465 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			465 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the custom lowering code required by the shadow-stack GC
 | 
						|
// strategy.  
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/CodeGen/GCStrategy.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "shadowstackgclowering"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ShadowStackGCLowering : public FunctionPass {
 | 
						|
  /// RootChain - This is the global linked-list that contains the chain of GC
 | 
						|
  /// roots.
 | 
						|
  GlobalVariable *Head;
 | 
						|
 | 
						|
  /// StackEntryTy - Abstract type of a link in the shadow stack.
 | 
						|
  ///
 | 
						|
  StructType *StackEntryTy;
 | 
						|
  StructType *FrameMapTy;
 | 
						|
 | 
						|
  /// Roots - GC roots in the current function. Each is a pair of the
 | 
						|
  /// intrinsic call and its corresponding alloca.
 | 
						|
  std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  ShadowStackGCLowering();
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override;
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
private:
 | 
						|
  bool IsNullValue(Value *V);
 | 
						|
  Constant *GetFrameMap(Function &F);
 | 
						|
  Type *GetConcreteStackEntryType(Function &F);
 | 
						|
  void CollectRoots(Function &F);
 | 
						|
  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
 | 
						|
                                      Type *Ty, Value *BasePtr, int Idx1,
 | 
						|
                                      const char *Name);
 | 
						|
  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
 | 
						|
                                      Type *Ty, Value *BasePtr, int Idx1, int Idx2,
 | 
						|
                                      const char *Name);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering",
 | 
						|
                      "Shadow Stack GC Lowering", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
 | 
						|
INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering",
 | 
						|
                    "Shadow Stack GC Lowering", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
 | 
						|
 | 
						|
char ShadowStackGCLowering::ID = 0;
 | 
						|
 | 
						|
ShadowStackGCLowering::ShadowStackGCLowering()
 | 
						|
  : FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr),
 | 
						|
    FrameMapTy(nullptr) {
 | 
						|
  initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// EscapeEnumerator - This is a little algorithm to find all escape points
 | 
						|
/// from a function so that "finally"-style code can be inserted. In addition
 | 
						|
/// to finding the existing return and unwind instructions, it also (if
 | 
						|
/// necessary) transforms any call instructions into invokes and sends them to
 | 
						|
/// a landing pad.
 | 
						|
///
 | 
						|
/// It's wrapped up in a state machine using the same transform C# uses for
 | 
						|
/// 'yield return' enumerators, This transform allows it to be non-allocating.
 | 
						|
class EscapeEnumerator {
 | 
						|
  Function &F;
 | 
						|
  const char *CleanupBBName;
 | 
						|
 | 
						|
  // State.
 | 
						|
  int State;
 | 
						|
  Function::iterator StateBB, StateE;
 | 
						|
  IRBuilder<> Builder;
 | 
						|
 | 
						|
public:
 | 
						|
  EscapeEnumerator(Function &F, const char *N = "cleanup")
 | 
						|
      : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
 | 
						|
 | 
						|
  IRBuilder<> *Next() {
 | 
						|
    switch (State) {
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    case 0:
 | 
						|
      StateBB = F.begin();
 | 
						|
      StateE = F.end();
 | 
						|
      State = 1;
 | 
						|
 | 
						|
    case 1:
 | 
						|
      // Find all 'return', 'resume', and 'unwind' instructions.
 | 
						|
      while (StateBB != StateE) {
 | 
						|
        BasicBlock *CurBB = StateBB++;
 | 
						|
 | 
						|
        // Branches and invokes do not escape, only unwind, resume, and return
 | 
						|
        // do.
 | 
						|
        TerminatorInst *TI = CurBB->getTerminator();
 | 
						|
        if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Builder.SetInsertPoint(TI->getParent(), TI);
 | 
						|
        return &Builder;
 | 
						|
      }
 | 
						|
 | 
						|
      State = 2;
 | 
						|
 | 
						|
      // Find all 'call' instructions.
 | 
						|
      SmallVector<Instruction *, 16> Calls;
 | 
						|
      for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
        for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
 | 
						|
             ++II)
 | 
						|
          if (CallInst *CI = dyn_cast<CallInst>(II))
 | 
						|
            if (!CI->getCalledFunction() ||
 | 
						|
                !CI->getCalledFunction()->getIntrinsicID())
 | 
						|
              Calls.push_back(CI);
 | 
						|
 | 
						|
      if (Calls.empty())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Create a cleanup block.
 | 
						|
      LLVMContext &C = F.getContext();
 | 
						|
      BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
 | 
						|
      Type *ExnTy =
 | 
						|
          StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
 | 
						|
      if (!F.hasPersonalityFn()) {
 | 
						|
        Constant *PersFn = F.getParent()->getOrInsertFunction(
 | 
						|
            "__gcc_personality_v0",
 | 
						|
            FunctionType::get(Type::getInt32Ty(C), true));
 | 
						|
        F.setPersonalityFn(PersFn);
 | 
						|
      }
 | 
						|
      LandingPadInst *LPad =
 | 
						|
          LandingPadInst::Create(ExnTy, 1, "cleanup.lpad", CleanupBB);
 | 
						|
      LPad->setCleanup(true);
 | 
						|
      ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
 | 
						|
 | 
						|
      // Transform the 'call' instructions into 'invoke's branching to the
 | 
						|
      // cleanup block. Go in reverse order to make prettier BB names.
 | 
						|
      SmallVector<Value *, 16> Args;
 | 
						|
      for (unsigned I = Calls.size(); I != 0;) {
 | 
						|
        CallInst *CI = cast<CallInst>(Calls[--I]);
 | 
						|
 | 
						|
        // Split the basic block containing the function call.
 | 
						|
        BasicBlock *CallBB = CI->getParent();
 | 
						|
        BasicBlock *NewBB =
 | 
						|
            CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
 | 
						|
 | 
						|
        // Remove the unconditional branch inserted at the end of CallBB.
 | 
						|
        CallBB->getInstList().pop_back();
 | 
						|
        NewBB->getInstList().remove(CI);
 | 
						|
 | 
						|
        // Create a new invoke instruction.
 | 
						|
        Args.clear();
 | 
						|
        CallSite CS(CI);
 | 
						|
        Args.append(CS.arg_begin(), CS.arg_end());
 | 
						|
 | 
						|
        InvokeInst *II =
 | 
						|
            InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
 | 
						|
                               CI->getName(), CallBB);
 | 
						|
        II->setCallingConv(CI->getCallingConv());
 | 
						|
        II->setAttributes(CI->getAttributes());
 | 
						|
        CI->replaceAllUsesWith(II);
 | 
						|
        delete CI;
 | 
						|
      }
 | 
						|
 | 
						|
      Builder.SetInsertPoint(RI->getParent(), RI);
 | 
						|
      return &Builder;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
 | 
						|
  // doInitialization creates the abstract type of this value.
 | 
						|
  Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
 | 
						|
 | 
						|
  // Truncate the ShadowStackDescriptor if some metadata is null.
 | 
						|
  unsigned NumMeta = 0;
 | 
						|
  SmallVector<Constant *, 16> Metadata;
 | 
						|
  for (unsigned I = 0; I != Roots.size(); ++I) {
 | 
						|
    Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
 | 
						|
    if (!C->isNullValue())
 | 
						|
      NumMeta = I + 1;
 | 
						|
    Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
 | 
						|
  }
 | 
						|
  Metadata.resize(NumMeta);
 | 
						|
 | 
						|
  Type *Int32Ty = Type::getInt32Ty(F.getContext());
 | 
						|
 | 
						|
  Constant *BaseElts[] = {
 | 
						|
      ConstantInt::get(Int32Ty, Roots.size(), false),
 | 
						|
      ConstantInt::get(Int32Ty, NumMeta, false),
 | 
						|
  };
 | 
						|
 | 
						|
  Constant *DescriptorElts[] = {
 | 
						|
      ConstantStruct::get(FrameMapTy, BaseElts),
 | 
						|
      ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
 | 
						|
 | 
						|
  Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
 | 
						|
  StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
 | 
						|
 | 
						|
  Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
 | 
						|
 | 
						|
  // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
 | 
						|
  //        that, short of multithreaded LLVM, it should be safe; all that is
 | 
						|
  //        necessary is that a simple Module::iterator loop not be invalidated.
 | 
						|
  //        Appending to the GlobalVariable list is safe in that sense.
 | 
						|
  //
 | 
						|
  //        All of the output passes emit globals last. The ExecutionEngine
 | 
						|
  //        explicitly supports adding globals to the module after
 | 
						|
  //        initialization.
 | 
						|
  //
 | 
						|
  //        Still, if it isn't deemed acceptable, then this transformation needs
 | 
						|
  //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
 | 
						|
  //        (which uses a FunctionPassManager (which segfaults (not asserts) if
 | 
						|
  //        provided a ModulePass))).
 | 
						|
  Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
 | 
						|
                                    GlobalVariable::InternalLinkage, FrameMap,
 | 
						|
                                    "__gc_" + F.getName());
 | 
						|
 | 
						|
  Constant *GEPIndices[2] = {
 | 
						|
      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
 | 
						|
  return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
 | 
						|
}
 | 
						|
 | 
						|
Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
 | 
						|
  // doInitialization creates the generic version of this type.
 | 
						|
  std::vector<Type *> EltTys;
 | 
						|
  EltTys.push_back(StackEntryTy);
 | 
						|
  for (size_t I = 0; I != Roots.size(); I++)
 | 
						|
    EltTys.push_back(Roots[I].second->getAllocatedType());
 | 
						|
 | 
						|
  return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
 | 
						|
}
 | 
						|
 | 
						|
/// doInitialization - If this module uses the GC intrinsics, find them now. If
 | 
						|
/// not, exit fast.
 | 
						|
bool ShadowStackGCLowering::doInitialization(Module &M) {
 | 
						|
  bool Active = false;
 | 
						|
  for (Function &F : M) {
 | 
						|
    if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
 | 
						|
      Active = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Active)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // struct FrameMap {
 | 
						|
  //   int32_t NumRoots; // Number of roots in stack frame.
 | 
						|
  //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
 | 
						|
  //   void *Meta[];     // May be absent for roots without metadata.
 | 
						|
  // };
 | 
						|
  std::vector<Type *> EltTys;
 | 
						|
  // 32 bits is ok up to a 32GB stack frame. :)
 | 
						|
  EltTys.push_back(Type::getInt32Ty(M.getContext()));
 | 
						|
  // Specifies length of variable length array.
 | 
						|
  EltTys.push_back(Type::getInt32Ty(M.getContext()));
 | 
						|
  FrameMapTy = StructType::create(EltTys, "gc_map");
 | 
						|
  PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
 | 
						|
 | 
						|
  // struct StackEntry {
 | 
						|
  //   ShadowStackEntry *Next; // Caller's stack entry.
 | 
						|
  //   FrameMap *Map;          // Pointer to constant FrameMap.
 | 
						|
  //   void *Roots[];          // Stack roots (in-place array, so we pretend).
 | 
						|
  // };
 | 
						|
 | 
						|
  StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
 | 
						|
 | 
						|
  EltTys.clear();
 | 
						|
  EltTys.push_back(PointerType::getUnqual(StackEntryTy));
 | 
						|
  EltTys.push_back(FrameMapPtrTy);
 | 
						|
  StackEntryTy->setBody(EltTys);
 | 
						|
  PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
 | 
						|
 | 
						|
  // Get the root chain if it already exists.
 | 
						|
  Head = M.getGlobalVariable("llvm_gc_root_chain");
 | 
						|
  if (!Head) {
 | 
						|
    // If the root chain does not exist, insert a new one with linkonce
 | 
						|
    // linkage!
 | 
						|
    Head = new GlobalVariable(
 | 
						|
        M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
 | 
						|
        Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
 | 
						|
  } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
 | 
						|
    Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
 | 
						|
    Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ShadowStackGCLowering::IsNullValue(Value *V) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->isNullValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ShadowStackGCLowering::CollectRoots(Function &F) {
 | 
						|
  // FIXME: Account for original alignment. Could fragment the root array.
 | 
						|
  //   Approach 1: Null initialize empty slots at runtime. Yuck.
 | 
						|
  //   Approach 2: Emit a map of the array instead of just a count.
 | 
						|
 | 
						|
  assert(Roots.empty() && "Not cleaned up?");
 | 
						|
 | 
						|
  SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
 | 
						|
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
 | 
						|
      if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          if (F->getIntrinsicID() == Intrinsic::gcroot) {
 | 
						|
            std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
 | 
						|
                CI,
 | 
						|
                cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
 | 
						|
            if (IsNullValue(CI->getArgOperand(1)))
 | 
						|
              Roots.push_back(Pair);
 | 
						|
            else
 | 
						|
              MetaRoots.push_back(Pair);
 | 
						|
          }
 | 
						|
 | 
						|
  // Number roots with metadata (usually empty) at the beginning, so that the
 | 
						|
  // FrameMap::Meta array can be elided.
 | 
						|
  Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
 | 
						|
                                                    IRBuilder<> &B, Type *Ty,
 | 
						|
                                                    Value *BasePtr, int Idx,
 | 
						|
                                                    int Idx2,
 | 
						|
                                                    const char *Name) {
 | 
						|
  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
 | 
						|
                      ConstantInt::get(Type::getInt32Ty(Context), Idx),
 | 
						|
                      ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
 | 
						|
  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
 | 
						|
 | 
						|
  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
 | 
						|
 | 
						|
  return dyn_cast<GetElementPtrInst>(Val);
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
 | 
						|
                                            IRBuilder<> &B, Type *Ty, Value *BasePtr,
 | 
						|
                                            int Idx, const char *Name) {
 | 
						|
  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
 | 
						|
                      ConstantInt::get(Type::getInt32Ty(Context), Idx)};
 | 
						|
  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
 | 
						|
 | 
						|
  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
 | 
						|
 | 
						|
  return dyn_cast<GetElementPtrInst>(Val);
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - Insert code to maintain the shadow stack.
 | 
						|
bool ShadowStackGCLowering::runOnFunction(Function &F) {
 | 
						|
  // Quick exit for functions that do not use the shadow stack GC.
 | 
						|
  if (!F.hasGC() ||
 | 
						|
      F.getGC() != std::string("shadow-stack"))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  LLVMContext &Context = F.getContext();
 | 
						|
 | 
						|
  // Find calls to llvm.gcroot.
 | 
						|
  CollectRoots(F);
 | 
						|
 | 
						|
  // If there are no roots in this function, then there is no need to add a
 | 
						|
  // stack map entry for it.
 | 
						|
  if (Roots.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Build the constant map and figure the type of the shadow stack entry.
 | 
						|
  Value *FrameMap = GetFrameMap(F);
 | 
						|
  Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
 | 
						|
 | 
						|
  // Build the shadow stack entry at the very start of the function.
 | 
						|
  BasicBlock::iterator IP = F.getEntryBlock().begin();
 | 
						|
  IRBuilder<> AtEntry(IP->getParent(), IP);
 | 
						|
 | 
						|
  Instruction *StackEntry =
 | 
						|
      AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
 | 
						|
 | 
						|
  while (isa<AllocaInst>(IP))
 | 
						|
    ++IP;
 | 
						|
  AtEntry.SetInsertPoint(IP->getParent(), IP);
 | 
						|
 | 
						|
  // Initialize the map pointer and load the current head of the shadow stack.
 | 
						|
  Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
 | 
						|
  Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
 | 
						|
                                       StackEntry, 0, 1, "gc_frame.map");
 | 
						|
  AtEntry.CreateStore(FrameMap, EntryMapPtr);
 | 
						|
 | 
						|
  // After all the allocas...
 | 
						|
  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
 | 
						|
    // For each root, find the corresponding slot in the aggregate...
 | 
						|
    Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
 | 
						|
                               StackEntry, 1 + I, "gc_root");
 | 
						|
 | 
						|
    // And use it in lieu of the alloca.
 | 
						|
    AllocaInst *OriginalAlloca = Roots[I].second;
 | 
						|
    SlotPtr->takeName(OriginalAlloca);
 | 
						|
    OriginalAlloca->replaceAllUsesWith(SlotPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
 | 
						|
  // really necessary (the collector would never see the intermediate state at
 | 
						|
  // runtime), but it's nicer not to push the half-initialized entry onto the
 | 
						|
  // shadow stack.
 | 
						|
  while (isa<StoreInst>(IP))
 | 
						|
    ++IP;
 | 
						|
  AtEntry.SetInsertPoint(IP->getParent(), IP);
 | 
						|
 | 
						|
  // Push the entry onto the shadow stack.
 | 
						|
  Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
 | 
						|
                                        StackEntry, 0, 0, "gc_frame.next");
 | 
						|
  Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
 | 
						|
                                      StackEntry, 0, "gc_newhead");
 | 
						|
  AtEntry.CreateStore(CurrentHead, EntryNextPtr);
 | 
						|
  AtEntry.CreateStore(NewHeadVal, Head);
 | 
						|
 | 
						|
  // For each instruction that escapes...
 | 
						|
  EscapeEnumerator EE(F, "gc_cleanup");
 | 
						|
  while (IRBuilder<> *AtExit = EE.Next()) {
 | 
						|
    // Pop the entry from the shadow stack. Don't reuse CurrentHead from
 | 
						|
    // AtEntry, since that would make the value live for the entire function.
 | 
						|
    Instruction *EntryNextPtr2 =
 | 
						|
        CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
 | 
						|
                  "gc_frame.next");
 | 
						|
    Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
 | 
						|
    AtExit->CreateStore(SavedHead, Head);
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the original allocas (which are no longer used) and the intrinsic
 | 
						|
  // calls (which are no longer valid). Doing this last avoids invalidating
 | 
						|
  // iterators.
 | 
						|
  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
 | 
						|
    Roots[I].first->eraseFromParent();
 | 
						|
    Roots[I].second->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  Roots.clear();
 | 
						|
  return true;
 | 
						|
}
 |