156 lines
6.3 KiB
C++
156 lines
6.3 KiB
C++
//===- ParallelLoopTiling.cpp - Tiles scf.parallel ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements loop tiling on parallel loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/SCF/Passes.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms.h"
|
|
#include "mlir/Dialect/SCF/Utils.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::scf;
|
|
|
|
/// Tile a parallel loop of the form
|
|
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
|
/// step (%arg4, %arg5)
|
|
///
|
|
/// into
|
|
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
|
|
/// step (%arg4*tileSize[0],
|
|
/// %arg5*tileSize[1])
|
|
/// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0)
|
|
/// min(%arg5*tileSize[1], %arg3-%i1))
|
|
/// step (%arg4, %arg5)
|
|
///
|
|
/// where the uses of %i0 and %i1 in the loop body are replaced by
|
|
/// %i0 + j0 and %i1 + %j1.
|
|
//
|
|
/// The old loop is replaced with the new one.
|
|
std::pair<ParallelOp, ParallelOp>
|
|
mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes) {
|
|
OpBuilder b(op);
|
|
auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0);
|
|
SmallVector<Value, 2> tileSizeConstants;
|
|
tileSizeConstants.reserve(op.upperBound().size());
|
|
for (size_t i = 0, end = op.upperBound().size(); i != end; ++i) {
|
|
if (i < tileSizes.size())
|
|
tileSizeConstants.push_back(
|
|
b.create<ConstantIndexOp>(op.getLoc(), tileSizes[i]));
|
|
else
|
|
// Just pick 1 for the remaining dimensions.
|
|
tileSizeConstants.push_back(b.create<ConstantIndexOp>(op.getLoc(), 1));
|
|
}
|
|
|
|
// Create the outer loop with adjusted steps.
|
|
SmallVector<Value, 2> newSteps;
|
|
newSteps.reserve(op.step().size());
|
|
for (auto step : llvm::zip(op.step(), tileSizeConstants)) {
|
|
newSteps.push_back(
|
|
b.create<MulIOp>(op.getLoc(), std::get<0>(step), std::get<1>(step)));
|
|
}
|
|
auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.lowerBound(),
|
|
op.upperBound(), newSteps);
|
|
b.setInsertionPointToStart(outerLoop.getBody());
|
|
|
|
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
|
|
// FIXME: Instead of using min, we want to replicate the tail. This would give
|
|
// the inner loop constant bounds for easy vectorization.
|
|
auto minMap = AffineMap::get(
|
|
/*dimCount=*/3, /*symbolCount=*/0,
|
|
{getAffineDimExpr(/*position=*/0, b.getContext()),
|
|
getAffineDimExpr(/*position=*/1, b.getContext()) -
|
|
getAffineDimExpr(/*position=*/2, b.getContext())},
|
|
b.getContext());
|
|
|
|
// Create the inner loop with adjusted bounds.
|
|
SmallVector<Value, 2> newBounds;
|
|
newBounds.reserve(op.upperBound().size());
|
|
for (auto dim : llvm::zip(outerLoop.lowerBound(), outerLoop.upperBound(),
|
|
outerLoop.step(), outerLoop.getInductionVars(),
|
|
op.step(), tileSizeConstants)) {
|
|
Value lowerBound, upperBound, newStep, iv, step, tileSizeConstant;
|
|
std::tie(lowerBound, upperBound, newStep, iv, step, tileSizeConstant) = dim;
|
|
// Collect the statically known loop bounds
|
|
auto lowerBoundConstant =
|
|
dyn_cast_or_null<ConstantIndexOp>(lowerBound.getDefiningOp());
|
|
auto upperBoundConstant =
|
|
dyn_cast_or_null<ConstantIndexOp>(upperBound.getDefiningOp());
|
|
auto stepConstant = dyn_cast_or_null<ConstantIndexOp>(step.getDefiningOp());
|
|
auto tileSize =
|
|
cast<ConstantIndexOp>(tileSizeConstant.getDefiningOp()).getValue();
|
|
// If the loop bounds and the loop step are constant and if the number of
|
|
// loop iterations is an integer multiple of the tile size, we use a static
|
|
// bound for the inner loop.
|
|
if (lowerBoundConstant && upperBoundConstant && stepConstant) {
|
|
auto numIterations = llvm::divideCeil(upperBoundConstant.getValue() -
|
|
lowerBoundConstant.getValue(),
|
|
stepConstant.getValue());
|
|
if (numIterations % tileSize == 0) {
|
|
newBounds.push_back(newStep);
|
|
continue;
|
|
}
|
|
}
|
|
// Otherwise, we dynamically compute the bound for
|
|
// each iteration of the outer loop.
|
|
newBounds.push_back(
|
|
b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap,
|
|
ValueRange{newStep, upperBound, iv}));
|
|
}
|
|
auto innerLoop = b.create<ParallelOp>(
|
|
op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds,
|
|
op.step());
|
|
|
|
// Steal the body of the old parallel loop and erase it.
|
|
innerLoop.region().takeBody(op.region());
|
|
|
|
// Insert computation for new index vectors and replace uses.
|
|
b.setInsertionPointToStart(innerLoop.getBody());
|
|
for (auto ivs :
|
|
llvm::zip(innerLoop.getInductionVars(), outerLoop.getInductionVars())) {
|
|
Value inner_index = std::get<0>(ivs);
|
|
AddIOp newIndex =
|
|
b.create<AddIOp>(op.getLoc(), std::get<0>(ivs), std::get<1>(ivs));
|
|
inner_index.replaceAllUsesExcept(
|
|
newIndex, SmallPtrSet<Operation *, 1>{newIndex.getOperation()});
|
|
}
|
|
|
|
op.erase();
|
|
return std::make_pair(outerLoop, innerLoop);
|
|
}
|
|
|
|
namespace {
|
|
struct ParallelLoopTiling
|
|
: public SCFParallelLoopTilingBase<ParallelLoopTiling> {
|
|
ParallelLoopTiling() = default;
|
|
explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes) {
|
|
this->tileSizes = tileSizes;
|
|
}
|
|
|
|
void runOnFunction() override {
|
|
SmallVector<ParallelOp, 2> innermostPloops;
|
|
getInnermostParallelLoops(getFunction().getOperation(), innermostPloops);
|
|
for (ParallelOp ploop : innermostPloops) {
|
|
// FIXME: Add reduction support.
|
|
if (ploop.getNumReductions() == 0)
|
|
tileParallelLoop(ploop, tileSizes);
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass>
|
|
mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes) {
|
|
return std::make_unique<ParallelLoopTiling>(tileSizes);
|
|
}
|