1465 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1465 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Perform peephole optimizations on the machine code:
 | 
						|
//
 | 
						|
// - Optimize Extensions
 | 
						|
//
 | 
						|
//     Optimization of sign / zero extension instructions. It may be extended to
 | 
						|
//     handle other instructions with similar properties.
 | 
						|
//
 | 
						|
//     On some targets, some instructions, e.g. X86 sign / zero extension, may
 | 
						|
//     leave the source value in the lower part of the result. This optimization
 | 
						|
//     will replace some uses of the pre-extension value with uses of the
 | 
						|
//     sub-register of the results.
 | 
						|
//
 | 
						|
// - Optimize Comparisons
 | 
						|
//
 | 
						|
//     Optimization of comparison instructions. For instance, in this code:
 | 
						|
//
 | 
						|
//       sub r1, 1
 | 
						|
//       cmp r1, 0
 | 
						|
//       bz  L1
 | 
						|
//
 | 
						|
//     If the "sub" instruction all ready sets (or could be modified to set) the
 | 
						|
//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
 | 
						|
//     eliminate the "cmp" instruction.
 | 
						|
//
 | 
						|
//     Another instance, in this code:
 | 
						|
//
 | 
						|
//       sub r1, r3 | sub r1, imm
 | 
						|
//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
 | 
						|
//       bge L1
 | 
						|
//
 | 
						|
//     If the branch instruction can use flag from "sub", then we can replace
 | 
						|
//     "sub" with "subs" and eliminate the "cmp" instruction.
 | 
						|
//
 | 
						|
// - Optimize Loads:
 | 
						|
//
 | 
						|
//     Loads that can be folded into a later instruction. A load is foldable
 | 
						|
//     if it loads to virtual registers and the virtual register defined has 
 | 
						|
//     a single use.
 | 
						|
//
 | 
						|
// - Optimize Copies and Bitcast (more generally, target specific copies):
 | 
						|
//
 | 
						|
//     Rewrite copies and bitcasts to avoid cross register bank copies
 | 
						|
//     when possible.
 | 
						|
//     E.g., Consider the following example, where capital and lower
 | 
						|
//     letters denote different register file:
 | 
						|
//     b = copy A <-- cross-bank copy
 | 
						|
//     C = copy b <-- cross-bank copy
 | 
						|
//   =>
 | 
						|
//     b = copy A <-- cross-bank copy
 | 
						|
//     C = copy A <-- same-bank copy
 | 
						|
//
 | 
						|
//     E.g., for bitcast:
 | 
						|
//     b = bitcast A <-- cross-bank copy
 | 
						|
//     C = bitcast b <-- cross-bank copy
 | 
						|
//   =>
 | 
						|
//     b = bitcast A <-- cross-bank copy
 | 
						|
//     C = copy A    <-- same-bank copy
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <utility>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "peephole-opt"
 | 
						|
 | 
						|
// Optimize Extensions
 | 
						|
static cl::opt<bool>
 | 
						|
Aggressive("aggressive-ext-opt", cl::Hidden,
 | 
						|
           cl::desc("Aggressive extension optimization"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
 | 
						|
                cl::desc("Disable the peephole optimizer"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
 | 
						|
                  cl::desc("Disable advanced copy optimization"));
 | 
						|
 | 
						|
STATISTIC(NumReuse,      "Number of extension results reused");
 | 
						|
STATISTIC(NumCmps,       "Number of compares eliminated");
 | 
						|
STATISTIC(NumImmFold,    "Number of move immediate folded");
 | 
						|
STATISTIC(NumLoadFold,   "Number of loads folded");
 | 
						|
STATISTIC(NumSelects,    "Number of selects optimized");
 | 
						|
STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
 | 
						|
STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class PeepholeOptimizer : public MachineFunctionPass {
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    MachineRegisterInfo   *MRI;
 | 
						|
    MachineDominatorTree  *DT;  // Machine dominator tree
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
    PeepholeOptimizer() : MachineFunctionPass(ID) {
 | 
						|
      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
      if (Aggressive) {
 | 
						|
        AU.addRequired<MachineDominatorTree>();
 | 
						|
        AU.addPreserved<MachineDominatorTree>();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
 | 
						|
    bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | 
						|
                          SmallPtrSetImpl<MachineInstr*> &LocalMIs);
 | 
						|
    bool optimizeSelect(MachineInstr *MI,
 | 
						|
                        SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | 
						|
    bool optimizeCondBranch(MachineInstr *MI);
 | 
						|
    bool optimizeCopyOrBitcast(MachineInstr *MI);
 | 
						|
    bool optimizeCoalescableCopy(MachineInstr *MI);
 | 
						|
    bool optimizeUncoalescableCopy(MachineInstr *MI,
 | 
						|
                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | 
						|
    bool findNextSource(unsigned &Reg, unsigned &SubReg);
 | 
						|
    bool isMoveImmediate(MachineInstr *MI,
 | 
						|
                         SmallSet<unsigned, 4> &ImmDefRegs,
 | 
						|
                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | 
						|
    bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
 | 
						|
                       SmallSet<unsigned, 4> &ImmDefRegs,
 | 
						|
                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | 
						|
    bool isLoadFoldable(MachineInstr *MI,
 | 
						|
                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
 | 
						|
 | 
						|
    /// \brief Check whether \p MI is understood by the register coalescer
 | 
						|
    /// but may require some rewriting.
 | 
						|
    bool isCoalescableCopy(const MachineInstr &MI) {
 | 
						|
      // SubregToRegs are not interesting, because they are already register
 | 
						|
      // coalescer friendly.
 | 
						|
      return MI.isCopy() || (!DisableAdvCopyOpt &&
 | 
						|
                             (MI.isRegSequence() || MI.isInsertSubreg() ||
 | 
						|
                              MI.isExtractSubreg()));
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Check whether \p MI is a copy like instruction that is
 | 
						|
    /// not recognized by the register coalescer.
 | 
						|
    bool isUncoalescableCopy(const MachineInstr &MI) {
 | 
						|
      return MI.isBitcast() ||
 | 
						|
             (!DisableAdvCopyOpt &&
 | 
						|
              (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
 | 
						|
               MI.isExtractSubregLike()));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Helper class to track the possible sources of a value defined by
 | 
						|
  /// a (chain of) copy related instructions.
 | 
						|
  /// Given a definition (instruction and definition index), this class
 | 
						|
  /// follows the use-def chain to find successive suitable sources.
 | 
						|
  /// The given source can be used to rewrite the definition into
 | 
						|
  /// def = COPY src.
 | 
						|
  ///
 | 
						|
  /// For instance, let us consider the following snippet:
 | 
						|
  /// v0 =
 | 
						|
  /// v2 = INSERT_SUBREG v1, v0, sub0
 | 
						|
  /// def = COPY v2.sub0
 | 
						|
  ///
 | 
						|
  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
 | 
						|
  /// suitable sources:
 | 
						|
  /// v2.sub0 and v0.
 | 
						|
  /// Then, def can be rewritten into def = COPY v0.
 | 
						|
  class ValueTracker {
 | 
						|
  private:
 | 
						|
    /// The current point into the use-def chain.
 | 
						|
    const MachineInstr *Def;
 | 
						|
    /// The index of the definition in Def.
 | 
						|
    unsigned DefIdx;
 | 
						|
    /// The sub register index of the definition.
 | 
						|
    unsigned DefSubReg;
 | 
						|
    /// The register where the value can be found.
 | 
						|
    unsigned Reg;
 | 
						|
    /// Specifiy whether or not the value tracking looks through
 | 
						|
    /// complex instructions. When this is false, the value tracker
 | 
						|
    /// bails on everything that is not a copy or a bitcast.
 | 
						|
    ///
 | 
						|
    /// Note: This could have been implemented as a specialized version of
 | 
						|
    /// the ValueTracker class but that would have complicated the code of
 | 
						|
    /// the users of this class.
 | 
						|
    bool UseAdvancedTracking;
 | 
						|
    /// MachineRegisterInfo used to perform tracking.
 | 
						|
    const MachineRegisterInfo &MRI;
 | 
						|
    /// Optional TargetInstrInfo used to perform some complex
 | 
						|
    /// tracking.
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
 | 
						|
    /// \brief Dispatcher to the right underlying implementation of
 | 
						|
    /// getNextSource.
 | 
						|
    bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for Copy instructions.
 | 
						|
    bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for Bitcast instructions.
 | 
						|
    bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for RegSequence
 | 
						|
    /// instructions.
 | 
						|
    bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for InsertSubreg
 | 
						|
    /// instructions.
 | 
						|
    bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for ExtractSubreg
 | 
						|
    /// instructions.
 | 
						|
    bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
    /// \brief Specialized version of getNextSource for SubregToReg
 | 
						|
    /// instructions.
 | 
						|
    bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Create a ValueTracker instance for the value defined by \p Reg.
 | 
						|
    /// \p DefSubReg represents the sub register index the value tracker will
 | 
						|
    /// track. It does not need to match the sub register index used in the
 | 
						|
    /// definition of \p Reg.
 | 
						|
    /// \p UseAdvancedTracking specifies whether or not the value tracker looks
 | 
						|
    /// through complex instructions. By default (false), it handles only copy
 | 
						|
    /// and bitcast instructions.
 | 
						|
    /// If \p Reg is a physical register, a value tracker constructed with
 | 
						|
    /// this constructor will not find any alternative source.
 | 
						|
    /// Indeed, when \p Reg is a physical register that constructor does not
 | 
						|
    /// know which definition of \p Reg it should track.
 | 
						|
    /// Use the next constructor to track a physical register.
 | 
						|
    ValueTracker(unsigned Reg, unsigned DefSubReg,
 | 
						|
                 const MachineRegisterInfo &MRI,
 | 
						|
                 bool UseAdvancedTracking = false,
 | 
						|
                 const TargetInstrInfo *TII = nullptr)
 | 
						|
        : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
 | 
						|
          UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
 | 
						|
      if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
        Def = MRI.getVRegDef(Reg);
 | 
						|
        DefIdx = MRI.def_begin(Reg).getOperandNo();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Create a ValueTracker instance for the value defined by
 | 
						|
    /// the pair \p MI, \p DefIdx.
 | 
						|
    /// Unlike the other constructor, the value tracker produced by this one
 | 
						|
    /// may be able to find a new source when the definition is a physical
 | 
						|
    /// register.
 | 
						|
    /// This could be useful to rewrite target specific instructions into
 | 
						|
    /// generic copy instructions.
 | 
						|
    ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
 | 
						|
                 const MachineRegisterInfo &MRI,
 | 
						|
                 bool UseAdvancedTracking = false,
 | 
						|
                 const TargetInstrInfo *TII = nullptr)
 | 
						|
        : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
 | 
						|
          UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
 | 
						|
      assert(DefIdx < Def->getDesc().getNumDefs() &&
 | 
						|
             Def->getOperand(DefIdx).isReg() && "Invalid definition");
 | 
						|
      Reg = Def->getOperand(DefIdx).getReg();
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Following the use-def chain, get the next available source
 | 
						|
    /// for the tracked value.
 | 
						|
    /// When the returned value is not nullptr, \p SrcReg gives the register
 | 
						|
    /// that contain the tracked value.
 | 
						|
    /// \note The sub register index returned in \p SrcSubReg must be used
 | 
						|
    /// on \p SrcReg to access the actual value.
 | 
						|
    /// \return Unless the returned value is nullptr (i.e., no source found),
 | 
						|
    /// \p SrcReg gives the register of the next source used in the returned
 | 
						|
    /// instruction and \p SrcSubReg the sub-register index to be used on that
 | 
						|
    /// source to get the tracked value. When nullptr is returned, no
 | 
						|
    /// alternative source has been found.
 | 
						|
    const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
 | 
						|
 | 
						|
    /// \brief Get the last register where the initial value can be found.
 | 
						|
    /// Initially this is the register of the definition.
 | 
						|
    /// Then, after each successful call to getNextSource, this is the
 | 
						|
    /// register of the last source.
 | 
						|
    unsigned getReg() const { return Reg; }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char PeepholeOptimizer::ID = 0;
 | 
						|
char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
 | 
						|
INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
 | 
						|
                "Peephole Optimizations", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
 | 
						|
                "Peephole Optimizations", false, false)
 | 
						|
 | 
						|
/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
 | 
						|
/// a single register and writes a single register and it does not modify the
 | 
						|
/// source, and if the source value is preserved as a sub-register of the
 | 
						|
/// result, then replace all reachable uses of the source with the subreg of the
 | 
						|
/// result.
 | 
						|
///
 | 
						|
/// Do not generate an EXTRACT that is used only in a debug use, as this changes
 | 
						|
/// the code. Since this code does not currently share EXTRACTs, just ignore all
 | 
						|
/// debug uses.
 | 
						|
bool PeepholeOptimizer::
 | 
						|
optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | 
						|
                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
 | 
						|
  unsigned SrcReg, DstReg, SubIdx;
 | 
						|
  if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
 | 
						|
      TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (MRI->hasOneNonDBGUse(SrcReg))
 | 
						|
    // No other uses.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure DstReg can get a register class that actually supports
 | 
						|
  // sub-registers. Don't change the class until we commit.
 | 
						|
  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
 | 
						|
  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
 | 
						|
  if (!DstRC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The ext instr may be operating on a sub-register of SrcReg as well.
 | 
						|
  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
 | 
						|
  // register.
 | 
						|
  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
 | 
						|
  // SrcReg:SubIdx should be replaced.
 | 
						|
  bool UseSrcSubIdx =
 | 
						|
      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
 | 
						|
 | 
						|
  // The source has other uses. See if we can replace the other uses with use of
 | 
						|
  // the result of the extension.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
 | 
						|
  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | 
						|
    ReachedBBs.insert(UI.getParent());
 | 
						|
 | 
						|
  // Uses that are in the same BB of uses of the result of the instruction.
 | 
						|
  SmallVector<MachineOperand*, 8> Uses;
 | 
						|
 | 
						|
  // Uses that the result of the instruction can reach.
 | 
						|
  SmallVector<MachineOperand*, 8> ExtendedUses;
 | 
						|
 | 
						|
  bool ExtendLife = true;
 | 
						|
  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
 | 
						|
    MachineInstr *UseMI = UseMO.getParent();
 | 
						|
    if (UseMI == MI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (UseMI->isPHI()) {
 | 
						|
      ExtendLife = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only accept uses of SrcReg:SubIdx.
 | 
						|
    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // It's an error to translate this:
 | 
						|
    //
 | 
						|
    //    %reg1025 = <sext> %reg1024
 | 
						|
    //     ...
 | 
						|
    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
 | 
						|
    //
 | 
						|
    // into this:
 | 
						|
    //
 | 
						|
    //    %reg1025 = <sext> %reg1024
 | 
						|
    //     ...
 | 
						|
    //    %reg1027 = COPY %reg1025:4
 | 
						|
    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
 | 
						|
    //
 | 
						|
    // The problem here is that SUBREG_TO_REG is there to assert that an
 | 
						|
    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
 | 
						|
    // the COPY here, it will give us the value after the <sext>, not the
 | 
						|
    // original value of %reg1024 before <sext>.
 | 
						|
    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock *UseMBB = UseMI->getParent();
 | 
						|
    if (UseMBB == MBB) {
 | 
						|
      // Local uses that come after the extension.
 | 
						|
      if (!LocalMIs.count(UseMI))
 | 
						|
        Uses.push_back(&UseMO);
 | 
						|
    } else if (ReachedBBs.count(UseMBB)) {
 | 
						|
      // Non-local uses where the result of the extension is used. Always
 | 
						|
      // replace these unless it's a PHI.
 | 
						|
      Uses.push_back(&UseMO);
 | 
						|
    } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
 | 
						|
      // We may want to extend the live range of the extension result in order
 | 
						|
      // to replace these uses.
 | 
						|
      ExtendedUses.push_back(&UseMO);
 | 
						|
    } else {
 | 
						|
      // Both will be live out of the def MBB anyway. Don't extend live range of
 | 
						|
      // the extension result.
 | 
						|
      ExtendLife = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ExtendLife && !ExtendedUses.empty())
 | 
						|
    // Extend the liveness of the extension result.
 | 
						|
    Uses.append(ExtendedUses.begin(), ExtendedUses.end());
 | 
						|
 | 
						|
  // Now replace all uses.
 | 
						|
  bool Changed = false;
 | 
						|
  if (!Uses.empty()) {
 | 
						|
    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
 | 
						|
 | 
						|
    // Look for PHI uses of the extended result, we don't want to extend the
 | 
						|
    // liveness of a PHI input. It breaks all kinds of assumptions down
 | 
						|
    // stream. A PHI use is expected to be the kill of its source values.
 | 
						|
    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | 
						|
      if (UI.isPHI())
 | 
						|
        PHIBBs.insert(UI.getParent());
 | 
						|
 | 
						|
    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | 
						|
    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | 
						|
      MachineOperand *UseMO = Uses[i];
 | 
						|
      MachineInstr *UseMI = UseMO->getParent();
 | 
						|
      MachineBasicBlock *UseMBB = UseMI->getParent();
 | 
						|
      if (PHIBBs.count(UseMBB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // About to add uses of DstReg, clear DstReg's kill flags.
 | 
						|
      if (!Changed) {
 | 
						|
        MRI->clearKillFlags(DstReg);
 | 
						|
        MRI->constrainRegClass(DstReg, DstRC);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
 | 
						|
                                   TII->get(TargetOpcode::COPY), NewVR)
 | 
						|
        .addReg(DstReg, 0, SubIdx);
 | 
						|
      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
 | 
						|
      if (UseSrcSubIdx) {
 | 
						|
        Copy->getOperand(0).setSubReg(SubIdx);
 | 
						|
        Copy->getOperand(0).setIsUndef();
 | 
						|
      }
 | 
						|
      UseMO->setReg(NewVR);
 | 
						|
      ++NumReuse;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// optimizeCmpInstr - If the instruction is a compare and the previous
 | 
						|
/// instruction it's comparing against all ready sets (or could be modified to
 | 
						|
/// set) the same flag as the compare, then we can remove the comparison and use
 | 
						|
/// the flag from the previous instruction.
 | 
						|
bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
 | 
						|
                                         MachineBasicBlock *MBB) {
 | 
						|
  // If this instruction is a comparison against zero and isn't comparing a
 | 
						|
  // physical register, we can try to optimize it.
 | 
						|
  unsigned SrcReg, SrcReg2;
 | 
						|
  int CmpMask, CmpValue;
 | 
						|
  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
 | 
						|
      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
 | 
						|
      (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Attempt to optimize the comparison instruction.
 | 
						|
  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
 | 
						|
    ++NumCmps;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize a select instruction.
 | 
						|
bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
 | 
						|
                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | 
						|
  unsigned TrueOp = 0;
 | 
						|
  unsigned FalseOp = 0;
 | 
						|
  bool Optimizable = false;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
 | 
						|
    return false;
 | 
						|
  if (!Optimizable)
 | 
						|
    return false;
 | 
						|
  if (!TII->optimizeSelect(MI, LocalMIs))
 | 
						|
    return false;
 | 
						|
  MI->eraseFromParent();
 | 
						|
  ++NumSelects;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if a simpler conditional branch can be
 | 
						|
// generated
 | 
						|
bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
 | 
						|
  return TII->optimizeCondBranch(MI);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
 | 
						|
/// share the same register file.
 | 
						|
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
 | 
						|
                                  const TargetRegisterClass *DefRC,
 | 
						|
                                  unsigned DefSubReg,
 | 
						|
                                  const TargetRegisterClass *SrcRC,
 | 
						|
                                  unsigned SrcSubReg) {
 | 
						|
  // Same register class.
 | 
						|
  if (DefRC == SrcRC)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Both operands are sub registers. Check if they share a register class.
 | 
						|
  unsigned SrcIdx, DefIdx;
 | 
						|
  if (SrcSubReg && DefSubReg)
 | 
						|
    return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
 | 
						|
                                      SrcIdx, DefIdx) != nullptr;
 | 
						|
  // At most one of the register is a sub register, make it Src to avoid
 | 
						|
  // duplicating the test.
 | 
						|
  if (!SrcSubReg) {
 | 
						|
    std::swap(DefSubReg, SrcSubReg);
 | 
						|
    std::swap(DefRC, SrcRC);
 | 
						|
  }
 | 
						|
 | 
						|
  // One of the register is a sub register, check if we can get a superclass.
 | 
						|
  if (SrcSubReg)
 | 
						|
    return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
 | 
						|
  // Plain copy.
 | 
						|
  return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to find the next source that share the same register file
 | 
						|
/// for the value defined by \p Reg and \p SubReg.
 | 
						|
/// When true is returned, \p Reg and \p SubReg are updated with the
 | 
						|
/// register number and sub-register index of the new source.
 | 
						|
/// \return False if no alternative sources are available. True otherwise.
 | 
						|
bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
 | 
						|
  // Do not try to find a new source for a physical register.
 | 
						|
  // So far we do not have any motivating example for doing that.
 | 
						|
  // Thus, instead of maintaining untested code, we will revisit that if
 | 
						|
  // that changes at some point.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
 | 
						|
  unsigned DefSubReg = SubReg;
 | 
						|
 | 
						|
  unsigned Src;
 | 
						|
  unsigned SrcSubReg;
 | 
						|
  bool ShouldRewrite = false;
 | 
						|
 | 
						|
  // Follow the chain of copies until we reach the top of the use-def chain
 | 
						|
  // or find a more suitable source.
 | 
						|
  ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
 | 
						|
  do {
 | 
						|
    unsigned CopySrcReg, CopySrcSubReg;
 | 
						|
    if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
 | 
						|
      break;
 | 
						|
    Src = CopySrcReg;
 | 
						|
    SrcSubReg = CopySrcSubReg;
 | 
						|
 | 
						|
    // Do not extend the live-ranges of physical registers as they add
 | 
						|
    // constraints to the register allocator.
 | 
						|
    // Moreover, if we want to extend the live-range of a physical register,
 | 
						|
    // unlike SSA virtual register, we will have to check that they are not
 | 
						|
    // redefine before the related use.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Src))
 | 
						|
      break;
 | 
						|
 | 
						|
    const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
 | 
						|
 | 
						|
    // If this source does not incur a cross register bank copy, use it.
 | 
						|
    ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
 | 
						|
                                          SrcSubReg);
 | 
						|
  } while (!ShouldRewrite);
 | 
						|
 | 
						|
  // If we did not find a more suitable source, there is nothing to optimize.
 | 
						|
  if (!ShouldRewrite || Src == Reg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Reg = Src;
 | 
						|
  SubReg = SrcSubReg;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Helper class to rewrite the arguments of a copy-like instruction.
 | 
						|
class CopyRewriter {
 | 
						|
protected:
 | 
						|
  /// The copy-like instruction.
 | 
						|
  MachineInstr &CopyLike;
 | 
						|
  /// The index of the source being rewritten.
 | 
						|
  unsigned CurrentSrcIdx;
 | 
						|
 | 
						|
public:
 | 
						|
  CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
 | 
						|
 | 
						|
  virtual ~CopyRewriter() {}
 | 
						|
 | 
						|
  /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
 | 
						|
  /// the related value that it affects (TrackReg, TrackSubReg).
 | 
						|
  /// A source is considered rewritable if its register class and the
 | 
						|
  /// register class of the related TrackReg may not be register
 | 
						|
  /// coalescer friendly. In other words, given a copy-like instruction
 | 
						|
  /// not all the arguments may be returned at rewritable source, since
 | 
						|
  /// some arguments are none to be register coalescer friendly.
 | 
						|
  ///
 | 
						|
  /// Each call of this method moves the current source to the next
 | 
						|
  /// rewritable source.
 | 
						|
  /// For instance, let CopyLike be the instruction to rewrite.
 | 
						|
  /// CopyLike has one definition and one source:
 | 
						|
  /// dst.dstSubIdx = CopyLike src.srcSubIdx.
 | 
						|
  ///
 | 
						|
  /// The first call will give the first rewritable source, i.e.,
 | 
						|
  /// the only source this instruction has:
 | 
						|
  /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
 | 
						|
  /// This source defines the whole definition, i.e.,
 | 
						|
  /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
 | 
						|
  ///
 | 
						|
  /// The second and subsequent calls will return false, has there is only one
 | 
						|
  /// rewritable source.
 | 
						|
  ///
 | 
						|
  /// \return True if a rewritable source has been found, false otherwise.
 | 
						|
  /// The output arguments are valid if and only if true is returned.
 | 
						|
  virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | 
						|
                                       unsigned &TrackReg,
 | 
						|
                                       unsigned &TrackSubReg) {
 | 
						|
    // If CurrentSrcIdx == 1, this means this function has already been
 | 
						|
    // called once. CopyLike has one defintiion and one argument, thus,
 | 
						|
    // there is nothing else to rewrite.
 | 
						|
    if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
 | 
						|
      return false;
 | 
						|
    // This is the first call to getNextRewritableSource.
 | 
						|
    // Move the CurrentSrcIdx to remember that we made that call.
 | 
						|
    CurrentSrcIdx = 1;
 | 
						|
    // The rewritable source is the argument.
 | 
						|
    const MachineOperand &MOSrc = CopyLike.getOperand(1);
 | 
						|
    SrcReg = MOSrc.getReg();
 | 
						|
    SrcSubReg = MOSrc.getSubReg();
 | 
						|
    // What we track are the alternative sources of the definition.
 | 
						|
    const MachineOperand &MODef = CopyLike.getOperand(0);
 | 
						|
    TrackReg = MODef.getReg();
 | 
						|
    TrackSubReg = MODef.getSubReg();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
 | 
						|
  /// if possible.
 | 
						|
  /// \return True if the rewritting was possible, false otherwise.
 | 
						|
  virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
 | 
						|
    if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
 | 
						|
      return false;
 | 
						|
    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
 | 
						|
    MOSrc.setReg(NewReg);
 | 
						|
    MOSrc.setSubReg(NewSubReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Specialized rewriter for INSERT_SUBREG instruction.
 | 
						|
class InsertSubregRewriter : public CopyRewriter {
 | 
						|
public:
 | 
						|
  InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
 | 
						|
    assert(MI.isInsertSubreg() && "Invalid instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief See CopyRewriter::getNextRewritableSource.
 | 
						|
  /// Here CopyLike has the following form:
 | 
						|
  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
 | 
						|
  /// Src1 has the same register class has dst, hence, there is
 | 
						|
  /// nothing to rewrite.
 | 
						|
  /// Src2.src2SubIdx, may not be register coalescer friendly.
 | 
						|
  /// Therefore, the first call to this method returns:
 | 
						|
  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | 
						|
  /// (TrackReg, TrackSubReg) = (dst, subIdx).
 | 
						|
  ///
 | 
						|
  /// Subsequence calls will return false.
 | 
						|
  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | 
						|
                               unsigned &TrackReg,
 | 
						|
                               unsigned &TrackSubReg) override {
 | 
						|
    // If we already get the only source we can rewrite, return false.
 | 
						|
    if (CurrentSrcIdx == 2)
 | 
						|
      return false;
 | 
						|
    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
 | 
						|
    CurrentSrcIdx = 2;
 | 
						|
    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
 | 
						|
    SrcReg = MOInsertedReg.getReg();
 | 
						|
    SrcSubReg = MOInsertedReg.getSubReg();
 | 
						|
    const MachineOperand &MODef = CopyLike.getOperand(0);
 | 
						|
 | 
						|
    // We want to track something that is compatible with the
 | 
						|
    // partial definition.
 | 
						|
    TrackReg = MODef.getReg();
 | 
						|
    if (MODef.getSubReg())
 | 
						|
      // Bails if we have to compose sub-register indices.
 | 
						|
      return false;
 | 
						|
    TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | 
						|
    if (CurrentSrcIdx != 2)
 | 
						|
      return false;
 | 
						|
    // We are rewriting the inserted reg.
 | 
						|
    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | 
						|
    MO.setReg(NewReg);
 | 
						|
    MO.setSubReg(NewSubReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
 | 
						|
class ExtractSubregRewriter : public CopyRewriter {
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
 | 
						|
public:
 | 
						|
  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
 | 
						|
      : CopyRewriter(MI), TII(TII) {
 | 
						|
    assert(MI.isExtractSubreg() && "Invalid instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief See CopyRewriter::getNextRewritableSource.
 | 
						|
  /// Here CopyLike has the following form:
 | 
						|
  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
 | 
						|
  /// There is only one rewritable source: Src.subIdx,
 | 
						|
  /// which defines dst.dstSubIdx.
 | 
						|
  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | 
						|
                               unsigned &TrackReg,
 | 
						|
                               unsigned &TrackSubReg) override {
 | 
						|
    // If we already get the only source we can rewrite, return false.
 | 
						|
    if (CurrentSrcIdx == 1)
 | 
						|
      return false;
 | 
						|
    // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
 | 
						|
    CurrentSrcIdx = 1;
 | 
						|
    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
 | 
						|
    SrcReg = MOExtractedReg.getReg();
 | 
						|
    // If we have to compose sub-register indices, bails out.
 | 
						|
    if (MOExtractedReg.getSubReg())
 | 
						|
      return false;
 | 
						|
 | 
						|
    SrcSubReg = CopyLike.getOperand(2).getImm();
 | 
						|
 | 
						|
    // We want to track something that is compatible with the definition.
 | 
						|
    const MachineOperand &MODef = CopyLike.getOperand(0);
 | 
						|
    TrackReg = MODef.getReg();
 | 
						|
    TrackSubReg = MODef.getSubReg();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | 
						|
    // The only source we can rewrite is the input register.
 | 
						|
    if (CurrentSrcIdx != 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
 | 
						|
 | 
						|
    // If we find a source that does not require to extract something,
 | 
						|
    // rewrite the operation with a copy.
 | 
						|
    if (!NewSubReg) {
 | 
						|
      // Move the current index to an invalid position.
 | 
						|
      // We do not want another call to this method to be able
 | 
						|
      // to do any change.
 | 
						|
      CurrentSrcIdx = -1;
 | 
						|
      // Rewrite the operation as a COPY.
 | 
						|
      // Get rid of the sub-register index.
 | 
						|
      CopyLike.RemoveOperand(2);
 | 
						|
      // Morph the operation into a COPY.
 | 
						|
      CopyLike.setDesc(TII.get(TargetOpcode::COPY));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Specialized rewriter for REG_SEQUENCE instruction.
 | 
						|
class RegSequenceRewriter : public CopyRewriter {
 | 
						|
public:
 | 
						|
  RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
 | 
						|
    assert(MI.isRegSequence() && "Invalid instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief See CopyRewriter::getNextRewritableSource.
 | 
						|
  /// Here CopyLike has the following form:
 | 
						|
  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
 | 
						|
  /// Each call will return a different source, walking all the available
 | 
						|
  /// source.
 | 
						|
  ///
 | 
						|
  /// The first call returns:
 | 
						|
  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
 | 
						|
  /// (TrackReg, TrackSubReg) = (dst, subIdx1).
 | 
						|
  ///
 | 
						|
  /// The second call returns:
 | 
						|
  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | 
						|
  /// (TrackReg, TrackSubReg) = (dst, subIdx2).
 | 
						|
  ///
 | 
						|
  /// And so on, until all the sources have been traversed, then
 | 
						|
  /// it returns false.
 | 
						|
  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | 
						|
                               unsigned &TrackReg,
 | 
						|
                               unsigned &TrackSubReg) override {
 | 
						|
    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
 | 
						|
 | 
						|
    // If this is the first call, move to the first argument.
 | 
						|
    if (CurrentSrcIdx == 0) {
 | 
						|
      CurrentSrcIdx = 1;
 | 
						|
    } else {
 | 
						|
      // Otherwise, move to the next argument and check that it is valid.
 | 
						|
      CurrentSrcIdx += 2;
 | 
						|
      if (CurrentSrcIdx >= CopyLike.getNumOperands())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
 | 
						|
    SrcReg = MOInsertedReg.getReg();
 | 
						|
    // If we have to compose sub-register indices, bails out.
 | 
						|
    if ((SrcSubReg = MOInsertedReg.getSubReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We want to track something that is compatible with the related
 | 
						|
    // partial definition.
 | 
						|
    TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
 | 
						|
 | 
						|
    const MachineOperand &MODef = CopyLike.getOperand(0);
 | 
						|
    TrackReg = MODef.getReg();
 | 
						|
    // If we have to compose sub-registers, bails.
 | 
						|
    return MODef.getSubReg() == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | 
						|
    // We cannot rewrite out of bound operands.
 | 
						|
    // Moreover, rewritable sources are at odd positions.
 | 
						|
    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
 | 
						|
      return false;
 | 
						|
 | 
						|
    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | 
						|
    MO.setReg(NewReg);
 | 
						|
    MO.setSubReg(NewSubReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // End namespace.
 | 
						|
 | 
						|
/// \brief Get the appropriated CopyRewriter for \p MI.
 | 
						|
/// \return A pointer to a dynamically allocated CopyRewriter or nullptr
 | 
						|
/// if no rewriter works for \p MI.
 | 
						|
static CopyRewriter *getCopyRewriter(MachineInstr &MI,
 | 
						|
                                     const TargetInstrInfo &TII) {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  case TargetOpcode::COPY:
 | 
						|
    return new CopyRewriter(MI);
 | 
						|
  case TargetOpcode::INSERT_SUBREG:
 | 
						|
    return new InsertSubregRewriter(MI);
 | 
						|
  case TargetOpcode::EXTRACT_SUBREG:
 | 
						|
    return new ExtractSubregRewriter(MI, TII);
 | 
						|
  case TargetOpcode::REG_SEQUENCE:
 | 
						|
    return new RegSequenceRewriter(MI);
 | 
						|
  }
 | 
						|
  llvm_unreachable(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Optimize generic copy instructions to avoid cross
 | 
						|
/// register bank copy. The optimization looks through a chain of
 | 
						|
/// copies and tries to find a source that has a compatible register
 | 
						|
/// class.
 | 
						|
/// Two register classes are considered to be compatible if they share
 | 
						|
/// the same register bank.
 | 
						|
/// New copies issued by this optimization are register allocator
 | 
						|
/// friendly. This optimization does not remove any copy as it may
 | 
						|
/// overconstraint the register allocator, but replaces some operands
 | 
						|
/// when possible.
 | 
						|
/// \pre isCoalescableCopy(*MI) is true.
 | 
						|
/// \return True, when \p MI has been rewritten. False otherwise.
 | 
						|
bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
 | 
						|
  assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
 | 
						|
  assert(MI->getDesc().getNumDefs() == 1 &&
 | 
						|
         "Coalescer can understand multiple defs?!");
 | 
						|
  const MachineOperand &MODef = MI->getOperand(0);
 | 
						|
  // Do not rewrite physical definitions.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  // Get the right rewriter for the current copy.
 | 
						|
  std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
 | 
						|
  // If none exists, bails out.
 | 
						|
  if (!CpyRewriter)
 | 
						|
    return false;
 | 
						|
  // Rewrite each rewritable source.
 | 
						|
  unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
 | 
						|
  while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
 | 
						|
                                              TrackSubReg)) {
 | 
						|
    unsigned NewSrc = TrackReg;
 | 
						|
    unsigned NewSubReg = TrackSubReg;
 | 
						|
    // Try to find a more suitable source.
 | 
						|
    // If we failed to do so, or get the actual source,
 | 
						|
    // move to the next source.
 | 
						|
    if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
 | 
						|
      continue;
 | 
						|
    // Rewrite source.
 | 
						|
    if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
 | 
						|
      // We may have extended the live-range of NewSrc, account for that.
 | 
						|
      MRI->clearKillFlags(NewSrc);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // TODO: We could have a clean-up method to tidy the instruction.
 | 
						|
  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
 | 
						|
  // => v0 = COPY v1
 | 
						|
  // Currently we haven't seen motivating example for that and we
 | 
						|
  // want to avoid untested code.
 | 
						|
  NumRewrittenCopies += Changed;
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Optimize copy-like instructions to create
 | 
						|
/// register coalescer friendly instruction.
 | 
						|
/// The optimization tries to kill-off the \p MI by looking
 | 
						|
/// through a chain of copies to find a source that has a compatible
 | 
						|
/// register class.
 | 
						|
/// If such a source is found, it replace \p MI by a generic COPY
 | 
						|
/// operation.
 | 
						|
/// \pre isUncoalescableCopy(*MI) is true.
 | 
						|
/// \return True, when \p MI has been optimized. In that case, \p MI has
 | 
						|
/// been removed from its parent.
 | 
						|
/// All COPY instructions created, are inserted in \p LocalMIs.
 | 
						|
bool PeepholeOptimizer::optimizeUncoalescableCopy(
 | 
						|
    MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | 
						|
  assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
 | 
						|
 | 
						|
  // Check if we can rewrite all the values defined by this instruction.
 | 
						|
  SmallVector<
 | 
						|
      std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
 | 
						|
      4> RewritePairs;
 | 
						|
  for (const MachineOperand &MODef : MI->defs()) {
 | 
						|
    if (MODef.isDead())
 | 
						|
      // We can ignore those.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If a physical register is here, this is probably for a good reason.
 | 
						|
    // Do not rewrite that.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If we do not know how to rewrite this definition, there is no point
 | 
						|
    // in trying to kill this instruction.
 | 
						|
    TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
 | 
						|
    TargetInstrInfo::RegSubRegPair Src = Def;
 | 
						|
    if (!findNextSource(Src.Reg, Src.SubReg))
 | 
						|
      return false;
 | 
						|
    RewritePairs.push_back(std::make_pair(Def, Src));
 | 
						|
  }
 | 
						|
  // The change is possible for all defs, do it.
 | 
						|
  for (const auto &PairDefSrc : RewritePairs) {
 | 
						|
    const auto &Def = PairDefSrc.first;
 | 
						|
    const auto &Src = PairDefSrc.second;
 | 
						|
    // Rewrite the "copy" in a way the register coalescer understands.
 | 
						|
    assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
 | 
						|
           "We do not rewrite physical registers");
 | 
						|
    const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
 | 
						|
    unsigned NewVR = MRI->createVirtualRegister(DefRC);
 | 
						|
    MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | 
						|
                                    TII->get(TargetOpcode::COPY),
 | 
						|
                                    NewVR).addReg(Src.Reg, 0, Src.SubReg);
 | 
						|
    NewCopy->getOperand(0).setSubReg(Def.SubReg);
 | 
						|
    if (Def.SubReg)
 | 
						|
      NewCopy->getOperand(0).setIsUndef();
 | 
						|
    LocalMIs.insert(NewCopy);
 | 
						|
    MRI->replaceRegWith(Def.Reg, NewVR);
 | 
						|
    MRI->clearKillFlags(NewVR);
 | 
						|
    // We extended the lifetime of Src.
 | 
						|
    // Clear the kill flags to account for that.
 | 
						|
    MRI->clearKillFlags(Src.Reg);
 | 
						|
  }
 | 
						|
  // MI is now dead.
 | 
						|
  MI->eraseFromParent();
 | 
						|
  ++NumUncoalescableCopies;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoadFoldable - Check whether MI is a candidate for folding into a later
 | 
						|
/// instruction. We only fold loads to virtual registers and the virtual
 | 
						|
/// register defined has a single use.
 | 
						|
bool PeepholeOptimizer::isLoadFoldable(
 | 
						|
                              MachineInstr *MI,
 | 
						|
                              SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
 | 
						|
  if (!MI->canFoldAsLoad() || !MI->mayLoad())
 | 
						|
    return false;
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (MCID.getNumDefs() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Reg = MI->getOperand(0).getReg();
 | 
						|
  // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
 | 
						|
  // loads. It should be checked when processing uses of the load, since
 | 
						|
  // uses can be removed during peephole.
 | 
						|
  if (!MI->getOperand(0).getSubReg() &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
      MRI->hasOneNonDBGUse(Reg)) {
 | 
						|
    FoldAsLoadDefCandidates.insert(Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
 | 
						|
                                        SmallSet<unsigned, 4> &ImmDefRegs,
 | 
						|
                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (!MI->isMoveImmediate())
 | 
						|
    return false;
 | 
						|
  if (MCID.getNumDefs() != 1)
 | 
						|
    return false;
 | 
						|
  unsigned Reg = MI->getOperand(0).getReg();
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
    ImmDefMIs.insert(std::make_pair(Reg, MI));
 | 
						|
    ImmDefRegs.insert(Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// foldImmediate - Try folding register operands that are defined by move
 | 
						|
/// immediate instructions, i.e. a trivial constant folding optimization, if
 | 
						|
/// and only if the def and use are in the same BB.
 | 
						|
bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
 | 
						|
                                      SmallSet<unsigned, 4> &ImmDefRegs,
 | 
						|
                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
 | 
						|
  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (ImmDefRegs.count(Reg) == 0)
 | 
						|
      continue;
 | 
						|
    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
 | 
						|
    assert(II != ImmDefMIs.end());
 | 
						|
    if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
 | 
						|
      ++NumImmFold;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipOptnoneFunction(*MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
 | 
						|
  DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
 | 
						|
 | 
						|
  if (DisablePeephole)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock *MBB = &*I;
 | 
						|
 | 
						|
    bool SeenMoveImm = false;
 | 
						|
 | 
						|
    // During this forward scan, at some point it needs to answer the question
 | 
						|
    // "given a pointer to an MI in the current BB, is it located before or
 | 
						|
    // after the current instruction".
 | 
						|
    // To perform this, the following set keeps track of the MIs already seen
 | 
						|
    // during the scan, if a MI is not in the set, it is assumed to be located
 | 
						|
    // after. Newly created MIs have to be inserted in the set as well.
 | 
						|
    SmallPtrSet<MachineInstr*, 16> LocalMIs;
 | 
						|
    SmallSet<unsigned, 4> ImmDefRegs;
 | 
						|
    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
 | 
						|
    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
           MII = I->begin(), MIE = I->end(); MII != MIE; ) {
 | 
						|
      MachineInstr *MI = &*MII;
 | 
						|
      // We may be erasing MI below, increment MII now.
 | 
						|
      ++MII;
 | 
						|
      LocalMIs.insert(MI);
 | 
						|
 | 
						|
      // Skip debug values. They should not affect this peephole optimization.
 | 
						|
      if (MI->isDebugValue())
 | 
						|
          continue;
 | 
						|
 | 
						|
      // If there exists an instruction which belongs to the following
 | 
						|
      // categories, we will discard the load candidates.
 | 
						|
      if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
 | 
						|
          MI->isKill() || MI->isInlineAsm() ||
 | 
						|
          MI->hasUnmodeledSideEffects()) {
 | 
						|
        FoldAsLoadDefCandidates.clear();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (MI->mayStore() || MI->isCall())
 | 
						|
        FoldAsLoadDefCandidates.clear();
 | 
						|
 | 
						|
      if ((isUncoalescableCopy(*MI) &&
 | 
						|
           optimizeUncoalescableCopy(MI, LocalMIs)) ||
 | 
						|
          (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
 | 
						|
          (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
 | 
						|
        // MI is deleted.
 | 
						|
        LocalMIs.erase(MI);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
 | 
						|
        // MI is just rewritten.
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
 | 
						|
        SeenMoveImm = true;
 | 
						|
      } else {
 | 
						|
        Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
 | 
						|
        // optimizeExtInstr might have created new instructions after MI
 | 
						|
        // and before the already incremented MII. Adjust MII so that the
 | 
						|
        // next iteration sees the new instructions.
 | 
						|
        MII = MI;
 | 
						|
        ++MII;
 | 
						|
        if (SeenMoveImm)
 | 
						|
          Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
 | 
						|
      }
 | 
						|
 | 
						|
      // Check whether MI is a load candidate for folding into a later
 | 
						|
      // instruction. If MI is not a candidate, check whether we can fold an
 | 
						|
      // earlier load into MI.
 | 
						|
      if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
 | 
						|
          !FoldAsLoadDefCandidates.empty()) {
 | 
						|
        const MCInstrDesc &MIDesc = MI->getDesc();
 | 
						|
        for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
 | 
						|
             ++i) {
 | 
						|
          const MachineOperand &MOp = MI->getOperand(i);
 | 
						|
          if (!MOp.isReg())
 | 
						|
            continue;
 | 
						|
          unsigned FoldAsLoadDefReg = MOp.getReg();
 | 
						|
          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
 | 
						|
            // We need to fold load after optimizeCmpInstr, since
 | 
						|
            // optimizeCmpInstr can enable folding by converting SUB to CMP.
 | 
						|
            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
 | 
						|
            // we need it for markUsesInDebugValueAsUndef().
 | 
						|
            unsigned FoldedReg = FoldAsLoadDefReg;
 | 
						|
            MachineInstr *DefMI = nullptr;
 | 
						|
            MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
 | 
						|
                                                          FoldAsLoadDefReg,
 | 
						|
                                                          DefMI);
 | 
						|
            if (FoldMI) {
 | 
						|
              // Update LocalMIs since we replaced MI with FoldMI and deleted
 | 
						|
              // DefMI.
 | 
						|
              DEBUG(dbgs() << "Replacing: " << *MI);
 | 
						|
              DEBUG(dbgs() << "     With: " << *FoldMI);
 | 
						|
              LocalMIs.erase(MI);
 | 
						|
              LocalMIs.erase(DefMI);
 | 
						|
              LocalMIs.insert(FoldMI);
 | 
						|
              MI->eraseFromParent();
 | 
						|
              DefMI->eraseFromParent();
 | 
						|
              MRI->markUsesInDebugValueAsUndef(FoldedReg);
 | 
						|
              FoldAsLoadDefCandidates.erase(FoldedReg);
 | 
						|
              ++NumLoadFold;
 | 
						|
              // MI is replaced with FoldMI.
 | 
						|
              Changed = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
 | 
						|
                                         unsigned &SrcSubReg) {
 | 
						|
  assert(Def->isCopy() && "Invalid definition");
 | 
						|
  // Copy instruction are supposed to be: Def = Src.
 | 
						|
  // If someone breaks this assumption, bad things will happen everywhere.
 | 
						|
  assert(Def->getNumOperands() == 2 && "Invalid number of operands");
 | 
						|
 | 
						|
  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
 | 
						|
    // If we look for a different subreg, it means we want a subreg of src.
 | 
						|
    // Bails as we do not support composing subreg yet.
 | 
						|
    return false;
 | 
						|
  // Otherwise, we want the whole source.
 | 
						|
  const MachineOperand &Src = Def->getOperand(1);
 | 
						|
  SrcReg = Src.getReg();
 | 
						|
  SrcSubReg = Src.getSubReg();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
 | 
						|
                                            unsigned &SrcSubReg) {
 | 
						|
  assert(Def->isBitcast() && "Invalid definition");
 | 
						|
 | 
						|
  // Bail if there are effects that a plain copy will not expose.
 | 
						|
  if (Def->hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Bitcasts with more than one def are not supported.
 | 
						|
  if (Def->getDesc().getNumDefs() != 1)
 | 
						|
    return false;
 | 
						|
  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
 | 
						|
    // If we look for a different subreg, it means we want a subreg of the src.
 | 
						|
    // Bails as we do not support composing subreg yet.
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned SrcIdx = Def->getNumOperands();
 | 
						|
  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
 | 
						|
       ++OpIdx) {
 | 
						|
    const MachineOperand &MO = Def->getOperand(OpIdx);
 | 
						|
    if (!MO.isReg() || !MO.getReg())
 | 
						|
      continue;
 | 
						|
    assert(!MO.isDef() && "We should have skipped all the definitions by now");
 | 
						|
    if (SrcIdx != EndOpIdx)
 | 
						|
      // Multiple sources?
 | 
						|
      return false;
 | 
						|
    SrcIdx = OpIdx;
 | 
						|
  }
 | 
						|
  const MachineOperand &Src = Def->getOperand(SrcIdx);
 | 
						|
  SrcReg = Src.getReg();
 | 
						|
  SrcSubReg = Src.getSubReg();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
 | 
						|
                                                unsigned &SrcSubReg) {
 | 
						|
  assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
 | 
						|
         "Invalid definition");
 | 
						|
 | 
						|
  if (Def->getOperand(DefIdx).getSubReg())
 | 
						|
    // If we are composing subreg, bails out.
 | 
						|
    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
 | 
						|
    // This should almost never happen as the SSA property is tracked at
 | 
						|
    // the register level (as opposed to the subreg level).
 | 
						|
    // I.e.,
 | 
						|
    // Def.sub0 =
 | 
						|
    // Def.sub1 =
 | 
						|
    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
 | 
						|
    // Def. Thus, it must not be generated.
 | 
						|
    // However, some code could theoretically generates a single
 | 
						|
    // Def.sub0 (i.e, not defining the other subregs) and we would
 | 
						|
    // have this case.
 | 
						|
    // If we can ascertain (or force) that this never happens, we could
 | 
						|
    // turn that into an assertion.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TII)
 | 
						|
    // We could handle the REG_SEQUENCE here, but we do not want to
 | 
						|
    // duplicate the code from the generic TII.
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
 | 
						|
  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We are looking at:
 | 
						|
  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
 | 
						|
  // Check if one of the operand defines the subreg we are interested in.
 | 
						|
  for (auto &RegSeqInput : RegSeqInputRegs) {
 | 
						|
    if (RegSeqInput.SubIdx == DefSubReg) {
 | 
						|
      if (RegSeqInput.SubReg)
 | 
						|
        // Bails if we have to compose sub registers.
 | 
						|
        return false;
 | 
						|
 | 
						|
      SrcReg = RegSeqInput.Reg;
 | 
						|
      SrcSubReg = RegSeqInput.SubReg;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the subreg we are tracking is super-defined by another subreg,
 | 
						|
  // we could follow this value. However, this would require to compose
 | 
						|
  // the subreg and we do not do that for now.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
 | 
						|
                                                 unsigned &SrcSubReg) {
 | 
						|
  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
 | 
						|
         "Invalid definition");
 | 
						|
 | 
						|
  if (Def->getOperand(DefIdx).getSubReg())
 | 
						|
    // If we are composing subreg, bails out.
 | 
						|
    // Same remark as getNextSourceFromRegSequence.
 | 
						|
    // I.e., this may be turned into an assert.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TII)
 | 
						|
    // We could handle the REG_SEQUENCE here, but we do not want to
 | 
						|
    // duplicate the code from the generic TII.
 | 
						|
    return false;
 | 
						|
 | 
						|
  TargetInstrInfo::RegSubRegPair BaseReg;
 | 
						|
  TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
 | 
						|
  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We are looking at:
 | 
						|
  // Def = INSERT_SUBREG v0, v1, sub1
 | 
						|
  // There are two cases:
 | 
						|
  // 1. DefSubReg == sub1, get v1.
 | 
						|
  // 2. DefSubReg != sub1, the value may be available through v0.
 | 
						|
 | 
						|
  // #1 Check if the inserted register matches the required sub index.
 | 
						|
  if (InsertedReg.SubIdx == DefSubReg) {
 | 
						|
    SrcReg = InsertedReg.Reg;
 | 
						|
    SrcSubReg = InsertedReg.SubReg;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // #2 Otherwise, if the sub register we are looking for is not partial
 | 
						|
  // defined by the inserted element, we can look through the main
 | 
						|
  // register (v0).
 | 
						|
  const MachineOperand &MODef = Def->getOperand(DefIdx);
 | 
						|
  // If the result register (Def) and the base register (v0) do not
 | 
						|
  // have the same register class or if we have to compose
 | 
						|
  // subregisters, bails out.
 | 
						|
  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
 | 
						|
      BaseReg.SubReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the TRI and check if the inserted sub-register overlaps with the
 | 
						|
  // sub-register we are tracking.
 | 
						|
  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
 | 
						|
  if (!TRI ||
 | 
						|
      (TRI->getSubRegIndexLaneMask(DefSubReg) &
 | 
						|
       TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
 | 
						|
    return false;
 | 
						|
  // At this point, the value is available in v0 via the same subreg
 | 
						|
  // we used for Def.
 | 
						|
  SrcReg = BaseReg.Reg;
 | 
						|
  SrcSubReg = DefSubReg;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
 | 
						|
                                                  unsigned &SrcSubReg) {
 | 
						|
  assert((Def->isExtractSubreg() ||
 | 
						|
          Def->isExtractSubregLike()) && "Invalid definition");
 | 
						|
  // We are looking at:
 | 
						|
  // Def = EXTRACT_SUBREG v0, sub0
 | 
						|
 | 
						|
  // Bails if we have to compose sub registers.
 | 
						|
  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
 | 
						|
  if (DefSubReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TII)
 | 
						|
    // We could handle the EXTRACT_SUBREG here, but we do not want to
 | 
						|
    // duplicate the code from the generic TII.
 | 
						|
    return false;
 | 
						|
 | 
						|
  TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
 | 
						|
  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Bails if we have to compose sub registers.
 | 
						|
  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
 | 
						|
  if (ExtractSubregInputReg.SubReg)
 | 
						|
    return false;
 | 
						|
  // Otherwise, the value is available in the v0.sub0.
 | 
						|
  SrcReg = ExtractSubregInputReg.Reg;
 | 
						|
  SrcSubReg = ExtractSubregInputReg.SubIdx;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
 | 
						|
                                                unsigned &SrcSubReg) {
 | 
						|
  assert(Def->isSubregToReg() && "Invalid definition");
 | 
						|
  // We are looking at:
 | 
						|
  // Def = SUBREG_TO_REG Imm, v0, sub0
 | 
						|
 | 
						|
  // Bails if we have to compose sub registers.
 | 
						|
  // If DefSubReg != sub0, we would have to check that all the bits
 | 
						|
  // we track are included in sub0 and if yes, we would have to
 | 
						|
  // determine the right subreg in v0.
 | 
						|
  if (DefSubReg != Def->getOperand(3).getImm())
 | 
						|
    return false;
 | 
						|
  // Bails if we have to compose sub registers.
 | 
						|
  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
 | 
						|
  if (Def->getOperand(2).getSubReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SrcReg = Def->getOperand(2).getReg();
 | 
						|
  SrcSubReg = Def->getOperand(3).getImm();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
 | 
						|
  assert(Def && "This method needs a valid definition");
 | 
						|
 | 
						|
  assert(
 | 
						|
      (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
 | 
						|
      Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
 | 
						|
  if (Def->isCopy())
 | 
						|
    return getNextSourceFromCopy(SrcReg, SrcSubReg);
 | 
						|
  if (Def->isBitcast())
 | 
						|
    return getNextSourceFromBitcast(SrcReg, SrcSubReg);
 | 
						|
  // All the remaining cases involve "complex" instructions.
 | 
						|
  // Bails if we did not ask for the advanced tracking.
 | 
						|
  if (!UseAdvancedTracking)
 | 
						|
    return false;
 | 
						|
  if (Def->isRegSequence() || Def->isRegSequenceLike())
 | 
						|
    return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
 | 
						|
  if (Def->isInsertSubreg() || Def->isInsertSubregLike())
 | 
						|
    return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
 | 
						|
  if (Def->isExtractSubreg() || Def->isExtractSubregLike())
 | 
						|
    return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
 | 
						|
  if (Def->isSubregToReg())
 | 
						|
    return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
 | 
						|
                                                unsigned &SrcSubReg) {
 | 
						|
  // If we reach a point where we cannot move up in the use-def chain,
 | 
						|
  // there is nothing we can get.
 | 
						|
  if (!Def)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const MachineInstr *PrevDef = nullptr;
 | 
						|
  // Try to find the next source.
 | 
						|
  if (getNextSourceImpl(SrcReg, SrcSubReg)) {
 | 
						|
    // Update definition, definition index, and subregister for the
 | 
						|
    // next call of getNextSource.
 | 
						|
    // Update the current register.
 | 
						|
    Reg = SrcReg;
 | 
						|
    // Update the return value before moving up in the use-def chain.
 | 
						|
    PrevDef = Def;
 | 
						|
    // If we can still move up in the use-def chain, move to the next
 | 
						|
    // defintion.
 | 
						|
    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      Def = MRI.getVRegDef(Reg);
 | 
						|
      DefIdx = MRI.def_begin(Reg).getOperandNo();
 | 
						|
      DefSubReg = SrcSubReg;
 | 
						|
      return PrevDef;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we end up here, this means we will not be able to find another source
 | 
						|
  // for the next iteration.
 | 
						|
  // Make sure any new call to getNextSource bails out early by cutting the
 | 
						|
  // use-def chain.
 | 
						|
  Def = nullptr;
 | 
						|
  return PrevDef;
 | 
						|
}
 |