665 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			665 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Target.cpp ---------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                             The LLVM Linker
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Machine-specific things, such as applying relocations, creation of
 | 
						|
// GOT or PLT entries, etc., are handled in this file.
 | 
						|
//
 | 
						|
// Refer the ELF spec for the single letter varaibles, S, A or P, used
 | 
						|
// in this file. SA is S+A.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Target.h"
 | 
						|
#include "Error.h"
 | 
						|
#include "OutputSections.h"
 | 
						|
#include "Symbols.h"
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/Object/ELF.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Support/ELF.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace llvm::support::endian;
 | 
						|
using namespace llvm::ELF;
 | 
						|
 | 
						|
namespace lld {
 | 
						|
namespace elf2 {
 | 
						|
 | 
						|
std::unique_ptr<TargetInfo> Target;
 | 
						|
 | 
						|
static void add32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) + V); }
 | 
						|
static void add32be(uint8_t *L, int32_t V) { write32be(L, read32be(L) + V); }
 | 
						|
static void or32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) | V); }
 | 
						|
 | 
						|
template <bool IsLE> static void add32(uint8_t *L, int32_t V);
 | 
						|
template <> void add32<true>(uint8_t *L, int32_t V) { add32le(L, V); }
 | 
						|
template <> void add32<false>(uint8_t *L, int32_t V) { add32be(L, V); }
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86TargetInfo final : public TargetInfo {
 | 
						|
public:
 | 
						|
  X86TargetInfo();
 | 
						|
  void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                     uint64_t PltEntryAddr) const override;
 | 
						|
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  bool relocPointsToGot(uint32_t Type) const override;
 | 
						|
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                   uint32_t Type, uint64_t BaseAddr,
 | 
						|
                   uint64_t SA) const override;
 | 
						|
};
 | 
						|
 | 
						|
class X86_64TargetInfo final : public TargetInfo {
 | 
						|
public:
 | 
						|
  X86_64TargetInfo();
 | 
						|
  unsigned getPLTRefReloc(unsigned Type) const override;
 | 
						|
  void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                     uint64_t PltEntryAddr) const override;
 | 
						|
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                   uint32_t Type, uint64_t BaseAddr,
 | 
						|
                   uint64_t SA) const override;
 | 
						|
  bool isRelRelative(uint32_t Type) const override;
 | 
						|
};
 | 
						|
 | 
						|
class PPC64TargetInfo final : public TargetInfo {
 | 
						|
public:
 | 
						|
  PPC64TargetInfo();
 | 
						|
  void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                     uint64_t PltEntryAddr) const override;
 | 
						|
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                   uint32_t Type, uint64_t BaseAddr,
 | 
						|
                   uint64_t SA) const override;
 | 
						|
  bool isRelRelative(uint32_t Type) const override;
 | 
						|
};
 | 
						|
 | 
						|
class AArch64TargetInfo final : public TargetInfo {
 | 
						|
public:
 | 
						|
  AArch64TargetInfo();
 | 
						|
  void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                     uint64_t PltEntryAddr) const override;
 | 
						|
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                   uint32_t Type, uint64_t BaseAddr,
 | 
						|
                   uint64_t SA) const override;
 | 
						|
};
 | 
						|
 | 
						|
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
 | 
						|
public:
 | 
						|
  MipsTargetInfo();
 | 
						|
  void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                     uint64_t PltEntryAddr) const override;
 | 
						|
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
 | 
						|
  void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                   uint32_t Type, uint64_t BaseAddr,
 | 
						|
                   uint64_t SA) const override;
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
TargetInfo *createTarget() {
 | 
						|
  switch (Config->EMachine) {
 | 
						|
  case EM_386:
 | 
						|
    return new X86TargetInfo();
 | 
						|
  case EM_AARCH64:
 | 
						|
    return new AArch64TargetInfo();
 | 
						|
  case EM_MIPS:
 | 
						|
    switch (Config->EKind) {
 | 
						|
    case ELF32LEKind:
 | 
						|
      return new MipsTargetInfo<ELF32LE>();
 | 
						|
    case ELF32BEKind:
 | 
						|
      return new MipsTargetInfo<ELF32BE>();
 | 
						|
    default:
 | 
						|
      error("Unsupported MIPS target");
 | 
						|
    }
 | 
						|
  case EM_PPC64:
 | 
						|
    return new PPC64TargetInfo();
 | 
						|
  case EM_X86_64:
 | 
						|
    return new X86_64TargetInfo();
 | 
						|
  }
 | 
						|
  error("Unknown target machine");
 | 
						|
}
 | 
						|
 | 
						|
TargetInfo::~TargetInfo() {}
 | 
						|
 | 
						|
unsigned TargetInfo::getPLTRefReloc(unsigned Type) const { return PCRelReloc; }
 | 
						|
 | 
						|
bool TargetInfo::relocPointsToGot(uint32_t Type) const { return false; }
 | 
						|
 | 
						|
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
 | 
						|
 | 
						|
X86TargetInfo::X86TargetInfo() {
 | 
						|
  PCRelReloc = R_386_PC32;
 | 
						|
  GotReloc = R_386_GLOB_DAT;
 | 
						|
  GotRefReloc = R_386_GOT32;
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                                  uint64_t PltEntryAddr) const {
 | 
						|
  // jmpl *val; nop; nop
 | 
						|
  const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
 | 
						|
  memcpy(Buf, Inst, sizeof(Inst));
 | 
						|
  assert(isUInt<32>(GotEntryAddr));
 | 
						|
  write32le(Buf + 2, GotEntryAddr);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetInfo::relocPointsToGot(uint32_t Type) const {
 | 
						|
  return Type == R_386_GOTPC;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  return Type == R_386_PLT32 || (Type == R_386_PC32 && S.isShared());
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
 | 
						|
                                uint32_t Type, uint64_t BaseAddr,
 | 
						|
                                uint64_t SA) const {
 | 
						|
  typedef ELFFile<ELF32LE>::Elf_Rel Elf_Rel;
 | 
						|
  auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
 | 
						|
 | 
						|
  uint32_t Offset = Rel.r_offset;
 | 
						|
  uint8_t *Loc = Buf + Offset;
 | 
						|
  switch (Type) {
 | 
						|
  case R_386_GOT32:
 | 
						|
    add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
 | 
						|
    break;
 | 
						|
  case R_386_PC32:
 | 
						|
    add32le(Loc, SA - BaseAddr - Offset);
 | 
						|
    break;
 | 
						|
  case R_386_32:
 | 
						|
    add32le(Loc, SA);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    error("unrecognized reloc " + Twine(Type));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
X86_64TargetInfo::X86_64TargetInfo() {
 | 
						|
  PCRelReloc = R_X86_64_PC32;
 | 
						|
  GotReloc = R_X86_64_GLOB_DAT;
 | 
						|
  GotRefReloc = R_X86_64_PC32;
 | 
						|
  RelativeReloc = R_X86_64_RELATIVE;
 | 
						|
}
 | 
						|
 | 
						|
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                                     uint64_t PltEntryAddr) const {
 | 
						|
  // jmpq *val(%rip); nop; nop
 | 
						|
  const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
 | 
						|
  memcpy(Buf, Inst, sizeof(Inst));
 | 
						|
 | 
						|
  uint64_t NextPC = PltEntryAddr + 6;
 | 
						|
  int64_t Delta = GotEntryAddr - NextPC;
 | 
						|
  assert(isInt<32>(Delta));
 | 
						|
  write32le(Buf + 2, Delta);
 | 
						|
}
 | 
						|
 | 
						|
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86_64TargetInfo::getPLTRefReloc(unsigned Type) const {
 | 
						|
  switch (Type) {
 | 
						|
  case R_X86_64_32:
 | 
						|
    return R_X86_64_32;
 | 
						|
  case R_X86_64_PC32:
 | 
						|
  case R_X86_64_PLT32:
 | 
						|
    return R_X86_64_PC32;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unexpected relocation");
 | 
						|
}
 | 
						|
 | 
						|
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case R_X86_64_32:
 | 
						|
  case R_X86_64_PC32:
 | 
						|
    // This relocation is defined to have a value of (S + A - P).
 | 
						|
    // The problems start when a non PIC program calls a function in a shared
 | 
						|
    // library.
 | 
						|
    // In an ideal world, we could just report an error saying the relocation
 | 
						|
    // can overflow at runtime.
 | 
						|
    // In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
 | 
						|
    // libc.so.
 | 
						|
    //
 | 
						|
    // The general idea on how to handle such cases is to create a PLT entry
 | 
						|
    // and use that as the function value.
 | 
						|
    //
 | 
						|
    // For the static linking part, we just return true and everything else
 | 
						|
    // will use the the PLT entry as the address.
 | 
						|
    //
 | 
						|
    // The remaining (unimplemented) problem is making sure pointer equality
 | 
						|
    // still works. We need the help of the dynamic linker for that. We
 | 
						|
    // let it know that we have a direct reference to a so symbol by creating
 | 
						|
    // an undefined symbol with a non zero st_value. Seeing that, the
 | 
						|
    // dynamic linker resolves the symbol to the value of the symbol we created.
 | 
						|
    // This is true even for got entries, so pointer equality is maintained.
 | 
						|
    // To avoid an infinite loop, the only entry that points to the
 | 
						|
    // real function is a dedicated got entry used by the plt. That is
 | 
						|
    // identified by special relocation types (R_X86_64_JUMP_SLOT,
 | 
						|
    // R_386_JMP_SLOT, etc).
 | 
						|
    return S.isShared();
 | 
						|
  case R_X86_64_PLT32:
 | 
						|
    return canBePreempted(&S, true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case R_X86_64_PC64:
 | 
						|
  case R_X86_64_PC32:
 | 
						|
  case R_X86_64_PC16:
 | 
						|
  case R_X86_64_PC8:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86_64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
 | 
						|
                                   const void *RelP, uint32_t Type,
 | 
						|
                                   uint64_t BaseAddr, uint64_t SA) const {
 | 
						|
  typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
 | 
						|
  auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
 | 
						|
 | 
						|
  uint64_t Offset = Rel.r_offset;
 | 
						|
  uint8_t *Loc = Buf + Offset;
 | 
						|
  switch (Type) {
 | 
						|
  case R_X86_64_PC32:
 | 
						|
  case R_X86_64_GOTPCREL:
 | 
						|
  case R_X86_64_PLT32:
 | 
						|
    write32le(Loc, SA - BaseAddr - Offset);
 | 
						|
    break;
 | 
						|
  case R_X86_64_64:
 | 
						|
    write64le(Loc, SA);
 | 
						|
    break;
 | 
						|
  case R_X86_64_32: {
 | 
						|
  case R_X86_64_32S:
 | 
						|
    if (Type == R_X86_64_32 && !isUInt<32>(SA))
 | 
						|
      error("R_X86_64_32 out of range");
 | 
						|
    else if (!isInt<32>(SA))
 | 
						|
      error("R_X86_64_32S out of range");
 | 
						|
    write32le(Loc, SA);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    error("unrecognized reloc " + Twine(Type));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
 | 
						|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
 | 
						|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
 | 
						|
// document.
 | 
						|
 | 
						|
static uint16_t applyPPCLo(uint64_t V) { return V & 0xffff; }
 | 
						|
 | 
						|
static uint16_t applyPPCHi(uint64_t V) { return (V >> 16) & 0xffff; }
 | 
						|
 | 
						|
static uint16_t applyPPCHa(uint64_t V) { return ((V + 0x8000) >> 16) & 0xffff; }
 | 
						|
 | 
						|
static uint16_t applyPPCHigher(uint64_t V) { return (V >> 32) & 0xffff; }
 | 
						|
 | 
						|
static uint16_t applyPPCHighera(uint64_t V) {
 | 
						|
  return ((V + 0x8000) >> 32) & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
 | 
						|
 | 
						|
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
 | 
						|
 | 
						|
PPC64TargetInfo::PPC64TargetInfo() {
 | 
						|
  PCRelReloc = R_PPC64_REL24;
 | 
						|
  GotReloc = R_PPC64_GLOB_DAT;
 | 
						|
  GotRefReloc = R_PPC64_REL64;
 | 
						|
  RelativeReloc = R_PPC64_RELATIVE;
 | 
						|
  PltEntrySize = 32;
 | 
						|
 | 
						|
  // We need 64K pages (at least under glibc/Linux, the loader won't
 | 
						|
  // set different permissions on a finer granularity than that).
 | 
						|
  PageSize = 65536;
 | 
						|
 | 
						|
  // The PPC64 ELF ABI v1 spec, says:
 | 
						|
  //
 | 
						|
  //   It is normally desirable to put segments with different characteristics
 | 
						|
  //   in separate 256 Mbyte portions of the address space, to give the
 | 
						|
  //   operating system full paging flexibility in the 64-bit address space.
 | 
						|
  //
 | 
						|
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
 | 
						|
  // use 0x10000000 as the starting address.
 | 
						|
  VAStart = 0x10000000;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t getPPC64TocBase() {
 | 
						|
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
 | 
						|
  // order. The TOC starts where the first of these sections starts.
 | 
						|
 | 
						|
  // FIXME: This obviously does not do the right thing when there is no .got
 | 
						|
  // section, but there is a .toc or .tocbss section.
 | 
						|
  uint64_t TocVA = Out<ELF64BE>::Got->getVA();
 | 
						|
  if (!TocVA)
 | 
						|
    TocVA = Out<ELF64BE>::Plt->getVA();
 | 
						|
 | 
						|
  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
 | 
						|
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
 | 
						|
  // code (crt1.o) assumes that you can get from the TOC base to the
 | 
						|
  // start of the .toc section with only a single (signed) 16-bit relocation.
 | 
						|
  return TocVA + 0x8000;
 | 
						|
}
 | 
						|
 | 
						|
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                                    uint64_t PltEntryAddr) const {
 | 
						|
  uint64_t Off = GotEntryAddr - getPPC64TocBase();
 | 
						|
 | 
						|
  // FIXME: What we should do, in theory, is get the offset of the function
 | 
						|
  // descriptor in the .opd section, and use that as the offset from %r2 (the
 | 
						|
  // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
 | 
						|
  // be a pointer to the function descriptor in the .opd section. Using
 | 
						|
  // this scheme is simpler, but requires an extra indirection per PLT dispatch.
 | 
						|
 | 
						|
  write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
 | 
						|
  write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
 | 
						|
  write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
 | 
						|
  write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
 | 
						|
  write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
 | 
						|
  write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
 | 
						|
  write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
 | 
						|
  write32be(Buf + 28, 0x4e800420);                   // bctr
 | 
						|
}
 | 
						|
 | 
						|
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  if (relocNeedsPlt(Type, S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  default: return false;
 | 
						|
  case R_PPC64_GOT16:
 | 
						|
  case R_PPC64_GOT16_LO:
 | 
						|
  case R_PPC64_GOT16_HI:
 | 
						|
  case R_PPC64_GOT16_HA:
 | 
						|
  case R_PPC64_GOT16_DS:
 | 
						|
  case R_PPC64_GOT16_LO_DS:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
 | 
						|
  // These are function calls that need to be redirected through a PLT stub.
 | 
						|
  return Type == R_PPC64_REL24 && canBePreempted(&S, false);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
 | 
						|
  switch (Type) {
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  case R_PPC64_TOC:
 | 
						|
  case R_PPC64_ADDR64:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PPC64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
 | 
						|
                                  const void *RelP, uint32_t Type,
 | 
						|
                                  uint64_t BaseAddr, uint64_t SA) const {
 | 
						|
  typedef ELFFile<ELF64BE>::Elf_Rela Elf_Rela;
 | 
						|
  auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
 | 
						|
 | 
						|
  uint8_t *L = Buf + Rel.r_offset;
 | 
						|
  uint64_t P = BaseAddr + Rel.r_offset;
 | 
						|
  uint64_t TB = getPPC64TocBase();
 | 
						|
 | 
						|
  // For a TOC-relative relocation, adjust the addend and proceed in terms of
 | 
						|
  // the corresponding ADDR16 relocation type.
 | 
						|
  switch (Type) {
 | 
						|
  case R_PPC64_TOC16:       Type = R_PPC64_ADDR16;       SA -= TB; break;
 | 
						|
  case R_PPC64_TOC16_DS:    Type = R_PPC64_ADDR16_DS;    SA -= TB; break;
 | 
						|
  case R_PPC64_TOC16_LO:    Type = R_PPC64_ADDR16_LO;    SA -= TB; break;
 | 
						|
  case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
 | 
						|
  case R_PPC64_TOC16_HI:    Type = R_PPC64_ADDR16_HI;    SA -= TB; break;
 | 
						|
  case R_PPC64_TOC16_HA:    Type = R_PPC64_ADDR16_HA;    SA -= TB; break;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  case R_PPC64_ADDR16:
 | 
						|
    if (!isInt<16>(SA))
 | 
						|
      error("Relocation R_PPC64_ADDR16 overflow");
 | 
						|
    write16be(L, SA);
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_DS:
 | 
						|
    if (!isInt<16>(SA))
 | 
						|
      error("Relocation R_PPC64_ADDR16_DS overflow");
 | 
						|
    write16be(L, (read16be(L) & 3) | (SA & ~3));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_LO:
 | 
						|
    write16be(L, applyPPCLo(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_LO_DS:
 | 
						|
    write16be(L, (read16be(L) & 3) | (applyPPCLo(SA) & ~3));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HI:
 | 
						|
    write16be(L, applyPPCHi(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HA:
 | 
						|
    write16be(L, applyPPCHa(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HIGHER:
 | 
						|
    write16be(L, applyPPCHigher(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HIGHERA:
 | 
						|
    write16be(L, applyPPCHighera(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HIGHEST:
 | 
						|
    write16be(L, applyPPCHighest(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR16_HIGHESTA:
 | 
						|
    write16be(L, applyPPCHighesta(SA));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR14: {
 | 
						|
    if ((SA & 3) != 0)
 | 
						|
      error("Improper alignment for relocation R_PPC64_ADDR14");
 | 
						|
 | 
						|
    // Preserve the AA/LK bits in the branch instruction
 | 
						|
    uint8_t AALK = L[3];
 | 
						|
    write16be(L + 2, (AALK & 3) | (SA & 0xfffc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case R_PPC64_REL16_LO:
 | 
						|
    write16be(L, applyPPCLo(SA - P));
 | 
						|
    break;
 | 
						|
  case R_PPC64_REL16_HI:
 | 
						|
    write16be(L, applyPPCHi(SA - P));
 | 
						|
    break;
 | 
						|
  case R_PPC64_REL16_HA:
 | 
						|
    write16be(L, applyPPCHa(SA - P));
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR32:
 | 
						|
    if (!isInt<32>(SA))
 | 
						|
      error("Relocation R_PPC64_ADDR32 overflow");
 | 
						|
    write32be(L, SA);
 | 
						|
    break;
 | 
						|
  case R_PPC64_REL24: {
 | 
						|
    // If we have an undefined weak symbol, we might get here with a symbol
 | 
						|
    // address of zero. That could overflow, but the code must be unreachable,
 | 
						|
    // so don't bother doing anything at all.
 | 
						|
    if (!SA)
 | 
						|
      break;
 | 
						|
 | 
						|
    uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
 | 
						|
    uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
 | 
						|
    bool InPlt = PltStart <= SA && SA < PltEnd;
 | 
						|
 | 
						|
    if (!InPlt && Out<ELF64BE>::Opd) {
 | 
						|
      // If this is a local call, and we currently have the address of a
 | 
						|
      // function-descriptor, get the underlying code address instead.
 | 
						|
      uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
 | 
						|
      uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
 | 
						|
      bool InOpd = OpdStart <= SA && SA < OpdEnd;
 | 
						|
 | 
						|
      if (InOpd)
 | 
						|
        SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t Mask = 0x03FFFFFC;
 | 
						|
    if (!isInt<24>(SA - P))
 | 
						|
      error("Relocation R_PPC64_REL24 overflow");
 | 
						|
    write32be(L, (read32be(L) & ~Mask) | ((SA - P) & Mask));
 | 
						|
 | 
						|
    if (InPlt && L + 8 <= BufEnd &&
 | 
						|
        read32be(L + 4) == 0x60000000 /* nop */)
 | 
						|
      write32be(L + 4, 0xe8410028); // ld %r2, 40(%r1)
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case R_PPC64_REL32:
 | 
						|
    if (!isInt<32>(SA - P))
 | 
						|
      error("Relocation R_PPC64_REL32 overflow");
 | 
						|
    write32be(L, SA - P);
 | 
						|
    break;
 | 
						|
  case R_PPC64_REL64:
 | 
						|
    write64be(L, SA - P);
 | 
						|
    break;
 | 
						|
  case R_PPC64_ADDR64:
 | 
						|
  case R_PPC64_TOC:
 | 
						|
    write64be(L, SA);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    error("unrecognized reloc " + Twine(Type));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AArch64TargetInfo::AArch64TargetInfo() {
 | 
						|
  // PCRelReloc = FIXME
 | 
						|
  // GotReloc = FIXME
 | 
						|
}
 | 
						|
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                                      uint64_t PltEntryAddr) const {}
 | 
						|
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
 | 
						|
                                      const SymbolBody &S) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
 | 
						|
                                      const SymbolBody &S) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
 | 
						|
  uint32_t ImmLo = (Imm & 0x3) << 29;
 | 
						|
  uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
 | 
						|
  uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
 | 
						|
  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
 | 
						|
}
 | 
						|
 | 
						|
// Page(Expr) is the page address of the expression Expr, defined
 | 
						|
// as (Expr & ~0xFFF). (This applies even if the machine page size
 | 
						|
// supported by the platform has a different value.)
 | 
						|
static uint64_t getAArch64Page(uint64_t Expr) {
 | 
						|
  return Expr & (~static_cast<uint64_t>(0xFFF));
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
 | 
						|
                                    const void *RelP, uint32_t Type,
 | 
						|
                                    uint64_t BaseAddr, uint64_t SA) const {
 | 
						|
  typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
 | 
						|
  auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
 | 
						|
 | 
						|
  uint8_t *L = Buf + Rel.r_offset;
 | 
						|
  uint64_t P = BaseAddr + Rel.r_offset;
 | 
						|
  switch (Type) {
 | 
						|
  case R_AARCH64_ABS16:
 | 
						|
    if (!isInt<16>(SA))
 | 
						|
      error("Relocation R_AARCH64_ABS16 out of range");
 | 
						|
    write16le(L, SA);
 | 
						|
    break;
 | 
						|
  case R_AARCH64_ABS32:
 | 
						|
    if (!isInt<32>(SA))
 | 
						|
      error("Relocation R_AARCH64_ABS32 out of range");
 | 
						|
    write32le(L, SA);
 | 
						|
    break;
 | 
						|
  case R_AARCH64_ABS64:
 | 
						|
    // No overflow check needed.
 | 
						|
    write64le(L, SA);
 | 
						|
    break;
 | 
						|
  case R_AARCH64_ADD_ABS_LO12_NC:
 | 
						|
    // No overflow check needed.
 | 
						|
    // This relocation stores 12 bits and there's no instruction
 | 
						|
    // to do it. Instead, we do a 32 bits store of the value
 | 
						|
    // of r_addend bitwise-or'ed L. This assumes that the addend
 | 
						|
    // bits in L are zero.
 | 
						|
    or32le(L, (SA & 0xFFF) << 10);
 | 
						|
    break;
 | 
						|
  case R_AARCH64_ADR_PREL_LO21: {
 | 
						|
    uint64_t X = SA - P;
 | 
						|
    if (!isInt<21>(X))
 | 
						|
      error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
 | 
						|
    updateAArch64Adr(L, X & 0x1FFFFF);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case R_AARCH64_ADR_PREL_PG_HI21: {
 | 
						|
    uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
 | 
						|
    if (!isInt<33>(X))
 | 
						|
      error("Relocation R_AARCH64_ADR_PREL_PG_HI21 out of range");
 | 
						|
    updateAArch64Adr(L, (X >> 12) & 0x1FFFFF); // X[32:12]
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    error("unrecognized reloc " + Twine(Type));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
 | 
						|
  // PCRelReloc = FIXME
 | 
						|
  // GotReloc = FIXME
 | 
						|
  PageSize = 65536;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
 | 
						|
                                         uint64_t PltEntryAddr) const {}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
 | 
						|
                                         const SymbolBody &S) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
 | 
						|
                                         const SymbolBody &S) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
 | 
						|
                                       const void *RelP, uint32_t Type,
 | 
						|
                                       uint64_t BaseAddr, uint64_t SA) const {
 | 
						|
  const bool IsLE = ELFT::TargetEndianness == support::little;
 | 
						|
  typedef typename ELFFile<ELFT>::Elf_Rel Elf_Rel;
 | 
						|
  auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
 | 
						|
 | 
						|
  switch (Type) {
 | 
						|
  case R_MIPS_32:
 | 
						|
    add32<IsLE>(Buf + Rel.r_offset, SA);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    error("unrecognized reloc " + Twine(Type));
 | 
						|
  }
 | 
						|
}
 | 
						|
}
 | 
						|
}
 |