3745 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3745 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- lib/Semantics/expression.cpp --------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "flang/Semantics/expression.h"
 | 
						|
#include "check-call.h"
 | 
						|
#include "pointer-assignment.h"
 | 
						|
#include "resolve-names.h"
 | 
						|
#include "flang/Common/Fortran.h"
 | 
						|
#include "flang/Common/idioms.h"
 | 
						|
#include "flang/Evaluate/common.h"
 | 
						|
#include "flang/Evaluate/fold.h"
 | 
						|
#include "flang/Evaluate/tools.h"
 | 
						|
#include "flang/Parser/characters.h"
 | 
						|
#include "flang/Parser/dump-parse-tree.h"
 | 
						|
#include "flang/Parser/parse-tree-visitor.h"
 | 
						|
#include "flang/Parser/parse-tree.h"
 | 
						|
#include "flang/Semantics/scope.h"
 | 
						|
#include "flang/Semantics/semantics.h"
 | 
						|
#include "flang/Semantics/symbol.h"
 | 
						|
#include "flang/Semantics/tools.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <optional>
 | 
						|
#include <set>
 | 
						|
 | 
						|
// Typedef for optional generic expressions (ubiquitous in this file)
 | 
						|
using MaybeExpr =
 | 
						|
    std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
 | 
						|
 | 
						|
// Much of the code that implements semantic analysis of expressions is
 | 
						|
// tightly coupled with their typed representations in lib/Evaluate,
 | 
						|
// and appears here in namespace Fortran::evaluate for convenience.
 | 
						|
namespace Fortran::evaluate {
 | 
						|
 | 
						|
using common::LanguageFeature;
 | 
						|
using common::NumericOperator;
 | 
						|
using common::TypeCategory;
 | 
						|
 | 
						|
static inline std::string ToUpperCase(const std::string &str) {
 | 
						|
  return parser::ToUpperCaseLetters(str);
 | 
						|
}
 | 
						|
 | 
						|
struct DynamicTypeWithLength : public DynamicType {
 | 
						|
  explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
 | 
						|
  std::optional<Expr<SubscriptInteger>> LEN() const;
 | 
						|
  std::optional<Expr<SubscriptInteger>> length;
 | 
						|
};
 | 
						|
 | 
						|
std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
 | 
						|
  if (length) {
 | 
						|
    return length;
 | 
						|
  } else {
 | 
						|
    return GetCharLength();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
 | 
						|
    const std::optional<parser::TypeSpec> &spec) {
 | 
						|
  if (spec) {
 | 
						|
    if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
 | 
						|
      // Name resolution sets TypeSpec::declTypeSpec only when it's valid
 | 
						|
      // (viz., an intrinsic type with valid known kind or a non-polymorphic
 | 
						|
      // & non-ABSTRACT derived type).
 | 
						|
      if (const semantics::IntrinsicTypeSpec *
 | 
						|
          intrinsic{typeSpec->AsIntrinsic()}) {
 | 
						|
        TypeCategory category{intrinsic->category()};
 | 
						|
        if (auto optKind{ToInt64(intrinsic->kind())}) {
 | 
						|
          int kind{static_cast<int>(*optKind)};
 | 
						|
          if (category == TypeCategory::Character) {
 | 
						|
            const semantics::CharacterTypeSpec &cts{
 | 
						|
                typeSpec->characterTypeSpec()};
 | 
						|
            const semantics::ParamValue &len{cts.length()};
 | 
						|
            // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
 | 
						|
            // type guards, but not in array constructors.
 | 
						|
            return DynamicTypeWithLength{DynamicType{kind, len}};
 | 
						|
          } else {
 | 
						|
            return DynamicTypeWithLength{DynamicType{category, kind}};
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (const semantics::DerivedTypeSpec *
 | 
						|
          derived{typeSpec->AsDerived()}) {
 | 
						|
        return DynamicTypeWithLength{DynamicType{*derived}};
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Utilities to set a source location, if we have one, on an actual argument,
 | 
						|
// when it is statically present.
 | 
						|
static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) {
 | 
						|
  x.set_sourceLocation(at);
 | 
						|
}
 | 
						|
static void SetArgSourceLocation(
 | 
						|
    std::optional<ActualArgument> &x, parser::CharBlock at) {
 | 
						|
  if (x) {
 | 
						|
    x->set_sourceLocation(at);
 | 
						|
  }
 | 
						|
}
 | 
						|
static void SetArgSourceLocation(
 | 
						|
    std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) {
 | 
						|
  if (x && at) {
 | 
						|
    x->set_sourceLocation(*at);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
class ArgumentAnalyzer {
 | 
						|
public:
 | 
						|
  explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
 | 
						|
      : context_{context}, source_{context.GetContextualMessages().at()},
 | 
						|
        isProcedureCall_{false} {}
 | 
						|
  ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
 | 
						|
      bool isProcedureCall = false)
 | 
						|
      : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
 | 
						|
  bool fatalErrors() const { return fatalErrors_; }
 | 
						|
  ActualArguments &&GetActuals() {
 | 
						|
    CHECK(!fatalErrors_);
 | 
						|
    return std::move(actuals_);
 | 
						|
  }
 | 
						|
  const Expr<SomeType> &GetExpr(std::size_t i) const {
 | 
						|
    return DEREF(actuals_.at(i).value().UnwrapExpr());
 | 
						|
  }
 | 
						|
  Expr<SomeType> &&MoveExpr(std::size_t i) {
 | 
						|
    return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
 | 
						|
  }
 | 
						|
  void Analyze(const common::Indirection<parser::Expr> &x) {
 | 
						|
    Analyze(x.value());
 | 
						|
  }
 | 
						|
  void Analyze(const parser::Expr &x) {
 | 
						|
    actuals_.emplace_back(AnalyzeExpr(x));
 | 
						|
    SetArgSourceLocation(actuals_.back(), x.source);
 | 
						|
    fatalErrors_ |= !actuals_.back();
 | 
						|
  }
 | 
						|
  void Analyze(const parser::Variable &);
 | 
						|
  void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
 | 
						|
  void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
 | 
						|
      std::optional<DynamicType> otherType);
 | 
						|
 | 
						|
  bool IsIntrinsicRelational(
 | 
						|
      RelationalOperator, const DynamicType &, const DynamicType &) const;
 | 
						|
  bool IsIntrinsicLogical() const;
 | 
						|
  bool IsIntrinsicNumeric(NumericOperator) const;
 | 
						|
  bool IsIntrinsicConcat() const;
 | 
						|
 | 
						|
  bool CheckConformance();
 | 
						|
  bool CheckForNullPointer(const char *where = "as an operand here");
 | 
						|
 | 
						|
  // Find and return a user-defined operator or report an error.
 | 
						|
  // The provided message is used if there is no such operator.
 | 
						|
  MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
 | 
						|
      const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
 | 
						|
  template <typename E>
 | 
						|
  MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
 | 
						|
    return TryDefinedOp(
 | 
						|
        context_.context().languageFeatures().GetNames(opr), msg);
 | 
						|
  }
 | 
						|
  // Find and return a user-defined assignment
 | 
						|
  std::optional<ProcedureRef> TryDefinedAssignment();
 | 
						|
  std::optional<ProcedureRef> GetDefinedAssignmentProc();
 | 
						|
  std::optional<DynamicType> GetType(std::size_t) const;
 | 
						|
  void Dump(llvm::raw_ostream &);
 | 
						|
 | 
						|
private:
 | 
						|
  MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
 | 
						|
  MaybeExpr TryBoundOp(const Symbol &, int passIndex);
 | 
						|
  std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
 | 
						|
  MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
 | 
						|
  bool AreConformable() const;
 | 
						|
  const Symbol *FindBoundOp(
 | 
						|
      parser::CharBlock, int passIndex, const Symbol *&definedOp);
 | 
						|
  void AddAssignmentConversion(
 | 
						|
      const DynamicType &lhsType, const DynamicType &rhsType);
 | 
						|
  bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
 | 
						|
  int GetRank(std::size_t) const;
 | 
						|
  bool IsBOZLiteral(std::size_t i) const {
 | 
						|
    return evaluate::IsBOZLiteral(GetExpr(i));
 | 
						|
  }
 | 
						|
  void SayNoMatch(const std::string &, bool isAssignment = false);
 | 
						|
  std::string TypeAsFortran(std::size_t);
 | 
						|
  bool AnyUntypedOrMissingOperand();
 | 
						|
 | 
						|
  ExpressionAnalyzer &context_;
 | 
						|
  ActualArguments actuals_;
 | 
						|
  parser::CharBlock source_;
 | 
						|
  bool fatalErrors_{false};
 | 
						|
  const bool isProcedureCall_; // false for user-defined op or assignment
 | 
						|
};
 | 
						|
 | 
						|
// Wraps a data reference in a typed Designator<>, and a procedure
 | 
						|
// or procedure pointer reference in a ProcedureDesignator.
 | 
						|
MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
 | 
						|
  const Symbol &last{ref.GetLastSymbol()};
 | 
						|
  const Symbol &symbol{BypassGeneric(last).GetUltimate()};
 | 
						|
  if (semantics::IsProcedure(symbol)) {
 | 
						|
    if (auto *component{std::get_if<Component>(&ref.u)}) {
 | 
						|
      return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
 | 
						|
    } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
 | 
						|
      DIE("unexpected alternative in DataRef");
 | 
						|
    } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
 | 
						|
      if (symbol.has<semantics::GenericDetails>()) {
 | 
						|
        Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
 | 
						|
      } else {
 | 
						|
        return Expr<SomeType>{ProcedureDesignator{symbol}};
 | 
						|
      }
 | 
						|
    } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
 | 
						|
                   symbol.name().ToString())};
 | 
						|
               interface && !interface->isRestrictedSpecific) {
 | 
						|
      SpecificIntrinsic intrinsic{
 | 
						|
          symbol.name().ToString(), std::move(*interface)};
 | 
						|
      intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
 | 
						|
      return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
 | 
						|
    } else {
 | 
						|
      Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
 | 
						|
          symbol.name());
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
 | 
						|
    return result;
 | 
						|
  } else {
 | 
						|
    if (!context_.HasError(last) && !context_.HasError(symbol)) {
 | 
						|
      AttachDeclaration(
 | 
						|
          Say("'%s' is not an object that can appear in an expression"_err_en_US,
 | 
						|
              last.name()),
 | 
						|
          symbol);
 | 
						|
      context_.SetError(last);
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Some subscript semantic checks must be deferred until all of the
 | 
						|
// subscripts are in hand.
 | 
						|
MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
 | 
						|
  const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
 | 
						|
  int symbolRank{symbol.Rank()};
 | 
						|
  int subscripts{static_cast<int>(ref.size())};
 | 
						|
  if (subscripts == 0) {
 | 
						|
    return std::nullopt; // error recovery
 | 
						|
  } else if (subscripts != symbolRank) {
 | 
						|
    if (symbolRank != 0) {
 | 
						|
      Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
 | 
						|
          symbolRank, symbol.name(), subscripts);
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  } else if (Component * component{ref.base().UnwrapComponent()}) {
 | 
						|
    int baseRank{component->base().Rank()};
 | 
						|
    if (baseRank > 0) {
 | 
						|
      int subscriptRank{0};
 | 
						|
      for (const auto &expr : ref.subscript()) {
 | 
						|
        subscriptRank += expr.Rank();
 | 
						|
      }
 | 
						|
      if (subscriptRank > 0) { // C919a
 | 
						|
        Say("Subscripts of component '%s' of rank-%d derived type "
 | 
						|
            "array have rank %d but must all be scalar"_err_en_US,
 | 
						|
            symbol.name(), baseRank, subscriptRank);
 | 
						|
        return std::nullopt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const auto *object{
 | 
						|
                 symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
 | 
						|
    // C928 & C1002
 | 
						|
    if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
 | 
						|
      if (!last->upper() && object->IsAssumedSize()) {
 | 
						|
        Say("Assumed-size array '%s' must have explicit final "
 | 
						|
            "subscript upper bound value"_err_en_US,
 | 
						|
            symbol.name());
 | 
						|
        return std::nullopt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Shouldn't get here from Analyze(ArrayElement) without a valid base,
 | 
						|
    // which, if not an object, must be a construct entity from
 | 
						|
    // SELECT TYPE/RANK or ASSOCIATE.
 | 
						|
    CHECK(symbol.has<semantics::AssocEntityDetails>());
 | 
						|
  }
 | 
						|
  return Designate(DataRef{std::move(ref)});
 | 
						|
}
 | 
						|
 | 
						|
// Applies subscripts to a data reference.
 | 
						|
MaybeExpr ExpressionAnalyzer::ApplySubscripts(
 | 
						|
    DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
 | 
						|
  if (subscripts.empty()) {
 | 
						|
    return std::nullopt; // error recovery
 | 
						|
  }
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](SymbolRef &&symbol) {
 | 
						|
            return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
 | 
						|
          },
 | 
						|
          [&](Component &&c) {
 | 
						|
            return CompleteSubscripts(
 | 
						|
                ArrayRef{std::move(c), std::move(subscripts)});
 | 
						|
          },
 | 
						|
          [&](auto &&) -> MaybeExpr {
 | 
						|
            DIE("bad base for ArrayRef");
 | 
						|
            return std::nullopt;
 | 
						|
          },
 | 
						|
      },
 | 
						|
      std::move(dataRef.u));
 | 
						|
}
 | 
						|
 | 
						|
// Top-level checks for data references.
 | 
						|
MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
 | 
						|
  if (Component * component{std::get_if<Component>(&dataRef.u)}) {
 | 
						|
    const Symbol &symbol{component->GetLastSymbol()};
 | 
						|
    int componentRank{symbol.Rank()};
 | 
						|
    if (componentRank > 0) {
 | 
						|
      int baseRank{component->base().Rank()};
 | 
						|
      if (baseRank > 0) { // C919a
 | 
						|
        Say("Reference to whole rank-%d component '%%%s' of "
 | 
						|
            "rank-%d array of derived type is not allowed"_err_en_US,
 | 
						|
            componentRank, symbol.name(), baseRank);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Designate(std::move(dataRef));
 | 
						|
}
 | 
						|
 | 
						|
// Parse tree correction after a substring S(j:k) was misparsed as an
 | 
						|
// array section.  N.B. Fortran substrings have to have a range, not a
 | 
						|
// single index.
 | 
						|
static void FixMisparsedSubstring(const parser::Designator &d) {
 | 
						|
  auto &mutate{const_cast<parser::Designator &>(d)};
 | 
						|
  if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
 | 
						|
    if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
 | 
						|
            &dataRef->u)}) {
 | 
						|
      parser::ArrayElement &arrElement{ae->value()};
 | 
						|
      if (!arrElement.subscripts.empty()) {
 | 
						|
        auto iter{arrElement.subscripts.begin()};
 | 
						|
        if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
 | 
						|
          if (!std::get<2>(triplet->t) /* no stride */ &&
 | 
						|
              ++iter == arrElement.subscripts.end() /* one subscript */) {
 | 
						|
            if (Symbol *
 | 
						|
                symbol{std::visit(
 | 
						|
                    common::visitors{
 | 
						|
                        [](parser::Name &n) { return n.symbol; },
 | 
						|
                        [](common::Indirection<parser::StructureComponent>
 | 
						|
                                &sc) { return sc.value().component.symbol; },
 | 
						|
                        [](auto &) -> Symbol * { return nullptr; },
 | 
						|
                    },
 | 
						|
                    arrElement.base.u)}) {
 | 
						|
              const Symbol &ultimate{symbol->GetUltimate()};
 | 
						|
              if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
 | 
						|
                if (!ultimate.IsObjectArray() &&
 | 
						|
                    type->category() == semantics::DeclTypeSpec::Character) {
 | 
						|
                  // The ambiguous S(j:k) was parsed as an array section
 | 
						|
                  // reference, but it's now clear that it's a substring.
 | 
						|
                  // Fix the parse tree in situ.
 | 
						|
                  mutate.u = arrElement.ConvertToSubstring();
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(d.source)};
 | 
						|
  FixMisparsedSubstring(d);
 | 
						|
  // These checks have to be deferred to these "top level" data-refs where
 | 
						|
  // we can be sure that there are no following subscripts (yet).
 | 
						|
  // Substrings have already been run through TopLevelChecks() and
 | 
						|
  // won't be returned by ExtractDataRef().
 | 
						|
  if (MaybeExpr result{Analyze(d.u)}) {
 | 
						|
    if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
 | 
						|
      return TopLevelChecks(std::move(*dataRef));
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// A utility subroutine to repackage optional expressions of various levels
 | 
						|
// of type specificity as fully general MaybeExpr values.
 | 
						|
template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
 | 
						|
  return AsGenericExpr(std::move(x));
 | 
						|
}
 | 
						|
template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
 | 
						|
  if (x) {
 | 
						|
    return AsMaybeExpr(std::move(*x));
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Type kind parameter values for literal constants.
 | 
						|
int ExpressionAnalyzer::AnalyzeKindParam(
 | 
						|
    const std::optional<parser::KindParam> &kindParam, int defaultKind) {
 | 
						|
  if (!kindParam) {
 | 
						|
    return defaultKind;
 | 
						|
  }
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [](std::uint64_t k) { return static_cast<int>(k); },
 | 
						|
          [&](const parser::Scalar<
 | 
						|
              parser::Integer<parser::Constant<parser::Name>>> &n) {
 | 
						|
            if (MaybeExpr ie{Analyze(n)}) {
 | 
						|
              if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
 | 
						|
                int iv = *i64;
 | 
						|
                if (iv == *i64) {
 | 
						|
                  return iv;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
            return defaultKind;
 | 
						|
          },
 | 
						|
      },
 | 
						|
      kindParam->u);
 | 
						|
}
 | 
						|
 | 
						|
// Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
 | 
						|
struct IntTypeVisitor {
 | 
						|
  using Result = MaybeExpr;
 | 
						|
  using Types = IntegerTypes;
 | 
						|
  template <typename T> Result Test() {
 | 
						|
    if (T::kind >= kind) {
 | 
						|
      const char *p{digits.begin()};
 | 
						|
      auto value{T::Scalar::Read(p, 10, true /*signed*/)};
 | 
						|
      if (!value.overflow) {
 | 
						|
        if (T::kind > kind) {
 | 
						|
          if (!isDefaultKind ||
 | 
						|
              !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
 | 
						|
            return std::nullopt;
 | 
						|
          } else if (analyzer.context().ShouldWarn(
 | 
						|
                         LanguageFeature::BigIntLiterals)) {
 | 
						|
            analyzer.Say(digits,
 | 
						|
                "Integer literal is too large for default INTEGER(KIND=%d); "
 | 
						|
                "assuming INTEGER(KIND=%d)"_port_en_US,
 | 
						|
                kind, T::kind);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return Expr<SomeType>{
 | 
						|
            Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  ExpressionAnalyzer &analyzer;
 | 
						|
  parser::CharBlock digits;
 | 
						|
  int kind;
 | 
						|
  bool isDefaultKind;
 | 
						|
};
 | 
						|
 | 
						|
template <typename PARSED>
 | 
						|
MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
 | 
						|
  const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
 | 
						|
  bool isDefaultKind{!kindParam};
 | 
						|
  int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
 | 
						|
  if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
 | 
						|
    auto digits{std::get<parser::CharBlock>(x.t)};
 | 
						|
    if (MaybeExpr result{common::SearchTypes(
 | 
						|
            IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
 | 
						|
      return result;
 | 
						|
    } else if (isDefaultKind) {
 | 
						|
      Say(digits,
 | 
						|
          "Integer literal is too large for any allowable "
 | 
						|
          "kind of INTEGER"_err_en_US);
 | 
						|
    } else {
 | 
						|
      Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
 | 
						|
          kind);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
 | 
						|
  auto restorer{
 | 
						|
      GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
 | 
						|
  return IntLiteralConstant(x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::SignedIntLiteralConstant &x) {
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(x.source)};
 | 
						|
  return IntLiteralConstant(x);
 | 
						|
}
 | 
						|
 | 
						|
template <typename TYPE>
 | 
						|
Constant<TYPE> ReadRealLiteral(
 | 
						|
    parser::CharBlock source, FoldingContext &context) {
 | 
						|
  const char *p{source.begin()};
 | 
						|
  auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
 | 
						|
  CHECK(p == source.end());
 | 
						|
  RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
 | 
						|
  auto value{valWithFlags.value};
 | 
						|
  if (context.flushSubnormalsToZero()) {
 | 
						|
    value = value.FlushSubnormalToZero();
 | 
						|
  }
 | 
						|
  return {value};
 | 
						|
}
 | 
						|
 | 
						|
struct RealTypeVisitor {
 | 
						|
  using Result = std::optional<Expr<SomeReal>>;
 | 
						|
  using Types = RealTypes;
 | 
						|
 | 
						|
  RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
 | 
						|
      : kind{k}, literal{lit}, context{ctx} {}
 | 
						|
 | 
						|
  template <typename T> Result Test() {
 | 
						|
    if (kind == T::kind) {
 | 
						|
      return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
 | 
						|
  int kind;
 | 
						|
  parser::CharBlock literal;
 | 
						|
  FoldingContext &context;
 | 
						|
};
 | 
						|
 | 
						|
// Reads a real literal constant and encodes it with the right kind.
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
 | 
						|
  // Use a local message context around the real literal for better
 | 
						|
  // provenance on any messages.
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(x.real.source)};
 | 
						|
  // If a kind parameter appears, it defines the kind of the literal and the
 | 
						|
  // letter used in an exponent part must be 'E' (e.g., the 'E' in
 | 
						|
  // "6.02214E+23").  In the absence of an explicit kind parameter, any
 | 
						|
  // exponent letter determines the kind.  Otherwise, defaults apply.
 | 
						|
  auto &defaults{context_.defaultKinds()};
 | 
						|
  int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
 | 
						|
  const char *end{x.real.source.end()};
 | 
						|
  char expoLetter{' '};
 | 
						|
  std::optional<int> letterKind;
 | 
						|
  for (const char *p{x.real.source.begin()}; p < end; ++p) {
 | 
						|
    if (parser::IsLetter(*p)) {
 | 
						|
      expoLetter = *p;
 | 
						|
      switch (expoLetter) {
 | 
						|
      case 'e':
 | 
						|
        letterKind = defaults.GetDefaultKind(TypeCategory::Real);
 | 
						|
        break;
 | 
						|
      case 'd':
 | 
						|
        letterKind = defaults.doublePrecisionKind();
 | 
						|
        break;
 | 
						|
      case 'q':
 | 
						|
        letterKind = defaults.quadPrecisionKind();
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (letterKind) {
 | 
						|
    defaultKind = *letterKind;
 | 
						|
  }
 | 
						|
  // C716 requires 'E' as an exponent, but this is more useful
 | 
						|
  auto kind{AnalyzeKindParam(x.kind, defaultKind)};
 | 
						|
  if (letterKind && kind != *letterKind && expoLetter != 'e') {
 | 
						|
    Say("Explicit kind parameter on real constant disagrees with "
 | 
						|
        "exponent letter '%c'"_port_en_US,
 | 
						|
        expoLetter);
 | 
						|
  }
 | 
						|
  auto result{common::SearchTypes(
 | 
						|
      RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
 | 
						|
  if (!result) { // C717
 | 
						|
    Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
 | 
						|
  }
 | 
						|
  return AsMaybeExpr(std::move(result));
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::SignedRealLiteralConstant &x) {
 | 
						|
  if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
 | 
						|
    auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
 | 
						|
    if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
 | 
						|
      if (sign == parser::Sign::Negative) {
 | 
						|
        return AsGenericExpr(-std::move(realExpr));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::SignedComplexLiteralConstant &x) {
 | 
						|
  auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
 | 
						|
  if (!result) {
 | 
						|
    return std::nullopt;
 | 
						|
  } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
 | 
						|
    return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
 | 
						|
  } else {
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
 | 
						|
  return Analyze(x.u);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
 | 
						|
  return AsMaybeExpr(
 | 
						|
      ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
 | 
						|
          Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
 | 
						|
}
 | 
						|
 | 
						|
// CHARACTER literal processing.
 | 
						|
MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
 | 
						|
  if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  switch (kind) {
 | 
						|
  case 1:
 | 
						|
    return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
 | 
						|
        parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
 | 
						|
            string, true)});
 | 
						|
  case 2:
 | 
						|
    return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
 | 
						|
        parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
 | 
						|
            string, true)});
 | 
						|
  case 4:
 | 
						|
    return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
 | 
						|
        parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
 | 
						|
            string, true)});
 | 
						|
  default:
 | 
						|
    CRASH_NO_CASE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
 | 
						|
  int kind{
 | 
						|
      AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
 | 
						|
  auto value{std::get<std::string>(x.t)};
 | 
						|
  return AnalyzeString(std::move(value), kind);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::HollerithLiteralConstant &x) {
 | 
						|
  int kind{GetDefaultKind(TypeCategory::Character)};
 | 
						|
  auto value{x.v};
 | 
						|
  return AnalyzeString(std::move(value), kind);
 | 
						|
}
 | 
						|
 | 
						|
// .TRUE. and .FALSE. of various kinds
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
 | 
						|
  auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
 | 
						|
      GetDefaultKind(TypeCategory::Logical))};
 | 
						|
  bool value{std::get<bool>(x.t)};
 | 
						|
  auto result{common::SearchTypes(
 | 
						|
      TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
 | 
						|
          kind, std::move(value)})};
 | 
						|
  if (!result) {
 | 
						|
    Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
// BOZ typeless literals
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
 | 
						|
  const char *p{x.v.c_str()};
 | 
						|
  std::uint64_t base{16};
 | 
						|
  switch (*p++) {
 | 
						|
  case 'b':
 | 
						|
    base = 2;
 | 
						|
    break;
 | 
						|
  case 'o':
 | 
						|
    base = 8;
 | 
						|
    break;
 | 
						|
  case 'z':
 | 
						|
    break;
 | 
						|
  case 'x':
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    CRASH_NO_CASE;
 | 
						|
  }
 | 
						|
  CHECK(*p == '"');
 | 
						|
  ++p;
 | 
						|
  auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
 | 
						|
  if (*p != '"') {
 | 
						|
    Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
 | 
						|
        x.v); // C7107, C7108
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  if (value.overflow) {
 | 
						|
    Say("BOZ literal '%s' too large"_err_en_US, x.v);
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  return AsGenericExpr(std::move(value.value));
 | 
						|
}
 | 
						|
 | 
						|
// Names and named constants
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(n.source)};
 | 
						|
  if (std::optional<int> kind{IsImpliedDo(n.source)}) {
 | 
						|
    return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
 | 
						|
        *kind, AsExpr(ImpliedDoIndex{n.source})));
 | 
						|
  } else if (context_.HasError(n)) {
 | 
						|
    return std::nullopt;
 | 
						|
  } else if (!n.symbol) {
 | 
						|
    SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
 | 
						|
    return std::nullopt;
 | 
						|
  } else {
 | 
						|
    const Symbol &ultimate{n.symbol->GetUltimate()};
 | 
						|
    if (ultimate.has<semantics::TypeParamDetails>()) {
 | 
						|
      // A bare reference to a derived type parameter (within a parameterized
 | 
						|
      // derived type definition)
 | 
						|
      return Fold(ConvertToType(
 | 
						|
          ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
 | 
						|
    } else {
 | 
						|
      if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
 | 
						|
        if (const semantics::Scope *
 | 
						|
            pure{semantics::FindPureProcedureContaining(
 | 
						|
                context_.FindScope(n.source))}) {
 | 
						|
          SayAt(n,
 | 
						|
              "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
 | 
						|
              n.source, DEREF(pure->symbol()).name());
 | 
						|
          n.symbol->attrs().reset(semantics::Attr::VOLATILE);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!isWholeAssumedSizeArrayOk_ &&
 | 
						|
          semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
 | 
						|
        AttachDeclaration(
 | 
						|
            SayAt(n,
 | 
						|
                "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
 | 
						|
                n.source),
 | 
						|
            *n.symbol);
 | 
						|
      }
 | 
						|
      return Designate(DataRef{*n.symbol});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(n.v.source)};
 | 
						|
  if (MaybeExpr value{Analyze(n.v)}) {
 | 
						|
    Expr<SomeType> folded{Fold(std::move(*value))};
 | 
						|
    if (IsConstantExpr(folded)) {
 | 
						|
      return folded;
 | 
						|
    }
 | 
						|
    Say(n.v.source, "must be a constant"_err_en_US); // C718
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
 | 
						|
  if (MaybeExpr value{Analyze(n.v)}) {
 | 
						|
    // Subtle: when the NullInit is a DataStmtConstant, it might
 | 
						|
    // be a misparse of a structure constructor without parameters
 | 
						|
    // or components (e.g., T()).  Checking the result to ensure
 | 
						|
    // that a "=>" data entity initializer actually resolved to
 | 
						|
    // a null pointer has to be done by the caller.
 | 
						|
    return Fold(std::move(*value));
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
 | 
						|
  return Analyze(x.value());
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
 | 
						|
  if (const auto &repeat{
 | 
						|
          std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
 | 
						|
    x.repetitions = -1;
 | 
						|
    if (MaybeExpr expr{Analyze(repeat->u)}) {
 | 
						|
      Expr<SomeType> folded{Fold(std::move(*expr))};
 | 
						|
      if (auto value{ToInt64(folded)}) {
 | 
						|
        if (*value >= 0) { // C882
 | 
						|
          x.repetitions = *value;
 | 
						|
        } else {
 | 
						|
          Say(FindSourceLocation(repeat),
 | 
						|
              "Repeat count (%jd) for data value must not be negative"_err_en_US,
 | 
						|
              *value);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Analyze(std::get<parser::DataStmtConstant>(x.t));
 | 
						|
}
 | 
						|
 | 
						|
// Substring references
 | 
						|
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
 | 
						|
    const std::optional<parser::ScalarIntExpr> &bound) {
 | 
						|
  if (bound) {
 | 
						|
    if (MaybeExpr expr{Analyze(*bound)}) {
 | 
						|
      if (expr->Rank() > 1) {
 | 
						|
        Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
 | 
						|
      }
 | 
						|
      if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
 | 
						|
        if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
 | 
						|
          return {std::move(*ssIntExpr)};
 | 
						|
        }
 | 
						|
        return {Expr<SubscriptInteger>{
 | 
						|
            Convert<SubscriptInteger, TypeCategory::Integer>{
 | 
						|
                std::move(*intExpr)}}};
 | 
						|
      } else {
 | 
						|
        Say("substring bound expression is not INTEGER"_err_en_US);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
 | 
						|
  if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
 | 
						|
    if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
 | 
						|
      if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
 | 
						|
        if (std::optional<DataRef> checked{
 | 
						|
                ExtractDataRef(std::move(*newBaseExpr))}) {
 | 
						|
          const parser::SubstringRange &range{
 | 
						|
              std::get<parser::SubstringRange>(ss.t)};
 | 
						|
          std::optional<Expr<SubscriptInteger>> first{
 | 
						|
              GetSubstringBound(std::get<0>(range.t))};
 | 
						|
          std::optional<Expr<SubscriptInteger>> last{
 | 
						|
              GetSubstringBound(std::get<1>(range.t))};
 | 
						|
          const Symbol &symbol{checked->GetLastSymbol()};
 | 
						|
          if (std::optional<DynamicType> dynamicType{
 | 
						|
                  DynamicType::From(symbol)}) {
 | 
						|
            if (dynamicType->category() == TypeCategory::Character) {
 | 
						|
              return WrapperHelper<TypeCategory::Character, Designator,
 | 
						|
                  Substring>(dynamicType->kind(),
 | 
						|
                  Substring{std::move(checked.value()), std::move(first),
 | 
						|
                      std::move(last)});
 | 
						|
            }
 | 
						|
          }
 | 
						|
          Say("substring may apply only to CHARACTER"_err_en_US);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// CHARACTER literal substrings
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::CharLiteralConstantSubstring &x) {
 | 
						|
  const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
 | 
						|
  std::optional<Expr<SubscriptInteger>> lower{
 | 
						|
      GetSubstringBound(std::get<0>(range.t))};
 | 
						|
  std::optional<Expr<SubscriptInteger>> upper{
 | 
						|
      GetSubstringBound(std::get<1>(range.t))};
 | 
						|
  if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
 | 
						|
    if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
 | 
						|
      Expr<SubscriptInteger> length{
 | 
						|
          std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
 | 
						|
              charExpr->u)};
 | 
						|
      if (!lower) {
 | 
						|
        lower = Expr<SubscriptInteger>{1};
 | 
						|
      }
 | 
						|
      if (!upper) {
 | 
						|
        upper = Expr<SubscriptInteger>{
 | 
						|
            static_cast<std::int64_t>(ToInt64(length).value())};
 | 
						|
      }
 | 
						|
      return std::visit(
 | 
						|
          [&](auto &&ckExpr) -> MaybeExpr {
 | 
						|
            using Result = ResultType<decltype(ckExpr)>;
 | 
						|
            auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
 | 
						|
            CHECK(DEREF(cp).size() == 1);
 | 
						|
            StaticDataObject::Pointer staticData{StaticDataObject::Create()};
 | 
						|
            staticData->set_alignment(Result::kind)
 | 
						|
                .set_itemBytes(Result::kind)
 | 
						|
                .Push(cp->GetScalarValue().value());
 | 
						|
            Substring substring{std::move(staticData), std::move(lower.value()),
 | 
						|
                std::move(upper.value())};
 | 
						|
            return AsGenericExpr(
 | 
						|
                Expr<Result>{Designator<Result>{std::move(substring)}});
 | 
						|
          },
 | 
						|
          std::move(charExpr->u));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Subscripted array references
 | 
						|
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
 | 
						|
    MaybeExpr &&expr) {
 | 
						|
  if (expr) {
 | 
						|
    if (expr->Rank() > 1) {
 | 
						|
      Say("Subscript expression has rank %d greater than 1"_err_en_US,
 | 
						|
          expr->Rank());
 | 
						|
    }
 | 
						|
    if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
 | 
						|
      if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
 | 
						|
        return std::move(*ssIntExpr);
 | 
						|
      } else {
 | 
						|
        return Expr<SubscriptInteger>{
 | 
						|
            Convert<SubscriptInteger, TypeCategory::Integer>{
 | 
						|
                std::move(*intExpr)}};
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Say("Subscript expression is not INTEGER"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
 | 
						|
    const std::optional<parser::Subscript> &s) {
 | 
						|
  if (s) {
 | 
						|
    return AsSubscript(Analyze(*s));
 | 
						|
  } else {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
 | 
						|
    const parser::SectionSubscript &ss) {
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
 | 
						|
            const auto &lower{std::get<0>(t.t)};
 | 
						|
            const auto &upper{std::get<1>(t.t)};
 | 
						|
            const auto &stride{std::get<2>(t.t)};
 | 
						|
            auto result{Triplet{
 | 
						|
                TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
 | 
						|
            if ((lower && !result.lower()) || (upper && !result.upper())) {
 | 
						|
              return std::nullopt;
 | 
						|
            } else {
 | 
						|
              return std::make_optional<Subscript>(result);
 | 
						|
            }
 | 
						|
          },
 | 
						|
          [&](const auto &s) -> std::optional<Subscript> {
 | 
						|
            if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
 | 
						|
              return Subscript{std::move(*subscriptExpr)};
 | 
						|
            } else {
 | 
						|
              return std::nullopt;
 | 
						|
            }
 | 
						|
          },
 | 
						|
      },
 | 
						|
      ss.u);
 | 
						|
}
 | 
						|
 | 
						|
// Empty result means an error occurred
 | 
						|
std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
 | 
						|
    const std::list<parser::SectionSubscript> &sss) {
 | 
						|
  bool error{false};
 | 
						|
  std::vector<Subscript> subscripts;
 | 
						|
  for (const auto &s : sss) {
 | 
						|
    if (auto subscript{AnalyzeSectionSubscript(s)}) {
 | 
						|
      subscripts.emplace_back(std::move(*subscript));
 | 
						|
    } else {
 | 
						|
      error = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return !error ? subscripts : std::vector<Subscript>{};
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
 | 
						|
  MaybeExpr baseExpr;
 | 
						|
  {
 | 
						|
    auto restorer{AllowWholeAssumedSizeArray()};
 | 
						|
    baseExpr = Analyze(ae.base);
 | 
						|
  }
 | 
						|
  if (baseExpr) {
 | 
						|
    if (ae.subscripts.empty()) {
 | 
						|
      // will be converted to function call later or error reported
 | 
						|
    } else if (baseExpr->Rank() == 0) {
 | 
						|
      if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
 | 
						|
        if (!context_.HasError(symbol)) {
 | 
						|
          if (inDataStmtConstant_) {
 | 
						|
            // Better error for NULL(X) with a MOLD= argument
 | 
						|
            Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US,
 | 
						|
                symbol->name());
 | 
						|
          } else {
 | 
						|
            Say("'%s' is not an array"_err_en_US, symbol->name());
 | 
						|
          }
 | 
						|
          context_.SetError(*symbol);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (std::optional<DataRef> dataRef{
 | 
						|
                   ExtractDataRef(std::move(*baseExpr))}) {
 | 
						|
      return ApplySubscripts(
 | 
						|
          std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
 | 
						|
    } else {
 | 
						|
      Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // error was reported: analyze subscripts without reporting more errors
 | 
						|
  auto restorer{GetContextualMessages().DiscardMessages()};
 | 
						|
  AnalyzeSectionSubscripts(ae.subscripts);
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Type parameter inquiries apply to data references, but don't depend
 | 
						|
// on any trailing (co)subscripts.
 | 
						|
static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
 | 
						|
          [](Component &&component) {
 | 
						|
            return NamedEntity{std::move(component)};
 | 
						|
          },
 | 
						|
          [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
 | 
						|
          [](CoarrayRef &&coarrayRef) {
 | 
						|
            return NamedEntity{coarrayRef.GetLastSymbol()};
 | 
						|
          },
 | 
						|
      },
 | 
						|
      std::move(designator.u));
 | 
						|
}
 | 
						|
 | 
						|
// Components of parent derived types are explicitly represented as such.
 | 
						|
std::optional<Component> ExpressionAnalyzer::CreateComponent(
 | 
						|
    DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
 | 
						|
  if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b
 | 
						|
    Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
 | 
						|
  }
 | 
						|
  if (&component.owner() == &scope) {
 | 
						|
    return Component{std::move(base), component};
 | 
						|
  }
 | 
						|
  if (const Symbol * typeSymbol{scope.GetSymbol()}) {
 | 
						|
    if (const Symbol *
 | 
						|
        parentComponent{typeSymbol->GetParentComponent(&scope)}) {
 | 
						|
      if (const auto *object{
 | 
						|
              parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) {
 | 
						|
        if (const auto *parentType{object->type()}) {
 | 
						|
          if (const semantics::Scope *
 | 
						|
              parentScope{parentType->derivedTypeSpec().scope()}) {
 | 
						|
            return CreateComponent(
 | 
						|
                DataRef{Component{std::move(base), *parentComponent}},
 | 
						|
                component, *parentScope);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Derived type component references and type parameter inquiries
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
 | 
						|
  MaybeExpr base{Analyze(sc.base)};
 | 
						|
  Symbol *sym{sc.component.symbol};
 | 
						|
  if (!base || !sym || context_.HasError(sym)) {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  const auto &name{sc.component.source};
 | 
						|
  if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
 | 
						|
    const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
 | 
						|
    if (sym->detailsIf<semantics::TypeParamDetails>()) {
 | 
						|
      if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
 | 
						|
        if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
 | 
						|
          if (dyType->category() == TypeCategory::Integer) {
 | 
						|
            auto restorer{GetContextualMessages().SetLocation(name)};
 | 
						|
            return Fold(ConvertToType(*dyType,
 | 
						|
                AsGenericExpr(TypeParamInquiry{
 | 
						|
                    IgnoreAnySubscripts(std::move(*designator)), *sym})));
 | 
						|
          }
 | 
						|
        }
 | 
						|
        Say(name, "Type parameter is not INTEGER"_err_en_US);
 | 
						|
      } else {
 | 
						|
        Say(name,
 | 
						|
            "A type parameter inquiry must be applied to "
 | 
						|
            "a designator"_err_en_US);
 | 
						|
      }
 | 
						|
    } else if (!dtSpec || !dtSpec->scope()) {
 | 
						|
      CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
 | 
						|
      return std::nullopt;
 | 
						|
    } else if (std::optional<DataRef> dataRef{
 | 
						|
                   ExtractDataRef(std::move(*dtExpr))}) {
 | 
						|
      if (auto component{
 | 
						|
              CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
 | 
						|
        return Designate(DataRef{std::move(*component)});
 | 
						|
      } else {
 | 
						|
        Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
 | 
						|
            dtSpec->typeSymbol().name());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Say(name,
 | 
						|
          "Base of component reference must be a data reference"_err_en_US);
 | 
						|
    }
 | 
						|
  } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
 | 
						|
    // special part-ref: %re, %im, %kind, %len
 | 
						|
    // Type errors are detected and reported in semantics.
 | 
						|
    using MiscKind = semantics::MiscDetails::Kind;
 | 
						|
    MiscKind kind{details->kind()};
 | 
						|
    if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
 | 
						|
      if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
 | 
						|
        if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
 | 
						|
          Expr<SomeReal> realExpr{std::visit(
 | 
						|
              [&](const auto &z) {
 | 
						|
                using PartType = typename ResultType<decltype(z)>::Part;
 | 
						|
                auto part{kind == MiscKind::ComplexPartRe
 | 
						|
                        ? ComplexPart::Part::RE
 | 
						|
                        : ComplexPart::Part::IM};
 | 
						|
                return AsCategoryExpr(Designator<PartType>{
 | 
						|
                    ComplexPart{std::move(*dataRef), part}});
 | 
						|
              },
 | 
						|
              zExpr->u)};
 | 
						|
          return AsGenericExpr(std::move(realExpr));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (kind == MiscKind::KindParamInquiry ||
 | 
						|
        kind == MiscKind::LenParamInquiry) {
 | 
						|
      // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
 | 
						|
      ActualArgument arg{std::move(*base)};
 | 
						|
      SetArgSourceLocation(arg, name);
 | 
						|
      return MakeFunctionRef(name, ActualArguments{std::move(arg)});
 | 
						|
    } else {
 | 
						|
      DIE("unexpected MiscDetails::Kind");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Say(name, "derived type required before component reference"_err_en_US);
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
 | 
						|
  if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
 | 
						|
    DataRef *dataRef{&*maybeDataRef};
 | 
						|
    std::vector<Subscript> subscripts;
 | 
						|
    SymbolVector reversed;
 | 
						|
    if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
 | 
						|
      subscripts = std::move(aRef->subscript());
 | 
						|
      reversed.push_back(aRef->GetLastSymbol());
 | 
						|
      if (Component * component{aRef->base().UnwrapComponent()}) {
 | 
						|
        dataRef = &component->base();
 | 
						|
      } else {
 | 
						|
        dataRef = nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (dataRef) {
 | 
						|
      while (auto *component{std::get_if<Component>(&dataRef->u)}) {
 | 
						|
        reversed.push_back(component->GetLastSymbol());
 | 
						|
        dataRef = &component->base();
 | 
						|
      }
 | 
						|
      if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
 | 
						|
        reversed.push_back(*baseSym);
 | 
						|
      } else {
 | 
						|
        Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    std::vector<Expr<SubscriptInteger>> cosubscripts;
 | 
						|
    bool cosubsOk{true};
 | 
						|
    for (const auto &cosub :
 | 
						|
        std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
 | 
						|
      MaybeExpr coex{Analyze(cosub)};
 | 
						|
      if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
 | 
						|
        cosubscripts.push_back(
 | 
						|
            ConvertToType<SubscriptInteger>(std::move(*intExpr)));
 | 
						|
      } else {
 | 
						|
        cosubsOk = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (cosubsOk && !reversed.empty()) {
 | 
						|
      int numCosubscripts{static_cast<int>(cosubscripts.size())};
 | 
						|
      const Symbol &symbol{reversed.front()};
 | 
						|
      if (numCosubscripts != symbol.Corank()) {
 | 
						|
        Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
 | 
						|
            symbol.name(), symbol.Corank(), numCosubscripts);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (const auto &imageSelSpec :
 | 
						|
        std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
 | 
						|
      std::visit(
 | 
						|
          common::visitors{
 | 
						|
              [&](const auto &x) { Analyze(x.v); },
 | 
						|
          },
 | 
						|
          imageSelSpec.u);
 | 
						|
    }
 | 
						|
    // Reverse the chain of symbols so that the base is first and coarray
 | 
						|
    // ultimate component is last.
 | 
						|
    if (cosubsOk) {
 | 
						|
      return Designate(
 | 
						|
          DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
 | 
						|
              std::move(subscripts), std::move(cosubscripts)}});
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
int ExpressionAnalyzer::IntegerTypeSpecKind(
 | 
						|
    const parser::IntegerTypeSpec &spec) {
 | 
						|
  Expr<SubscriptInteger> value{
 | 
						|
      AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
 | 
						|
  if (auto kind{ToInt64(value)}) {
 | 
						|
    return static_cast<int>(*kind);
 | 
						|
  }
 | 
						|
  SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
 | 
						|
  return GetDefaultKind(TypeCategory::Integer);
 | 
						|
}
 | 
						|
 | 
						|
// Array constructors
 | 
						|
 | 
						|
// Inverts a collection of generic ArrayConstructorValues<SomeType> that
 | 
						|
// all happen to have the same actual type T into one ArrayConstructor<T>.
 | 
						|
template <typename T>
 | 
						|
ArrayConstructorValues<T> MakeSpecific(
 | 
						|
    ArrayConstructorValues<SomeType> &&from) {
 | 
						|
  ArrayConstructorValues<T> to;
 | 
						|
  for (ArrayConstructorValue<SomeType> &x : from) {
 | 
						|
    std::visit(
 | 
						|
        common::visitors{
 | 
						|
            [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
 | 
						|
              auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
 | 
						|
              to.Push(std::move(DEREF(typed)));
 | 
						|
            },
 | 
						|
            [&](ImpliedDo<SomeType> &&impliedDo) {
 | 
						|
              to.Push(ImpliedDo<T>{impliedDo.name(),
 | 
						|
                  std::move(impliedDo.lower()), std::move(impliedDo.upper()),
 | 
						|
                  std::move(impliedDo.stride()),
 | 
						|
                  MakeSpecific<T>(std::move(impliedDo.values()))});
 | 
						|
            },
 | 
						|
        },
 | 
						|
        std::move(x.u));
 | 
						|
  }
 | 
						|
  return to;
 | 
						|
}
 | 
						|
 | 
						|
class ArrayConstructorContext {
 | 
						|
public:
 | 
						|
  ArrayConstructorContext(
 | 
						|
      ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
 | 
						|
      : exprAnalyzer_{c}, type_{std::move(t)} {}
 | 
						|
 | 
						|
  void Add(const parser::AcValue &);
 | 
						|
  MaybeExpr ToExpr();
 | 
						|
 | 
						|
  // These interfaces allow *this to be used as a type visitor argument to
 | 
						|
  // common::SearchTypes() to convert the array constructor to a typed
 | 
						|
  // expression in ToExpr().
 | 
						|
  using Result = MaybeExpr;
 | 
						|
  using Types = AllTypes;
 | 
						|
  template <typename T> Result Test() {
 | 
						|
    if (type_ && type_->category() == T::category) {
 | 
						|
      if constexpr (T::category == TypeCategory::Derived) {
 | 
						|
        if (!type_->IsUnlimitedPolymorphic()) {
 | 
						|
          return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
 | 
						|
              MakeSpecific<T>(std::move(values_))});
 | 
						|
        }
 | 
						|
      } else if (type_->kind() == T::kind) {
 | 
						|
        if constexpr (T::category == TypeCategory::Character) {
 | 
						|
          if (auto len{type_->LEN()}) {
 | 
						|
            return AsMaybeExpr(ArrayConstructor<T>{
 | 
						|
                *std::move(len), MakeSpecific<T>(std::move(values_))});
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          return AsMaybeExpr(
 | 
						|
              ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
 | 
						|
 | 
						|
  void Push(MaybeExpr &&);
 | 
						|
  void Add(const parser::AcValue::Triplet &);
 | 
						|
  void Add(const parser::Expr &);
 | 
						|
  void Add(const parser::AcImpliedDo &);
 | 
						|
  void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
 | 
						|
      parser::CharBlock name, std::int64_t lower, std::int64_t upper,
 | 
						|
      std::int64_t stride);
 | 
						|
 | 
						|
  template <int KIND, typename A>
 | 
						|
  std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
 | 
						|
      const A &x) {
 | 
						|
    if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
 | 
						|
      Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
 | 
						|
      return Fold(exprAnalyzer_.GetFoldingContext(),
 | 
						|
          ConvertToType<Type<TypeCategory::Integer, KIND>>(
 | 
						|
              std::move(DEREF(intExpr))));
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
 | 
						|
  // Nested array constructors all reference the same ExpressionAnalyzer,
 | 
						|
  // which represents the nest of active implied DO loop indices.
 | 
						|
  ExpressionAnalyzer &exprAnalyzer_;
 | 
						|
  std::optional<DynamicTypeWithLength> type_;
 | 
						|
  bool explicitType_{type_.has_value()};
 | 
						|
  std::optional<std::int64_t> constantLength_;
 | 
						|
  ArrayConstructorValues<SomeType> values_;
 | 
						|
  std::uint64_t messageDisplayedSet_{0};
 | 
						|
};
 | 
						|
 | 
						|
void ArrayConstructorContext::Push(MaybeExpr &&x) {
 | 
						|
  if (!x) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!type_) {
 | 
						|
    if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
 | 
						|
      // Treat an array constructor of BOZ as if default integer.
 | 
						|
      if (exprAnalyzer_.context().ShouldWarn(
 | 
						|
              common::LanguageFeature::BOZAsDefaultInteger)) {
 | 
						|
        exprAnalyzer_.Say(
 | 
						|
            "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
 | 
						|
      }
 | 
						|
      x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
 | 
						|
          exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
 | 
						|
          std::move(*boz)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::optional<DynamicType> dyType{x->GetType()};
 | 
						|
  if (!dyType) {
 | 
						|
    if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
 | 
						|
      if (!type_) {
 | 
						|
        // Treat an array constructor of BOZ as if default integer.
 | 
						|
        if (exprAnalyzer_.context().ShouldWarn(
 | 
						|
                common::LanguageFeature::BOZAsDefaultInteger)) {
 | 
						|
          exprAnalyzer_.Say(
 | 
						|
              "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
 | 
						|
        }
 | 
						|
        x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
 | 
						|
            exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
 | 
						|
            std::move(*boz)));
 | 
						|
        dyType = x.value().GetType();
 | 
						|
      } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
 | 
						|
        x = std::move(cast);
 | 
						|
        dyType = *type_;
 | 
						|
      } else {
 | 
						|
        if (!(messageDisplayedSet_ & 0x80)) {
 | 
						|
          exprAnalyzer_.Say(
 | 
						|
              "BOZ literal is not suitable for use in this array constructor"_err_en_US);
 | 
						|
          messageDisplayedSet_ |= 0x80;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else { // procedure name, &c.
 | 
						|
      if (!(messageDisplayedSet_ & 0x40)) {
 | 
						|
        exprAnalyzer_.Say(
 | 
						|
            "Item is not suitable for use in an array constructor"_err_en_US);
 | 
						|
        messageDisplayedSet_ |= 0x40;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (dyType->IsUnlimitedPolymorphic()) {
 | 
						|
    if (!(messageDisplayedSet_ & 8)) {
 | 
						|
      exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
 | 
						|
                        "array constructor"_err_en_US); // C7113
 | 
						|
      messageDisplayedSet_ |= 8;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DynamicTypeWithLength xType{dyType.value()};
 | 
						|
  if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
 | 
						|
    CHECK(xType.category() == TypeCategory::Character);
 | 
						|
    xType.length =
 | 
						|
        std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
 | 
						|
  }
 | 
						|
  if (!type_) {
 | 
						|
    // If there is no explicit type-spec in an array constructor, the type
 | 
						|
    // of the array is the declared type of all of the elements, which must
 | 
						|
    // be well-defined and all match.
 | 
						|
    // TODO: Possible language extension: use the most general type of
 | 
						|
    // the values as the type of a numeric constructed array, convert all
 | 
						|
    // of the other values to that type.  Alternative: let the first value
 | 
						|
    // determine the type, and convert the others to that type.
 | 
						|
    CHECK(!explicitType_);
 | 
						|
    type_ = std::move(xType);
 | 
						|
    constantLength_ = ToInt64(type_->length);
 | 
						|
    values_.Push(std::move(*x));
 | 
						|
  } else if (!explicitType_) {
 | 
						|
    if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
 | 
						|
      values_.Push(std::move(*x));
 | 
						|
      if (auto thisLen{ToInt64(xType.LEN())}) {
 | 
						|
        if (constantLength_) {
 | 
						|
          if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
 | 
						|
              *thisLen != *constantLength_) {
 | 
						|
            if (!(messageDisplayedSet_ & 1)) {
 | 
						|
              exprAnalyzer_.Say(
 | 
						|
                  "Character literal in array constructor without explicit "
 | 
						|
                  "type has different length than earlier elements"_port_en_US);
 | 
						|
              messageDisplayedSet_ |= 1;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (*thisLen > *constantLength_) {
 | 
						|
            // Language extension: use the longest literal to determine the
 | 
						|
            // length of the array constructor's character elements, not the
 | 
						|
            // first, when there is no explicit type.
 | 
						|
            *constantLength_ = *thisLen;
 | 
						|
            type_->length = xType.LEN();
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          constantLength_ = *thisLen;
 | 
						|
          type_->length = xType.LEN();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!(messageDisplayedSet_ & 2)) {
 | 
						|
        exprAnalyzer_.Say(
 | 
						|
            "Values in array constructor must have the same declared type "
 | 
						|
            "when no explicit type appears"_err_en_US); // C7110
 | 
						|
        messageDisplayedSet_ |= 2;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (auto cast{ConvertToType(*type_, std::move(*x))}) {
 | 
						|
      values_.Push(std::move(*cast));
 | 
						|
    } else if (!(messageDisplayedSet_ & 4)) {
 | 
						|
      exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
 | 
						|
                        "be converted to the type of the array '%s'"_err_en_US,
 | 
						|
          x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
 | 
						|
      messageDisplayedSet_ |= 4;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ArrayConstructorContext::Add(const parser::AcValue &x) {
 | 
						|
  std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
 | 
						|
          [&](const common::Indirection<parser::Expr> &expr) {
 | 
						|
            Add(expr.value());
 | 
						|
          },
 | 
						|
          [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
 | 
						|
            Add(impliedDo.value());
 | 
						|
          },
 | 
						|
      },
 | 
						|
      x.u);
 | 
						|
}
 | 
						|
 | 
						|
// Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
 | 
						|
void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
 | 
						|
  std::optional<Expr<ImpliedDoIntType>> lower{
 | 
						|
      GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
 | 
						|
  std::optional<Expr<ImpliedDoIntType>> upper{
 | 
						|
      GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
 | 
						|
  std::optional<Expr<ImpliedDoIntType>> stride{
 | 
						|
      GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
 | 
						|
  if (lower && upper) {
 | 
						|
    if (!stride) {
 | 
						|
      stride = Expr<ImpliedDoIntType>{1};
 | 
						|
    }
 | 
						|
    if (!type_) {
 | 
						|
      type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
 | 
						|
    }
 | 
						|
    auto v{std::move(values_)};
 | 
						|
    parser::CharBlock anonymous;
 | 
						|
    Push(Expr<SomeType>{
 | 
						|
        Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
 | 
						|
    std::swap(v, values_);
 | 
						|
    values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
 | 
						|
        std::move(*upper), std::move(*stride), std::move(v)});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ArrayConstructorContext::Add(const parser::Expr &expr) {
 | 
						|
  auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
 | 
						|
  Push(exprAnalyzer_.Analyze(expr));
 | 
						|
}
 | 
						|
 | 
						|
void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
 | 
						|
  const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
 | 
						|
  const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
 | 
						|
  exprAnalyzer_.Analyze(bounds.name);
 | 
						|
  parser::CharBlock name{bounds.name.thing.thing.source};
 | 
						|
  const Symbol *symbol{bounds.name.thing.thing.symbol};
 | 
						|
  int kind{ImpliedDoIntType::kind};
 | 
						|
  if (const auto dynamicType{DynamicType::From(symbol)}) {
 | 
						|
    kind = dynamicType->kind();
 | 
						|
  }
 | 
						|
  std::optional<Expr<ImpliedDoIntType>> lower{
 | 
						|
      GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
 | 
						|
  std::optional<Expr<ImpliedDoIntType>> upper{
 | 
						|
      GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
 | 
						|
  if (lower && upper) {
 | 
						|
    std::optional<Expr<ImpliedDoIntType>> stride{
 | 
						|
        GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
 | 
						|
    if (!stride) {
 | 
						|
      stride = Expr<ImpliedDoIntType>{1};
 | 
						|
    }
 | 
						|
    if (exprAnalyzer_.AddImpliedDo(name, kind)) {
 | 
						|
      // Check for constant bounds; the loop may require complete unrolling
 | 
						|
      // of the parse tree if all bounds are constant in order to allow the
 | 
						|
      // implied DO loop index to qualify as a constant expression.
 | 
						|
      auto cLower{ToInt64(lower)};
 | 
						|
      auto cUpper{ToInt64(upper)};
 | 
						|
      auto cStride{ToInt64(stride)};
 | 
						|
      if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
 | 
						|
        exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
 | 
						|
            "The stride of an implied DO loop must not be zero"_err_en_US);
 | 
						|
        messageDisplayedSet_ |= 0x10;
 | 
						|
      }
 | 
						|
      bool isConstant{cLower && cUpper && cStride && *cStride != 0};
 | 
						|
      bool isNonemptyConstant{isConstant &&
 | 
						|
          ((*cStride > 0 && *cLower <= *cUpper) ||
 | 
						|
              (*cStride < 0 && *cLower >= *cUpper))};
 | 
						|
      bool unrollConstantLoop{false};
 | 
						|
      parser::Messages buffer;
 | 
						|
      auto saveMessagesDisplayed{messageDisplayedSet_};
 | 
						|
      {
 | 
						|
        auto messageRestorer{
 | 
						|
            exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
 | 
						|
        auto v{std::move(values_)};
 | 
						|
        for (const auto &value :
 | 
						|
            std::get<std::list<parser::AcValue>>(impliedDo.t)) {
 | 
						|
          Add(value);
 | 
						|
        }
 | 
						|
        std::swap(v, values_);
 | 
						|
        if (isNonemptyConstant && buffer.AnyFatalError()) {
 | 
						|
          unrollConstantLoop = true;
 | 
						|
        } else {
 | 
						|
          values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
 | 
						|
              std::move(*upper), std::move(*stride), std::move(v)});
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (unrollConstantLoop) {
 | 
						|
        messageDisplayedSet_ = saveMessagesDisplayed;
 | 
						|
        UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
 | 
						|
      } else if (auto *messages{
 | 
						|
                     exprAnalyzer_.GetContextualMessages().messages()}) {
 | 
						|
        messages->Annex(std::move(buffer));
 | 
						|
      }
 | 
						|
      exprAnalyzer_.RemoveImpliedDo(name);
 | 
						|
    } else if (!(messageDisplayedSet_ & 0x20)) {
 | 
						|
      exprAnalyzer_.SayAt(name,
 | 
						|
          "Implied DO index '%s' is active in a surrounding implied DO loop "
 | 
						|
          "and may not have the same name"_err_en_US,
 | 
						|
          name); // C7115
 | 
						|
      messageDisplayedSet_ |= 0x20;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Fortran considers an implied DO index of an array constructor to be
 | 
						|
// a constant expression if the bounds of the implied DO loop are constant.
 | 
						|
// Usually this doesn't matter, but if we emitted spurious messages as a
 | 
						|
// result of not using constant values for the index while analyzing the
 | 
						|
// items, we need to do it again the "hard" way with multiple iterations over
 | 
						|
// the parse tree.
 | 
						|
void ArrayConstructorContext::UnrollConstantImpliedDo(
 | 
						|
    const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
 | 
						|
    std::int64_t lower, std::int64_t upper, std::int64_t stride) {
 | 
						|
  auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
 | 
						|
  auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
 | 
						|
  for (auto &at{foldingContext.StartImpliedDo(name, lower)};
 | 
						|
       (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
 | 
						|
       at += stride) {
 | 
						|
    for (const auto &value :
 | 
						|
        std::get<std::list<parser::AcValue>>(impliedDo.t)) {
 | 
						|
      Add(value);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  foldingContext.EndImpliedDo(name);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ArrayConstructorContext::ToExpr() {
 | 
						|
  return common::SearchTypes(std::move(*this));
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
 | 
						|
  const parser::AcSpec &acSpec{array.v};
 | 
						|
  ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
 | 
						|
  for (const parser::AcValue &value : acSpec.values) {
 | 
						|
    acContext.Add(value);
 | 
						|
  }
 | 
						|
  return acContext.ToExpr();
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::StructureConstructor &structure) {
 | 
						|
  auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
 | 
						|
  parser::Name structureType{std::get<parser::Name>(parsedType.t)};
 | 
						|
  parser::CharBlock &typeName{structureType.source};
 | 
						|
  if (semantics::Symbol * typeSymbol{structureType.symbol}) {
 | 
						|
    if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
 | 
						|
      semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
 | 
						|
      if (!CheckIsValidForwardReference(dtSpec)) {
 | 
						|
        return std::nullopt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!parsedType.derivedTypeSpec) {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  const auto &spec{*parsedType.derivedTypeSpec};
 | 
						|
  const Symbol &typeSymbol{spec.typeSymbol()};
 | 
						|
  if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
 | 
						|
    return std::nullopt; // error recovery
 | 
						|
  }
 | 
						|
  const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
 | 
						|
  const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
 | 
						|
 | 
						|
  if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
 | 
						|
    AttachDeclaration(Say(typeName,
 | 
						|
                          "ABSTRACT derived type '%s' may not be used in a "
 | 
						|
                          "structure constructor"_err_en_US,
 | 
						|
                          typeName),
 | 
						|
        typeSymbol); // C7114
 | 
						|
  }
 | 
						|
 | 
						|
  // This iterator traverses all of the components in the derived type and its
 | 
						|
  // parents.  The symbols for whole parent components appear after their
 | 
						|
  // own components and before the components of the types that extend them.
 | 
						|
  // E.g., TYPE :: A; REAL X; END TYPE
 | 
						|
  //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
 | 
						|
  // produces the component list X, A, Y.
 | 
						|
  // The order is important below because a structure constructor can
 | 
						|
  // initialize X or A by name, but not both.
 | 
						|
  auto components{semantics::OrderedComponentIterator{spec}};
 | 
						|
  auto nextAnonymous{components.begin()};
 | 
						|
 | 
						|
  std::set<parser::CharBlock> unavailable;
 | 
						|
  bool anyKeyword{false};
 | 
						|
  StructureConstructor result{spec};
 | 
						|
  bool checkConflicts{true}; // until we hit one
 | 
						|
  auto &messages{GetContextualMessages()};
 | 
						|
 | 
						|
  for (const auto &component :
 | 
						|
      std::get<std::list<parser::ComponentSpec>>(structure.t)) {
 | 
						|
    const parser::Expr &expr{
 | 
						|
        std::get<parser::ComponentDataSource>(component.t).v.value()};
 | 
						|
    parser::CharBlock source{expr.source};
 | 
						|
    auto restorer{messages.SetLocation(source)};
 | 
						|
    const Symbol *symbol{nullptr};
 | 
						|
    MaybeExpr value{Analyze(expr)};
 | 
						|
    std::optional<DynamicType> valueType{DynamicType::From(value)};
 | 
						|
    if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
 | 
						|
      anyKeyword = true;
 | 
						|
      source = kw->v.source;
 | 
						|
      symbol = kw->v.symbol;
 | 
						|
      if (!symbol) {
 | 
						|
        auto componentIter{std::find_if(components.begin(), components.end(),
 | 
						|
            [=](const Symbol &symbol) { return symbol.name() == source; })};
 | 
						|
        if (componentIter != components.end()) {
 | 
						|
          symbol = &*componentIter;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!symbol) { // C7101
 | 
						|
        Say(source,
 | 
						|
            "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
 | 
						|
            source, typeName);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (anyKeyword) { // C7100
 | 
						|
        Say(source,
 | 
						|
            "Value in structure constructor lacks a component name"_err_en_US);
 | 
						|
        checkConflicts = false; // stem cascade
 | 
						|
      }
 | 
						|
      // Here's a regrettably common extension of the standard: anonymous
 | 
						|
      // initialization of parent components, e.g., T(PT(1)) rather than
 | 
						|
      // T(1) or T(PT=PT(1)).
 | 
						|
      if (nextAnonymous == components.begin() && parentComponent &&
 | 
						|
          valueType == DynamicType::From(*parentComponent) &&
 | 
						|
          context().IsEnabled(LanguageFeature::AnonymousParents)) {
 | 
						|
        auto iter{
 | 
						|
            std::find(components.begin(), components.end(), *parentComponent)};
 | 
						|
        if (iter != components.end()) {
 | 
						|
          symbol = parentComponent;
 | 
						|
          nextAnonymous = ++iter;
 | 
						|
          if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
 | 
						|
            Say(source,
 | 
						|
                "Whole parent component '%s' in structure "
 | 
						|
                "constructor should not be anonymous"_port_en_US,
 | 
						|
                symbol->name());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      while (!symbol && nextAnonymous != components.end()) {
 | 
						|
        const Symbol &next{*nextAnonymous};
 | 
						|
        ++nextAnonymous;
 | 
						|
        if (!next.test(Symbol::Flag::ParentComp)) {
 | 
						|
          symbol = &next;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!symbol) {
 | 
						|
        Say(source, "Unexpected value in structure constructor"_err_en_US);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (symbol) {
 | 
						|
      if (const auto *currScope{context_.globalScope().FindScope(source)}) {
 | 
						|
        if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
 | 
						|
          Say(source, *msg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (checkConflicts) {
 | 
						|
        auto componentIter{
 | 
						|
            std::find(components.begin(), components.end(), *symbol)};
 | 
						|
        if (unavailable.find(symbol->name()) != unavailable.cend()) {
 | 
						|
          // C797, C798
 | 
						|
          Say(source,
 | 
						|
              "Component '%s' conflicts with another component earlier in "
 | 
						|
              "this structure constructor"_err_en_US,
 | 
						|
              symbol->name());
 | 
						|
        } else if (symbol->test(Symbol::Flag::ParentComp)) {
 | 
						|
          // Make earlier components unavailable once a whole parent appears.
 | 
						|
          for (auto it{components.begin()}; it != componentIter; ++it) {
 | 
						|
            unavailable.insert(it->name());
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // Make whole parent components unavailable after any of their
 | 
						|
          // constituents appear.
 | 
						|
          for (auto it{componentIter}; it != components.end(); ++it) {
 | 
						|
            if (it->test(Symbol::Flag::ParentComp)) {
 | 
						|
              unavailable.insert(it->name());
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      unavailable.insert(symbol->name());
 | 
						|
      if (value) {
 | 
						|
        if (symbol->has<semantics::ProcEntityDetails>()) {
 | 
						|
          CHECK(IsPointer(*symbol));
 | 
						|
        } else if (symbol->has<semantics::ObjectEntityDetails>()) {
 | 
						|
          // C1594(4)
 | 
						|
          const auto &innermost{context_.FindScope(expr.source)};
 | 
						|
          if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
 | 
						|
            if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
 | 
						|
              if (const Symbol *
 | 
						|
                  object{FindExternallyVisibleObject(*value, *pureProc)}) {
 | 
						|
                if (auto *msg{Say(expr.source,
 | 
						|
                        "Externally visible object '%s' may not be "
 | 
						|
                        "associated with pointer component '%s' in a "
 | 
						|
                        "pure procedure"_err_en_US,
 | 
						|
                        object->name(), pointer->name())}) {
 | 
						|
                  msg->Attach(object->name(), "Object declaration"_en_US)
 | 
						|
                      .Attach(pointer->name(), "Pointer declaration"_en_US);
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (symbol->has<semantics::TypeParamDetails>()) {
 | 
						|
          Say(expr.source,
 | 
						|
              "Type parameter '%s' may not appear as a component "
 | 
						|
              "of a structure constructor"_err_en_US,
 | 
						|
              symbol->name());
 | 
						|
          continue;
 | 
						|
        } else {
 | 
						|
          Say(expr.source,
 | 
						|
              "Component '%s' is neither a procedure pointer "
 | 
						|
              "nor a data object"_err_en_US,
 | 
						|
              symbol->name());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        if (IsPointer(*symbol)) {
 | 
						|
          semantics::CheckPointerAssignment(
 | 
						|
              GetFoldingContext(), *symbol, *value); // C7104, C7105
 | 
						|
          result.Add(*symbol, Fold(std::move(*value)));
 | 
						|
        } else if (MaybeExpr converted{
 | 
						|
                       ConvertToType(*symbol, std::move(*value))}) {
 | 
						|
          if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
 | 
						|
            if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
 | 
						|
              if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
 | 
						|
                AttachDeclaration(
 | 
						|
                    Say(expr.source,
 | 
						|
                        "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
 | 
						|
                        GetRank(*valueShape), symbol->name()),
 | 
						|
                    *symbol);
 | 
						|
              } else {
 | 
						|
                auto checked{
 | 
						|
                    CheckConformance(messages, *componentShape, *valueShape,
 | 
						|
                        CheckConformanceFlags::RightIsExpandableDeferred,
 | 
						|
                        "component", "value")};
 | 
						|
                if (checked && *checked && GetRank(*componentShape) > 0 &&
 | 
						|
                    GetRank(*valueShape) == 0 &&
 | 
						|
                    !IsExpandableScalar(*converted)) {
 | 
						|
                  AttachDeclaration(
 | 
						|
                      Say(expr.source,
 | 
						|
                          "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
 | 
						|
                          symbol->name()),
 | 
						|
                      *symbol);
 | 
						|
                }
 | 
						|
                if (checked.value_or(true)) {
 | 
						|
                  result.Add(*symbol, std::move(*converted));
 | 
						|
                }
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              Say(expr.source, "Shape of value cannot be determined"_err_en_US);
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            AttachDeclaration(
 | 
						|
                Say(expr.source,
 | 
						|
                    "Shape of component '%s' cannot be determined"_err_en_US,
 | 
						|
                    symbol->name()),
 | 
						|
                *symbol);
 | 
						|
          }
 | 
						|
        } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) {
 | 
						|
          // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE.
 | 
						|
          result.Add(*symbol, Expr<SomeType>{NullPointer{}});
 | 
						|
        } else if (auto symType{DynamicType::From(symbol)}) {
 | 
						|
          if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() &&
 | 
						|
              valueType) {
 | 
						|
            // ok
 | 
						|
          } else if (valueType) {
 | 
						|
            AttachDeclaration(
 | 
						|
                Say(expr.source,
 | 
						|
                    "Value in structure constructor of type '%s' is "
 | 
						|
                    "incompatible with component '%s' of type '%s'"_err_en_US,
 | 
						|
                    valueType->AsFortran(), symbol->name(),
 | 
						|
                    symType->AsFortran()),
 | 
						|
                *symbol);
 | 
						|
          } else {
 | 
						|
            AttachDeclaration(
 | 
						|
                Say(expr.source,
 | 
						|
                    "Value in structure constructor is incompatible with "
 | 
						|
                    "component '%s' of type %s"_err_en_US,
 | 
						|
                    symbol->name(), symType->AsFortran()),
 | 
						|
                *symbol);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that unmentioned component objects have default initializers.
 | 
						|
  for (const Symbol &symbol : components) {
 | 
						|
    if (!symbol.test(Symbol::Flag::ParentComp) &&
 | 
						|
        unavailable.find(symbol.name()) == unavailable.cend()) {
 | 
						|
      if (IsAllocatable(symbol)) {
 | 
						|
        // Set all remaining allocatables to explicit NULL()
 | 
						|
        result.Add(symbol, Expr<SomeType>{NullPointer{}});
 | 
						|
      } else if (const auto *details{
 | 
						|
                     symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
 | 
						|
        if (details->init()) {
 | 
						|
          result.Add(symbol, common::Clone(*details->init()));
 | 
						|
        } else { // C799
 | 
						|
          AttachDeclaration(Say(typeName,
 | 
						|
                                "Structure constructor lacks a value for "
 | 
						|
                                "component '%s'"_err_en_US,
 | 
						|
                                symbol.name()),
 | 
						|
              symbol);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
 | 
						|
}
 | 
						|
 | 
						|
static std::optional<parser::CharBlock> GetPassName(
 | 
						|
    const semantics::Symbol &proc) {
 | 
						|
  return std::visit(
 | 
						|
      [](const auto &details) {
 | 
						|
        if constexpr (std::is_base_of_v<semantics::WithPassArg,
 | 
						|
                          std::decay_t<decltype(details)>>) {
 | 
						|
          return details.passName();
 | 
						|
        } else {
 | 
						|
          return std::optional<parser::CharBlock>{};
 | 
						|
        }
 | 
						|
      },
 | 
						|
      proc.details());
 | 
						|
}
 | 
						|
 | 
						|
static int GetPassIndex(const Symbol &proc) {
 | 
						|
  CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
 | 
						|
  std::optional<parser::CharBlock> passName{GetPassName(proc)};
 | 
						|
  const auto *interface { semantics::FindInterface(proc) };
 | 
						|
  if (!passName || !interface) {
 | 
						|
    return 0; // first argument is passed-object
 | 
						|
  }
 | 
						|
  const auto &subp{interface->get<semantics::SubprogramDetails>()};
 | 
						|
  int index{0};
 | 
						|
  for (const auto *arg : subp.dummyArgs()) {
 | 
						|
    if (arg && arg->name() == passName) {
 | 
						|
      return index;
 | 
						|
    }
 | 
						|
    ++index;
 | 
						|
  }
 | 
						|
  DIE("PASS argument name not in dummy argument list");
 | 
						|
}
 | 
						|
 | 
						|
// Injects an expression into an actual argument list as the "passed object"
 | 
						|
// for a type-bound procedure reference that is not NOPASS.  Adds an
 | 
						|
// argument keyword if possible, but not when the passed object goes
 | 
						|
// before a positional argument.
 | 
						|
// e.g., obj%tbp(x) -> tbp(obj,x).
 | 
						|
static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
 | 
						|
    const Symbol &component, bool isPassedObject = true) {
 | 
						|
  if (component.attrs().test(semantics::Attr::NOPASS)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  int passIndex{GetPassIndex(component)};
 | 
						|
  auto iter{actuals.begin()};
 | 
						|
  int at{0};
 | 
						|
  while (iter < actuals.end() && at < passIndex) {
 | 
						|
    if (*iter && (*iter)->keyword()) {
 | 
						|
      iter = actuals.end();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    ++iter;
 | 
						|
    ++at;
 | 
						|
  }
 | 
						|
  ActualArgument passed{AsGenericExpr(common::Clone(expr))};
 | 
						|
  passed.set_isPassedObject(isPassedObject);
 | 
						|
  if (iter == actuals.end()) {
 | 
						|
    if (auto passName{GetPassName(component)}) {
 | 
						|
      passed.set_keyword(*passName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  actuals.emplace(iter, std::move(passed));
 | 
						|
}
 | 
						|
 | 
						|
// Return the compile-time resolution of a procedure binding, if possible.
 | 
						|
static const Symbol *GetBindingResolution(
 | 
						|
    const std::optional<DynamicType> &baseType, const Symbol &component) {
 | 
						|
  const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
 | 
						|
  if (!binding) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
 | 
						|
      (!baseType || baseType->IsPolymorphic())) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  return &binding->symbol();
 | 
						|
}
 | 
						|
 | 
						|
auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
 | 
						|
    const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
 | 
						|
    -> std::optional<CalleeAndArguments> {
 | 
						|
  const parser::StructureComponent &sc{pcr.v.thing};
 | 
						|
  if (MaybeExpr base{Analyze(sc.base)}) {
 | 
						|
    if (const Symbol * sym{sc.component.symbol}) {
 | 
						|
      if (context_.HasError(sym)) {
 | 
						|
        return std::nullopt;
 | 
						|
      }
 | 
						|
      if (!IsProcedure(*sym)) {
 | 
						|
        AttachDeclaration(
 | 
						|
            Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
 | 
						|
                sc.component.source),
 | 
						|
            *sym);
 | 
						|
        return std::nullopt;
 | 
						|
      }
 | 
						|
      if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
 | 
						|
        if (sym->has<semantics::GenericDetails>()) {
 | 
						|
          AdjustActuals adjustment{
 | 
						|
              [&](const Symbol &proc, ActualArguments &actuals) {
 | 
						|
                if (!proc.attrs().test(semantics::Attr::NOPASS)) {
 | 
						|
                  AddPassArg(actuals, std::move(*dtExpr), proc);
 | 
						|
                }
 | 
						|
                return true;
 | 
						|
              }};
 | 
						|
          auto pair{ResolveGeneric(*sym, arguments, adjustment)};
 | 
						|
          sym = pair.first;
 | 
						|
          if (!sym) {
 | 
						|
            EmitGenericResolutionError(*sc.component.symbol, pair.second);
 | 
						|
            return std::nullopt;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (const Symbol *
 | 
						|
            resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
 | 
						|
          AddPassArg(arguments, std::move(*dtExpr), *sym, false);
 | 
						|
          return CalleeAndArguments{
 | 
						|
              ProcedureDesignator{*resolution}, std::move(arguments)};
 | 
						|
        } else if (std::optional<DataRef> dataRef{
 | 
						|
                       ExtractDataRef(std::move(*dtExpr))}) {
 | 
						|
          if (sym->attrs().test(semantics::Attr::NOPASS)) {
 | 
						|
            return CalleeAndArguments{
 | 
						|
                ProcedureDesignator{Component{std::move(*dataRef), *sym}},
 | 
						|
                std::move(arguments)};
 | 
						|
          } else {
 | 
						|
            AddPassArg(arguments,
 | 
						|
                Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
 | 
						|
                *sym);
 | 
						|
            return CalleeAndArguments{
 | 
						|
                ProcedureDesignator{*sym}, std::move(arguments)};
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Say(sc.component.source,
 | 
						|
          "Base of procedure component reference is not a derived-type object"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CHECK(context_.AnyFatalError());
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Can actual be argument associated with dummy?
 | 
						|
static bool CheckCompatibleArgument(bool isElemental,
 | 
						|
    const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
 | 
						|
  const auto *expr{actual.UnwrapExpr()};
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const characteristics::DummyDataObject &x) {
 | 
						|
            if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
 | 
						|
                IsBareNullPointer(expr)) {
 | 
						|
              // NULL() without MOLD= is compatible with any dummy data pointer
 | 
						|
              // but cannot be allowed to lead to ambiguity.
 | 
						|
              return true;
 | 
						|
            } else if (!isElemental && actual.Rank() != x.type.Rank() &&
 | 
						|
                !x.type.attrs().test(
 | 
						|
                    characteristics::TypeAndShape::Attr::AssumedRank)) {
 | 
						|
              return false;
 | 
						|
            } else if (auto actualType{actual.GetType()}) {
 | 
						|
              return x.type.type().IsTkCompatibleWith(*actualType);
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
          },
 | 
						|
          [&](const characteristics::DummyProcedure &) {
 | 
						|
            return expr && IsProcedurePointerTarget(*expr);
 | 
						|
          },
 | 
						|
          [&](const characteristics::AlternateReturn &) {
 | 
						|
            return actual.isAlternateReturn();
 | 
						|
          },
 | 
						|
      },
 | 
						|
      dummy.u);
 | 
						|
}
 | 
						|
 | 
						|
// Are the actual arguments compatible with the dummy arguments of procedure?
 | 
						|
static bool CheckCompatibleArguments(
 | 
						|
    const characteristics::Procedure &procedure,
 | 
						|
    const ActualArguments &actuals) {
 | 
						|
  bool isElemental{procedure.IsElemental()};
 | 
						|
  const auto &dummies{procedure.dummyArguments};
 | 
						|
  CHECK(dummies.size() == actuals.size());
 | 
						|
  for (std::size_t i{0}; i < dummies.size(); ++i) {
 | 
						|
    const characteristics::DummyArgument &dummy{dummies[i]};
 | 
						|
    const std::optional<ActualArgument> &actual{actuals[i]};
 | 
						|
    if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Handles a forward reference to a module function from what must
 | 
						|
// be a specification expression.  Return false if the symbol is
 | 
						|
// an invalid forward reference.
 | 
						|
bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
 | 
						|
  if (context_.HasError(symbol)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (const auto *details{
 | 
						|
          symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
 | 
						|
    if (details->kind() == semantics::SubprogramKind::Module) {
 | 
						|
      // If this symbol is still a SubprogramNameDetails, we must be
 | 
						|
      // checking a specification expression in a sibling module
 | 
						|
      // procedure.  Resolve its names now so that its interface
 | 
						|
      // is known.
 | 
						|
      semantics::ResolveSpecificationParts(context_, symbol);
 | 
						|
      if (symbol.has<semantics::SubprogramNameDetails>()) {
 | 
						|
        // When the symbol hasn't had its details updated, we must have
 | 
						|
        // already been in the process of resolving the function's
 | 
						|
        // specification part; but recursive function calls are not
 | 
						|
        // allowed in specification parts (10.1.11 para 5).
 | 
						|
        Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
 | 
						|
            symbol.name());
 | 
						|
        context_.SetError(symbol);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else { // 10.1.11 para 4
 | 
						|
      Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
 | 
						|
          symbol.name());
 | 
						|
      context_.SetError(symbol);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Resolve a call to a generic procedure with given actual arguments.
 | 
						|
// adjustActuals is called on procedure bindings to handle pass arg.
 | 
						|
std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
 | 
						|
    const Symbol &symbol, const ActualArguments &actuals,
 | 
						|
    const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) {
 | 
						|
  const Symbol *elemental{nullptr}; // matching elemental specific proc
 | 
						|
  const Symbol *nonElemental{nullptr}; // matching non-elemental specific
 | 
						|
  const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
 | 
						|
  bool anyBareNullActual{
 | 
						|
      std::find_if(actuals.begin(), actuals.end(), [](auto iter) {
 | 
						|
        return IsBareNullPointer(iter->UnwrapExpr());
 | 
						|
      }) != actuals.end()};
 | 
						|
  for (const Symbol &specific : details.specificProcs()) {
 | 
						|
    if (!ResolveForward(specific)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (std::optional<characteristics::Procedure> procedure{
 | 
						|
            characteristics::Procedure::Characterize(
 | 
						|
                ProcedureDesignator{specific}, context_.foldingContext())}) {
 | 
						|
      ActualArguments localActuals{actuals};
 | 
						|
      if (specific.has<semantics::ProcBindingDetails>()) {
 | 
						|
        if (!adjustActuals.value()(specific, localActuals)) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
 | 
						|
              GetFoldingContext(), false /* no integer conversions */) &&
 | 
						|
          CheckCompatibleArguments(*procedure, localActuals)) {
 | 
						|
        if ((procedure->IsElemental() && elemental) ||
 | 
						|
            (!procedure->IsElemental() && nonElemental)) {
 | 
						|
          // 16.9.144(6): a bare NULL() is not allowed as an actual
 | 
						|
          // argument to a generic procedure if the specific procedure
 | 
						|
          // cannot be unambiguously distinguished
 | 
						|
          return {nullptr, true /* due to NULL actuals */};
 | 
						|
        }
 | 
						|
        if (!procedure->IsElemental()) {
 | 
						|
          // takes priority over elemental match
 | 
						|
          nonElemental = &specific;
 | 
						|
          if (!anyBareNullActual) {
 | 
						|
            break; // unambiguous case
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          elemental = &specific;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (nonElemental) {
 | 
						|
    return {&AccessSpecific(symbol, *nonElemental), false};
 | 
						|
  } else if (elemental) {
 | 
						|
    return {&AccessSpecific(symbol, *elemental), false};
 | 
						|
  }
 | 
						|
  // Check parent derived type
 | 
						|
  if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
 | 
						|
    if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
 | 
						|
      if (extended->GetUltimate().has<semantics::GenericDetails>()) {
 | 
						|
        auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)};
 | 
						|
        if (pair.first) {
 | 
						|
          return pair;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (mightBeStructureConstructor && details.derivedType()) {
 | 
						|
    return {details.derivedType(), false};
 | 
						|
  }
 | 
						|
  return {nullptr, false};
 | 
						|
}
 | 
						|
 | 
						|
const Symbol &ExpressionAnalyzer::AccessSpecific(
 | 
						|
    const Symbol &originalGeneric, const Symbol &specific) {
 | 
						|
  if (const auto *hosted{
 | 
						|
          originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
 | 
						|
    return AccessSpecific(hosted->symbol(), specific);
 | 
						|
  } else if (const auto *used{
 | 
						|
                 originalGeneric.detailsIf<semantics::UseDetails>()}) {
 | 
						|
    const auto &scope{originalGeneric.owner()};
 | 
						|
    if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
 | 
						|
      if (const auto *useDetails{
 | 
						|
              iter->second->detailsIf<semantics::UseDetails>()}) {
 | 
						|
        const Symbol &usedSymbol{useDetails->symbol()};
 | 
						|
        const auto *usedGeneric{
 | 
						|
            usedSymbol.detailsIf<semantics::GenericDetails>()};
 | 
						|
        if (&usedSymbol == &specific ||
 | 
						|
            (usedGeneric && usedGeneric->specific() == &specific)) {
 | 
						|
          return specific;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Create a renaming USE of the specific procedure.
 | 
						|
    auto rename{context_.SaveTempName(
 | 
						|
        used->symbol().owner().GetName().value().ToString() + "$" +
 | 
						|
        specific.name().ToString())};
 | 
						|
    return *const_cast<semantics::Scope &>(scope)
 | 
						|
                .try_emplace(rename, specific.attrs(),
 | 
						|
                    semantics::UseDetails{rename, specific})
 | 
						|
                .first->second;
 | 
						|
  } else {
 | 
						|
    return specific;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionAnalyzer::EmitGenericResolutionError(
 | 
						|
    const Symbol &symbol, bool dueToNullActuals) {
 | 
						|
  Say(dueToNullActuals
 | 
						|
          ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US
 | 
						|
          : semantics::IsGenericDefinedOp(symbol)
 | 
						|
          ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
 | 
						|
          : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
 | 
						|
      symbol.name());
 | 
						|
}
 | 
						|
 | 
						|
auto ExpressionAnalyzer::GetCalleeAndArguments(
 | 
						|
    const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
 | 
						|
    bool isSubroutine, bool mightBeStructureConstructor)
 | 
						|
    -> std::optional<CalleeAndArguments> {
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const parser::Name &name) {
 | 
						|
            return GetCalleeAndArguments(name, std::move(arguments),
 | 
						|
                isSubroutine, mightBeStructureConstructor);
 | 
						|
          },
 | 
						|
          [&](const parser::ProcComponentRef &pcr) {
 | 
						|
            return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
 | 
						|
          },
 | 
						|
      },
 | 
						|
      pd.u);
 | 
						|
}
 | 
						|
 | 
						|
auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
 | 
						|
    ActualArguments &&arguments, bool isSubroutine,
 | 
						|
    bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
 | 
						|
  const Symbol *symbol{name.symbol};
 | 
						|
  if (context_.HasError(symbol)) {
 | 
						|
    return std::nullopt; // also handles null symbol
 | 
						|
  }
 | 
						|
  const Symbol &ultimate{DEREF(symbol).GetUltimate()};
 | 
						|
  if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
 | 
						|
    if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
 | 
						|
            CallCharacteristics{ultimate.name().ToString(), isSubroutine},
 | 
						|
            arguments, GetFoldingContext())}) {
 | 
						|
      CheckBadExplicitType(*specificCall, *symbol);
 | 
						|
      return CalleeAndArguments{
 | 
						|
          ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
 | 
						|
          std::move(specificCall->arguments)};
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    CheckForBadRecursion(name.source, ultimate);
 | 
						|
    bool dueToNullActual{false};
 | 
						|
    if (ultimate.has<semantics::GenericDetails>()) {
 | 
						|
      ExpressionAnalyzer::AdjustActuals noAdjustment;
 | 
						|
      auto pair{ResolveGeneric(
 | 
						|
          *symbol, arguments, noAdjustment, mightBeStructureConstructor)};
 | 
						|
      symbol = pair.first;
 | 
						|
      dueToNullActual = pair.second;
 | 
						|
    }
 | 
						|
    if (symbol) {
 | 
						|
      if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
 | 
						|
        if (mightBeStructureConstructor) {
 | 
						|
          return CalleeAndArguments{
 | 
						|
              semantics::SymbolRef{*symbol}, std::move(arguments)};
 | 
						|
        }
 | 
						|
      } else if (IsProcedure(*symbol)) {
 | 
						|
        return CalleeAndArguments{
 | 
						|
            ProcedureDesignator{*symbol}, std::move(arguments)};
 | 
						|
      }
 | 
						|
      if (!context_.HasError(*symbol)) {
 | 
						|
        AttachDeclaration(
 | 
						|
            Say(name.source, "'%s' is not a callable procedure"_err_en_US,
 | 
						|
                name.source),
 | 
						|
            *symbol);
 | 
						|
      }
 | 
						|
    } else if (std::optional<SpecificCall> specificCall{
 | 
						|
                   context_.intrinsics().Probe(
 | 
						|
                       CallCharacteristics{
 | 
						|
                           ultimate.name().ToString(), isSubroutine},
 | 
						|
                       arguments, GetFoldingContext())}) {
 | 
						|
      // Generics can extend intrinsics
 | 
						|
      return CalleeAndArguments{
 | 
						|
          ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
 | 
						|
          std::move(specificCall->arguments)};
 | 
						|
    } else {
 | 
						|
      EmitGenericResolutionError(*name.symbol, dueToNullActual);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// Fortran 2018 expressly states (8.2 p3) that any declared type for a
 | 
						|
// generic intrinsic function "has no effect" on the result type of a
 | 
						|
// call to that intrinsic.  So one can declare "character*8 cos" and
 | 
						|
// still get a real result from "cos(1.)".  This is a dangerous feature,
 | 
						|
// especially since implementations are free to extend their sets of
 | 
						|
// intrinsics, and in doing so might clash with a name in a program.
 | 
						|
// So we emit a warning in this situation, and perhaps it should be an
 | 
						|
// error -- any correctly working program can silence the message by
 | 
						|
// simply deleting the pointless type declaration.
 | 
						|
void ExpressionAnalyzer::CheckBadExplicitType(
 | 
						|
    const SpecificCall &call, const Symbol &intrinsic) {
 | 
						|
  if (intrinsic.GetUltimate().GetType()) {
 | 
						|
    const auto &procedure{call.specificIntrinsic.characteristics.value()};
 | 
						|
    if (const auto &result{procedure.functionResult}) {
 | 
						|
      if (const auto *typeAndShape{result->GetTypeAndShape()}) {
 | 
						|
        if (auto declared{
 | 
						|
                typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
 | 
						|
          if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
 | 
						|
            if (auto *msg{Say(
 | 
						|
                    "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US,
 | 
						|
                    typeAndShape->AsFortran(), intrinsic.name(),
 | 
						|
                    declared->AsFortran())}) {
 | 
						|
              msg->Attach(intrinsic.name(),
 | 
						|
                  "Ignored declaration of intrinsic function '%s'"_en_US,
 | 
						|
                  intrinsic.name());
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionAnalyzer::CheckForBadRecursion(
 | 
						|
    parser::CharBlock callSite, const semantics::Symbol &proc) {
 | 
						|
  if (const auto *scope{proc.scope()}) {
 | 
						|
    if (scope->sourceRange().Contains(callSite)) {
 | 
						|
      parser::Message *msg{nullptr};
 | 
						|
      if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
 | 
						|
        msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
 | 
						|
            callSite);
 | 
						|
      } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
 | 
						|
        msg = Say( // 15.6.2.1(3)
 | 
						|
            "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
 | 
						|
            callSite);
 | 
						|
      }
 | 
						|
      AttachDeclaration(msg, proc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
 | 
						|
  if (const auto *designator{
 | 
						|
          std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
 | 
						|
    if (const auto *dataRef{
 | 
						|
            std::get_if<parser::DataRef>(&designator->value().u)}) {
 | 
						|
      if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
 | 
						|
        return AssumedTypeDummy(*name);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
template <>
 | 
						|
const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
 | 
						|
  if (const Symbol * symbol{name.symbol}) {
 | 
						|
    if (const auto *type{symbol->GetType()}) {
 | 
						|
      if (type->category() == semantics::DeclTypeSpec::TypeStar) {
 | 
						|
        return symbol;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
template <typename A>
 | 
						|
static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
 | 
						|
  // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
 | 
						|
  // point it is is not guaranteed that it has been checked the object has
 | 
						|
  // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
 | 
						|
  // returned.
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const parser::StructureComponent &x) {
 | 
						|
            return AssumedTypeDummy(x.component);
 | 
						|
          },
 | 
						|
          [&](const parser::Name &x) { return AssumedTypeDummy(x); },
 | 
						|
      },
 | 
						|
      object.u);
 | 
						|
}
 | 
						|
template <>
 | 
						|
const Symbol *AssumedTypeDummy<parser::AllocateObject>(
 | 
						|
    const parser::AllocateObject &x) {
 | 
						|
  return AssumedTypePointerOrAllocatableDummy(x);
 | 
						|
}
 | 
						|
template <>
 | 
						|
const Symbol *AssumedTypeDummy<parser::PointerObject>(
 | 
						|
    const parser::PointerObject &x) {
 | 
						|
  return AssumedTypePointerOrAllocatableDummy(x);
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionAnalyzer::CheckIsValidForwardReference(
 | 
						|
    const semantics::DerivedTypeSpec &dtSpec) {
 | 
						|
  if (dtSpec.IsForwardReferenced()) {
 | 
						|
    Say("Cannot construct value for derived type '%s' "
 | 
						|
        "before it is defined"_err_en_US,
 | 
						|
        dtSpec.name());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
 | 
						|
    std::optional<parser::StructureConstructor> *structureConstructor) {
 | 
						|
  const parser::Call &call{funcRef.v};
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(call.source)};
 | 
						|
  ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
 | 
						|
  for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
 | 
						|
    analyzer.Analyze(arg, false /* not subroutine call */);
 | 
						|
  }
 | 
						|
  if (analyzer.fatalErrors()) {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  if (std::optional<CalleeAndArguments> callee{
 | 
						|
          GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
 | 
						|
              analyzer.GetActuals(), false /* not subroutine */,
 | 
						|
              true /* might be structure constructor */)}) {
 | 
						|
    if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
 | 
						|
      return MakeFunctionRef(
 | 
						|
          call.source, std::move(*proc), std::move(callee->arguments));
 | 
						|
    }
 | 
						|
    CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
 | 
						|
    const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
 | 
						|
    if (structureConstructor) {
 | 
						|
      // Structure constructor misparsed as function reference?
 | 
						|
      const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
 | 
						|
      if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
 | 
						|
        semantics::Scope &scope{context_.FindScope(name->source)};
 | 
						|
        semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
 | 
						|
        if (!CheckIsValidForwardReference(dtSpec)) {
 | 
						|
          return std::nullopt;
 | 
						|
        }
 | 
						|
        const semantics::DeclTypeSpec &type{
 | 
						|
            semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
 | 
						|
        auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
 | 
						|
        *structureConstructor =
 | 
						|
            mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
 | 
						|
        return Analyze(structureConstructor->value());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!context_.HasError(symbol)) {
 | 
						|
      AttachDeclaration(
 | 
						|
          Say("'%s' is called like a function but is not a procedure"_err_en_US,
 | 
						|
              symbol.name()),
 | 
						|
          symbol);
 | 
						|
      context_.SetError(symbol);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
 | 
						|
  for (const auto &arg : args) {
 | 
						|
    if (arg && arg->isAlternateReturn()) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
 | 
						|
  const parser::Call &call{callStmt.v};
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(call.source)};
 | 
						|
  ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
 | 
						|
  const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
 | 
						|
  for (const auto &arg : actualArgList) {
 | 
						|
    analyzer.Analyze(arg, true /* is subroutine call */);
 | 
						|
  }
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (std::optional<CalleeAndArguments> callee{
 | 
						|
            GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
 | 
						|
                analyzer.GetActuals(), true /* subroutine */)}) {
 | 
						|
      ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
 | 
						|
      CHECK(proc);
 | 
						|
      if (CheckCall(call.source, *proc, callee->arguments)) {
 | 
						|
        callStmt.typedCall.Reset(
 | 
						|
            new ProcedureRef{std::move(*proc), std::move(callee->arguments),
 | 
						|
                HasAlternateReturns(callee->arguments)},
 | 
						|
            ProcedureRef::Deleter);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!context_.AnyFatalError()) {
 | 
						|
      std::string buf;
 | 
						|
      llvm::raw_string_ostream dump{buf};
 | 
						|
      parser::DumpTree(dump, callStmt);
 | 
						|
      Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US,
 | 
						|
          dump.str());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
 | 
						|
  if (!x.typedAssignment) {
 | 
						|
    ArgumentAnalyzer analyzer{*this};
 | 
						|
    analyzer.Analyze(std::get<parser::Variable>(x.t));
 | 
						|
    analyzer.Analyze(std::get<parser::Expr>(x.t));
 | 
						|
    std::optional<Assignment> assignment;
 | 
						|
    if (!analyzer.fatalErrors()) {
 | 
						|
      std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
 | 
						|
      if (!procRef) {
 | 
						|
        analyzer.CheckForNullPointer(
 | 
						|
            "in a non-pointer intrinsic assignment statement");
 | 
						|
      }
 | 
						|
      assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
 | 
						|
      if (procRef) {
 | 
						|
        assignment->u = std::move(*procRef);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
 | 
						|
        GenericAssignmentWrapper::Deleter);
 | 
						|
  }
 | 
						|
  return common::GetPtrFromOptional(x.typedAssignment->v);
 | 
						|
}
 | 
						|
 | 
						|
const Assignment *ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::PointerAssignmentStmt &x) {
 | 
						|
  if (!x.typedAssignment) {
 | 
						|
    MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
 | 
						|
    MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
 | 
						|
    if (!lhs || !rhs) {
 | 
						|
      x.typedAssignment.Reset(
 | 
						|
          new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
 | 
						|
    } else {
 | 
						|
      Assignment assignment{std::move(*lhs), std::move(*rhs)};
 | 
						|
      std::visit(common::visitors{
 | 
						|
                     [&](const std::list<parser::BoundsRemapping> &list) {
 | 
						|
                       Assignment::BoundsRemapping bounds;
 | 
						|
                       for (const auto &elem : list) {
 | 
						|
                         auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
 | 
						|
                         auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
 | 
						|
                         if (lower && upper) {
 | 
						|
                           bounds.emplace_back(Fold(std::move(*lower)),
 | 
						|
                               Fold(std::move(*upper)));
 | 
						|
                         }
 | 
						|
                       }
 | 
						|
                       assignment.u = std::move(bounds);
 | 
						|
                     },
 | 
						|
                     [&](const std::list<parser::BoundsSpec> &list) {
 | 
						|
                       Assignment::BoundsSpec bounds;
 | 
						|
                       for (const auto &bound : list) {
 | 
						|
                         if (auto lower{AsSubscript(Analyze(bound.v))}) {
 | 
						|
                           bounds.emplace_back(Fold(std::move(*lower)));
 | 
						|
                         }
 | 
						|
                       }
 | 
						|
                       assignment.u = std::move(bounds);
 | 
						|
                     },
 | 
						|
                 },
 | 
						|
          std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
 | 
						|
      x.typedAssignment.Reset(
 | 
						|
          new GenericAssignmentWrapper{std::move(assignment)},
 | 
						|
          GenericAssignmentWrapper::Deleter);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return common::GetPtrFromOptional(x.typedAssignment->v);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsExternalCalledImplicitly(
 | 
						|
    parser::CharBlock callSite, const ProcedureDesignator &proc) {
 | 
						|
  if (const auto *symbol{proc.GetSymbol()}) {
 | 
						|
    return symbol->has<semantics::SubprogramDetails>() &&
 | 
						|
        symbol->owner().IsGlobal() &&
 | 
						|
        (!symbol->scope() /*ENTRY*/ ||
 | 
						|
            !symbol->scope()->sourceRange().Contains(callSite));
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
 | 
						|
    parser::CharBlock callSite, const ProcedureDesignator &proc,
 | 
						|
    ActualArguments &arguments) {
 | 
						|
  auto chars{characteristics::Procedure::Characterize(
 | 
						|
      proc, context_.foldingContext())};
 | 
						|
  if (chars) {
 | 
						|
    bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
 | 
						|
    if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
 | 
						|
      Say(callSite,
 | 
						|
          "References to the procedure '%s' require an explicit interface"_err_en_US,
 | 
						|
          DEREF(proc.GetSymbol()).name());
 | 
						|
    }
 | 
						|
    // Checks for ASSOCIATED() are done in intrinsic table processing
 | 
						|
    bool procIsAssociated{false};
 | 
						|
    if (const SpecificIntrinsic *
 | 
						|
        specificIntrinsic{proc.GetSpecificIntrinsic()}) {
 | 
						|
      if (specificIntrinsic->name == "associated") {
 | 
						|
        procIsAssociated = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!procIsAssociated) {
 | 
						|
      semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
 | 
						|
          context_.FindScope(callSite), treatExternalAsImplicit,
 | 
						|
          proc.GetSpecificIntrinsic());
 | 
						|
      const Symbol *procSymbol{proc.GetSymbol()};
 | 
						|
      if (procSymbol && !IsPureProcedure(*procSymbol)) {
 | 
						|
        if (const semantics::Scope *
 | 
						|
            pure{semantics::FindPureProcedureContaining(
 | 
						|
                context_.FindScope(callSite))}) {
 | 
						|
          Say(callSite,
 | 
						|
              "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
 | 
						|
              procSymbol->name(), DEREF(pure->symbol()).name());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return chars;
 | 
						|
}
 | 
						|
 | 
						|
// Unary operations
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
 | 
						|
  if (MaybeExpr operand{Analyze(x.v.value())}) {
 | 
						|
    if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
 | 
						|
      if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
 | 
						|
        if (semantics::IsProcedurePointer(*result)) {
 | 
						|
          Say("A function reference that returns a procedure "
 | 
						|
              "pointer may not be parenthesized"_err_en_US); // C1003
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Parenthesize(std::move(*operand));
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
 | 
						|
    NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
 | 
						|
  ArgumentAnalyzer analyzer{context};
 | 
						|
  analyzer.Analyze(x.v);
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (analyzer.IsIntrinsicNumeric(opr)) {
 | 
						|
      analyzer.CheckForNullPointer();
 | 
						|
      if (opr == NumericOperator::Add) {
 | 
						|
        return analyzer.MoveExpr(0);
 | 
						|
      } else {
 | 
						|
        return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp(AsFortran(opr),
 | 
						|
          "Operand of unary %s must be numeric; have %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
 | 
						|
  return NumericUnaryHelper(*this, NumericOperator::Add, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
 | 
						|
  return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
 | 
						|
  ArgumentAnalyzer analyzer{*this};
 | 
						|
  analyzer.Analyze(x.v);
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (analyzer.IsIntrinsicLogical()) {
 | 
						|
      analyzer.CheckForNullPointer();
 | 
						|
      return AsGenericExpr(
 | 
						|
          LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp(LogicalOperator::Not,
 | 
						|
          "Operand of %s must be LOGICAL; have %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
 | 
						|
  // Represent %LOC() exactly as if it had been a call to the LOC() extension
 | 
						|
  // intrinsic function.
 | 
						|
  // Use the actual source for the name of the call for error reporting.
 | 
						|
  std::optional<ActualArgument> arg;
 | 
						|
  if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
 | 
						|
    arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
 | 
						|
  } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
 | 
						|
    arg = ActualArgument{std::move(*argExpr)};
 | 
						|
  } else {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  parser::CharBlock at{GetContextualMessages().at()};
 | 
						|
  CHECK(at.size() >= 4);
 | 
						|
  parser::CharBlock loc{at.begin() + 1, 3};
 | 
						|
  CHECK(loc == "loc");
 | 
						|
  return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
 | 
						|
  const auto &name{std::get<parser::DefinedOpName>(x.t).v};
 | 
						|
  ArgumentAnalyzer analyzer{*this, name.source};
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  return analyzer.TryDefinedOp(name.source.ToString().c_str(),
 | 
						|
      "No operator %s defined for %s"_err_en_US, nullptr, true);
 | 
						|
}
 | 
						|
 | 
						|
// Binary (dyadic) operations
 | 
						|
 | 
						|
template <template <typename> class OPR>
 | 
						|
MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
 | 
						|
    const parser::Expr::IntrinsicBinary &x) {
 | 
						|
  ArgumentAnalyzer analyzer{context};
 | 
						|
  analyzer.Analyze(std::get<0>(x.t));
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (analyzer.IsIntrinsicNumeric(opr)) {
 | 
						|
      analyzer.CheckForNullPointer();
 | 
						|
      analyzer.CheckConformance();
 | 
						|
      return NumericOperation<OPR>(context.GetContextualMessages(),
 | 
						|
          analyzer.MoveExpr(0), analyzer.MoveExpr(1),
 | 
						|
          context.GetDefaultKind(TypeCategory::Real));
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp(AsFortran(opr),
 | 
						|
          "Operands of %s must be numeric; have %s and %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
 | 
						|
  return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
 | 
						|
  return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
 | 
						|
  return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
 | 
						|
  return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
 | 
						|
  return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(
 | 
						|
    const parser::Expr::ComplexConstructor &x) {
 | 
						|
  auto re{Analyze(std::get<0>(x.t).value())};
 | 
						|
  auto im{Analyze(std::get<1>(x.t).value())};
 | 
						|
  if (re && im) {
 | 
						|
    ConformabilityCheck(GetContextualMessages(), *re, *im);
 | 
						|
  }
 | 
						|
  return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
 | 
						|
      std::move(im), GetDefaultKind(TypeCategory::Real)));
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
 | 
						|
  ArgumentAnalyzer analyzer{*this};
 | 
						|
  analyzer.Analyze(std::get<0>(x.t));
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (analyzer.IsIntrinsicConcat()) {
 | 
						|
      analyzer.CheckForNullPointer();
 | 
						|
      return std::visit(
 | 
						|
          [&](auto &&x, auto &&y) -> MaybeExpr {
 | 
						|
            using T = ResultType<decltype(x)>;
 | 
						|
            if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
 | 
						|
              return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
 | 
						|
            } else {
 | 
						|
              DIE("different types for intrinsic concat");
 | 
						|
            }
 | 
						|
          },
 | 
						|
          std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
 | 
						|
          std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp("//",
 | 
						|
          "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
// The Name represents a user-defined intrinsic operator.
 | 
						|
// If the actuals match one of the specific procedures, return a function ref.
 | 
						|
// Otherwise report the error in messages.
 | 
						|
MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
 | 
						|
    const parser::Name &name, ActualArguments &&actuals) {
 | 
						|
  if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
 | 
						|
    CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
 | 
						|
    return MakeFunctionRef(name.source,
 | 
						|
        std::move(std::get<ProcedureDesignator>(callee->u)),
 | 
						|
        std::move(callee->arguments));
 | 
						|
  } else {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
 | 
						|
    const parser::Expr::IntrinsicBinary &x) {
 | 
						|
  ArgumentAnalyzer analyzer{context};
 | 
						|
  analyzer.Analyze(std::get<0>(x.t));
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    std::optional<DynamicType> leftType{analyzer.GetType(0)};
 | 
						|
    std::optional<DynamicType> rightType{analyzer.GetType(1)};
 | 
						|
    analyzer.ConvertBOZ(leftType, 0, rightType);
 | 
						|
    analyzer.ConvertBOZ(rightType, 1, leftType);
 | 
						|
    if (leftType && rightType &&
 | 
						|
        analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
 | 
						|
      analyzer.CheckForNullPointer("as a relational operand");
 | 
						|
      return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
 | 
						|
          analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp(opr,
 | 
						|
          leftType && leftType->category() == TypeCategory::Logical &&
 | 
						|
                  rightType && rightType->category() == TypeCategory::Logical
 | 
						|
              ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
 | 
						|
              : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::LT, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::LE, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::EQ, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::NE, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::GE, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
 | 
						|
  return RelationHelper(*this, RelationalOperator::GT, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
 | 
						|
    const parser::Expr::IntrinsicBinary &x) {
 | 
						|
  ArgumentAnalyzer analyzer{context};
 | 
						|
  analyzer.Analyze(std::get<0>(x.t));
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  if (!analyzer.fatalErrors()) {
 | 
						|
    if (analyzer.IsIntrinsicLogical()) {
 | 
						|
      analyzer.CheckForNullPointer("as a logical operand");
 | 
						|
      return AsGenericExpr(BinaryLogicalOperation(opr,
 | 
						|
          std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
 | 
						|
          std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
 | 
						|
    } else {
 | 
						|
      return analyzer.TryDefinedOp(
 | 
						|
          opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
 | 
						|
  return LogicalBinaryHelper(*this, LogicalOperator::And, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
 | 
						|
  return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
 | 
						|
  return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
 | 
						|
  return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
 | 
						|
  const auto &name{std::get<parser::DefinedOpName>(x.t).v};
 | 
						|
  ArgumentAnalyzer analyzer{*this, name.source};
 | 
						|
  analyzer.Analyze(std::get<1>(x.t));
 | 
						|
  analyzer.Analyze(std::get<2>(x.t));
 | 
						|
  return analyzer.TryDefinedOp(name.source.ToString().c_str(),
 | 
						|
      "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if a parsed function reference should be converted
 | 
						|
// into an array element reference.
 | 
						|
static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context,
 | 
						|
    const parser::FunctionReference &funcRef) {
 | 
						|
  // Emit message if the function reference fix will end up an array element
 | 
						|
  // reference with no subscripts, or subscripts on a scalar, because it will
 | 
						|
  // not be possible to later distinguish in expressions between an empty
 | 
						|
  // subscript list due to bad subscripts error recovery or because the
 | 
						|
  // user did not put any.
 | 
						|
  auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
 | 
						|
  const auto *name{std::get_if<parser::Name>(&proc.u)};
 | 
						|
  if (!name) {
 | 
						|
    name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
 | 
						|
  }
 | 
						|
  if (!name->symbol) {
 | 
						|
    return false;
 | 
						|
  } else if (name->symbol->Rank() == 0) {
 | 
						|
    if (const Symbol *
 | 
						|
        function{
 | 
						|
            semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) {
 | 
						|
      auto &msg{context.Say(funcRef.v.source,
 | 
						|
          "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US,
 | 
						|
          name->source)};
 | 
						|
      AttachDeclaration(&msg, *function);
 | 
						|
      name->symbol = const_cast<Symbol *>(function);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
 | 
						|
      auto &msg{context.Say(funcRef.v.source,
 | 
						|
          "Reference to array '%s' with empty subscript list"_err_en_US,
 | 
						|
          name->source)};
 | 
						|
      if (name->symbol) {
 | 
						|
        AttachDeclaration(&msg, *name->symbol);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Converts, if appropriate, an original misparse of ambiguous syntax like
 | 
						|
// A(1) as a function reference into an array reference.
 | 
						|
// Misparsed structure constructors are detected elsewhere after generic
 | 
						|
// function call resolution fails.
 | 
						|
template <typename... A>
 | 
						|
static void FixMisparsedFunctionReference(
 | 
						|
    semantics::SemanticsContext &context, const std::variant<A...> &constU) {
 | 
						|
  // The parse tree is updated in situ when resolving an ambiguous parse.
 | 
						|
  using uType = std::decay_t<decltype(constU)>;
 | 
						|
  auto &u{const_cast<uType &>(constU)};
 | 
						|
  if (auto *func{
 | 
						|
          std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
 | 
						|
    parser::FunctionReference &funcRef{func->value()};
 | 
						|
    auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
 | 
						|
    if (Symbol *
 | 
						|
        origSymbol{
 | 
						|
            std::visit(common::visitors{
 | 
						|
                           [&](parser::Name &name) { return name.symbol; },
 | 
						|
                           [&](parser::ProcComponentRef &pcr) {
 | 
						|
                             return pcr.v.thing.component.symbol;
 | 
						|
                           },
 | 
						|
                       },
 | 
						|
                proc.u)}) {
 | 
						|
      Symbol &symbol{origSymbol->GetUltimate()};
 | 
						|
      if (symbol.has<semantics::ObjectEntityDetails>() ||
 | 
						|
          symbol.has<semantics::AssocEntityDetails>()) {
 | 
						|
        // Note that expression in AssocEntityDetails cannot be a procedure
 | 
						|
        // pointer as per C1105 so this cannot be a function reference.
 | 
						|
        if constexpr (common::HasMember<common::Indirection<parser::Designator>,
 | 
						|
                          uType>) {
 | 
						|
          if (CheckFuncRefToArrayElement(context, funcRef)) {
 | 
						|
            u = common::Indirection{funcRef.ConvertToArrayElementRef()};
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          DIE("can't fix misparsed function as array reference");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Common handling of parse tree node types that retain the
 | 
						|
// representation of the analyzed expression.
 | 
						|
template <typename PARSED>
 | 
						|
MaybeExpr ExpressionAnalyzer::ExprOrVariable(
 | 
						|
    const PARSED &x, parser::CharBlock source) {
 | 
						|
  if (useSavedTypedExprs_ && x.typedExpr) {
 | 
						|
    return x.typedExpr->v;
 | 
						|
  }
 | 
						|
  auto restorer{GetContextualMessages().SetLocation(source)};
 | 
						|
  if constexpr (std::is_same_v<PARSED, parser::Expr> ||
 | 
						|
      std::is_same_v<PARSED, parser::Variable>) {
 | 
						|
    FixMisparsedFunctionReference(context_, x.u);
 | 
						|
  }
 | 
						|
  if (AssumedTypeDummy(x)) { // C710
 | 
						|
    Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
 | 
						|
    ResetExpr(x);
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  MaybeExpr result;
 | 
						|
  if constexpr (common::HasMember<parser::StructureConstructor,
 | 
						|
                    std::decay_t<decltype(x.u)>> &&
 | 
						|
      common::HasMember<common::Indirection<parser::FunctionReference>,
 | 
						|
          std::decay_t<decltype(x.u)>>) {
 | 
						|
    if (const auto *funcRef{
 | 
						|
            std::get_if<common::Indirection<parser::FunctionReference>>(
 | 
						|
                &x.u)}) {
 | 
						|
      // Function references in Exprs might turn out to be misparsed structure
 | 
						|
      // constructors; we have to try generic procedure resolution
 | 
						|
      // first to be sure.
 | 
						|
      std::optional<parser::StructureConstructor> ctor;
 | 
						|
      result = Analyze(funcRef->value(), &ctor);
 | 
						|
      if (result && ctor) {
 | 
						|
        // A misparsed function reference is really a structure
 | 
						|
        // constructor.  Repair the parse tree in situ.
 | 
						|
        const_cast<PARSED &>(x).u = std::move(*ctor);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      result = Analyze(x.u);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    result = Analyze(x.u);
 | 
						|
  }
 | 
						|
  if (result) {
 | 
						|
    SetExpr(x, Fold(std::move(*result)));
 | 
						|
    return x.typedExpr->v;
 | 
						|
  } else {
 | 
						|
    ResetExpr(x);
 | 
						|
    if (!context_.AnyFatalError()) {
 | 
						|
      std::string buf;
 | 
						|
      llvm::raw_string_ostream dump{buf};
 | 
						|
      parser::DumpTree(dump, x);
 | 
						|
      Say("Internal error: Expression analysis failed on: %s"_err_en_US,
 | 
						|
          dump.str());
 | 
						|
    }
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
 | 
						|
  return ExprOrVariable(expr, expr.source);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
 | 
						|
  return ExprOrVariable(variable, variable.GetSource());
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
 | 
						|
  if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
 | 
						|
    if (!useSavedTypedExprs_ || !var->typedExpr) {
 | 
						|
      parser::CharBlock source{var->GetSource()};
 | 
						|
      auto restorer{GetContextualMessages().SetLocation(source)};
 | 
						|
      FixMisparsedFunctionReference(context_, var->u);
 | 
						|
      if (const auto *funcRef{
 | 
						|
              std::get_if<common::Indirection<parser::FunctionReference>>(
 | 
						|
                  &var->u)}) {
 | 
						|
        // A Selector that parsed as a Variable might turn out during analysis
 | 
						|
        // to actually be a structure constructor.  In that case, repair the
 | 
						|
        // Variable parse tree node into an Expr
 | 
						|
        std::optional<parser::StructureConstructor> ctor;
 | 
						|
        if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
 | 
						|
          if (ctor) {
 | 
						|
            auto &writable{const_cast<parser::Selector &>(selector)};
 | 
						|
            writable.u = parser::Expr{std::move(*ctor)};
 | 
						|
            auto &expr{std::get<parser::Expr>(writable.u)};
 | 
						|
            expr.source = source;
 | 
						|
            SetExpr(expr, Fold(std::move(*result)));
 | 
						|
            return expr.typedExpr->v;
 | 
						|
          } else {
 | 
						|
            SetExpr(*var, Fold(std::move(*result)));
 | 
						|
            return var->typedExpr->v;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          ResetExpr(*var);
 | 
						|
          if (context_.AnyFatalError()) {
 | 
						|
            return std::nullopt;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Not a Variable -> FunctionReference; handle normally as Variable or Expr
 | 
						|
  return Analyze(selector.u);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
 | 
						|
  auto restorer{common::ScopedSet(inDataStmtConstant_, true)};
 | 
						|
  return ExprOrVariable(x, x.source);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
 | 
						|
  return ExprOrVariable(x, parser::FindSourceLocation(x));
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
 | 
						|
  return ExprOrVariable(x, parser::FindSourceLocation(x));
 | 
						|
}
 | 
						|
 | 
						|
Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
 | 
						|
    TypeCategory category,
 | 
						|
    const std::optional<parser::KindSelector> &selector) {
 | 
						|
  int defaultKind{GetDefaultKind(category)};
 | 
						|
  if (!selector) {
 | 
						|
    return Expr<SubscriptInteger>{defaultKind};
 | 
						|
  }
 | 
						|
  return std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const parser::ScalarIntConstantExpr &x) {
 | 
						|
            if (MaybeExpr kind{Analyze(x)}) {
 | 
						|
              if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
 | 
						|
                if (CheckIntrinsicKind(category, *code)) {
 | 
						|
                  return Expr<SubscriptInteger>{*code};
 | 
						|
                }
 | 
						|
              } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
 | 
						|
                return ConvertToType<SubscriptInteger>(std::move(*intExpr));
 | 
						|
              }
 | 
						|
            }
 | 
						|
            return Expr<SubscriptInteger>{defaultKind};
 | 
						|
          },
 | 
						|
          [&](const parser::KindSelector::StarSize &x) {
 | 
						|
            std::intmax_t size = x.v;
 | 
						|
            if (!CheckIntrinsicSize(category, size)) {
 | 
						|
              size = defaultKind;
 | 
						|
            } else if (category == TypeCategory::Complex) {
 | 
						|
              size /= 2;
 | 
						|
            }
 | 
						|
            return Expr<SubscriptInteger>{size};
 | 
						|
          },
 | 
						|
      },
 | 
						|
      selector->u);
 | 
						|
}
 | 
						|
 | 
						|
int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
 | 
						|
  return context_.GetDefaultKind(category);
 | 
						|
}
 | 
						|
 | 
						|
DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
 | 
						|
    common::TypeCategory category) {
 | 
						|
  return {category, GetDefaultKind(category)};
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionAnalyzer::CheckIntrinsicKind(
 | 
						|
    TypeCategory category, std::int64_t kind) {
 | 
						|
  if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    Say("%s(KIND=%jd) is not a supported type"_err_en_US,
 | 
						|
        ToUpperCase(EnumToString(category)), kind);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionAnalyzer::CheckIntrinsicSize(
 | 
						|
    TypeCategory category, std::int64_t size) {
 | 
						|
  if (category == TypeCategory::Complex) {
 | 
						|
    // COMPLEX*16 == COMPLEX(KIND=8)
 | 
						|
    if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (IsValidKindOfIntrinsicType(category, size)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Say("%s*%jd is not a supported type"_err_en_US,
 | 
						|
      ToUpperCase(EnumToString(category)), size);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
 | 
						|
  return impliedDos_.insert(std::make_pair(name, kind)).second;
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
 | 
						|
  auto iter{impliedDos_.find(name)};
 | 
						|
  if (iter != impliedDos_.end()) {
 | 
						|
    impliedDos_.erase(iter);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::optional<int> ExpressionAnalyzer::IsImpliedDo(
 | 
						|
    parser::CharBlock name) const {
 | 
						|
  auto iter{impliedDos_.find(name)};
 | 
						|
  if (iter != impliedDos_.cend()) {
 | 
						|
    return {iter->second};
 | 
						|
  } else {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
 | 
						|
    const MaybeExpr &result, TypeCategory category, bool defaultKind) {
 | 
						|
  if (result) {
 | 
						|
    if (auto type{result->GetType()}) {
 | 
						|
      if (type->category() != category) { // C885
 | 
						|
        Say(at, "Must have %s type, but is %s"_err_en_US,
 | 
						|
            ToUpperCase(EnumToString(category)),
 | 
						|
            ToUpperCase(type->AsFortran()));
 | 
						|
        return false;
 | 
						|
      } else if (defaultKind) {
 | 
						|
        int kind{context_.GetDefaultKind(category)};
 | 
						|
        if (type->kind() != kind) {
 | 
						|
          Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
 | 
						|
              kind, ToUpperCase(EnumToString(category)),
 | 
						|
              ToUpperCase(type->AsFortran()));
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Say(at, "Must have %s type, but is typeless"_err_en_US,
 | 
						|
          ToUpperCase(EnumToString(category)));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
 | 
						|
    ProcedureDesignator &&proc, ActualArguments &&arguments) {
 | 
						|
  if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
 | 
						|
    if (intrinsic->characteristics.value().attrs.test(
 | 
						|
            characteristics::Procedure::Attr::NullPointer) &&
 | 
						|
        arguments.empty()) {
 | 
						|
      return Expr<SomeType>{NullPointer{}};
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (const Symbol * symbol{proc.GetSymbol()}) {
 | 
						|
    if (!ResolveForward(*symbol)) {
 | 
						|
      return std::nullopt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto chars{CheckCall(callSite, proc, arguments)}) {
 | 
						|
    if (chars->functionResult) {
 | 
						|
      const auto &result{*chars->functionResult};
 | 
						|
      if (result.IsProcedurePointer()) {
 | 
						|
        return Expr<SomeType>{
 | 
						|
            ProcedureRef{std::move(proc), std::move(arguments)}};
 | 
						|
      } else {
 | 
						|
        // Not a procedure pointer, so type and shape are known.
 | 
						|
        return TypedWrapper<FunctionRef, ProcedureRef>(
 | 
						|
            DEREF(result.GetTypeAndShape()).type(),
 | 
						|
            ProcedureRef{std::move(proc), std::move(arguments)});
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Say("Function result characteristics are not known"_err_en_US);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
 | 
						|
    parser::CharBlock intrinsic, ActualArguments &&arguments) {
 | 
						|
  if (std::optional<SpecificCall> specificCall{
 | 
						|
          context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
 | 
						|
              arguments, GetFoldingContext())}) {
 | 
						|
    return MakeFunctionRef(intrinsic,
 | 
						|
        ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
 | 
						|
        std::move(specificCall->arguments));
 | 
						|
  } else {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
 | 
						|
  source_.ExtendToCover(x.GetSource());
 | 
						|
  if (MaybeExpr expr{context_.Analyze(x)}) {
 | 
						|
    if (!IsConstantExpr(*expr)) {
 | 
						|
      actuals_.emplace_back(std::move(*expr));
 | 
						|
      SetArgSourceLocation(actuals_.back(), x.GetSource());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const Symbol *symbol{GetLastSymbol(*expr)};
 | 
						|
    if (!symbol) {
 | 
						|
      context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
 | 
						|
          x.GetSource());
 | 
						|
    } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
 | 
						|
      auto *msg{context_.SayAt(x,
 | 
						|
          "Assignment to subprogram '%s' is not allowed"_err_en_US,
 | 
						|
          symbol->name())};
 | 
						|
      if (subp->isFunction()) {
 | 
						|
        const auto &result{subp->result().name()};
 | 
						|
        msg->Attach(result, "Function result is '%s'"_err_en_US, result);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
 | 
						|
          symbol->name());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  fatalErrors_ = true;
 | 
						|
}
 | 
						|
 | 
						|
void ArgumentAnalyzer::Analyze(
 | 
						|
    const parser::ActualArgSpec &arg, bool isSubroutine) {
 | 
						|
  // TODO: Actual arguments that are procedures and procedure pointers need to
 | 
						|
  // be detected and represented (they're not expressions).
 | 
						|
  // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
 | 
						|
  std::optional<ActualArgument> actual;
 | 
						|
  std::visit(
 | 
						|
      common::visitors{
 | 
						|
          [&](const common::Indirection<parser::Expr> &x) {
 | 
						|
            actual = AnalyzeExpr(x.value());
 | 
						|
            SetArgSourceLocation(actual, x.value().source);
 | 
						|
          },
 | 
						|
          [&](const parser::AltReturnSpec &label) {
 | 
						|
            if (!isSubroutine) {
 | 
						|
              context_.Say("alternate return specification may not appear on"
 | 
						|
                           " function reference"_err_en_US);
 | 
						|
            }
 | 
						|
            actual = ActualArgument(label.v);
 | 
						|
          },
 | 
						|
          [&](const parser::ActualArg::PercentRef &) {
 | 
						|
            context_.Say(
 | 
						|
                "not yet implemented: %REF() intrinsic for arguments"_err_en_US);
 | 
						|
          },
 | 
						|
          [&](const parser::ActualArg::PercentVal &) {
 | 
						|
            context_.Say(
 | 
						|
                "not yet implemetned: %VAL() intrinsic for arguments"_err_en_US);
 | 
						|
          },
 | 
						|
      },
 | 
						|
      std::get<parser::ActualArg>(arg.t).u);
 | 
						|
  if (actual) {
 | 
						|
    if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
 | 
						|
      actual->set_keyword(argKW->v.source);
 | 
						|
    }
 | 
						|
    actuals_.emplace_back(std::move(*actual));
 | 
						|
  } else {
 | 
						|
    fatalErrors_ = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
 | 
						|
    const DynamicType &leftType, const DynamicType &rightType) const {
 | 
						|
  CHECK(actuals_.size() == 2);
 | 
						|
  return semantics::IsIntrinsicRelational(
 | 
						|
      opr, leftType, GetRank(0), rightType, GetRank(1));
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
 | 
						|
  std::optional<DynamicType> leftType{GetType(0)};
 | 
						|
  if (actuals_.size() == 1) {
 | 
						|
    if (IsBOZLiteral(0)) {
 | 
						|
      return opr == NumericOperator::Add; // unary '+'
 | 
						|
    } else {
 | 
						|
      return leftType && semantics::IsIntrinsicNumeric(*leftType);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    std::optional<DynamicType> rightType{GetType(1)};
 | 
						|
    if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
 | 
						|
      auto cat1{rightType->category()};
 | 
						|
      return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
 | 
						|
    } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
 | 
						|
      auto cat0{leftType->category()};
 | 
						|
      return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
 | 
						|
    } else {
 | 
						|
      return leftType && rightType &&
 | 
						|
          semantics::IsIntrinsicNumeric(
 | 
						|
              *leftType, GetRank(0), *rightType, GetRank(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::IsIntrinsicLogical() const {
 | 
						|
  if (std::optional<DynamicType> leftType{GetType(0)}) {
 | 
						|
    if (actuals_.size() == 1) {
 | 
						|
      return semantics::IsIntrinsicLogical(*leftType);
 | 
						|
    } else if (std::optional<DynamicType> rightType{GetType(1)}) {
 | 
						|
      return semantics::IsIntrinsicLogical(
 | 
						|
          *leftType, GetRank(0), *rightType, GetRank(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::IsIntrinsicConcat() const {
 | 
						|
  if (std::optional<DynamicType> leftType{GetType(0)}) {
 | 
						|
    if (std::optional<DynamicType> rightType{GetType(1)}) {
 | 
						|
      return semantics::IsIntrinsicConcat(
 | 
						|
          *leftType, GetRank(0), *rightType, GetRank(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::CheckConformance() {
 | 
						|
  if (actuals_.size() == 2) {
 | 
						|
    const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
 | 
						|
    const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
 | 
						|
    if (lhs && rhs) {
 | 
						|
      auto &foldingContext{context_.GetFoldingContext()};
 | 
						|
      auto lhShape{GetShape(foldingContext, *lhs)};
 | 
						|
      auto rhShape{GetShape(foldingContext, *rhs)};
 | 
						|
      if (lhShape && rhShape) {
 | 
						|
        if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
 | 
						|
                *rhShape, CheckConformanceFlags::EitherScalarExpandable,
 | 
						|
                "left operand", "right operand")
 | 
						|
                 .value_or(false /*fail when conformance is not known now*/)) {
 | 
						|
          fatalErrors_ = true;
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true; // no proven problem
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
 | 
						|
  for (const std::optional<ActualArgument> &arg : actuals_) {
 | 
						|
    if (arg) {
 | 
						|
      if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
 | 
						|
        if (IsNullPointer(*expr)) {
 | 
						|
          context_.Say(
 | 
						|
              source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
 | 
						|
          fatalErrors_ = true;
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
 | 
						|
    parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
 | 
						|
    bool isUserOp) {
 | 
						|
  if (AnyUntypedOrMissingOperand()) {
 | 
						|
    context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  const Symbol *localDefinedOpSymbolPtr{nullptr};
 | 
						|
  if (!definedOpSymbolPtr) {
 | 
						|
    definedOpSymbolPtr = &localDefinedOpSymbolPtr;
 | 
						|
  }
 | 
						|
  {
 | 
						|
    auto restorer{context_.GetContextualMessages().DiscardMessages()};
 | 
						|
    std::string oprNameString{
 | 
						|
        isUserOp ? std::string{opr} : "operator("s + opr + ')'};
 | 
						|
    parser::CharBlock oprName{oprNameString};
 | 
						|
    const auto &scope{context_.context().FindScope(source_)};
 | 
						|
    if (Symbol * symbol{scope.FindSymbol(oprName)}) {
 | 
						|
      *definedOpSymbolPtr = symbol;
 | 
						|
      parser::Name name{symbol->name(), symbol};
 | 
						|
      if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
 | 
						|
        return result;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
 | 
						|
      if (const Symbol *
 | 
						|
          symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
 | 
						|
        if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
 | 
						|
          return result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (*definedOpSymbolPtr) {
 | 
						|
    SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
 | 
						|
  } else if (actuals_.size() == 1 || AreConformable()) {
 | 
						|
    if (CheckForNullPointer()) {
 | 
						|
      context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    context_.Say(
 | 
						|
        "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
 | 
						|
        ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ArgumentAnalyzer::TryDefinedOp(
 | 
						|
    std::vector<const char *> oprs, parser::MessageFixedText error) {
 | 
						|
  const Symbol *definedOpSymbolPtr{nullptr};
 | 
						|
  for (std::size_t i{1}; i < oprs.size(); ++i) {
 | 
						|
    auto restorer{context_.GetContextualMessages().DiscardMessages()};
 | 
						|
    if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
 | 
						|
  ActualArguments localActuals{actuals_};
 | 
						|
  const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
 | 
						|
  if (!proc) {
 | 
						|
    proc = &symbol;
 | 
						|
    localActuals.at(passIndex).value().set_isPassedObject();
 | 
						|
  }
 | 
						|
  CheckConformance();
 | 
						|
  return context_.MakeFunctionRef(
 | 
						|
      source_, ProcedureDesignator{*proc}, std::move(localActuals));
 | 
						|
}
 | 
						|
 | 
						|
std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
 | 
						|
  using semantics::Tristate;
 | 
						|
  const Expr<SomeType> &lhs{GetExpr(0)};
 | 
						|
  const Expr<SomeType> &rhs{GetExpr(1)};
 | 
						|
  std::optional<DynamicType> lhsType{lhs.GetType()};
 | 
						|
  std::optional<DynamicType> rhsType{rhs.GetType()};
 | 
						|
  int lhsRank{lhs.Rank()};
 | 
						|
  int rhsRank{rhs.Rank()};
 | 
						|
  Tristate isDefined{
 | 
						|
      semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
 | 
						|
  if (isDefined == Tristate::No) {
 | 
						|
    if (lhsType && rhsType) {
 | 
						|
      AddAssignmentConversion(*lhsType, *rhsType);
 | 
						|
    }
 | 
						|
    return std::nullopt; // user-defined assignment not allowed for these args
 | 
						|
  }
 | 
						|
  auto restorer{context_.GetContextualMessages().SetLocation(source_)};
 | 
						|
  if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
 | 
						|
    if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
 | 
						|
      context_.Say(
 | 
						|
          "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
 | 
						|
          DEREF(procRef->proc().GetSymbol()).name());
 | 
						|
    }
 | 
						|
    context_.CheckCall(source_, procRef->proc(), procRef->arguments());
 | 
						|
    return std::move(*procRef);
 | 
						|
  }
 | 
						|
  if (isDefined == Tristate::Yes) {
 | 
						|
    if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
 | 
						|
        !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
 | 
						|
      SayNoMatch("ASSIGNMENT(=)", true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
 | 
						|
    TypeCategory lhs, TypeCategory rhs) {
 | 
						|
  if (!context_.context().languageFeatures().IsEnabled(
 | 
						|
          common::LanguageFeature::LogicalIntegerAssignment)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  std::optional<parser::MessageFixedText> msg;
 | 
						|
  if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
 | 
						|
    // allow assignment to LOGICAL from INTEGER as a legacy extension
 | 
						|
    msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_port_en_US;
 | 
						|
  } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
 | 
						|
    // ... and assignment to LOGICAL from INTEGER
 | 
						|
    msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_port_en_US;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (context_.context().languageFeatures().ShouldWarn(
 | 
						|
          common::LanguageFeature::LogicalIntegerAssignment)) {
 | 
						|
    context_.Say(std::move(*msg));
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
 | 
						|
  auto restorer{context_.GetContextualMessages().DiscardMessages()};
 | 
						|
  std::string oprNameString{"assignment(=)"};
 | 
						|
  parser::CharBlock oprName{oprNameString};
 | 
						|
  const Symbol *proc{nullptr};
 | 
						|
  const auto &scope{context_.context().FindScope(source_)};
 | 
						|
  if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
 | 
						|
    ExpressionAnalyzer::AdjustActuals noAdjustment;
 | 
						|
    auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)};
 | 
						|
    if (pair.first) {
 | 
						|
      proc = pair.first;
 | 
						|
    } else {
 | 
						|
      context_.EmitGenericResolutionError(*symbol, pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  int passedObjectIndex{-1};
 | 
						|
  const Symbol *definedOpSymbol{nullptr};
 | 
						|
  for (std::size_t i{0}; i < actuals_.size(); ++i) {
 | 
						|
    if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
 | 
						|
      if (const Symbol *
 | 
						|
          resolution{GetBindingResolution(GetType(i), *specific)}) {
 | 
						|
        proc = resolution;
 | 
						|
      } else {
 | 
						|
        proc = specific;
 | 
						|
        passedObjectIndex = i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!proc) {
 | 
						|
    return std::nullopt;
 | 
						|
  }
 | 
						|
  ActualArguments actualsCopy{actuals_};
 | 
						|
  if (passedObjectIndex >= 0) {
 | 
						|
    actualsCopy[passedObjectIndex]->set_isPassedObject();
 | 
						|
  }
 | 
						|
  return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
 | 
						|
}
 | 
						|
 | 
						|
void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
 | 
						|
  os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
 | 
						|
     << '\n';
 | 
						|
  for (const auto &actual : actuals_) {
 | 
						|
    if (!actual.has_value()) {
 | 
						|
      os << "- error\n";
 | 
						|
    } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
 | 
						|
      os << "- assumed type: " << symbol->name().ToString() << '\n';
 | 
						|
    } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
 | 
						|
      expr->AsFortran(os << "- expr: ") << '\n';
 | 
						|
    } else {
 | 
						|
      DIE("bad ActualArgument");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
 | 
						|
    const parser::Expr &expr) {
 | 
						|
  source_.ExtendToCover(expr.source);
 | 
						|
  if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
 | 
						|
    expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
 | 
						|
    if (isProcedureCall_) {
 | 
						|
      ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}};
 | 
						|
      SetArgSourceLocation(arg, expr.source);
 | 
						|
      return std::move(arg);
 | 
						|
    }
 | 
						|
    context_.SayAt(expr.source,
 | 
						|
        "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
 | 
						|
  } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
 | 
						|
    if (isProcedureCall_ || !IsProcedure(*argExpr)) {
 | 
						|
      ActualArgument arg{std::move(*argExpr)};
 | 
						|
      SetArgSourceLocation(arg, expr.source);
 | 
						|
      return std::move(arg);
 | 
						|
    }
 | 
						|
    context_.SayAt(expr.source,
 | 
						|
        IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
 | 
						|
                             : "Subroutine name is not allowed here"_err_en_US);
 | 
						|
  }
 | 
						|
  return std::nullopt;
 | 
						|
}
 | 
						|
 | 
						|
MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
 | 
						|
    const parser::Expr &expr) {
 | 
						|
  // If an expression's parse tree is a whole assumed-size array:
 | 
						|
  //   Expr -> Designator -> DataRef -> Name
 | 
						|
  // treat it as a special case for argument passing and bypass
 | 
						|
  // the C1002/C1014 constraint checking in expression semantics.
 | 
						|
  if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
 | 
						|
    if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
 | 
						|
      auto restorer{context_.AllowWholeAssumedSizeArray()};
 | 
						|
      return context_.Analyze(expr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return context_.Analyze(expr);
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::AreConformable() const {
 | 
						|
  CHECK(actuals_.size() == 2);
 | 
						|
  return actuals_[0] && actuals_[1] &&
 | 
						|
      evaluate::AreConformable(*actuals_[0], *actuals_[1]);
 | 
						|
}
 | 
						|
 | 
						|
// Look for a type-bound operator in the type of arg number passIndex.
 | 
						|
const Symbol *ArgumentAnalyzer::FindBoundOp(
 | 
						|
    parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
 | 
						|
  const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
 | 
						|
  if (!type || !type->scope()) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  const Symbol *symbol{type->scope()->FindComponent(oprName)};
 | 
						|
  if (!symbol) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  definedOp = symbol;
 | 
						|
  ExpressionAnalyzer::AdjustActuals adjustment{
 | 
						|
      [&](const Symbol &proc, ActualArguments &) {
 | 
						|
        return passIndex == GetPassIndex(proc);
 | 
						|
      }};
 | 
						|
  auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
 | 
						|
  if (!pair.first) {
 | 
						|
    context_.EmitGenericResolutionError(*symbol, pair.second);
 | 
						|
  }
 | 
						|
  return pair.first;
 | 
						|
}
 | 
						|
 | 
						|
// If there is an implicit conversion between intrinsic types, make it explicit
 | 
						|
void ArgumentAnalyzer::AddAssignmentConversion(
 | 
						|
    const DynamicType &lhsType, const DynamicType &rhsType) {
 | 
						|
  if (lhsType.category() == rhsType.category() &&
 | 
						|
      (lhsType.category() == TypeCategory::Derived ||
 | 
						|
          lhsType.kind() == rhsType.kind())) {
 | 
						|
    // no conversion necessary
 | 
						|
  } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
 | 
						|
    std::optional<parser::CharBlock> source;
 | 
						|
    if (actuals_[1]) {
 | 
						|
      source = actuals_[1]->sourceLocation();
 | 
						|
    }
 | 
						|
    actuals_[1] = ActualArgument{*rhsExpr};
 | 
						|
    SetArgSourceLocation(actuals_[1], source);
 | 
						|
  } else {
 | 
						|
    actuals_[1] = std::nullopt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
 | 
						|
  return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
 | 
						|
}
 | 
						|
int ArgumentAnalyzer::GetRank(std::size_t i) const {
 | 
						|
  return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
 | 
						|
}
 | 
						|
 | 
						|
// If the argument at index i is a BOZ literal, convert its type to match the
 | 
						|
// otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
 | 
						|
// Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
 | 
						|
// is not currently supported.
 | 
						|
void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
 | 
						|
    std::size_t i, std::optional<DynamicType> otherType) {
 | 
						|
  if (IsBOZLiteral(i)) {
 | 
						|
    Expr<SomeType> &&argExpr{MoveExpr(i)};
 | 
						|
    auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
 | 
						|
    if (otherType && otherType->category() == TypeCategory::Real) {
 | 
						|
      int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
 | 
						|
      MaybeExpr realExpr{
 | 
						|
          ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
 | 
						|
      actuals_[i] = std::move(*realExpr);
 | 
						|
      thisType.emplace(TypeCategory::Real, kind);
 | 
						|
    } else {
 | 
						|
      int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
 | 
						|
      MaybeExpr intExpr{
 | 
						|
          ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
 | 
						|
      actuals_[i] = std::move(*intExpr);
 | 
						|
      thisType.emplace(TypeCategory::Integer, kind);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Report error resolving opr when there is a user-defined one available
 | 
						|
void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
 | 
						|
  std::string type0{TypeAsFortran(0)};
 | 
						|
  auto rank0{actuals_[0]->Rank()};
 | 
						|
  if (actuals_.size() == 1) {
 | 
						|
    if (rank0 > 0) {
 | 
						|
      context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                   "rank %d array of %s"_err_en_US,
 | 
						|
          opr, rank0, type0);
 | 
						|
    } else {
 | 
						|
      context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                   "operand type %s"_err_en_US,
 | 
						|
          opr, type0);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    std::string type1{TypeAsFortran(1)};
 | 
						|
    auto rank1{actuals_[1]->Rank()};
 | 
						|
    if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
 | 
						|
      context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                   "rank %d array of %s and rank %d array of %s"_err_en_US,
 | 
						|
          opr, rank0, type0, rank1, type1);
 | 
						|
    } else if (isAssignment && rank0 != rank1) {
 | 
						|
      if (rank0 == 0) {
 | 
						|
        context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                     "scalar %s and rank %d array of %s"_err_en_US,
 | 
						|
            opr, type0, rank1, type1);
 | 
						|
      } else {
 | 
						|
        context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                     "rank %d array of %s and scalar %s"_err_en_US,
 | 
						|
            opr, rank0, type0, type1);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      context_.Say("No intrinsic or user-defined %s matches "
 | 
						|
                   "operand types %s and %s"_err_en_US,
 | 
						|
          opr, type0, type1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
 | 
						|
  if (i >= actuals_.size() || !actuals_[i]) {
 | 
						|
    return "missing argument";
 | 
						|
  } else if (std::optional<DynamicType> type{GetType(i)}) {
 | 
						|
    return type->IsAssumedType()         ? "TYPE(*)"s
 | 
						|
        : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s
 | 
						|
        : type->IsPolymorphic()          ? "CLASS("s + type->AsFortran() + ')'
 | 
						|
        : type->category() == TypeCategory::Derived
 | 
						|
        ? "TYPE("s + type->AsFortran() + ')'
 | 
						|
        : type->category() == TypeCategory::Character
 | 
						|
        ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
 | 
						|
        : ToUpperCase(type->AsFortran());
 | 
						|
  } else {
 | 
						|
    return "untyped";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
 | 
						|
  for (const auto &actual : actuals_) {
 | 
						|
    if (!actual ||
 | 
						|
        (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
} // namespace Fortran::evaluate
 | 
						|
 | 
						|
namespace Fortran::semantics {
 | 
						|
evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
 | 
						|
    SemanticsContext &context, common::TypeCategory category,
 | 
						|
    const std::optional<parser::KindSelector> &selector) {
 | 
						|
  evaluate::ExpressionAnalyzer analyzer{context};
 | 
						|
  auto restorer{
 | 
						|
      analyzer.GetContextualMessages().SetLocation(context.location().value())};
 | 
						|
  return analyzer.AnalyzeKindSelector(category, selector);
 | 
						|
}
 | 
						|
 | 
						|
ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
 | 
						|
 | 
						|
bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
 | 
						|
  parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
 | 
						|
  const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
 | 
						|
  auto name{bounds.name.thing.thing};
 | 
						|
  int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
 | 
						|
  if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
 | 
						|
    if (dynamicType->category() == TypeCategory::Integer) {
 | 
						|
      kind = dynamicType->kind();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  exprAnalyzer_.AddImpliedDo(name.source, kind);
 | 
						|
  parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
 | 
						|
  exprAnalyzer_.RemoveImpliedDo(name.source);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExprChecker::Walk(const parser::Program &program) {
 | 
						|
  parser::Walk(program, *this);
 | 
						|
  return !context_.AnyFatalError();
 | 
						|
}
 | 
						|
} // namespace Fortran::semantics
 |