepDistance)
 | 
						||
              break;
 | 
						||
            DistToSrc++;
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
      BundleMember = BundleMember->NextInBundle;
 | 
						||
    }
 | 
						||
    if (InsertInReadyList && SD->isReady()) {
 | 
						||
      ReadyInsts.push_back(SD);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
 | 
						||
                        << "\n");
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::BlockScheduling::resetSchedule() {
 | 
						||
  assert(ScheduleStart &&
 | 
						||
         "tried to reset schedule on block which has not been scheduled");
 | 
						||
  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						||
    doForAllOpcodes(I, [&](ScheduleData *SD) {
 | 
						||
      assert(isInSchedulingRegion(SD) &&
 | 
						||
             "ScheduleData not in scheduling region");
 | 
						||
      SD->IsScheduled = false;
 | 
						||
      SD->resetUnscheduledDeps();
 | 
						||
    });
 | 
						||
  }
 | 
						||
  ReadyInsts.clear();
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
 | 
						||
  if (!BS->ScheduleStart)
 | 
						||
    return;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 | 
						||
 | 
						||
  BS->resetSchedule();
 | 
						||
 | 
						||
  // For the real scheduling we use a more sophisticated ready-list: it is
 | 
						||
  // sorted by the original instruction location. This lets the final schedule
 | 
						||
  // be as  close as possible to the original instruction order.
 | 
						||
  struct ScheduleDataCompare {
 | 
						||
    bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
 | 
						||
      return SD2->SchedulingPriority < SD1->SchedulingPriority;
 | 
						||
    }
 | 
						||
  };
 | 
						||
  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
 | 
						||
 | 
						||
  // Ensure that all dependency data is updated and fill the ready-list with
 | 
						||
  // initial instructions.
 | 
						||
  int Idx = 0;
 | 
						||
  int NumToSchedule = 0;
 | 
						||
  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
 | 
						||
       I = I->getNextNode()) {
 | 
						||
    BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
 | 
						||
      assert((isa<InsertElementInst>(SD->Inst) ||
 | 
						||
              SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
 | 
						||
             "scheduler and vectorizer bundle mismatch");
 | 
						||
      SD->FirstInBundle->SchedulingPriority = Idx++;
 | 
						||
      if (SD->isSchedulingEntity()) {
 | 
						||
        BS->calculateDependencies(SD, false, this);
 | 
						||
        NumToSchedule++;
 | 
						||
      }
 | 
						||
    });
 | 
						||
  }
 | 
						||
  BS->initialFillReadyList(ReadyInsts);
 | 
						||
 | 
						||
  Instruction *LastScheduledInst = BS->ScheduleEnd;
 | 
						||
 | 
						||
  // Do the "real" scheduling.
 | 
						||
  while (!ReadyInsts.empty()) {
 | 
						||
    ScheduleData *picked = *ReadyInsts.begin();
 | 
						||
    ReadyInsts.erase(ReadyInsts.begin());
 | 
						||
 | 
						||
    // Move the scheduled instruction(s) to their dedicated places, if not
 | 
						||
    // there yet.
 | 
						||
    ScheduleData *BundleMember = picked;
 | 
						||
    while (BundleMember) {
 | 
						||
      Instruction *pickedInst = BundleMember->Inst;
 | 
						||
      if (pickedInst->getNextNode() != LastScheduledInst) {
 | 
						||
        BS->BB->getInstList().remove(pickedInst);
 | 
						||
        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
 | 
						||
                                     pickedInst);
 | 
						||
      }
 | 
						||
      LastScheduledInst = pickedInst;
 | 
						||
      BundleMember = BundleMember->NextInBundle;
 | 
						||
    }
 | 
						||
 | 
						||
    BS->schedule(picked, ReadyInsts);
 | 
						||
    NumToSchedule--;
 | 
						||
  }
 | 
						||
  assert(NumToSchedule == 0 && "could not schedule all instructions");
 | 
						||
 | 
						||
  // Avoid duplicate scheduling of the block.
 | 
						||
  BS->ScheduleStart = nullptr;
 | 
						||
}
 | 
						||
 | 
						||
unsigned BoUpSLP::getVectorElementSize(Value *V) {
 | 
						||
  // If V is a store, just return the width of the stored value (or value
 | 
						||
  // truncated just before storing) without traversing the expression tree.
 | 
						||
  // This is the common case.
 | 
						||
  if (auto *Store = dyn_cast<StoreInst>(V)) {
 | 
						||
    if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
 | 
						||
      return DL->getTypeSizeInBits(Trunc->getSrcTy());
 | 
						||
    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
 | 
						||
  }
 | 
						||
 | 
						||
  if (auto *IEI = dyn_cast<InsertElementInst>(V))
 | 
						||
    return getVectorElementSize(IEI->getOperand(1));
 | 
						||
 | 
						||
  auto E = InstrElementSize.find(V);
 | 
						||
  if (E != InstrElementSize.end())
 | 
						||
    return E->second;
 | 
						||
 | 
						||
  // If V is not a store, we can traverse the expression tree to find loads
 | 
						||
  // that feed it. The type of the loaded value may indicate a more suitable
 | 
						||
  // width than V's type. We want to base the vector element size on the width
 | 
						||
  // of memory operations where possible.
 | 
						||
  SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
 | 
						||
  SmallPtrSet<Instruction *, 16> Visited;
 | 
						||
  if (auto *I = dyn_cast<Instruction>(V)) {
 | 
						||
    Worklist.emplace_back(I, I->getParent());
 | 
						||
    Visited.insert(I);
 | 
						||
  }
 | 
						||
 | 
						||
  // Traverse the expression tree in bottom-up order looking for loads. If we
 | 
						||
  // encounter an instruction we don't yet handle, we give up.
 | 
						||
  auto Width = 0u;
 | 
						||
  while (!Worklist.empty()) {
 | 
						||
    Instruction *I;
 | 
						||
    BasicBlock *Parent;
 | 
						||
    std::tie(I, Parent) = Worklist.pop_back_val();
 | 
						||
 | 
						||
    // We should only be looking at scalar instructions here. If the current
 | 
						||
    // instruction has a vector type, skip.
 | 
						||
    auto *Ty = I->getType();
 | 
						||
    if (isa<VectorType>(Ty))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // If the current instruction is a load, update MaxWidth to reflect the
 | 
						||
    // width of the loaded value.
 | 
						||
    if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
 | 
						||
        isa<ExtractValueInst>(I))
 | 
						||
      Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
 | 
						||
 | 
						||
    // Otherwise, we need to visit the operands of the instruction. We only
 | 
						||
    // handle the interesting cases from buildTree here. If an operand is an
 | 
						||
    // instruction we haven't yet visited and from the same basic block as the
 | 
						||
    // user or the use is a PHI node, we add it to the worklist.
 | 
						||
    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
 | 
						||
             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
 | 
						||
             isa<UnaryOperator>(I)) {
 | 
						||
      for (Use &U : I->operands())
 | 
						||
        if (auto *J = dyn_cast<Instruction>(U.get()))
 | 
						||
          if (Visited.insert(J).second &&
 | 
						||
              (isa<PHINode>(I) || J->getParent() == Parent))
 | 
						||
            Worklist.emplace_back(J, J->getParent());
 | 
						||
    } else {
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // If we didn't encounter a memory access in the expression tree, or if we
 | 
						||
  // gave up for some reason, just return the width of V. Otherwise, return the
 | 
						||
  // maximum width we found.
 | 
						||
  if (!Width) {
 | 
						||
    if (auto *CI = dyn_cast<CmpInst>(V))
 | 
						||
      V = CI->getOperand(0);
 | 
						||
    Width = DL->getTypeSizeInBits(V->getType());
 | 
						||
  }
 | 
						||
 | 
						||
  for (Instruction *I : Visited)
 | 
						||
    InstrElementSize[I] = Width;
 | 
						||
 | 
						||
  return Width;
 | 
						||
}
 | 
						||
 | 
						||
// Determine if a value V in a vectorizable expression Expr can be demoted to a
 | 
						||
// smaller type with a truncation. We collect the values that will be demoted
 | 
						||
// in ToDemote and additional roots that require investigating in Roots.
 | 
						||
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
 | 
						||
                                  SmallVectorImpl<Value *> &ToDemote,
 | 
						||
                                  SmallVectorImpl<Value *> &Roots) {
 | 
						||
  // We can always demote constants.
 | 
						||
  if (isa<Constant>(V)) {
 | 
						||
    ToDemote.push_back(V);
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  // If the value is not an instruction in the expression with only one use, it
 | 
						||
  // cannot be demoted.
 | 
						||
  auto *I = dyn_cast<Instruction>(V);
 | 
						||
  if (!I || !I->hasOneUse() || !Expr.count(I))
 | 
						||
    return false;
 | 
						||
 | 
						||
  switch (I->getOpcode()) {
 | 
						||
 | 
						||
  // We can always demote truncations and extensions. Since truncations can
 | 
						||
  // seed additional demotion, we save the truncated value.
 | 
						||
  case Instruction::Trunc:
 | 
						||
    Roots.push_back(I->getOperand(0));
 | 
						||
    break;
 | 
						||
  case Instruction::ZExt:
 | 
						||
  case Instruction::SExt:
 | 
						||
    if (isa<ExtractElementInst>(I->getOperand(0)) ||
 | 
						||
        isa<InsertElementInst>(I->getOperand(0)))
 | 
						||
      return false;
 | 
						||
    break;
 | 
						||
 | 
						||
  // We can demote certain binary operations if we can demote both of their
 | 
						||
  // operands.
 | 
						||
  case Instruction::Add:
 | 
						||
  case Instruction::Sub:
 | 
						||
  case Instruction::Mul:
 | 
						||
  case Instruction::And:
 | 
						||
  case Instruction::Or:
 | 
						||
  case Instruction::Xor:
 | 
						||
    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
 | 
						||
        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
 | 
						||
      return false;
 | 
						||
    break;
 | 
						||
 | 
						||
  // We can demote selects if we can demote their true and false values.
 | 
						||
  case Instruction::Select: {
 | 
						||
    SelectInst *SI = cast<SelectInst>(I);
 | 
						||
    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
 | 
						||
        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
 | 
						||
      return false;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  // We can demote phis if we can demote all their incoming operands. Note that
 | 
						||
  // we don't need to worry about cycles since we ensure single use above.
 | 
						||
  case Instruction::PHI: {
 | 
						||
    PHINode *PN = cast<PHINode>(I);
 | 
						||
    for (Value *IncValue : PN->incoming_values())
 | 
						||
      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
 | 
						||
        return false;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  // Otherwise, conservatively give up.
 | 
						||
  default:
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  // Record the value that we can demote.
 | 
						||
  ToDemote.push_back(V);
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
void BoUpSLP::computeMinimumValueSizes() {
 | 
						||
  // If there are no external uses, the expression tree must be rooted by a
 | 
						||
  // store. We can't demote in-memory values, so there is nothing to do here.
 | 
						||
  if (ExternalUses.empty())
 | 
						||
    return;
 | 
						||
 | 
						||
  // We only attempt to truncate integer expressions.
 | 
						||
  auto &TreeRoot = VectorizableTree[0]->Scalars;
 | 
						||
  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
 | 
						||
  if (!TreeRootIT)
 | 
						||
    return;
 | 
						||
 | 
						||
  // If the expression is not rooted by a store, these roots should have
 | 
						||
  // external uses. We will rely on InstCombine to rewrite the expression in
 | 
						||
  // the narrower type. However, InstCombine only rewrites single-use values.
 | 
						||
  // This means that if a tree entry other than a root is used externally, it
 | 
						||
  // must have multiple uses and InstCombine will not rewrite it. The code
 | 
						||
  // below ensures that only the roots are used externally.
 | 
						||
  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
 | 
						||
  for (auto &EU : ExternalUses)
 | 
						||
    if (!Expr.erase(EU.Scalar))
 | 
						||
      return;
 | 
						||
  if (!Expr.empty())
 | 
						||
    return;
 | 
						||
 | 
						||
  // Collect the scalar values of the vectorizable expression. We will use this
 | 
						||
  // context to determine which values can be demoted. If we see a truncation,
 | 
						||
  // we mark it as seeding another demotion.
 | 
						||
  for (auto &EntryPtr : VectorizableTree)
 | 
						||
    Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
 | 
						||
 | 
						||
  // Ensure the roots of the vectorizable tree don't form a cycle. They must
 | 
						||
  // have a single external user that is not in the vectorizable tree.
 | 
						||
  for (auto *Root : TreeRoot)
 | 
						||
    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
 | 
						||
      return;
 | 
						||
 | 
						||
  // Conservatively determine if we can actually truncate the roots of the
 | 
						||
  // expression. Collect the values that can be demoted in ToDemote and
 | 
						||
  // additional roots that require investigating in Roots.
 | 
						||
  SmallVector<Value *, 32> ToDemote;
 | 
						||
  SmallVector<Value *, 4> Roots;
 | 
						||
  for (auto *Root : TreeRoot)
 | 
						||
    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
 | 
						||
      return;
 | 
						||
 | 
						||
  // The maximum bit width required to represent all the values that can be
 | 
						||
  // demoted without loss of precision. It would be safe to truncate the roots
 | 
						||
  // of the expression to this width.
 | 
						||
  auto MaxBitWidth = 8u;
 | 
						||
 | 
						||
  // We first check if all the bits of the roots are demanded. If they're not,
 | 
						||
  // we can truncate the roots to this narrower type.
 | 
						||
  for (auto *Root : TreeRoot) {
 | 
						||
    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
 | 
						||
    MaxBitWidth = std::max<unsigned>(
 | 
						||
        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
 | 
						||
  }
 | 
						||
 | 
						||
  // True if the roots can be zero-extended back to their original type, rather
 | 
						||
  // than sign-extended. We know that if the leading bits are not demanded, we
 | 
						||
  // can safely zero-extend. So we initialize IsKnownPositive to True.
 | 
						||
  bool IsKnownPositive = true;
 | 
						||
 | 
						||
  // If all the bits of the roots are demanded, we can try a little harder to
 | 
						||
  // compute a narrower type. This can happen, for example, if the roots are
 | 
						||
  // getelementptr indices. InstCombine promotes these indices to the pointer
 | 
						||
  // width. Thus, all their bits are technically demanded even though the
 | 
						||
  // address computation might be vectorized in a smaller type.
 | 
						||
  //
 | 
						||
  // We start by looking at each entry that can be demoted. We compute the
 | 
						||
  // maximum bit width required to store the scalar by using ValueTracking to
 | 
						||
  // compute the number of high-order bits we can truncate.
 | 
						||
  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
 | 
						||
      llvm::all_of(TreeRoot, [](Value *R) {
 | 
						||
        assert(R->hasOneUse() && "Root should have only one use!");
 | 
						||
        return isa<GetElementPtrInst>(R->user_back());
 | 
						||
      })) {
 | 
						||
    MaxBitWidth = 8u;
 | 
						||
 | 
						||
    // Determine if the sign bit of all the roots is known to be zero. If not,
 | 
						||
    // IsKnownPositive is set to False.
 | 
						||
    IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
 | 
						||
      KnownBits Known = computeKnownBits(R, *DL);
 | 
						||
      return Known.isNonNegative();
 | 
						||
    });
 | 
						||
 | 
						||
    // Determine the maximum number of bits required to store the scalar
 | 
						||
    // values.
 | 
						||
    for (auto *Scalar : ToDemote) {
 | 
						||
      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
 | 
						||
      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
 | 
						||
      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
 | 
						||
    }
 | 
						||
 | 
						||
    // If we can't prove that the sign bit is zero, we must add one to the
 | 
						||
    // maximum bit width to account for the unknown sign bit. This preserves
 | 
						||
    // the existing sign bit so we can safely sign-extend the root back to the
 | 
						||
    // original type. Otherwise, if we know the sign bit is zero, we will
 | 
						||
    // zero-extend the root instead.
 | 
						||
    //
 | 
						||
    // FIXME: This is somewhat suboptimal, as there will be cases where adding
 | 
						||
    //        one to the maximum bit width will yield a larger-than-necessary
 | 
						||
    //        type. In general, we need to add an extra bit only if we can't
 | 
						||
    //        prove that the upper bit of the original type is equal to the
 | 
						||
    //        upper bit of the proposed smaller type. If these two bits are the
 | 
						||
    //        same (either zero or one) we know that sign-extending from the
 | 
						||
    //        smaller type will result in the same value. Here, since we can't
 | 
						||
    //        yet prove this, we are just making the proposed smaller type
 | 
						||
    //        larger to ensure correctness.
 | 
						||
    if (!IsKnownPositive)
 | 
						||
      ++MaxBitWidth;
 | 
						||
  }
 | 
						||
 | 
						||
  // Round MaxBitWidth up to the next power-of-two.
 | 
						||
  if (!isPowerOf2_64(MaxBitWidth))
 | 
						||
    MaxBitWidth = NextPowerOf2(MaxBitWidth);
 | 
						||
 | 
						||
  // If the maximum bit width we compute is less than the with of the roots'
 | 
						||
  // type, we can proceed with the narrowing. Otherwise, do nothing.
 | 
						||
  if (MaxBitWidth >= TreeRootIT->getBitWidth())
 | 
						||
    return;
 | 
						||
 | 
						||
  // If we can truncate the root, we must collect additional values that might
 | 
						||
  // be demoted as a result. That is, those seeded by truncations we will
 | 
						||
  // modify.
 | 
						||
  while (!Roots.empty())
 | 
						||
    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
 | 
						||
 | 
						||
  // Finally, map the values we can demote to the maximum bit with we computed.
 | 
						||
  for (auto *Scalar : ToDemote)
 | 
						||
    MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
 | 
						||
/// The SLPVectorizer Pass.
 | 
						||
struct SLPVectorizer : public FunctionPass {
 | 
						||
  SLPVectorizerPass Impl;
 | 
						||
 | 
						||
  /// Pass identification, replacement for typeid
 | 
						||
  static char ID;
 | 
						||
 | 
						||
  explicit SLPVectorizer() : FunctionPass(ID) {
 | 
						||
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | 
						||
  }
 | 
						||
 | 
						||
  bool doInitialization(Module &M) override {
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  bool runOnFunction(Function &F) override {
 | 
						||
    if (skipFunction(F))
 | 
						||
      return false;
 | 
						||
 | 
						||
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						||
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						||
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | 
						||
    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
 | 
						||
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						||
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						||
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						||
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						||
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
 | 
						||
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | 
						||
 | 
						||
    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
 | 
						||
  }
 | 
						||
 | 
						||
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						||
    FunctionPass::getAnalysisUsage(AU);
 | 
						||
    AU.addRequired<AssumptionCacheTracker>();
 | 
						||
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						||
    AU.addRequired<AAResultsWrapperPass>();
 | 
						||
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						||
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						||
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						||
    AU.addRequired<DemandedBitsWrapperPass>();
 | 
						||
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						||
    AU.addRequired<InjectTLIMappingsLegacy>();
 | 
						||
    AU.addPreserved<LoopInfoWrapperPass>();
 | 
						||
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						||
    AU.addPreserved<AAResultsWrapperPass>();
 | 
						||
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						||
    AU.setPreservesCFG();
 | 
						||
  }
 | 
						||
};
 | 
						||
 | 
						||
} // end anonymous namespace
 | 
						||
 | 
						||
PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						||
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
 | 
						||
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
 | 
						||
  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
 | 
						||
  auto *AA = &AM.getResult<AAManager>(F);
 | 
						||
  auto *LI = &AM.getResult<LoopAnalysis>(F);
 | 
						||
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						||
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | 
						||
  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
 | 
						||
  auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						||
 | 
						||
  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
 | 
						||
  if (!Changed)
 | 
						||
    return PreservedAnalyses::all();
 | 
						||
 | 
						||
  PreservedAnalyses PA;
 | 
						||
  PA.preserveSet<CFGAnalyses>();
 | 
						||
  return PA;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
 | 
						||
                                TargetTransformInfo *TTI_,
 | 
						||
                                TargetLibraryInfo *TLI_, AAResults *AA_,
 | 
						||
                                LoopInfo *LI_, DominatorTree *DT_,
 | 
						||
                                AssumptionCache *AC_, DemandedBits *DB_,
 | 
						||
                                OptimizationRemarkEmitter *ORE_) {
 | 
						||
  if (!RunSLPVectorization)
 | 
						||
    return false;
 | 
						||
  SE = SE_;
 | 
						||
  TTI = TTI_;
 | 
						||
  TLI = TLI_;
 | 
						||
  AA = AA_;
 | 
						||
  LI = LI_;
 | 
						||
  DT = DT_;
 | 
						||
  AC = AC_;
 | 
						||
  DB = DB_;
 | 
						||
  DL = &F.getParent()->getDataLayout();
 | 
						||
 | 
						||
  Stores.clear();
 | 
						||
  GEPs.clear();
 | 
						||
  bool Changed = false;
 | 
						||
 | 
						||
  // If the target claims to have no vector registers don't attempt
 | 
						||
  // vectorization.
 | 
						||
  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Don't vectorize when the attribute NoImplicitFloat is used.
 | 
						||
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
 | 
						||
    return false;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | 
						||
 | 
						||
  // Use the bottom up slp vectorizer to construct chains that start with
 | 
						||
  // store instructions.
 | 
						||
  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
 | 
						||
 | 
						||
  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
 | 
						||
  // delete instructions.
 | 
						||
 | 
						||
  // Update DFS numbers now so that we can use them for ordering.
 | 
						||
  DT->updateDFSNumbers();
 | 
						||
 | 
						||
  // Scan the blocks in the function in post order.
 | 
						||
  for (auto BB : post_order(&F.getEntryBlock())) {
 | 
						||
    collectSeedInstructions(BB);
 | 
						||
 | 
						||
    // Vectorize trees that end at stores.
 | 
						||
    if (!Stores.empty()) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
 | 
						||
                        << " underlying objects.\n");
 | 
						||
      Changed |= vectorizeStoreChains(R);
 | 
						||
    }
 | 
						||
 | 
						||
    // Vectorize trees that end at reductions.
 | 
						||
    Changed |= vectorizeChainsInBlock(BB, R);
 | 
						||
 | 
						||
    // Vectorize the index computations of getelementptr instructions. This
 | 
						||
    // is primarily intended to catch gather-like idioms ending at
 | 
						||
    // non-consecutive loads.
 | 
						||
    if (!GEPs.empty()) {
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
 | 
						||
                        << " underlying objects.\n");
 | 
						||
      Changed |= vectorizeGEPIndices(BB, R);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (Changed) {
 | 
						||
    R.optimizeGatherSequence();
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | 
						||
  }
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
 | 
						||
                                            unsigned Idx) {
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
 | 
						||
                    << "\n");
 | 
						||
  const unsigned Sz = R.getVectorElementSize(Chain[0]);
 | 
						||
  const unsigned MinVF = R.getMinVecRegSize() / Sz;
 | 
						||
  unsigned VF = Chain.size();
 | 
						||
 | 
						||
  if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
 | 
						||
    return false;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
 | 
						||
                    << "\n");
 | 
						||
 | 
						||
  R.buildTree(Chain);
 | 
						||
  if (R.isTreeTinyAndNotFullyVectorizable())
 | 
						||
    return false;
 | 
						||
  if (R.isLoadCombineCandidate())
 | 
						||
    return false;
 | 
						||
  R.reorderTopToBottom(/*FreeReorder=*/false);
 | 
						||
  R.reorderBottomToTop(/*FreeReorder=*/false);
 | 
						||
  R.buildExternalUses();
 | 
						||
 | 
						||
  R.computeMinimumValueSizes();
 | 
						||
 | 
						||
  InstructionCost Cost = R.getTreeCost();
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
 | 
						||
  if (Cost < -SLPCostThreshold) {
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
 | 
						||
 | 
						||
    using namespace ore;
 | 
						||
 | 
						||
    R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
 | 
						||
                                        cast<StoreInst>(Chain[0]))
 | 
						||
                     << "Stores SLP vectorized with cost " << NV("Cost", Cost)
 | 
						||
                     << " and with tree size "
 | 
						||
                     << NV("TreeSize", R.getTreeSize()));
 | 
						||
 | 
						||
    R.vectorizeTree();
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | 
						||
                                        BoUpSLP &R) {
 | 
						||
  // We may run into multiple chains that merge into a single chain. We mark the
 | 
						||
  // stores that we vectorized so that we don't visit the same store twice.
 | 
						||
  BoUpSLP::ValueSet VectorizedStores;
 | 
						||
  bool Changed = false;
 | 
						||
 | 
						||
  int E = Stores.size();
 | 
						||
  SmallBitVector Tails(E, false);
 | 
						||
  int MaxIter = MaxStoreLookup.getValue();
 | 
						||
  SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
 | 
						||
      E, std::make_pair(E, INT_MAX));
 | 
						||
  SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
 | 
						||
  int IterCnt;
 | 
						||
  auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
 | 
						||
                                  &CheckedPairs,
 | 
						||
                                  &ConsecutiveChain](int K, int Idx) {
 | 
						||
    if (IterCnt >= MaxIter)
 | 
						||
      return true;
 | 
						||
    if (CheckedPairs[Idx].test(K))
 | 
						||
      return ConsecutiveChain[K].second == 1 &&
 | 
						||
             ConsecutiveChain[K].first == Idx;
 | 
						||
    ++IterCnt;
 | 
						||
    CheckedPairs[Idx].set(K);
 | 
						||
    CheckedPairs[K].set(Idx);
 | 
						||
    Optional<int> Diff = getPointersDiff(
 | 
						||
        Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
 | 
						||
        Stores[Idx]->getValueOperand()->getType(),
 | 
						||
        Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
 | 
						||
    if (!Diff || *Diff == 0)
 | 
						||
      return false;
 | 
						||
    int Val = *Diff;
 | 
						||
    if (Val < 0) {
 | 
						||
      if (ConsecutiveChain[Idx].second > -Val) {
 | 
						||
        Tails.set(K);
 | 
						||
        ConsecutiveChain[Idx] = std::make_pair(K, -Val);
 | 
						||
      }
 | 
						||
      return false;
 | 
						||
    }
 | 
						||
    if (ConsecutiveChain[K].second <= Val)
 | 
						||
      return false;
 | 
						||
 | 
						||
    Tails.set(Idx);
 | 
						||
    ConsecutiveChain[K] = std::make_pair(Idx, Val);
 | 
						||
    return Val == 1;
 | 
						||
  };
 | 
						||
  // Do a quadratic search on all of the given stores in reverse order and find
 | 
						||
  // all of the pairs of stores that follow each other.
 | 
						||
  for (int Idx = E - 1; Idx >= 0; --Idx) {
 | 
						||
    // If a store has multiple consecutive store candidates, search according
 | 
						||
    // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
 | 
						||
    // This is because usually pairing with immediate succeeding or preceding
 | 
						||
    // candidate create the best chance to find slp vectorization opportunity.
 | 
						||
    const int MaxLookDepth = std::max(E - Idx, Idx + 1);
 | 
						||
    IterCnt = 0;
 | 
						||
    for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
 | 
						||
      if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
 | 
						||
          (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
 | 
						||
        break;
 | 
						||
  }
 | 
						||
 | 
						||
  // Tracks if we tried to vectorize stores starting from the given tail
 | 
						||
  // already.
 | 
						||
  SmallBitVector TriedTails(E, false);
 | 
						||
  // For stores that start but don't end a link in the chain:
 | 
						||
  for (int Cnt = E; Cnt > 0; --Cnt) {
 | 
						||
    int I = Cnt - 1;
 | 
						||
    if (ConsecutiveChain[I].first == E || Tails.test(I))
 | 
						||
      continue;
 | 
						||
    // We found a store instr that starts a chain. Now follow the chain and try
 | 
						||
    // to vectorize it.
 | 
						||
    BoUpSLP::ValueList Operands;
 | 
						||
    // Collect the chain into a list.
 | 
						||
    while (I != E && !VectorizedStores.count(Stores[I])) {
 | 
						||
      Operands.push_back(Stores[I]);
 | 
						||
      Tails.set(I);
 | 
						||
      if (ConsecutiveChain[I].second != 1) {
 | 
						||
        // Mark the new end in the chain and go back, if required. It might be
 | 
						||
        // required if the original stores come in reversed order, for example.
 | 
						||
        if (ConsecutiveChain[I].first != E &&
 | 
						||
            Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
 | 
						||
            !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
 | 
						||
          TriedTails.set(I);
 | 
						||
          Tails.reset(ConsecutiveChain[I].first);
 | 
						||
          if (Cnt < ConsecutiveChain[I].first + 2)
 | 
						||
            Cnt = ConsecutiveChain[I].first + 2;
 | 
						||
        }
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      // Move to the next value in the chain.
 | 
						||
      I = ConsecutiveChain[I].first;
 | 
						||
    }
 | 
						||
    assert(!Operands.empty() && "Expected non-empty list of stores.");
 | 
						||
 | 
						||
    unsigned MaxVecRegSize = R.getMaxVecRegSize();
 | 
						||
    unsigned EltSize = R.getVectorElementSize(Operands[0]);
 | 
						||
    unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
 | 
						||
 | 
						||
    unsigned MinVF = R.getMinVF(EltSize);
 | 
						||
    unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
 | 
						||
                              MaxElts);
 | 
						||
 | 
						||
    // FIXME: Is division-by-2 the correct step? Should we assert that the
 | 
						||
    // register size is a power-of-2?
 | 
						||
    unsigned StartIdx = 0;
 | 
						||
    for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
 | 
						||
      for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
 | 
						||
        ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
 | 
						||
        if (!VectorizedStores.count(Slice.front()) &&
 | 
						||
            !VectorizedStores.count(Slice.back()) &&
 | 
						||
            vectorizeStoreChain(Slice, R, Cnt)) {
 | 
						||
          // Mark the vectorized stores so that we don't vectorize them again.
 | 
						||
          VectorizedStores.insert(Slice.begin(), Slice.end());
 | 
						||
          Changed = true;
 | 
						||
          // If we vectorized initial block, no need to try to vectorize it
 | 
						||
          // again.
 | 
						||
          if (Cnt == StartIdx)
 | 
						||
            StartIdx += Size;
 | 
						||
          Cnt += Size;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
        ++Cnt;
 | 
						||
      }
 | 
						||
      // Check if the whole array was vectorized already - exit.
 | 
						||
      if (StartIdx >= Operands.size())
 | 
						||
        break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
 | 
						||
  // Initialize the collections. We will make a single pass over the block.
 | 
						||
  Stores.clear();
 | 
						||
  GEPs.clear();
 | 
						||
 | 
						||
  // Visit the store and getelementptr instructions in BB and organize them in
 | 
						||
  // Stores and GEPs according to the underlying objects of their pointer
 | 
						||
  // operands.
 | 
						||
  for (Instruction &I : *BB) {
 | 
						||
    // Ignore store instructions that are volatile or have a pointer operand
 | 
						||
    // that doesn't point to a scalar type.
 | 
						||
    if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | 
						||
      if (!SI->isSimple())
 | 
						||
        continue;
 | 
						||
      if (!isValidElementType(SI->getValueOperand()->getType()))
 | 
						||
        continue;
 | 
						||
      Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
 | 
						||
    }
 | 
						||
 | 
						||
    // Ignore getelementptr instructions that have more than one index, a
 | 
						||
    // constant index, or a pointer operand that doesn't point to a scalar
 | 
						||
    // type.
 | 
						||
    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						||
      auto Idx = GEP->idx_begin()->get();
 | 
						||
      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
 | 
						||
        continue;
 | 
						||
      if (!isValidElementType(Idx->getType()))
 | 
						||
        continue;
 | 
						||
      if (GEP->getType()->isVectorTy())
 | 
						||
        continue;
 | 
						||
      GEPs[GEP->getPointerOperand()].push_back(GEP);
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | 
						||
  if (!A || !B)
 | 
						||
    return false;
 | 
						||
  Value *VL[] = {A, B};
 | 
						||
  return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | 
						||
                                           bool AllowReorder) {
 | 
						||
  if (VL.size() < 2)
 | 
						||
    return false;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
 | 
						||
                    << VL.size() << ".\n");
 | 
						||
 | 
						||
  // Check that all of the parts are instructions of the same type,
 | 
						||
  // we permit an alternate opcode via InstructionsState.
 | 
						||
  InstructionsState S = getSameOpcode(VL);
 | 
						||
  if (!S.getOpcode())
 | 
						||
    return false;
 | 
						||
 | 
						||
  Instruction *I0 = cast<Instruction>(S.OpValue);
 | 
						||
  // Make sure invalid types (including vector type) are rejected before
 | 
						||
  // determining vectorization factor for scalar instructions.
 | 
						||
  for (Value *V : VL) {
 | 
						||
    Type *Ty = V->getType();
 | 
						||
    if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
 | 
						||
      // NOTE: the following will give user internal llvm type name, which may
 | 
						||
      // not be useful.
 | 
						||
      R.getORE()->emit([&]() {
 | 
						||
        std::string type_str;
 | 
						||
        llvm::raw_string_ostream rso(type_str);
 | 
						||
        Ty->print(rso);
 | 
						||
        return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
 | 
						||
               << "Cannot SLP vectorize list: type "
 | 
						||
               << rso.str() + " is unsupported by vectorizer";
 | 
						||
      });
 | 
						||
      return false;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned Sz = R.getVectorElementSize(I0);
 | 
						||
  unsigned MinVF = R.getMinVF(Sz);
 | 
						||
  unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
 | 
						||
  MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
 | 
						||
  if (MaxVF < 2) {
 | 
						||
    R.getORE()->emit([&]() {
 | 
						||
      return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
 | 
						||
             << "Cannot SLP vectorize list: vectorization factor "
 | 
						||
             << "less than 2 is not supported";
 | 
						||
    });
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  bool Changed = false;
 | 
						||
  bool CandidateFound = false;
 | 
						||
  InstructionCost MinCost = SLPCostThreshold.getValue();
 | 
						||
  Type *ScalarTy = VL[0]->getType();
 | 
						||
  if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
 | 
						||
    ScalarTy = IE->getOperand(1)->getType();
 | 
						||
 | 
						||
  unsigned NextInst = 0, MaxInst = VL.size();
 | 
						||
  for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
 | 
						||
    // No actual vectorization should happen, if number of parts is the same as
 | 
						||
    // provided vectorization factor (i.e. the scalar type is used for vector
 | 
						||
    // code during codegen).
 | 
						||
    auto *VecTy = FixedVectorType::get(ScalarTy, VF);
 | 
						||
    if (TTI->getNumberOfParts(VecTy) == VF)
 | 
						||
      continue;
 | 
						||
    for (unsigned I = NextInst; I < MaxInst; ++I) {
 | 
						||
      unsigned OpsWidth = 0;
 | 
						||
 | 
						||
      if (I + VF > MaxInst)
 | 
						||
        OpsWidth = MaxInst - I;
 | 
						||
      else
 | 
						||
        OpsWidth = VF;
 | 
						||
 | 
						||
      if (!isPowerOf2_32(OpsWidth))
 | 
						||
        continue;
 | 
						||
 | 
						||
      if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
 | 
						||
        break;
 | 
						||
 | 
						||
      ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
 | 
						||
      // Check that a previous iteration of this loop did not delete the Value.
 | 
						||
      if (llvm::any_of(Ops, [&R](Value *V) {
 | 
						||
            auto *I = dyn_cast<Instruction>(V);
 | 
						||
            return I && R.isDeleted(I);
 | 
						||
          }))
 | 
						||
        continue;
 | 
						||
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
 | 
						||
                        << "\n");
 | 
						||
 | 
						||
      R.buildTree(Ops);
 | 
						||
      if (R.isTreeTinyAndNotFullyVectorizable())
 | 
						||
        continue;
 | 
						||
      R.reorderTopToBottom(AllowReorder);
 | 
						||
      R.reorderBottomToTop(AllowReorder);
 | 
						||
      R.buildExternalUses();
 | 
						||
 | 
						||
      R.computeMinimumValueSizes();
 | 
						||
      InstructionCost Cost = R.getTreeCost();
 | 
						||
      CandidateFound = true;
 | 
						||
      MinCost = std::min(MinCost, Cost);
 | 
						||
 | 
						||
      if (Cost < -SLPCostThreshold) {
 | 
						||
        LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
 | 
						||
        R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
 | 
						||
                                                    cast<Instruction>(Ops[0]))
 | 
						||
                                 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
 | 
						||
                                 << " and with tree size "
 | 
						||
                                 << ore::NV("TreeSize", R.getTreeSize()));
 | 
						||
 | 
						||
        R.vectorizeTree();
 | 
						||
        // Move to the next bundle.
 | 
						||
        I += VF - 1;
 | 
						||
        NextInst = I + 1;
 | 
						||
        Changed = true;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (!Changed && CandidateFound) {
 | 
						||
    R.getORE()->emit([&]() {
 | 
						||
      return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
 | 
						||
             << "List vectorization was possible but not beneficial with cost "
 | 
						||
             << ore::NV("Cost", MinCost) << " >= "
 | 
						||
             << ore::NV("Treshold", -SLPCostThreshold);
 | 
						||
    });
 | 
						||
  } else if (!Changed) {
 | 
						||
    R.getORE()->emit([&]() {
 | 
						||
      return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
 | 
						||
             << "Cannot SLP vectorize list: vectorization was impossible"
 | 
						||
             << " with available vectorization factors";
 | 
						||
    });
 | 
						||
  }
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
 | 
						||
  if (!I)
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
 | 
						||
    return false;
 | 
						||
 | 
						||
  Value *P = I->getParent();
 | 
						||
 | 
						||
  // Vectorize in current basic block only.
 | 
						||
  auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
 | 
						||
  auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
 | 
						||
  if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Try to vectorize V.
 | 
						||
  if (tryToVectorizePair(Op0, Op1, R))
 | 
						||
    return true;
 | 
						||
 | 
						||
  auto *A = dyn_cast<BinaryOperator>(Op0);
 | 
						||
  auto *B = dyn_cast<BinaryOperator>(Op1);
 | 
						||
  // Try to skip B.
 | 
						||
  if (B && B->hasOneUse()) {
 | 
						||
    auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | 
						||
    auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | 
						||
    if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
 | 
						||
      return true;
 | 
						||
    if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
 | 
						||
      return true;
 | 
						||
  }
 | 
						||
 | 
						||
  // Try to skip A.
 | 
						||
  if (A && A->hasOneUse()) {
 | 
						||
    auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | 
						||
    auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | 
						||
    if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
 | 
						||
      return true;
 | 
						||
    if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
 | 
						||
      return true;
 | 
						||
  }
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
 | 
						||
/// Model horizontal reductions.
 | 
						||
///
 | 
						||
/// A horizontal reduction is a tree of reduction instructions that has values
 | 
						||
/// that can be put into a vector as its leaves. For example:
 | 
						||
///
 | 
						||
/// mul mul mul mul
 | 
						||
///  \  /    \  /
 | 
						||
///   +       +
 | 
						||
///    \     /
 | 
						||
///       +
 | 
						||
/// This tree has "mul" as its leaf values and "+" as its reduction
 | 
						||
/// instructions. A reduction can feed into a store or a binary operation
 | 
						||
/// feeding a phi.
 | 
						||
///    ...
 | 
						||
///    \  /
 | 
						||
///     +
 | 
						||
///     |
 | 
						||
///  phi +=
 | 
						||
///
 | 
						||
///  Or:
 | 
						||
///    ...
 | 
						||
///    \  /
 | 
						||
///     +
 | 
						||
///     |
 | 
						||
///   *p =
 | 
						||
///
 | 
						||
class HorizontalReduction {
 | 
						||
  using ReductionOpsType = SmallVector<Value *, 16>;
 | 
						||
  using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
 | 
						||
  ReductionOpsListType ReductionOps;
 | 
						||
  SmallVector<Value *, 32> ReducedVals;
 | 
						||
  // Use map vector to make stable output.
 | 
						||
  MapVector<Instruction *, Value *> ExtraArgs;
 | 
						||
  WeakTrackingVH ReductionRoot;
 | 
						||
  /// The type of reduction operation.
 | 
						||
  RecurKind RdxKind;
 | 
						||
 | 
						||
  const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
 | 
						||
 | 
						||
  static bool isCmpSelMinMax(Instruction *I) {
 | 
						||
    return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
 | 
						||
           RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
 | 
						||
  }
 | 
						||
 | 
						||
  // And/or are potentially poison-safe logical patterns like:
 | 
						||
  // select x, y, false
 | 
						||
  // select x, true, y
 | 
						||
  static bool isBoolLogicOp(Instruction *I) {
 | 
						||
    return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
 | 
						||
           match(I, m_LogicalOr(m_Value(), m_Value()));
 | 
						||
  }
 | 
						||
 | 
						||
  /// Checks if instruction is associative and can be vectorized.
 | 
						||
  static bool isVectorizable(RecurKind Kind, Instruction *I) {
 | 
						||
    if (Kind == RecurKind::None)
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Integer ops that map to select instructions or intrinsics are fine.
 | 
						||
    if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
 | 
						||
        isBoolLogicOp(I))
 | 
						||
      return true;
 | 
						||
 | 
						||
    if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
 | 
						||
      // FP min/max are associative except for NaN and -0.0. We do not
 | 
						||
      // have to rule out -0.0 here because the intrinsic semantics do not
 | 
						||
      // specify a fixed result for it.
 | 
						||
      return I->getFastMathFlags().noNaNs();
 | 
						||
    }
 | 
						||
 | 
						||
    return I->isAssociative();
 | 
						||
  }
 | 
						||
 | 
						||
  static Value *getRdxOperand(Instruction *I, unsigned Index) {
 | 
						||
    // Poison-safe 'or' takes the form: select X, true, Y
 | 
						||
    // To make that work with the normal operand processing, we skip the
 | 
						||
    // true value operand.
 | 
						||
    // TODO: Change the code and data structures to handle this without a hack.
 | 
						||
    if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
 | 
						||
      return I->getOperand(2);
 | 
						||
    return I->getOperand(Index);
 | 
						||
  }
 | 
						||
 | 
						||
  /// Checks if the ParentStackElem.first should be marked as a reduction
 | 
						||
  /// operation with an extra argument or as extra argument itself.
 | 
						||
  void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
 | 
						||
                    Value *ExtraArg) {
 | 
						||
    if (ExtraArgs.count(ParentStackElem.first)) {
 | 
						||
      ExtraArgs[ParentStackElem.first] = nullptr;
 | 
						||
      // We ran into something like:
 | 
						||
      // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
 | 
						||
      // The whole ParentStackElem.first should be considered as an extra value
 | 
						||
      // in this case.
 | 
						||
      // Do not perform analysis of remaining operands of ParentStackElem.first
 | 
						||
      // instruction, this whole instruction is an extra argument.
 | 
						||
      ParentStackElem.second = INVALID_OPERAND_INDEX;
 | 
						||
    } else {
 | 
						||
      // We ran into something like:
 | 
						||
      // ParentStackElem.first += ... + ExtraArg + ...
 | 
						||
      ExtraArgs[ParentStackElem.first] = ExtraArg;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  /// Creates reduction operation with the current opcode.
 | 
						||
  static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
 | 
						||
                         Value *RHS, const Twine &Name, bool UseSelect) {
 | 
						||
    unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
 | 
						||
    switch (Kind) {
 | 
						||
    case RecurKind::Add:
 | 
						||
    case RecurKind::Mul:
 | 
						||
    case RecurKind::Or:
 | 
						||
    case RecurKind::And:
 | 
						||
    case RecurKind::Xor:
 | 
						||
    case RecurKind::FAdd:
 | 
						||
    case RecurKind::FMul:
 | 
						||
      return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
 | 
						||
                                 Name);
 | 
						||
    case RecurKind::FMax:
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
 | 
						||
    case RecurKind::FMin:
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
 | 
						||
    case RecurKind::SMax:
 | 
						||
      if (UseSelect) {
 | 
						||
        Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
 | 
						||
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
 | 
						||
      }
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
 | 
						||
    case RecurKind::SMin:
 | 
						||
      if (UseSelect) {
 | 
						||
        Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
 | 
						||
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
 | 
						||
      }
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
 | 
						||
    case RecurKind::UMax:
 | 
						||
      if (UseSelect) {
 | 
						||
        Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
 | 
						||
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
 | 
						||
      }
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
 | 
						||
    case RecurKind::UMin:
 | 
						||
      if (UseSelect) {
 | 
						||
        Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
 | 
						||
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
 | 
						||
      }
 | 
						||
      return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
 | 
						||
    default:
 | 
						||
      llvm_unreachable("Unknown reduction operation.");
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  /// Creates reduction operation with the current opcode with the IR flags
 | 
						||
  /// from \p ReductionOps.
 | 
						||
  static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
 | 
						||
                         Value *RHS, const Twine &Name,
 | 
						||
                         const ReductionOpsListType &ReductionOps) {
 | 
						||
    bool UseSelect = ReductionOps.size() == 2;
 | 
						||
    assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
 | 
						||
           "Expected cmp + select pairs for reduction");
 | 
						||
    Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
 | 
						||
    if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
 | 
						||
      if (auto *Sel = dyn_cast<SelectInst>(Op)) {
 | 
						||
        propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
 | 
						||
        propagateIRFlags(Op, ReductionOps[1]);
 | 
						||
        return Op;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    propagateIRFlags(Op, ReductionOps[0]);
 | 
						||
    return Op;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Creates reduction operation with the current opcode with the IR flags
 | 
						||
  /// from \p I.
 | 
						||
  static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
 | 
						||
                         Value *RHS, const Twine &Name, Instruction *I) {
 | 
						||
    auto *SelI = dyn_cast<SelectInst>(I);
 | 
						||
    Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
 | 
						||
    if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
 | 
						||
      if (auto *Sel = dyn_cast<SelectInst>(Op))
 | 
						||
        propagateIRFlags(Sel->getCondition(), SelI->getCondition());
 | 
						||
    }
 | 
						||
    propagateIRFlags(Op, I);
 | 
						||
    return Op;
 | 
						||
  }
 | 
						||
 | 
						||
  static RecurKind getRdxKind(Instruction *I) {
 | 
						||
    assert(I && "Expected instruction for reduction matching");
 | 
						||
    TargetTransformInfo::ReductionFlags RdxFlags;
 | 
						||
    if (match(I, m_Add(m_Value(), m_Value())))
 | 
						||
      return RecurKind::Add;
 | 
						||
    if (match(I, m_Mul(m_Value(), m_Value())))
 | 
						||
      return RecurKind::Mul;
 | 
						||
    if (match(I, m_And(m_Value(), m_Value())) ||
 | 
						||
        match(I, m_LogicalAnd(m_Value(), m_Value())))
 | 
						||
      return RecurKind::And;
 | 
						||
    if (match(I, m_Or(m_Value(), m_Value())) ||
 | 
						||
        match(I, m_LogicalOr(m_Value(), m_Value())))
 | 
						||
      return RecurKind::Or;
 | 
						||
    if (match(I, m_Xor(m_Value(), m_Value())))
 | 
						||
      return RecurKind::Xor;
 | 
						||
    if (match(I, m_FAdd(m_Value(), m_Value())))
 | 
						||
      return RecurKind::FAdd;
 | 
						||
    if (match(I, m_FMul(m_Value(), m_Value())))
 | 
						||
      return RecurKind::FMul;
 | 
						||
 | 
						||
    if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
 | 
						||
      return RecurKind::FMax;
 | 
						||
    if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
 | 
						||
      return RecurKind::FMin;
 | 
						||
 | 
						||
    // This matches either cmp+select or intrinsics. SLP is expected to handle
 | 
						||
    // either form.
 | 
						||
    // TODO: If we are canonicalizing to intrinsics, we can remove several
 | 
						||
    //       special-case paths that deal with selects.
 | 
						||
    if (match(I, m_SMax(m_Value(), m_Value())))
 | 
						||
      return RecurKind::SMax;
 | 
						||
    if (match(I, m_SMin(m_Value(), m_Value())))
 | 
						||
      return RecurKind::SMin;
 | 
						||
    if (match(I, m_UMax(m_Value(), m_Value())))
 | 
						||
      return RecurKind::UMax;
 | 
						||
    if (match(I, m_UMin(m_Value(), m_Value())))
 | 
						||
      return RecurKind::UMin;
 | 
						||
 | 
						||
    if (auto *Select = dyn_cast<SelectInst>(I)) {
 | 
						||
      // Try harder: look for min/max pattern based on instructions producing
 | 
						||
      // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
 | 
						||
      // During the intermediate stages of SLP, it's very common to have
 | 
						||
      // pattern like this (since optimizeGatherSequence is run only once
 | 
						||
      // at the end):
 | 
						||
      // %1 = extractelement <2 x i32> %a, i32 0
 | 
						||
      // %2 = extractelement <2 x i32> %a, i32 1
 | 
						||
      // %cond = icmp sgt i32 %1, %2
 | 
						||
      // %3 = extractelement <2 x i32> %a, i32 0
 | 
						||
      // %4 = extractelement <2 x i32> %a, i32 1
 | 
						||
      // %select = select i1 %cond, i32 %3, i32 %4
 | 
						||
      CmpInst::Predicate Pred;
 | 
						||
      Instruction *L1;
 | 
						||
      Instruction *L2;
 | 
						||
 | 
						||
      Value *LHS = Select->getTrueValue();
 | 
						||
      Value *RHS = Select->getFalseValue();
 | 
						||
      Value *Cond = Select->getCondition();
 | 
						||
 | 
						||
      // TODO: Support inverse predicates.
 | 
						||
      if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
 | 
						||
        if (!isa<ExtractElementInst>(RHS) ||
 | 
						||
            !L2->isIdenticalTo(cast<Instruction>(RHS)))
 | 
						||
          return RecurKind::None;
 | 
						||
      } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
 | 
						||
        if (!isa<ExtractElementInst>(LHS) ||
 | 
						||
            !L1->isIdenticalTo(cast<Instruction>(LHS)))
 | 
						||
          return RecurKind::None;
 | 
						||
      } else {
 | 
						||
        if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
 | 
						||
          return RecurKind::None;
 | 
						||
        if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
 | 
						||
            !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
 | 
						||
            !L2->isIdenticalTo(cast<Instruction>(RHS)))
 | 
						||
          return RecurKind::None;
 | 
						||
      }
 | 
						||
 | 
						||
      TargetTransformInfo::ReductionFlags RdxFlags;
 | 
						||
      switch (Pred) {
 | 
						||
      default:
 | 
						||
        return RecurKind::None;
 | 
						||
      case CmpInst::ICMP_SGT:
 | 
						||
      case CmpInst::ICMP_SGE:
 | 
						||
        return RecurKind::SMax;
 | 
						||
      case CmpInst::ICMP_SLT:
 | 
						||
      case CmpInst::ICMP_SLE:
 | 
						||
        return RecurKind::SMin;
 | 
						||
      case CmpInst::ICMP_UGT:
 | 
						||
      case CmpInst::ICMP_UGE:
 | 
						||
        return RecurKind::UMax;
 | 
						||
      case CmpInst::ICMP_ULT:
 | 
						||
      case CmpInst::ICMP_ULE:
 | 
						||
        return RecurKind::UMin;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    return RecurKind::None;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Get the index of the first operand.
 | 
						||
  static unsigned getFirstOperandIndex(Instruction *I) {
 | 
						||
    return isCmpSelMinMax(I) ? 1 : 0;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Total number of operands in the reduction operation.
 | 
						||
  static unsigned getNumberOfOperands(Instruction *I) {
 | 
						||
    return isCmpSelMinMax(I) ? 3 : 2;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Checks if the instruction is in basic block \p BB.
 | 
						||
  /// For a cmp+sel min/max reduction check that both ops are in \p BB.
 | 
						||
  static bool hasSameParent(Instruction *I, BasicBlock *BB) {
 | 
						||
    if (isCmpSelMinMax(I)) {
 | 
						||
      auto *Sel = cast<SelectInst>(I);
 | 
						||
      auto *Cmp = cast<Instruction>(Sel->getCondition());
 | 
						||
      return Sel->getParent() == BB && Cmp->getParent() == BB;
 | 
						||
    }
 | 
						||
    return I->getParent() == BB;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Expected number of uses for reduction operations/reduced values.
 | 
						||
  static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
 | 
						||
    if (IsCmpSelMinMax) {
 | 
						||
      // SelectInst must be used twice while the condition op must have single
 | 
						||
      // use only.
 | 
						||
      if (auto *Sel = dyn_cast<SelectInst>(I))
 | 
						||
        return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
 | 
						||
      return I->hasNUses(2);
 | 
						||
    }
 | 
						||
 | 
						||
    // Arithmetic reduction operation must be used once only.
 | 
						||
    return I->hasOneUse();
 | 
						||
  }
 | 
						||
 | 
						||
  /// Initializes the list of reduction operations.
 | 
						||
  void initReductionOps(Instruction *I) {
 | 
						||
    if (isCmpSelMinMax(I))
 | 
						||
      ReductionOps.assign(2, ReductionOpsType());
 | 
						||
    else
 | 
						||
      ReductionOps.assign(1, ReductionOpsType());
 | 
						||
  }
 | 
						||
 | 
						||
  /// Add all reduction operations for the reduction instruction \p I.
 | 
						||
  void addReductionOps(Instruction *I) {
 | 
						||
    if (isCmpSelMinMax(I)) {
 | 
						||
      ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
 | 
						||
      ReductionOps[1].emplace_back(I);
 | 
						||
    } else {
 | 
						||
      ReductionOps[0].emplace_back(I);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  static Value *getLHS(RecurKind Kind, Instruction *I) {
 | 
						||
    if (Kind == RecurKind::None)
 | 
						||
      return nullptr;
 | 
						||
    return I->getOperand(getFirstOperandIndex(I));
 | 
						||
  }
 | 
						||
  static Value *getRHS(RecurKind Kind, Instruction *I) {
 | 
						||
    if (Kind == RecurKind::None)
 | 
						||
      return nullptr;
 | 
						||
    return I->getOperand(getFirstOperandIndex(I) + 1);
 | 
						||
  }
 | 
						||
 | 
						||
public:
 | 
						||
  HorizontalReduction() = default;
 | 
						||
 | 
						||
  /// Try to find a reduction tree.
 | 
						||
  bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
 | 
						||
    assert((!Phi || is_contained(Phi->operands(), Inst)) &&
 | 
						||
           "Phi needs to use the binary operator");
 | 
						||
    assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
 | 
						||
            isa<IntrinsicInst>(Inst)) &&
 | 
						||
           "Expected binop, select, or intrinsic for reduction matching");
 | 
						||
    RdxKind = getRdxKind(Inst);
 | 
						||
 | 
						||
    // We could have a initial reductions that is not an add.
 | 
						||
    //  r *= v1 + v2 + v3 + v4
 | 
						||
    // In such a case start looking for a tree rooted in the first '+'.
 | 
						||
    if (Phi) {
 | 
						||
      if (getLHS(RdxKind, Inst) == Phi) {
 | 
						||
        Phi = nullptr;
 | 
						||
        Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
 | 
						||
        if (!Inst)
 | 
						||
          return false;
 | 
						||
        RdxKind = getRdxKind(Inst);
 | 
						||
      } else if (getRHS(RdxKind, Inst) == Phi) {
 | 
						||
        Phi = nullptr;
 | 
						||
        Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
 | 
						||
        if (!Inst)
 | 
						||
          return false;
 | 
						||
        RdxKind = getRdxKind(Inst);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (!isVectorizable(RdxKind, Inst))
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Analyze "regular" integer/FP types for reductions - no target-specific
 | 
						||
    // types or pointers.
 | 
						||
    Type *Ty = Inst->getType();
 | 
						||
    if (!isValidElementType(Ty) || Ty->isPointerTy())
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Though the ultimate reduction may have multiple uses, its condition must
 | 
						||
    // have only single use.
 | 
						||
    if (auto *Sel = dyn_cast<SelectInst>(Inst))
 | 
						||
      if (!Sel->getCondition()->hasOneUse())
 | 
						||
        return false;
 | 
						||
 | 
						||
    ReductionRoot = Inst;
 | 
						||
 | 
						||
    // The opcode for leaf values that we perform a reduction on.
 | 
						||
    // For example: load(x) + load(y) + load(z) + fptoui(w)
 | 
						||
    // The leaf opcode for 'w' does not match, so we don't include it as a
 | 
						||
    // potential candidate for the reduction.
 | 
						||
    unsigned LeafOpcode = 0;
 | 
						||
 | 
						||
    // Post-order traverse the reduction tree starting at Inst. We only handle
 | 
						||
    // true trees containing binary operators or selects.
 | 
						||
    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
 | 
						||
    Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
 | 
						||
    initReductionOps(Inst);
 | 
						||
    while (!Stack.empty()) {
 | 
						||
      Instruction *TreeN = Stack.back().first;
 | 
						||
      unsigned EdgeToVisit = Stack.back().second++;
 | 
						||
      const RecurKind TreeRdxKind = getRdxKind(TreeN);
 | 
						||
      bool IsReducedValue = TreeRdxKind != RdxKind;
 | 
						||
 | 
						||
      // Postorder visit.
 | 
						||
      if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
 | 
						||
        if (IsReducedValue)
 | 
						||
          ReducedVals.push_back(TreeN);
 | 
						||
        else {
 | 
						||
          auto ExtraArgsIter = ExtraArgs.find(TreeN);
 | 
						||
          if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
 | 
						||
            // Check if TreeN is an extra argument of its parent operation.
 | 
						||
            if (Stack.size() <= 1) {
 | 
						||
              // TreeN can't be an extra argument as it is a root reduction
 | 
						||
              // operation.
 | 
						||
              return false;
 | 
						||
            }
 | 
						||
            // Yes, TreeN is an extra argument, do not add it to a list of
 | 
						||
            // reduction operations.
 | 
						||
            // Stack[Stack.size() - 2] always points to the parent operation.
 | 
						||
            markExtraArg(Stack[Stack.size() - 2], TreeN);
 | 
						||
            ExtraArgs.erase(TreeN);
 | 
						||
          } else
 | 
						||
            addReductionOps(TreeN);
 | 
						||
        }
 | 
						||
        // Retract.
 | 
						||
        Stack.pop_back();
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
 | 
						||
      // Visit operands.
 | 
						||
      Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
 | 
						||
      auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
 | 
						||
      if (!EdgeInst) {
 | 
						||
        // Edge value is not a reduction instruction or a leaf instruction.
 | 
						||
        // (It may be a constant, function argument, or something else.)
 | 
						||
        markExtraArg(Stack.back(), EdgeVal);
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
 | 
						||
      // Continue analysis if the next operand is a reduction operation or
 | 
						||
      // (possibly) a leaf value. If the leaf value opcode is not set,
 | 
						||
      // the first met operation != reduction operation is considered as the
 | 
						||
      // leaf opcode.
 | 
						||
      // Only handle trees in the current basic block.
 | 
						||
      // Each tree node needs to have minimal number of users except for the
 | 
						||
      // ultimate reduction.
 | 
						||
      const bool IsRdxInst = EdgeRdxKind == RdxKind;
 | 
						||
      if (EdgeInst != Phi && EdgeInst != Inst &&
 | 
						||
          hasSameParent(EdgeInst, Inst->getParent()) &&
 | 
						||
          hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
 | 
						||
          (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
 | 
						||
        if (IsRdxInst) {
 | 
						||
          // We need to be able to reassociate the reduction operations.
 | 
						||
          if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
 | 
						||
            // I is an extra argument for TreeN (its parent operation).
 | 
						||
            markExtraArg(Stack.back(), EdgeInst);
 | 
						||
            continue;
 | 
						||
          }
 | 
						||
        } else if (!LeafOpcode) {
 | 
						||
          LeafOpcode = EdgeInst->getOpcode();
 | 
						||
        }
 | 
						||
        Stack.push_back(
 | 
						||
            std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      // I is an extra argument for TreeN (its parent operation).
 | 
						||
      markExtraArg(Stack.back(), EdgeInst);
 | 
						||
    }
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Attempt to vectorize the tree found by matchAssociativeReduction.
 | 
						||
  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
 | 
						||
    // If there are a sufficient number of reduction values, reduce
 | 
						||
    // to a nearby power-of-2. We can safely generate oversized
 | 
						||
    // vectors and rely on the backend to split them to legal sizes.
 | 
						||
    unsigned NumReducedVals = ReducedVals.size();
 | 
						||
    if (NumReducedVals < 4)
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Intersect the fast-math-flags from all reduction operations.
 | 
						||
    FastMathFlags RdxFMF;
 | 
						||
    RdxFMF.set();
 | 
						||
    for (ReductionOpsType &RdxOp : ReductionOps) {
 | 
						||
      for (Value *RdxVal : RdxOp) {
 | 
						||
        if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
 | 
						||
          RdxFMF &= FPMO->getFastMathFlags();
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
 | 
						||
    Builder.setFastMathFlags(RdxFMF);
 | 
						||
 | 
						||
    BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
 | 
						||
    // The same extra argument may be used several times, so log each attempt
 | 
						||
    // to use it.
 | 
						||
    for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
 | 
						||
      assert(Pair.first && "DebugLoc must be set.");
 | 
						||
      ExternallyUsedValues[Pair.second].push_back(Pair.first);
 | 
						||
    }
 | 
						||
 | 
						||
    // The compare instruction of a min/max is the insertion point for new
 | 
						||
    // instructions and may be replaced with a new compare instruction.
 | 
						||
    auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
 | 
						||
      assert(isa<SelectInst>(RdxRootInst) &&
 | 
						||
             "Expected min/max reduction to have select root instruction");
 | 
						||
      Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
 | 
						||
      assert(isa<Instruction>(ScalarCond) &&
 | 
						||
             "Expected min/max reduction to have compare condition");
 | 
						||
      return cast<Instruction>(ScalarCond);
 | 
						||
    };
 | 
						||
 | 
						||
    // The reduction root is used as the insertion point for new instructions,
 | 
						||
    // so set it as externally used to prevent it from being deleted.
 | 
						||
    ExternallyUsedValues[ReductionRoot];
 | 
						||
    SmallVector<Value *, 16> IgnoreList;
 | 
						||
    for (ReductionOpsType &RdxOp : ReductionOps)
 | 
						||
      IgnoreList.append(RdxOp.begin(), RdxOp.end());
 | 
						||
 | 
						||
    unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
 | 
						||
    if (NumReducedVals > ReduxWidth) {
 | 
						||
      // In the loop below, we are building a tree based on a window of
 | 
						||
      // 'ReduxWidth' values.
 | 
						||
      // If the operands of those values have common traits (compare predicate,
 | 
						||
      // constant operand, etc), then we want to group those together to
 | 
						||
      // minimize the cost of the reduction.
 | 
						||
 | 
						||
      // TODO: This should be extended to count common operands for
 | 
						||
      //       compares and binops.
 | 
						||
 | 
						||
      // Step 1: Count the number of times each compare predicate occurs.
 | 
						||
      SmallDenseMap<unsigned, unsigned> PredCountMap;
 | 
						||
      for (Value *RdxVal : ReducedVals) {
 | 
						||
        CmpInst::Predicate Pred;
 | 
						||
        if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
 | 
						||
          ++PredCountMap[Pred];
 | 
						||
      }
 | 
						||
      // Step 2: Sort the values so the most common predicates come first.
 | 
						||
      stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
 | 
						||
        CmpInst::Predicate PredA, PredB;
 | 
						||
        if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
 | 
						||
            match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
 | 
						||
          return PredCountMap[PredA] > PredCountMap[PredB];
 | 
						||
        }
 | 
						||
        return false;
 | 
						||
      });
 | 
						||
    }
 | 
						||
 | 
						||
    Value *VectorizedTree = nullptr;
 | 
						||
    unsigned i = 0;
 | 
						||
    while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
 | 
						||
      ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
 | 
						||
      V.buildTree(VL, IgnoreList);
 | 
						||
      if (V.isTreeTinyAndNotFullyVectorizable())
 | 
						||
        break;
 | 
						||
      if (V.isLoadCombineReductionCandidate(RdxKind))
 | 
						||
        break;
 | 
						||
      V.reorderTopToBottom(/*FreeReorder=*/true);
 | 
						||
      V.reorderBottomToTop(/*FreeReorder=*/true);
 | 
						||
      V.buildExternalUses(ExternallyUsedValues);
 | 
						||
 | 
						||
      // For a poison-safe boolean logic reduction, do not replace select
 | 
						||
      // instructions with logic ops. All reduced values will be frozen (see
 | 
						||
      // below) to prevent leaking poison.
 | 
						||
      if (isa<SelectInst>(ReductionRoot) &&
 | 
						||
          isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
 | 
						||
          NumReducedVals != ReduxWidth)
 | 
						||
        break;
 | 
						||
 | 
						||
      V.computeMinimumValueSizes();
 | 
						||
 | 
						||
      // Estimate cost.
 | 
						||
      InstructionCost TreeCost =
 | 
						||
          V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
 | 
						||
      InstructionCost ReductionCost =
 | 
						||
          getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
 | 
						||
      InstructionCost Cost = TreeCost + ReductionCost;
 | 
						||
      if (!Cost.isValid()) {
 | 
						||
        LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
 | 
						||
        return false;
 | 
						||
      }
 | 
						||
      if (Cost >= -SLPCostThreshold) {
 | 
						||
        V.getORE()->emit([&]() {
 | 
						||
          return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
 | 
						||
                                          cast<Instruction>(VL[0]))
 | 
						||
                 << "Vectorizing horizontal reduction is possible"
 | 
						||
                 << "but not beneficial with cost " << ore::NV("Cost", Cost)
 | 
						||
                 << " and threshold "
 | 
						||
                 << ore::NV("Threshold", -SLPCostThreshold);
 | 
						||
        });
 | 
						||
        break;
 | 
						||
      }
 | 
						||
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
 | 
						||
                        << Cost << ". (HorRdx)\n");
 | 
						||
      V.getORE()->emit([&]() {
 | 
						||
        return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
 | 
						||
                                  cast<Instruction>(VL[0]))
 | 
						||
               << "Vectorized horizontal reduction with cost "
 | 
						||
               << ore::NV("Cost", Cost) << " and with tree size "
 | 
						||
               << ore::NV("TreeSize", V.getTreeSize());
 | 
						||
      });
 | 
						||
 | 
						||
      // Vectorize a tree.
 | 
						||
      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
 | 
						||
      Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
 | 
						||
 | 
						||
      // Emit a reduction. If the root is a select (min/max idiom), the insert
 | 
						||
      // point is the compare condition of that select.
 | 
						||
      Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
 | 
						||
      if (isCmpSelMinMax(RdxRootInst))
 | 
						||
        Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
 | 
						||
      else
 | 
						||
        Builder.SetInsertPoint(RdxRootInst);
 | 
						||
 | 
						||
      // To prevent poison from leaking across what used to be sequential, safe,
 | 
						||
      // scalar boolean logic operations, the reduction operand must be frozen.
 | 
						||
      if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
 | 
						||
        VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
 | 
						||
 | 
						||
      Value *ReducedSubTree =
 | 
						||
          emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
 | 
						||
 | 
						||
      if (!VectorizedTree) {
 | 
						||
        // Initialize the final value in the reduction.
 | 
						||
        VectorizedTree = ReducedSubTree;
 | 
						||
      } else {
 | 
						||
        // Update the final value in the reduction.
 | 
						||
        Builder.SetCurrentDebugLocation(Loc);
 | 
						||
        VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
 | 
						||
                                  ReducedSubTree, "op.rdx", ReductionOps);
 | 
						||
      }
 | 
						||
      i += ReduxWidth;
 | 
						||
      ReduxWidth = PowerOf2Floor(NumReducedVals - i);
 | 
						||
    }
 | 
						||
 | 
						||
    if (VectorizedTree) {
 | 
						||
      // Finish the reduction.
 | 
						||
      for (; i < NumReducedVals; ++i) {
 | 
						||
        auto *I = cast<Instruction>(ReducedVals[i]);
 | 
						||
        Builder.SetCurrentDebugLocation(I->getDebugLoc());
 | 
						||
        VectorizedTree =
 | 
						||
            createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
 | 
						||
      }
 | 
						||
      for (auto &Pair : ExternallyUsedValues) {
 | 
						||
        // Add each externally used value to the final reduction.
 | 
						||
        for (auto *I : Pair.second) {
 | 
						||
          Builder.SetCurrentDebugLocation(I->getDebugLoc());
 | 
						||
          VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
 | 
						||
                                    Pair.first, "op.extra", I);
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      ReductionRoot->replaceAllUsesWith(VectorizedTree);
 | 
						||
 | 
						||
      // Mark all scalar reduction ops for deletion, they are replaced by the
 | 
						||
      // vector reductions.
 | 
						||
      V.eraseInstructions(IgnoreList);
 | 
						||
    }
 | 
						||
    return VectorizedTree != nullptr;
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned numReductionValues() const { return ReducedVals.size(); }
 | 
						||
 | 
						||
private:
 | 
						||
  /// Calculate the cost of a reduction.
 | 
						||
  InstructionCost getReductionCost(TargetTransformInfo *TTI,
 | 
						||
                                   Value *FirstReducedVal, unsigned ReduxWidth,
 | 
						||
                                   FastMathFlags FMF) {
 | 
						||
    Type *ScalarTy = FirstReducedVal->getType();
 | 
						||
    FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
 | 
						||
    InstructionCost VectorCost, ScalarCost;
 | 
						||
    switch (RdxKind) {
 | 
						||
    case RecurKind::Add:
 | 
						||
    case RecurKind::Mul:
 | 
						||
    case RecurKind::Or:
 | 
						||
    case RecurKind::And:
 | 
						||
    case RecurKind::Xor:
 | 
						||
    case RecurKind::FAdd:
 | 
						||
    case RecurKind::FMul: {
 | 
						||
      unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
 | 
						||
      VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF);
 | 
						||
      ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
 | 
						||
      break;
 | 
						||
    }
 | 
						||
    case RecurKind::FMax:
 | 
						||
    case RecurKind::FMin: {
 | 
						||
      auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
 | 
						||
      VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
 | 
						||
                                               /*unsigned=*/false);
 | 
						||
      ScalarCost =
 | 
						||
          TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
 | 
						||
          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
 | 
						||
                                  CmpInst::makeCmpResultType(ScalarTy));
 | 
						||
      break;
 | 
						||
    }
 | 
						||
    case RecurKind::SMax:
 | 
						||
    case RecurKind::SMin:
 | 
						||
    case RecurKind::UMax:
 | 
						||
    case RecurKind::UMin: {
 | 
						||
      auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
 | 
						||
      bool IsUnsigned =
 | 
						||
          RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
 | 
						||
      VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned);
 | 
						||
      ScalarCost =
 | 
						||
          TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
 | 
						||
          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
 | 
						||
                                  CmpInst::makeCmpResultType(ScalarTy));
 | 
						||
      break;
 | 
						||
    }
 | 
						||
    default:
 | 
						||
      llvm_unreachable("Expected arithmetic or min/max reduction operation");
 | 
						||
    }
 | 
						||
 | 
						||
    // Scalar cost is repeated for N-1 elements.
 | 
						||
    ScalarCost *= (ReduxWidth - 1);
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
 | 
						||
                      << " for reduction that starts with " << *FirstReducedVal
 | 
						||
                      << " (It is a splitting reduction)\n");
 | 
						||
    return VectorCost - ScalarCost;
 | 
						||
  }
 | 
						||
 | 
						||
  /// Emit a horizontal reduction of the vectorized value.
 | 
						||
  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
 | 
						||
                       unsigned ReduxWidth, const TargetTransformInfo *TTI) {
 | 
						||
    assert(VectorizedValue && "Need to have a vectorized tree node");
 | 
						||
    assert(isPowerOf2_32(ReduxWidth) &&
 | 
						||
           "We only handle power-of-two reductions for now");
 | 
						||
 | 
						||
    return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
 | 
						||
                                       ReductionOps.back());
 | 
						||
  }
 | 
						||
};
 | 
						||
 | 
						||
} // end anonymous namespace
 | 
						||
 | 
						||
static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
 | 
						||
  if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
 | 
						||
    return cast<FixedVectorType>(IE->getType())->getNumElements();
 | 
						||
 | 
						||
  unsigned AggregateSize = 1;
 | 
						||
  auto *IV = cast<InsertValueInst>(InsertInst);
 | 
						||
  Type *CurrentType = IV->getType();
 | 
						||
  do {
 | 
						||
    if (auto *ST = dyn_cast<StructType>(CurrentType)) {
 | 
						||
      for (auto *Elt : ST->elements())
 | 
						||
        if (Elt != ST->getElementType(0)) // check homogeneity
 | 
						||
          return None;
 | 
						||
      AggregateSize *= ST->getNumElements();
 | 
						||
      CurrentType = ST->getElementType(0);
 | 
						||
    } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
 | 
						||
      AggregateSize *= AT->getNumElements();
 | 
						||
      CurrentType = AT->getElementType();
 | 
						||
    } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
 | 
						||
      AggregateSize *= VT->getNumElements();
 | 
						||
      return AggregateSize;
 | 
						||
    } else if (CurrentType->isSingleValueType()) {
 | 
						||
      return AggregateSize;
 | 
						||
    } else {
 | 
						||
      return None;
 | 
						||
    }
 | 
						||
  } while (true);
 | 
						||
}
 | 
						||
 | 
						||
static bool findBuildAggregate_rec(Instruction *LastInsertInst,
 | 
						||
                                   TargetTransformInfo *TTI,
 | 
						||
                                   SmallVectorImpl<Value *> &BuildVectorOpds,
 | 
						||
                                   SmallVectorImpl<Value *> &InsertElts,
 | 
						||
                                   unsigned OperandOffset) {
 | 
						||
  do {
 | 
						||
    Value *InsertedOperand = LastInsertInst->getOperand(1);
 | 
						||
    Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
 | 
						||
    if (!OperandIndex)
 | 
						||
      return false;
 | 
						||
    if (isa<InsertElementInst>(InsertedOperand) ||
 | 
						||
        isa<InsertValueInst>(InsertedOperand)) {
 | 
						||
      if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
 | 
						||
                                  BuildVectorOpds, InsertElts, *OperandIndex))
 | 
						||
        return false;
 | 
						||
    } else {
 | 
						||
      BuildVectorOpds[*OperandIndex] = InsertedOperand;
 | 
						||
      InsertElts[*OperandIndex] = LastInsertInst;
 | 
						||
    }
 | 
						||
    LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
 | 
						||
  } while (LastInsertInst != nullptr &&
 | 
						||
           (isa<InsertValueInst>(LastInsertInst) ||
 | 
						||
            isa<InsertElementInst>(LastInsertInst)) &&
 | 
						||
           LastInsertInst->hasOneUse());
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// Recognize construction of vectors like
 | 
						||
///  %ra = insertelement <4 x float> poison, float %s0, i32 0
 | 
						||
///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
 | 
						||
///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
 | 
						||
///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
 | 
						||
///  starting from the last insertelement or insertvalue instruction.
 | 
						||
///
 | 
						||
/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
 | 
						||
/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
 | 
						||
/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
 | 
						||
///
 | 
						||
/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
 | 
						||
///
 | 
						||
/// \return true if it matches.
 | 
						||
static bool findBuildAggregate(Instruction *LastInsertInst,
 | 
						||
                               TargetTransformInfo *TTI,
 | 
						||
                               SmallVectorImpl<Value *> &BuildVectorOpds,
 | 
						||
                               SmallVectorImpl<Value *> &InsertElts) {
 | 
						||
 | 
						||
  assert((isa<InsertElementInst>(LastInsertInst) ||
 | 
						||
          isa<InsertValueInst>(LastInsertInst)) &&
 | 
						||
         "Expected insertelement or insertvalue instruction!");
 | 
						||
 | 
						||
  assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
 | 
						||
         "Expected empty result vectors!");
 | 
						||
 | 
						||
  Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
 | 
						||
  if (!AggregateSize)
 | 
						||
    return false;
 | 
						||
  BuildVectorOpds.resize(*AggregateSize);
 | 
						||
  InsertElts.resize(*AggregateSize);
 | 
						||
 | 
						||
  if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
 | 
						||
                             0)) {
 | 
						||
    llvm::erase_value(BuildVectorOpds, nullptr);
 | 
						||
    llvm::erase_value(InsertElts, nullptr);
 | 
						||
    if (BuildVectorOpds.size() >= 2)
 | 
						||
      return true;
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
/// Try and get a reduction value from a phi node.
 | 
						||
///
 | 
						||
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
 | 
						||
/// if they come from either \p ParentBB or a containing loop latch.
 | 
						||
///
 | 
						||
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
 | 
						||
/// if not possible.
 | 
						||
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
 | 
						||
                                BasicBlock *ParentBB, LoopInfo *LI) {
 | 
						||
  // There are situations where the reduction value is not dominated by the
 | 
						||
  // reduction phi. Vectorizing such cases has been reported to cause
 | 
						||
  // miscompiles. See PR25787.
 | 
						||
  auto DominatedReduxValue = [&](Value *R) {
 | 
						||
    return isa<Instruction>(R) &&
 | 
						||
           DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
 | 
						||
  };
 | 
						||
 | 
						||
  Value *Rdx = nullptr;
 | 
						||
 | 
						||
  // Return the incoming value if it comes from the same BB as the phi node.
 | 
						||
  if (P->getIncomingBlock(0) == ParentBB) {
 | 
						||
    Rdx = P->getIncomingValue(0);
 | 
						||
  } else if (P->getIncomingBlock(1) == ParentBB) {
 | 
						||
    Rdx = P->getIncomingValue(1);
 | 
						||
  }
 | 
						||
 | 
						||
  if (Rdx && DominatedReduxValue(Rdx))
 | 
						||
    return Rdx;
 | 
						||
 | 
						||
  // Otherwise, check whether we have a loop latch to look at.
 | 
						||
  Loop *BBL = LI->getLoopFor(ParentBB);
 | 
						||
  if (!BBL)
 | 
						||
    return nullptr;
 | 
						||
  BasicBlock *BBLatch = BBL->getLoopLatch();
 | 
						||
  if (!BBLatch)
 | 
						||
    return nullptr;
 | 
						||
 | 
						||
  // There is a loop latch, return the incoming value if it comes from
 | 
						||
  // that. This reduction pattern occasionally turns up.
 | 
						||
  if (P->getIncomingBlock(0) == BBLatch) {
 | 
						||
    Rdx = P->getIncomingValue(0);
 | 
						||
  } else if (P->getIncomingBlock(1) == BBLatch) {
 | 
						||
    Rdx = P->getIncomingValue(1);
 | 
						||
  }
 | 
						||
 | 
						||
  if (Rdx && DominatedReduxValue(Rdx))
 | 
						||
    return Rdx;
 | 
						||
 | 
						||
  return nullptr;
 | 
						||
}
 | 
						||
 | 
						||
static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
 | 
						||
  if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
 | 
						||
    return true;
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
/// Attempt to reduce a horizontal reduction.
 | 
						||
/// If it is legal to match a horizontal reduction feeding the phi node \a P
 | 
						||
/// with reduction operators \a Root (or one of its operands) in a basic block
 | 
						||
/// \a BB, then check if it can be done. If horizontal reduction is not found
 | 
						||
/// and root instruction is a binary operation, vectorization of the operands is
 | 
						||
/// attempted.
 | 
						||
/// \returns true if a horizontal reduction was matched and reduced or operands
 | 
						||
/// of one of the binary instruction were vectorized.
 | 
						||
/// \returns false if a horizontal reduction was not matched (or not possible)
 | 
						||
/// or no vectorization of any binary operation feeding \a Root instruction was
 | 
						||
/// performed.
 | 
						||
static bool tryToVectorizeHorReductionOrInstOperands(
 | 
						||
    PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
 | 
						||
    TargetTransformInfo *TTI,
 | 
						||
    const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
 | 
						||
  if (!ShouldVectorizeHor)
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (!Root)
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (Root->getParent() != BB || isa<PHINode>(Root))
 | 
						||
    return false;
 | 
						||
  // Start analysis starting from Root instruction. If horizontal reduction is
 | 
						||
  // found, try to vectorize it. If it is not a horizontal reduction or
 | 
						||
  // vectorization is not possible or not effective, and currently analyzed
 | 
						||
  // instruction is a binary operation, try to vectorize the operands, using
 | 
						||
  // pre-order DFS traversal order. If the operands were not vectorized, repeat
 | 
						||
  // the same procedure considering each operand as a possible root of the
 | 
						||
  // horizontal reduction.
 | 
						||
  // Interrupt the process if the Root instruction itself was vectorized or all
 | 
						||
  // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
 | 
						||
  // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
 | 
						||
  // CmpInsts so we can skip extra attempts in
 | 
						||
  // tryToVectorizeHorReductionOrInstOperands and save compile time.
 | 
						||
  SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
 | 
						||
  SmallPtrSet<Value *, 8> VisitedInstrs;
 | 
						||
  bool Res = false;
 | 
						||
  while (!Stack.empty()) {
 | 
						||
    Instruction *Inst;
 | 
						||
    unsigned Level;
 | 
						||
    std::tie(Inst, Level) = Stack.pop_back_val();
 | 
						||
    // Do not try to analyze instruction that has already been vectorized.
 | 
						||
    // This may happen when we vectorize instruction operands on a previous
 | 
						||
    // iteration while stack was populated before that happened.
 | 
						||
    if (R.isDeleted(Inst))
 | 
						||
      continue;
 | 
						||
    Value *B0, *B1;
 | 
						||
    bool IsBinop = matchRdxBop(Inst, B0, B1);
 | 
						||
    bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
 | 
						||
    if (IsBinop || IsSelect) {
 | 
						||
      HorizontalReduction HorRdx;
 | 
						||
      if (HorRdx.matchAssociativeReduction(P, Inst)) {
 | 
						||
        if (HorRdx.tryToReduce(R, TTI)) {
 | 
						||
          Res = true;
 | 
						||
          // Set P to nullptr to avoid re-analysis of phi node in
 | 
						||
          // matchAssociativeReduction function unless this is the root node.
 | 
						||
          P = nullptr;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (P && IsBinop) {
 | 
						||
        Inst = dyn_cast<Instruction>(B0);
 | 
						||
        if (Inst == P)
 | 
						||
          Inst = dyn_cast<Instruction>(B1);
 | 
						||
        if (!Inst) {
 | 
						||
          // Set P to nullptr to avoid re-analysis of phi node in
 | 
						||
          // matchAssociativeReduction function unless this is the root node.
 | 
						||
          P = nullptr;
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    // Set P to nullptr to avoid re-analysis of phi node in
 | 
						||
    // matchAssociativeReduction function unless this is the root node.
 | 
						||
    P = nullptr;
 | 
						||
    // Do not try to vectorize CmpInst operands, this is done separately.
 | 
						||
    if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
 | 
						||
      Res = true;
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    // Try to vectorize operands.
 | 
						||
    // Continue analysis for the instruction from the same basic block only to
 | 
						||
    // save compile time.
 | 
						||
    if (++Level < RecursionMaxDepth)
 | 
						||
      for (auto *Op : Inst->operand_values())
 | 
						||
        if (VisitedInstrs.insert(Op).second)
 | 
						||
          if (auto *I = dyn_cast<Instruction>(Op))
 | 
						||
            // Do not try to vectorize CmpInst operands,  this is done
 | 
						||
            // separately.
 | 
						||
            if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
 | 
						||
                I->getParent() == BB)
 | 
						||
              Stack.emplace_back(I, Level);
 | 
						||
  }
 | 
						||
  return Res;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
 | 
						||
                                                 BasicBlock *BB, BoUpSLP &R,
 | 
						||
                                                 TargetTransformInfo *TTI) {
 | 
						||
  auto *I = dyn_cast_or_null<Instruction>(V);
 | 
						||
  if (!I)
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (!isa<BinaryOperator>(I))
 | 
						||
    P = nullptr;
 | 
						||
  // Try to match and vectorize a horizontal reduction.
 | 
						||
  auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
 | 
						||
    return tryToVectorize(I, R);
 | 
						||
  };
 | 
						||
  return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
 | 
						||
                                                  ExtraVectorization);
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
 | 
						||
                                                 BasicBlock *BB, BoUpSLP &R) {
 | 
						||
  const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						||
  if (!R.canMapToVector(IVI->getType(), DL))
 | 
						||
    return false;
 | 
						||
 | 
						||
  SmallVector<Value *, 16> BuildVectorOpds;
 | 
						||
  SmallVector<Value *, 16> BuildVectorInsts;
 | 
						||
  if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
 | 
						||
    return false;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
 | 
						||
  // Aggregate value is unlikely to be processed in vector register, we need to
 | 
						||
  // extract scalars into scalar registers, so NeedExtraction is set true.
 | 
						||
  return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/true);
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
 | 
						||
                                                   BasicBlock *BB, BoUpSLP &R) {
 | 
						||
  SmallVector<Value *, 16> BuildVectorInsts;
 | 
						||
  SmallVector<Value *, 16> BuildVectorOpds;
 | 
						||
  SmallVector<int> Mask;
 | 
						||
  if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
 | 
						||
      (llvm::all_of(BuildVectorOpds,
 | 
						||
                    [](Value *V) { return isa<ExtractElementInst>(V); }) &&
 | 
						||
       isShuffle(BuildVectorOpds, Mask)))
 | 
						||
    return false;
 | 
						||
 | 
						||
  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
 | 
						||
  return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeSimpleInstructions(
 | 
						||
    SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
 | 
						||
    bool AtTerminator) {
 | 
						||
  bool OpsChanged = false;
 | 
						||
  SmallVector<Instruction *, 4> PostponedCmps;
 | 
						||
  for (auto *I : reverse(Instructions)) {
 | 
						||
    if (R.isDeleted(I))
 | 
						||
      continue;
 | 
						||
    if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
 | 
						||
      OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
 | 
						||
    else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
 | 
						||
      OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
 | 
						||
    else if (isa<CmpInst>(I))
 | 
						||
      PostponedCmps.push_back(I);
 | 
						||
  }
 | 
						||
  if (AtTerminator) {
 | 
						||
    // Try to find reductions first.
 | 
						||
    for (Instruction *I : PostponedCmps) {
 | 
						||
      if (R.isDeleted(I))
 | 
						||
        continue;
 | 
						||
      for (Value *Op : I->operands())
 | 
						||
        OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
 | 
						||
    }
 | 
						||
    // Try to vectorize operands as vector bundles.
 | 
						||
    for (Instruction *I : PostponedCmps) {
 | 
						||
      if (R.isDeleted(I))
 | 
						||
        continue;
 | 
						||
      OpsChanged |= tryToVectorize(I, R);
 | 
						||
    }
 | 
						||
    Instructions.clear();
 | 
						||
  } else {
 | 
						||
    // Insert in reverse order since the PostponedCmps vector was filled in
 | 
						||
    // reverse order.
 | 
						||
    Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
 | 
						||
  }
 | 
						||
  return OpsChanged;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | 
						||
  bool Changed = false;
 | 
						||
  SmallVector<Value *, 4> Incoming;
 | 
						||
  SmallPtrSet<Value *, 16> VisitedInstrs;
 | 
						||
  // Maps phi nodes to the non-phi nodes found in the use tree for each phi
 | 
						||
  // node. Allows better to identify the chains that can be vectorized in the
 | 
						||
  // better way.
 | 
						||
  DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
 | 
						||
 | 
						||
  bool HaveVectorizedPhiNodes = true;
 | 
						||
  while (HaveVectorizedPhiNodes) {
 | 
						||
    HaveVectorizedPhiNodes = false;
 | 
						||
 | 
						||
    // Collect the incoming values from the PHIs.
 | 
						||
    Incoming.clear();
 | 
						||
    for (Instruction &I : *BB) {
 | 
						||
      PHINode *P = dyn_cast<PHINode>(&I);
 | 
						||
      if (!P)
 | 
						||
        break;
 | 
						||
 | 
						||
      // No need to analyze deleted, vectorized and non-vectorizable
 | 
						||
      // instructions.
 | 
						||
      if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
 | 
						||
          isValidElementType(P->getType()))
 | 
						||
        Incoming.push_back(P);
 | 
						||
    }
 | 
						||
 | 
						||
    // Find the corresponding non-phi nodes for better matching when trying to
 | 
						||
    // build the tree.
 | 
						||
    for (Value *V : Incoming) {
 | 
						||
      SmallVectorImpl<Value *> &Opcodes =
 | 
						||
          PHIToOpcodes.try_emplace(V).first->getSecond();
 | 
						||
      if (!Opcodes.empty())
 | 
						||
        continue;
 | 
						||
      SmallVector<Value *, 4> Nodes(1, V);
 | 
						||
      SmallPtrSet<Value *, 4> Visited;
 | 
						||
      while (!Nodes.empty()) {
 | 
						||
        auto *PHI = cast<PHINode>(Nodes.pop_back_val());
 | 
						||
        if (!Visited.insert(PHI).second)
 | 
						||
          continue;
 | 
						||
        for (Value *V : PHI->incoming_values()) {
 | 
						||
          if (auto *PHI1 = dyn_cast<PHINode>((V))) {
 | 
						||
            Nodes.push_back(PHI1);
 | 
						||
            continue;
 | 
						||
          }
 | 
						||
          Opcodes.emplace_back(V);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // Sort by type, parent, operands.
 | 
						||
    stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) {
 | 
						||
      assert(isValidElementType(V1->getType()) &&
 | 
						||
             isValidElementType(V2->getType()) &&
 | 
						||
             "Expected vectorizable types only.");
 | 
						||
      // It is fine to compare type IDs here, since we expect only vectorizable
 | 
						||
      // types, like ints, floats and pointers, we don't care about other type.
 | 
						||
      if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
 | 
						||
        return true;
 | 
						||
      if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
 | 
						||
        return false;
 | 
						||
      ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
 | 
						||
      ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
 | 
						||
      if (Opcodes1.size() < Opcodes2.size())
 | 
						||
        return true;
 | 
						||
      if (Opcodes1.size() > Opcodes2.size())
 | 
						||
        return false;
 | 
						||
      for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
 | 
						||
        // Undefs are compatible with any other value.
 | 
						||
        if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
 | 
						||
          continue;
 | 
						||
        if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
 | 
						||
          if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
 | 
						||
            DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
 | 
						||
            DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
 | 
						||
            if (!NodeI1)
 | 
						||
              return NodeI2 != nullptr;
 | 
						||
            if (!NodeI2)
 | 
						||
              return false;
 | 
						||
            assert((NodeI1 == NodeI2) ==
 | 
						||
                       (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
 | 
						||
                   "Different nodes should have different DFS numbers");
 | 
						||
            if (NodeI1 != NodeI2)
 | 
						||
              return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
 | 
						||
            InstructionsState S = getSameOpcode({I1, I2});
 | 
						||
            if (S.getOpcode())
 | 
						||
              continue;
 | 
						||
            return I1->getOpcode() < I2->getOpcode();
 | 
						||
          }
 | 
						||
        if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
 | 
						||
          continue;
 | 
						||
        if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
 | 
						||
          return true;
 | 
						||
        if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
 | 
						||
          return false;
 | 
						||
      }
 | 
						||
      return false;
 | 
						||
    });
 | 
						||
 | 
						||
    auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
 | 
						||
      if (V1 == V2)
 | 
						||
        return true;
 | 
						||
      if (V1->getType() != V2->getType())
 | 
						||
        return false;
 | 
						||
      ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
 | 
						||
      ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
 | 
						||
      if (Opcodes1.size() != Opcodes2.size())
 | 
						||
        return false;
 | 
						||
      for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
 | 
						||
        // Undefs are compatible with any other value.
 | 
						||
        if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
 | 
						||
          continue;
 | 
						||
        if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
 | 
						||
          if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
 | 
						||
            if (I1->getParent() != I2->getParent())
 | 
						||
              return false;
 | 
						||
            InstructionsState S = getSameOpcode({I1, I2});
 | 
						||
            if (S.getOpcode())
 | 
						||
              continue;
 | 
						||
            return false;
 | 
						||
          }
 | 
						||
        if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
 | 
						||
          continue;
 | 
						||
        if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
 | 
						||
          return false;
 | 
						||
      }
 | 
						||
      return true;
 | 
						||
    };
 | 
						||
 | 
						||
    // Try to vectorize elements base on their type.
 | 
						||
    SmallVector<Value *, 4> Candidates;
 | 
						||
    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
 | 
						||
                                           E = Incoming.end();
 | 
						||
         IncIt != E;) {
 | 
						||
 | 
						||
      // Look for the next elements with the same type, parent and operand
 | 
						||
      // kinds.
 | 
						||
      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
 | 
						||
      while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
 | 
						||
        VisitedInstrs.insert(*SameTypeIt);
 | 
						||
        ++SameTypeIt;
 | 
						||
      }
 | 
						||
 | 
						||
      // Try to vectorize them.
 | 
						||
      unsigned NumElts = (SameTypeIt - IncIt);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
 | 
						||
                        << NumElts << ")\n");
 | 
						||
      // The order in which the phi nodes appear in the program does not matter.
 | 
						||
      // So allow tryToVectorizeList to reorder them if it is beneficial. This
 | 
						||
      // is done when there are exactly two elements since tryToVectorizeList
 | 
						||
      // asserts that there are only two values when AllowReorder is true.
 | 
						||
      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
 | 
						||
                                            /*AllowReorder=*/true)) {
 | 
						||
        // Success start over because instructions might have been changed.
 | 
						||
        HaveVectorizedPhiNodes = true;
 | 
						||
        Changed = true;
 | 
						||
      } else if (NumElts < 4 &&
 | 
						||
                 (Candidates.empty() ||
 | 
						||
                  Candidates.front()->getType() == (*IncIt)->getType())) {
 | 
						||
        Candidates.append(IncIt, std::next(IncIt, NumElts));
 | 
						||
      }
 | 
						||
      // Final attempt to vectorize phis with the same types.
 | 
						||
      if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
 | 
						||
        if (Candidates.size() > 1 &&
 | 
						||
            tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
 | 
						||
          // Success start over because instructions might have been changed.
 | 
						||
          HaveVectorizedPhiNodes = true;
 | 
						||
          Changed = true;
 | 
						||
        }
 | 
						||
        Candidates.clear();
 | 
						||
      }
 | 
						||
 | 
						||
      // Start over at the next instruction of a different type (or the end).
 | 
						||
      IncIt = SameTypeIt;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  VisitedInstrs.clear();
 | 
						||
 | 
						||
  SmallVector<Instruction *, 8> PostProcessInstructions;
 | 
						||
  SmallDenseSet<Instruction *, 4> KeyNodes;
 | 
						||
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | 
						||
    // Skip instructions with scalable type. The num of elements is unknown at
 | 
						||
    // compile-time for scalable type.
 | 
						||
    if (isa<ScalableVectorType>(it->getType()))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Skip instructions marked for the deletion.
 | 
						||
    if (R.isDeleted(&*it))
 | 
						||
      continue;
 | 
						||
    // We may go through BB multiple times so skip the one we have checked.
 | 
						||
    if (!VisitedInstrs.insert(&*it).second) {
 | 
						||
      if (it->use_empty() && KeyNodes.contains(&*it) &&
 | 
						||
          vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
 | 
						||
                                      it->isTerminator())) {
 | 
						||
        // We would like to start over since some instructions are deleted
 | 
						||
        // and the iterator may become invalid value.
 | 
						||
        Changed = true;
 | 
						||
        it = BB->begin();
 | 
						||
        e = BB->end();
 | 
						||
      }
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    if (isa<DbgInfoIntrinsic>(it))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // Try to vectorize reductions that use PHINodes.
 | 
						||
    if (PHINode *P = dyn_cast<PHINode>(it)) {
 | 
						||
      // Check that the PHI is a reduction PHI.
 | 
						||
      if (P->getNumIncomingValues() == 2) {
 | 
						||
        // Try to match and vectorize a horizontal reduction.
 | 
						||
        if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
 | 
						||
                                     TTI)) {
 | 
						||
          Changed = true;
 | 
						||
          it = BB->begin();
 | 
						||
          e = BB->end();
 | 
						||
          continue;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      // Try to vectorize the incoming values of the PHI, to catch reductions
 | 
						||
      // that feed into PHIs.
 | 
						||
      for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
 | 
						||
        // Skip if the incoming block is the current BB for now. Also, bypass
 | 
						||
        // unreachable IR for efficiency and to avoid crashing.
 | 
						||
        // TODO: Collect the skipped incoming values and try to vectorize them
 | 
						||
        // after processing BB.
 | 
						||
        if (BB == P->getIncomingBlock(I) ||
 | 
						||
            !DT->isReachableFromEntry(P->getIncomingBlock(I)))
 | 
						||
          continue;
 | 
						||
 | 
						||
        Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
 | 
						||
                                            P->getIncomingBlock(I), R, TTI);
 | 
						||
      }
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    // Ran into an instruction without users, like terminator, or function call
 | 
						||
    // with ignored return value, store. Ignore unused instructions (basing on
 | 
						||
    // instruction type, except for CallInst and InvokeInst).
 | 
						||
    if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
 | 
						||
                            isa<InvokeInst>(it))) {
 | 
						||
      KeyNodes.insert(&*it);
 | 
						||
      bool OpsChanged = false;
 | 
						||
      if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
 | 
						||
        for (auto *V : it->operand_values()) {
 | 
						||
          // Try to match and vectorize a horizontal reduction.
 | 
						||
          OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      // Start vectorization of post-process list of instructions from the
 | 
						||
      // top-tree instructions to try to vectorize as many instructions as
 | 
						||
      // possible.
 | 
						||
      OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
 | 
						||
                                                it->isTerminator());
 | 
						||
      if (OpsChanged) {
 | 
						||
        // We would like to start over since some instructions are deleted
 | 
						||
        // and the iterator may become invalid value.
 | 
						||
        Changed = true;
 | 
						||
        it = BB->begin();
 | 
						||
        e = BB->end();
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
 | 
						||
        isa<InsertValueInst>(it))
 | 
						||
      PostProcessInstructions.push_back(&*it);
 | 
						||
  }
 | 
						||
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
 | 
						||
  auto Changed = false;
 | 
						||
  for (auto &Entry : GEPs) {
 | 
						||
    // If the getelementptr list has fewer than two elements, there's nothing
 | 
						||
    // to do.
 | 
						||
    if (Entry.second.size() < 2)
 | 
						||
      continue;
 | 
						||
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
 | 
						||
                      << Entry.second.size() << ".\n");
 | 
						||
 | 
						||
    // Process the GEP list in chunks suitable for the target's supported
 | 
						||
    // vector size. If a vector register can't hold 1 element, we are done. We
 | 
						||
    // are trying to vectorize the index computations, so the maximum number of
 | 
						||
    // elements is based on the size of the index expression, rather than the
 | 
						||
    // size of the GEP itself (the target's pointer size).
 | 
						||
    unsigned MaxVecRegSize = R.getMaxVecRegSize();
 | 
						||
    unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
 | 
						||
    if (MaxVecRegSize < EltSize)
 | 
						||
      continue;
 | 
						||
 | 
						||
    unsigned MaxElts = MaxVecRegSize / EltSize;
 | 
						||
    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
 | 
						||
      auto Len = std::min<unsigned>(BE - BI, MaxElts);
 | 
						||
      ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
 | 
						||
 | 
						||
      // Initialize a set a candidate getelementptrs. Note that we use a
 | 
						||
      // SetVector here to preserve program order. If the index computations
 | 
						||
      // are vectorizable and begin with loads, we want to minimize the chance
 | 
						||
      // of having to reorder them later.
 | 
						||
      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
 | 
						||
 | 
						||
      // Some of the candidates may have already been vectorized after we
 | 
						||
      // initially collected them. If so, they are marked as deleted, so remove
 | 
						||
      // them from the set of candidates.
 | 
						||
      Candidates.remove_if(
 | 
						||
          [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
 | 
						||
 | 
						||
      // Remove from the set of candidates all pairs of getelementptrs with
 | 
						||
      // constant differences. Such getelementptrs are likely not good
 | 
						||
      // candidates for vectorization in a bottom-up phase since one can be
 | 
						||
      // computed from the other. We also ensure all candidate getelementptr
 | 
						||
      // indices are unique.
 | 
						||
      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
 | 
						||
        auto *GEPI = GEPList[I];
 | 
						||
        if (!Candidates.count(GEPI))
 | 
						||
          continue;
 | 
						||
        auto *SCEVI = SE->getSCEV(GEPList[I]);
 | 
						||
        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
 | 
						||
          auto *GEPJ = GEPList[J];
 | 
						||
          auto *SCEVJ = SE->getSCEV(GEPList[J]);
 | 
						||
          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
 | 
						||
            Candidates.remove(GEPI);
 | 
						||
            Candidates.remove(GEPJ);
 | 
						||
          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
 | 
						||
            Candidates.remove(GEPJ);
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // We break out of the above computation as soon as we know there are
 | 
						||
      // fewer than two candidates remaining.
 | 
						||
      if (Candidates.size() < 2)
 | 
						||
        continue;
 | 
						||
 | 
						||
      // Add the single, non-constant index of each candidate to the bundle. We
 | 
						||
      // ensured the indices met these constraints when we originally collected
 | 
						||
      // the getelementptrs.
 | 
						||
      SmallVector<Value *, 16> Bundle(Candidates.size());
 | 
						||
      auto BundleIndex = 0u;
 | 
						||
      for (auto *V : Candidates) {
 | 
						||
        auto *GEP = cast<GetElementPtrInst>(V);
 | 
						||
        auto *GEPIdx = GEP->idx_begin()->get();
 | 
						||
        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
 | 
						||
        Bundle[BundleIndex++] = GEPIdx;
 | 
						||
      }
 | 
						||
 | 
						||
      // Try and vectorize the indices. We are currently only interested in
 | 
						||
      // gather-like cases of the form:
 | 
						||
      //
 | 
						||
      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
 | 
						||
      //
 | 
						||
      // where the loads of "a", the loads of "b", and the subtractions can be
 | 
						||
      // performed in parallel. It's likely that detecting this pattern in a
 | 
						||
      // bottom-up phase will be simpler and less costly than building a
 | 
						||
      // full-blown top-down phase beginning at the consecutive loads.
 | 
						||
      Changed |= tryToVectorizeList(Bundle, R);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
 | 
						||
  bool Changed = false;
 | 
						||
  // Sort by type, base pointers and values operand. Value operands must be
 | 
						||
  // compatible (have the same opcode, same parent), otherwise it is
 | 
						||
  // definitely not profitable to try to vectorize them.
 | 
						||
  auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
 | 
						||
    if (V->getPointerOperandType()->getTypeID() <
 | 
						||
        V2->getPointerOperandType()->getTypeID())
 | 
						||
      return true;
 | 
						||
    if (V->getPointerOperandType()->getTypeID() >
 | 
						||
        V2->getPointerOperandType()->getTypeID())
 | 
						||
      return false;
 | 
						||
    // UndefValues are compatible with all other values.
 | 
						||
    if (isa<UndefValue>(V->getValueOperand()) ||
 | 
						||
        isa<UndefValue>(V2->getValueOperand()))
 | 
						||
      return false;
 | 
						||
    if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
 | 
						||
      if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
 | 
						||
        DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
 | 
						||
            DT->getNode(I1->getParent());
 | 
						||
        DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
 | 
						||
            DT->getNode(I2->getParent());
 | 
						||
        assert(NodeI1 && "Should only process reachable instructions");
 | 
						||
        assert(NodeI1 && "Should only process reachable instructions");
 | 
						||
        assert((NodeI1 == NodeI2) ==
 | 
						||
                   (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
 | 
						||
               "Different nodes should have different DFS numbers");
 | 
						||
        if (NodeI1 != NodeI2)
 | 
						||
          return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
 | 
						||
        InstructionsState S = getSameOpcode({I1, I2});
 | 
						||
        if (S.getOpcode())
 | 
						||
          return false;
 | 
						||
        return I1->getOpcode() < I2->getOpcode();
 | 
						||
      }
 | 
						||
    if (isa<Constant>(V->getValueOperand()) &&
 | 
						||
        isa<Constant>(V2->getValueOperand()))
 | 
						||
      return false;
 | 
						||
    return V->getValueOperand()->getValueID() <
 | 
						||
           V2->getValueOperand()->getValueID();
 | 
						||
  };
 | 
						||
 | 
						||
  auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
 | 
						||
    if (V1 == V2)
 | 
						||
      return true;
 | 
						||
    if (V1->getPointerOperandType() != V2->getPointerOperandType())
 | 
						||
      return false;
 | 
						||
    // Undefs are compatible with any other value.
 | 
						||
    if (isa<UndefValue>(V1->getValueOperand()) ||
 | 
						||
        isa<UndefValue>(V2->getValueOperand()))
 | 
						||
      return true;
 | 
						||
    if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
 | 
						||
      if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
 | 
						||
        if (I1->getParent() != I2->getParent())
 | 
						||
          return false;
 | 
						||
        InstructionsState S = getSameOpcode({I1, I2});
 | 
						||
        return S.getOpcode() > 0;
 | 
						||
      }
 | 
						||
    if (isa<Constant>(V1->getValueOperand()) &&
 | 
						||
        isa<Constant>(V2->getValueOperand()))
 | 
						||
      return true;
 | 
						||
    return V1->getValueOperand()->getValueID() ==
 | 
						||
           V2->getValueOperand()->getValueID();
 | 
						||
  };
 | 
						||
 | 
						||
  // Attempt to sort and vectorize each of the store-groups.
 | 
						||
  for (auto &Pair : Stores) {
 | 
						||
    if (Pair.second.size() < 2)
 | 
						||
      continue;
 | 
						||
 | 
						||
    LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | 
						||
                      << Pair.second.size() << ".\n");
 | 
						||
 | 
						||
    stable_sort(Pair.second, StoreSorter);
 | 
						||
 | 
						||
    // Try to vectorize elements based on their compatibility.
 | 
						||
    for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(),
 | 
						||
                                         E = Pair.second.end();
 | 
						||
         IncIt != E;) {
 | 
						||
 | 
						||
      // Look for the next elements with the same type.
 | 
						||
      ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt;
 | 
						||
      Type *EltTy = (*IncIt)->getPointerOperand()->getType();
 | 
						||
 | 
						||
      while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt))
 | 
						||
        ++SameTypeIt;
 | 
						||
 | 
						||
      // Try to vectorize them.
 | 
						||
      unsigned NumElts = (SameTypeIt - IncIt);
 | 
						||
      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores ("
 | 
						||
                        << NumElts << ")\n");
 | 
						||
      if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() &&
 | 
						||
          vectorizeStores(makeArrayRef(IncIt, NumElts), R)) {
 | 
						||
        // Success start over because instructions might have been changed.
 | 
						||
        Changed = true;
 | 
						||
      }
 | 
						||
 | 
						||
      // Start over at the next instruction of a different type (or the end).
 | 
						||
      IncIt = SameTypeIt;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return Changed;
 | 
						||
}
 | 
						||
 | 
						||
char SLPVectorizer::ID = 0;
 | 
						||
 | 
						||
static const char lv_name[] = "SLP Vectorizer";
 | 
						||
 | 
						||
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						||
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
 | 
						||
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						||
 | 
						||
Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
 |