2749 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2749 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineCasts.cpp -----------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visit functions for cast operations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
 | 
						|
#include <numeric>
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
/// Analyze 'Val', seeing if it is a simple linear expression.
 | 
						|
/// If so, decompose it, returning some value X, such that Val is
 | 
						|
/// X*Scale+Offset.
 | 
						|
///
 | 
						|
static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | 
						|
                                        uint64_t &Offset) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    Offset = CI->getZExtValue();
 | 
						|
    Scale  = 0;
 | 
						|
    return ConstantInt::get(Val->getType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | 
						|
    // Cannot look past anything that might overflow.
 | 
						|
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
 | 
						|
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
 | 
						|
      Scale = 1;
 | 
						|
      Offset = 0;
 | 
						|
      return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (I->getOpcode() == Instruction::Shl) {
 | 
						|
        // This is a value scaled by '1 << the shift amt'.
 | 
						|
        Scale = UINT64_C(1) << RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Mul) {
 | 
						|
        // This value is scaled by 'RHS'.
 | 
						|
        Scale = RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Add) {
 | 
						|
        // We have X+C.  Check to see if we really have (X*C2)+C1,
 | 
						|
        // where C1 is divisible by C2.
 | 
						|
        unsigned SubScale;
 | 
						|
        Value *SubVal =
 | 
						|
          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | 
						|
        Offset += RHS->getZExtValue();
 | 
						|
        Scale = SubScale;
 | 
						|
        return SubVal;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't look past this.
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// If we find a cast of an allocation instruction, try to eliminate the cast by
 | 
						|
/// moving the type information into the alloc.
 | 
						|
Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
 | 
						|
                                                       AllocaInst &AI) {
 | 
						|
  PointerType *PTy = cast<PointerType>(CI.getType());
 | 
						|
 | 
						|
  IRBuilderBase::InsertPointGuard Guard(Builder);
 | 
						|
  Builder.SetInsertPoint(&AI);
 | 
						|
 | 
						|
  // Get the type really allocated and the type casted to.
 | 
						|
  Type *AllocElTy = AI.getAllocatedType();
 | 
						|
  Type *CastElTy = PTy->getElementType();
 | 
						|
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
 | 
						|
 | 
						|
  // This optimisation does not work for cases where the cast type
 | 
						|
  // is scalable and the allocated type is not. This because we need to
 | 
						|
  // know how many times the casted type fits into the allocated type.
 | 
						|
  // For the opposite case where the allocated type is scalable and the
 | 
						|
  // cast type is not this leads to poor code quality due to the
 | 
						|
  // introduction of 'vscale' into the calculations. It seems better to
 | 
						|
  // bail out for this case too until we've done a proper cost-benefit
 | 
						|
  // analysis.
 | 
						|
  bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
 | 
						|
  bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
 | 
						|
  if (AllocIsScalable != CastIsScalable) return nullptr;
 | 
						|
 | 
						|
  Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
 | 
						|
  Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
 | 
						|
  if (CastElTyAlign < AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we are strictly
 | 
						|
  // increasing the alignment of the resultant allocation.  If we keep it the
 | 
						|
  // same, we open the door to infinite loops of various kinds.
 | 
						|
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  // The alloc and cast types should be either both fixed or both scalable.
 | 
						|
  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
 | 
						|
  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
 | 
						|
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we're not
 | 
						|
  // shrinking the amount of memory being allocated.
 | 
						|
  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
 | 
						|
  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
 | 
						|
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
 | 
						|
 | 
						|
  // See if we can satisfy the modulus by pulling a scale out of the array
 | 
						|
  // size argument.
 | 
						|
  unsigned ArraySizeScale;
 | 
						|
  uint64_t ArrayOffset;
 | 
						|
  Value *NumElements = // See if the array size is a decomposable linear expr.
 | 
						|
    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | 
						|
 | 
						|
  // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | 
						|
  // do the xform.
 | 
						|
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | 
						|
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
 | 
						|
 | 
						|
  // We don't currently support arrays of scalable types.
 | 
						|
  assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
 | 
						|
 | 
						|
  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | 
						|
  Value *Amt = nullptr;
 | 
						|
  if (Scale == 1) {
 | 
						|
    Amt = NumElements;
 | 
						|
  } else {
 | 
						|
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
 | 
						|
    // Insert before the alloca, not before the cast.
 | 
						|
    Amt = Builder.CreateMul(Amt, NumElements);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | 
						|
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
 | 
						|
                                  Offset, true);
 | 
						|
    Amt = Builder.CreateAdd(Amt, Off);
 | 
						|
  }
 | 
						|
 | 
						|
  AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
 | 
						|
  New->setAlignment(AI.getAlign());
 | 
						|
  New->takeName(&AI);
 | 
						|
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
 | 
						|
 | 
						|
  // If the allocation has multiple real uses, insert a cast and change all
 | 
						|
  // things that used it to use the new cast.  This will also hack on CI, but it
 | 
						|
  // will die soon.
 | 
						|
  if (!AI.hasOneUse()) {
 | 
						|
    // New is the allocation instruction, pointer typed. AI is the original
 | 
						|
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | 
						|
    Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
 | 
						|
    replaceInstUsesWith(AI, NewCast);
 | 
						|
    eraseInstFromFunction(AI);
 | 
						|
  }
 | 
						|
  return replaceInstUsesWith(CI, New);
 | 
						|
}
 | 
						|
 | 
						|
/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
 | 
						|
/// true for, actually insert the code to evaluate the expression.
 | 
						|
Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
 | 
						|
                                                 bool isSigned) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | 
						|
    // If we got a constantexpr back, try to simplify it with DL info.
 | 
						|
    return ConstantFoldConstant(C, DL, &TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it must be an instruction.
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  Instruction *Res = nullptr;
 | 
						|
  unsigned Opc = I->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | 
						|
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // If the source type of the cast is the type we're trying for then we can
 | 
						|
    // just return the source.  There's no need to insert it because it is not
 | 
						|
    // new.
 | 
						|
    if (I->getOperand(0)->getType() == Ty)
 | 
						|
      return I->getOperand(0);
 | 
						|
 | 
						|
    // Otherwise, must be the same type of cast, so just reinsert a new one.
 | 
						|
    // This also handles the case of zext(trunc(x)) -> zext(x).
 | 
						|
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
 | 
						|
                                      Opc == Instruction::SExt);
 | 
						|
    break;
 | 
						|
  case Instruction::Select: {
 | 
						|
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | 
						|
    Res = SelectInst::Create(I->getOperand(0), True, False);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    PHINode *OPN = cast<PHINode>(I);
 | 
						|
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
 | 
						|
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *V =
 | 
						|
          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | 
						|
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
    Res = NPN;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    llvm_unreachable("Unreachable!");
 | 
						|
  }
 | 
						|
 | 
						|
  Res->takeName(I);
 | 
						|
  return InsertNewInstWith(Res, *I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction::CastOps
 | 
						|
InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
 | 
						|
                                       const CastInst *CI2) {
 | 
						|
  Type *SrcTy = CI1->getSrcTy();
 | 
						|
  Type *MidTy = CI1->getDestTy();
 | 
						|
  Type *DstTy = CI2->getDestTy();
 | 
						|
 | 
						|
  Instruction::CastOps firstOp = CI1->getOpcode();
 | 
						|
  Instruction::CastOps secondOp = CI2->getOpcode();
 | 
						|
  Type *SrcIntPtrTy =
 | 
						|
      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
 | 
						|
  Type *MidIntPtrTy =
 | 
						|
      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
 | 
						|
  Type *DstIntPtrTy =
 | 
						|
      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
 | 
						|
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | 
						|
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
 | 
						|
                                                DstIntPtrTy);
 | 
						|
 | 
						|
  // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | 
						|
  // type that differs from the pointer size.
 | 
						|
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
 | 
						|
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
 | 
						|
    Res = 0;
 | 
						|
 | 
						|
  return Instruction::CastOps(Res);
 | 
						|
}
 | 
						|
 | 
						|
/// Implement the transforms common to all CastInst visitors.
 | 
						|
Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // Try to eliminate a cast of a cast.
 | 
						|
  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
 | 
						|
      // The first cast (CSrc) is eliminable so we need to fix up or replace
 | 
						|
      // the second cast (CI). CSrc will then have a good chance of being dead.
 | 
						|
      auto *Ty = CI.getType();
 | 
						|
      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
 | 
						|
      // Point debug users of the dying cast to the new one.
 | 
						|
      if (CSrc->hasOneUse())
 | 
						|
        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
 | 
						|
    // We are casting a select. Try to fold the cast into the select if the
 | 
						|
    // select does not have a compare instruction with matching operand types
 | 
						|
    // or the select is likely better done in a narrow type.
 | 
						|
    // Creating a select with operands that are different sizes than its
 | 
						|
    // condition may inhibit other folds and lead to worse codegen.
 | 
						|
    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
 | 
						|
    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
 | 
						|
        (CI.getOpcode() == Instruction::Trunc &&
 | 
						|
         shouldChangeType(CI.getSrcTy(), CI.getType()))) {
 | 
						|
      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
 | 
						|
        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
 | 
						|
        return NV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting a PHI, then fold the cast into the PHI.
 | 
						|
  if (auto *PN = dyn_cast<PHINode>(Src)) {
 | 
						|
    // Don't do this if it would create a PHI node with an illegal type from a
 | 
						|
    // legal type.
 | 
						|
    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
 | 
						|
        shouldChangeType(CI.getSrcTy(), CI.getType()))
 | 
						|
      if (Instruction *NV = foldOpIntoPhi(CI, PN))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Constants and extensions/truncates from the destination type are always
 | 
						|
/// free to be evaluated in that type. This is a helper for canEvaluate*.
 | 
						|
static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
  Value *X;
 | 
						|
  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
 | 
						|
      X->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Filter out values that we can not evaluate in the destination type for free.
 | 
						|
/// This is a helper for canEvaluate*.
 | 
						|
static bool canNotEvaluateInType(Value *V, Type *Ty) {
 | 
						|
  assert(!isa<Constant>(V) && "Constant should already be handled.");
 | 
						|
  if (!isa<Instruction>(V))
 | 
						|
    return true;
 | 
						|
  // We don't extend or shrink something that has multiple uses --  doing so
 | 
						|
  // would require duplicating the instruction which isn't profitable.
 | 
						|
  if (!V->hasOneUse())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can evaluate the specified expression tree as type Ty
 | 
						|
/// instead of its larger type, and arrive with the same value.
 | 
						|
/// This is used by code that tries to eliminate truncates.
 | 
						|
///
 | 
						|
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
 | 
						|
/// can be computed by computing V in the smaller type.  If V is an instruction,
 | 
						|
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
 | 
						|
/// makes sense if x and y can be efficiently truncated.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
 | 
						|
                                 Instruction *CxtI) {
 | 
						|
  if (canAlwaysEvaluateInType(V, Ty))
 | 
						|
    return true;
 | 
						|
  if (canNotEvaluateInType(V, Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *I = cast<Instruction>(V);
 | 
						|
  Type *OrigTy = V->getType();
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // These operators can all arbitrarily be extended or truncated.
 | 
						|
    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    // UDiv and URem can be truncated if all the truncated bits are zero.
 | 
						|
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
 | 
						|
    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
 | 
						|
    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
 | 
						|
        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
 | 
						|
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // If we are truncating the result of this SHL, and if it's a shift of an
 | 
						|
    // inrange amount, we can always perform a SHL in a smaller type.
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    KnownBits AmtKnownBits =
 | 
						|
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
 | 
						|
    if (AmtKnownBits.getMaxValue().ult(BitWidth))
 | 
						|
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::LShr: {
 | 
						|
    // If this is a truncate of a logical shr, we can truncate it to a smaller
 | 
						|
    // lshr iff we know that the bits we would otherwise be shifting in are
 | 
						|
    // already zeros.
 | 
						|
    // TODO: It is enough to check that the bits we would be shifting in are
 | 
						|
    //       zero - use AmtKnownBits.getMaxValue().
 | 
						|
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    KnownBits AmtKnownBits =
 | 
						|
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
 | 
						|
    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
 | 
						|
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
 | 
						|
        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
 | 
						|
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::AShr: {
 | 
						|
    // If this is a truncate of an arithmetic shr, we can truncate it to a
 | 
						|
    // smaller ashr iff we know that all the bits from the sign bit of the
 | 
						|
    // original type and the sign bit of the truncate type are similar.
 | 
						|
    // TODO: It is enough to check that the bits we would be shifting in are
 | 
						|
    //       similar to sign bit of the truncate type.
 | 
						|
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    KnownBits AmtKnownBits =
 | 
						|
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
 | 
						|
    unsigned ShiftedBits = OrigBitWidth - BitWidth;
 | 
						|
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
 | 
						|
        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
 | 
						|
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Trunc:
 | 
						|
    // trunc(trunc(x)) -> trunc(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
 | 
						|
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
 | 
						|
    return true;
 | 
						|
  case Instruction::Select: {
 | 
						|
    SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
 | 
						|
           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (Value *IncValue : PN->incoming_values())
 | 
						|
      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a vector that is bitcast to an integer, optionally logically
 | 
						|
/// right-shifted, and truncated, convert it to an extractelement.
 | 
						|
/// Example (big endian):
 | 
						|
///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
 | 
						|
///   --->
 | 
						|
///   extractelement <4 x i32> %X, 1
 | 
						|
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
 | 
						|
                                         InstCombinerImpl &IC) {
 | 
						|
  Value *TruncOp = Trunc.getOperand(0);
 | 
						|
  Type *DestType = Trunc.getType();
 | 
						|
  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *VecInput = nullptr;
 | 
						|
  ConstantInt *ShiftVal = nullptr;
 | 
						|
  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
 | 
						|
                                  m_LShr(m_BitCast(m_Value(VecInput)),
 | 
						|
                                         m_ConstantInt(ShiftVal)))) ||
 | 
						|
      !isa<VectorType>(VecInput->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  VectorType *VecType = cast<VectorType>(VecInput->getType());
 | 
						|
  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
 | 
						|
  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
 | 
						|
 | 
						|
  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the element type of the vector doesn't match the result type,
 | 
						|
  // bitcast it to a vector type that we can extract from.
 | 
						|
  unsigned NumVecElts = VecWidth / DestWidth;
 | 
						|
  if (VecType->getElementType() != DestType) {
 | 
						|
    VecType = FixedVectorType::get(DestType, NumVecElts);
 | 
						|
    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Elt = ShiftAmount / DestWidth;
 | 
						|
  if (IC.getDataLayout().isBigEndian())
 | 
						|
    Elt = NumVecElts - 1 - Elt;
 | 
						|
 | 
						|
  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
 | 
						|
}
 | 
						|
 | 
						|
/// Funnel/Rotate left/right may occur in a wider type than necessary because of
 | 
						|
/// type promotion rules. Try to narrow the inputs and convert to funnel shift.
 | 
						|
Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
 | 
						|
  assert((isa<VectorType>(Trunc.getSrcTy()) ||
 | 
						|
          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
 | 
						|
         "Don't narrow to an illegal scalar type");
 | 
						|
 | 
						|
  // Bail out on strange types. It is possible to handle some of these patterns
 | 
						|
  // even with non-power-of-2 sizes, but it is not a likely scenario.
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
 | 
						|
  if (!isPowerOf2_32(NarrowWidth))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // First, find an or'd pair of opposite shifts:
 | 
						|
  // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
 | 
						|
  BinaryOperator *Or0, *Or1;
 | 
						|
  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
 | 
						|
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
 | 
						|
      !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
 | 
						|
      Or0->getOpcode() == Or1->getOpcode())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
 | 
						|
  if (Or0->getOpcode() == BinaryOperator::LShr) {
 | 
						|
    std::swap(Or0, Or1);
 | 
						|
    std::swap(ShVal0, ShVal1);
 | 
						|
    std::swap(ShAmt0, ShAmt1);
 | 
						|
  }
 | 
						|
  assert(Or0->getOpcode() == BinaryOperator::Shl &&
 | 
						|
         Or1->getOpcode() == BinaryOperator::LShr &&
 | 
						|
         "Illegal or(shift,shift) pair");
 | 
						|
 | 
						|
  // Match the shift amount operands for a funnel/rotate pattern. This always
 | 
						|
  // matches a subtraction on the R operand.
 | 
						|
  auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
 | 
						|
    // The shift amounts may add up to the narrow bit width:
 | 
						|
    // (shl ShVal0, L) | (lshr ShVal1, Width - L)
 | 
						|
    if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
 | 
						|
      return L;
 | 
						|
 | 
						|
    // The following patterns currently only work for rotation patterns.
 | 
						|
    // TODO: Add more general funnel-shift compatible patterns.
 | 
						|
    if (ShVal0 != ShVal1)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // The shift amount may be masked with negation:
 | 
						|
    // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
 | 
						|
    Value *X;
 | 
						|
    unsigned Mask = Width - 1;
 | 
						|
    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
 | 
						|
        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
 | 
						|
      return X;
 | 
						|
 | 
						|
    // Same as above, but the shift amount may be extended after masking:
 | 
						|
    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
 | 
						|
        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
 | 
						|
      return X;
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  };
 | 
						|
 | 
						|
  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
 | 
						|
  bool IsFshl = true; // Sub on LSHR.
 | 
						|
  if (!ShAmt) {
 | 
						|
    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
 | 
						|
    IsFshl = false; // Sub on SHL.
 | 
						|
  }
 | 
						|
  if (!ShAmt)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The shifted value must have high zeros in the wide type. Typically, this
 | 
						|
  // will be a zext, but it could also be the result of an 'and' or 'shift'.
 | 
						|
  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
 | 
						|
  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
 | 
						|
  if (!MaskedValueIsZero(ShVal0, HiBitMask, 0, &Trunc) ||
 | 
						|
      !MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We have an unnecessarily wide rotate!
 | 
						|
  // trunc (or (lshr ShVal0, ShAmt), (shl ShVal1, BitWidth - ShAmt))
 | 
						|
  // Narrow the inputs and convert to funnel shift intrinsic:
 | 
						|
  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
 | 
						|
  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
 | 
						|
  Value *X, *Y;
 | 
						|
  X = Y = Builder.CreateTrunc(ShVal0, DestTy);
 | 
						|
  if (ShVal0 != ShVal1)
 | 
						|
    Y = Builder.CreateTrunc(ShVal1, DestTy);
 | 
						|
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
 | 
						|
  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
 | 
						|
  return CallInst::Create(F, {X, Y, NarrowShAmt});
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of math or bitwise logic instructions by pulling a
 | 
						|
/// truncate ahead of binary operators.
 | 
						|
/// TODO: Transforms for truncated shifts should be moved into here.
 | 
						|
Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
 | 
						|
  Type *SrcTy = Trunc.getSrcTy();
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BinaryOperator *BinOp;
 | 
						|
  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *BinOp0 = BinOp->getOperand(0);
 | 
						|
  Value *BinOp1 = BinOp->getOperand(1);
 | 
						|
  switch (BinOp->getOpcode()) {
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul: {
 | 
						|
    Constant *C;
 | 
						|
    if (match(BinOp0, m_Constant(C))) {
 | 
						|
      // trunc (binop C, X) --> binop (trunc C', X)
 | 
						|
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | 
						|
      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
 | 
						|
    }
 | 
						|
    if (match(BinOp1, m_Constant(C))) {
 | 
						|
      // trunc (binop X, C) --> binop (trunc X, C')
 | 
						|
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | 
						|
      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
 | 
						|
    }
 | 
						|
    Value *X;
 | 
						|
    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
 | 
						|
      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
 | 
						|
      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
 | 
						|
    }
 | 
						|
    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
 | 
						|
      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
 | 
						|
      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
 | 
						|
    return NarrowOr;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of a splat shuffle. This could be generalized to any
 | 
						|
/// shuffle with a constant operand, but we limit the transform to avoid
 | 
						|
/// creating a shuffle type that targets may not be able to lower effectively.
 | 
						|
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
 | 
						|
                                       InstCombiner::BuilderTy &Builder) {
 | 
						|
  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
 | 
						|
  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
 | 
						|
      is_splat(Shuf->getShuffleMask()) &&
 | 
						|
      Shuf->getType() == Shuf->getOperand(0)->getType()) {
 | 
						|
    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
 | 
						|
    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
 | 
						|
    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
 | 
						|
    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of an insert element. This could be generalized for
 | 
						|
/// any vector constant, but we limit the transform to insertion into undef to
 | 
						|
/// avoid potential backend problems from unsupported insertion widths. This
 | 
						|
/// could also be extended to handle the case of inserting a scalar constant
 | 
						|
/// into a vector variable.
 | 
						|
static Instruction *shrinkInsertElt(CastInst &Trunc,
 | 
						|
                                    InstCombiner::BuilderTy &Builder) {
 | 
						|
  Instruction::CastOps Opcode = Trunc.getOpcode();
 | 
						|
  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
 | 
						|
         "Unexpected instruction for shrinking");
 | 
						|
 | 
						|
  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
 | 
						|
  if (!InsElt || !InsElt->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  Type *DestScalarTy = DestTy->getScalarType();
 | 
						|
  Value *VecOp = InsElt->getOperand(0);
 | 
						|
  Value *ScalarOp = InsElt->getOperand(1);
 | 
						|
  Value *Index = InsElt->getOperand(2);
 | 
						|
 | 
						|
  if (isa<UndefValue>(VecOp)) {
 | 
						|
    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
 | 
						|
    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
 | 
						|
    UndefValue *NarrowUndef = UndefValue::get(DestTy);
 | 
						|
    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
 | 
						|
    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
 | 
						|
  if (Instruction *Result = commonCastTransforms(Trunc))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Value *Src = Trunc.getOperand(0);
 | 
						|
  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
 | 
						|
  unsigned DestWidth = DestTy->getScalarSizeInBits();
 | 
						|
  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  // Attempt to truncate the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
 | 
						|
 | 
						|
    // If this cast is a truncate, evaluting in a different type always
 | 
						|
    // eliminates the cast, so it is always a win.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
                  " to avoid cast: "
 | 
						|
               << Trunc << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
    return replaceInstUsesWith(Trunc, Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // For integer types, check if we can shorten the entire input expression to
 | 
						|
  // DestWidth * 2, which won't allow removing the truncate, but reducing the
 | 
						|
  // width may enable further optimizations, e.g. allowing for larger
 | 
						|
  // vectorization factors.
 | 
						|
  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
 | 
						|
    if (DestWidth * 2 < SrcWidth) {
 | 
						|
      auto *NewDestTy = DestITy->getExtendedType();
 | 
						|
      if (shouldChangeType(SrcTy, NewDestTy) &&
 | 
						|
          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
                      " to reduce the width of operand of"
 | 
						|
                   << Trunc << '\n');
 | 
						|
        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
 | 
						|
        return new TruncInst(Res, DestTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Test if the trunc is the user of a select which is part of a
 | 
						|
  // minimum or maximum operation. If so, don't do any more simplification.
 | 
						|
  // Even simplifying demanded bits can break the canonical form of a
 | 
						|
  // min/max.
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
 | 
						|
    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the input whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  if (SimplifyDemandedInstructionBits(Trunc))
 | 
						|
    return &Trunc;
 | 
						|
 | 
						|
  if (DestWidth == 1) {
 | 
						|
    Value *Zero = Constant::getNullValue(SrcTy);
 | 
						|
    if (DestTy->isIntegerTy()) {
 | 
						|
      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
 | 
						|
      // TODO: We canonicalize to more instructions here because we are probably
 | 
						|
      // lacking equivalent analysis for trunc relative to icmp. There may also
 | 
						|
      // be codegen concerns. If those trunc limitations were removed, we could
 | 
						|
      // remove this transform.
 | 
						|
      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
 | 
						|
    }
 | 
						|
 | 
						|
    // For vectors, we do not canonicalize all truncs to icmp, so optimize
 | 
						|
    // patterns that would be covered within visitICmpInst.
 | 
						|
    Value *X;
 | 
						|
    Constant *C;
 | 
						|
    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
 | 
						|
      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
 | 
						|
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
 | 
						|
      Constant *MaskC = ConstantExpr::getShl(One, C);
 | 
						|
      Value *And = Builder.CreateAnd(X, MaskC);
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
 | 
						|
    }
 | 
						|
    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
 | 
						|
                                   m_Deferred(X))))) {
 | 
						|
      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
 | 
						|
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
 | 
						|
      Constant *MaskC = ConstantExpr::getShl(One, C);
 | 
						|
      MaskC = ConstantExpr::getOr(MaskC, One);
 | 
						|
      Value *And = Builder.CreateAnd(X, MaskC);
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Value *A;
 | 
						|
  Constant *C;
 | 
						|
  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
 | 
						|
    unsigned AWidth = A->getType()->getScalarSizeInBits();
 | 
						|
    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
 | 
						|
    auto *OldSh = cast<Instruction>(Src);
 | 
						|
    bool IsExact = OldSh->isExact();
 | 
						|
 | 
						|
    // If the shift is small enough, all zero bits created by the shift are
 | 
						|
    // removed by the trunc.
 | 
						|
    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
 | 
						|
                                    APInt(SrcWidth, MaxShiftAmt)))) {
 | 
						|
      // trunc (lshr (sext A), C) --> ashr A, C
 | 
						|
      if (A->getType() == DestTy) {
 | 
						|
        Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
 | 
						|
        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
 | 
						|
        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
 | 
						|
        ShAmt = Constant::mergeUndefsWith(ShAmt, C);
 | 
						|
        return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
 | 
						|
                       : BinaryOperator::CreateAShr(A, ShAmt);
 | 
						|
      }
 | 
						|
      // The types are mismatched, so create a cast after shifting:
 | 
						|
      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
 | 
						|
      if (Src->hasOneUse()) {
 | 
						|
        Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
 | 
						|
        Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
 | 
						|
        ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
 | 
						|
        Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
 | 
						|
        return CastInst::CreateIntegerCast(Shift, DestTy, true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // TODO: Mask high bits with 'and'.
 | 
						|
  }
 | 
						|
 | 
						|
  // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
 | 
						|
  if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
 | 
						|
    unsigned MaxShiftAmt = SrcWidth - DestWidth;
 | 
						|
 | 
						|
    // If the shift is small enough, all zero/sign bits created by the shift are
 | 
						|
    // removed by the trunc.
 | 
						|
    if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
 | 
						|
                                    APInt(SrcWidth, MaxShiftAmt)))) {
 | 
						|
      auto *OldShift = cast<Instruction>(Src);
 | 
						|
      bool IsExact = OldShift->isExact();
 | 
						|
      auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
 | 
						|
      ShAmt = Constant::mergeUndefsWith(ShAmt, C);
 | 
						|
      Value *Shift =
 | 
						|
          OldShift->getOpcode() == Instruction::AShr
 | 
						|
              ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
 | 
						|
              : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
 | 
						|
      return CastInst::CreateTruncOrBitCast(Shift, DestTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = narrowBinOp(Trunc))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = shrinkInsertElt(Trunc, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Src->hasOneUse() &&
 | 
						|
      (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
 | 
						|
    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
 | 
						|
    // dest type is native and cst < dest size.
 | 
						|
    if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
 | 
						|
        !match(A, m_Shr(m_Value(), m_Constant()))) {
 | 
						|
      // Skip shifts of shift by constants. It undoes a combine in
 | 
						|
      // FoldShiftByConstant and is the extend in reg pattern.
 | 
						|
      APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
 | 
						|
      if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
 | 
						|
        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
 | 
						|
        return BinaryOperator::Create(Instruction::Shl, NewTrunc,
 | 
						|
                                      ConstantExpr::getTrunc(C, DestTy));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // Whenever an element is extracted from a vector, and then truncated,
 | 
						|
  // canonicalize by converting it to a bitcast followed by an
 | 
						|
  // extractelement.
 | 
						|
  //
 | 
						|
  // Example (little endian):
 | 
						|
  //   trunc (extractelement <4 x i64> %X, 0) to i32
 | 
						|
  //   --->
 | 
						|
  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
 | 
						|
  Value *VecOp;
 | 
						|
  ConstantInt *Cst;
 | 
						|
  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
 | 
						|
    auto *VecOpTy = cast<VectorType>(VecOp->getType());
 | 
						|
    auto VecElts = VecOpTy->getElementCount();
 | 
						|
 | 
						|
    // A badly fit destination size would result in an invalid cast.
 | 
						|
    if (SrcWidth % DestWidth == 0) {
 | 
						|
      uint64_t TruncRatio = SrcWidth / DestWidth;
 | 
						|
      uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
 | 
						|
      uint64_t VecOpIdx = Cst->getZExtValue();
 | 
						|
      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
 | 
						|
                                         : VecOpIdx * TruncRatio;
 | 
						|
      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
 | 
						|
             "overflow 32-bits");
 | 
						|
 | 
						|
      auto *BitCastTo =
 | 
						|
          VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
 | 
						|
      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
 | 
						|
      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
 | 
						|
                                                 bool DoTransform) {
 | 
						|
  // If we are just checking for a icmp eq of a single bit and zext'ing it
 | 
						|
  // to an integer, then shift the bit to the appropriate place and then
 | 
						|
  // cast to integer to avoid the comparison.
 | 
						|
  const APInt *Op1CV;
 | 
						|
  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
 | 
						|
 | 
						|
    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | 
						|
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | 
						|
    if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
 | 
						|
        (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
 | 
						|
      if (!DoTransform) return Cmp;
 | 
						|
 | 
						|
      Value *In = Cmp->getOperand(0);
 | 
						|
      Value *Sh = ConstantInt::get(In->getType(),
 | 
						|
                                   In->getType()->getScalarSizeInBits() - 1);
 | 
						|
      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
 | 
						|
      if (In->getType() != Zext.getType())
 | 
						|
        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
 | 
						|
 | 
						|
      if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
 | 
						|
        Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
        In = Builder.CreateXor(In, One, In->getName() + ".not");
 | 
						|
      }
 | 
						|
 | 
						|
      return replaceInstUsesWith(Zext, In);
 | 
						|
    }
 | 
						|
 | 
						|
    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
 | 
						|
        // This only works for EQ and NE
 | 
						|
        Cmp->isEquality()) {
 | 
						|
      // If Op1C some other power of two, convert:
 | 
						|
      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~Known.Zero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | 
						|
        if (!DoTransform) return Cmp;
 | 
						|
 | 
						|
        bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
        if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
 | 
						|
          // (X&4) == 2 --> false
 | 
						|
          // (X&4) != 2 --> true
 | 
						|
          Constant *Res = ConstantInt::get(Zext.getType(), isNE);
 | 
						|
          return replaceInstUsesWith(Zext, Res);
 | 
						|
        }
 | 
						|
 | 
						|
        uint32_t ShAmt = KnownZeroMask.logBase2();
 | 
						|
        Value *In = Cmp->getOperand(0);
 | 
						|
        if (ShAmt) {
 | 
						|
          // Perform a logical shr by shiftamt.
 | 
						|
          // Insert the shift to put the result in the low bit.
 | 
						|
          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
 | 
						|
                                  In->getName() + ".lobit");
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
 | 
						|
          Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
          In = Builder.CreateXor(In, One);
 | 
						|
        }
 | 
						|
 | 
						|
        if (Zext.getType() == In->getType())
 | 
						|
          return replaceInstUsesWith(Zext, In);
 | 
						|
 | 
						|
        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
 | 
						|
        return replaceInstUsesWith(Zext, IntCast);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
 | 
						|
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
 | 
						|
  // may lead to additional simplifications.
 | 
						|
  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
 | 
						|
    if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
 | 
						|
      Value *LHS = Cmp->getOperand(0);
 | 
						|
      Value *RHS = Cmp->getOperand(1);
 | 
						|
 | 
						|
      KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
 | 
						|
      KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
 | 
						|
 | 
						|
      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
 | 
						|
        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
 | 
						|
        APInt UnknownBit = ~KnownBits;
 | 
						|
        if (UnknownBit.countPopulation() == 1) {
 | 
						|
          if (!DoTransform) return Cmp;
 | 
						|
 | 
						|
          Value *Result = Builder.CreateXor(LHS, RHS);
 | 
						|
 | 
						|
          // Mask off any bits that are set and won't be shifted away.
 | 
						|
          if (KnownLHS.One.uge(UnknownBit))
 | 
						|
            Result = Builder.CreateAnd(Result,
 | 
						|
                                        ConstantInt::get(ITy, UnknownBit));
 | 
						|
 | 
						|
          // Shift the bit we're testing down to the lsb.
 | 
						|
          Result = Builder.CreateLShr(
 | 
						|
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
 | 
						|
 | 
						|
          if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
 | 
						|
          Result->takeName(Cmp);
 | 
						|
          return replaceInstUsesWith(Zext, Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the specified value can be computed in the specified wider type
 | 
						|
/// and produce the same low bits. If not, return false.
 | 
						|
///
 | 
						|
/// If this function returns true, it can also return a non-zero number of bits
 | 
						|
/// (in BitsToClear) which indicates that the value it computes is correct for
 | 
						|
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
 | 
						|
/// out.  For example, to promote something like:
 | 
						|
///
 | 
						|
///   %B = trunc i64 %A to i32
 | 
						|
///   %C = lshr i32 %B, 8
 | 
						|
///   %E = zext i32 %C to i64
 | 
						|
///
 | 
						|
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
 | 
						|
/// set to 8 to indicate that the promoted value needs to have bits 24-31
 | 
						|
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
 | 
						|
/// clear the top bits anyway, doing this has no extra cost.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
 | 
						|
                             InstCombinerImpl &IC, Instruction *CxtI) {
 | 
						|
  BitsToClear = 0;
 | 
						|
  if (canAlwaysEvaluateInType(V, Ty))
 | 
						|
    return true;
 | 
						|
  if (canNotEvaluateInType(V, Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *I = cast<Instruction>(V);
 | 
						|
  unsigned Tmp;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
 | 
						|
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
 | 
						|
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
 | 
						|
        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
 | 
						|
      return false;
 | 
						|
    // These can all be promoted if neither operand has 'bits to clear'.
 | 
						|
    if (BitsToClear == 0 && Tmp == 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
 | 
						|
    // other side, BitsToClear is ok.
 | 
						|
    if (Tmp == 0 && I->isBitwiseLogicOp()) {
 | 
						|
      // We use MaskedValueIsZero here for generality, but the case we care
 | 
						|
      // about the most is constant RHS.
 | 
						|
      unsigned VSize = V->getType()->getScalarSizeInBits();
 | 
						|
      if (IC.MaskedValueIsZero(I->getOperand(1),
 | 
						|
                               APInt::getHighBitsSet(VSize, BitsToClear),
 | 
						|
                               0, CxtI)) {
 | 
						|
        // If this is an And instruction and all of the BitsToClear are
 | 
						|
        // known to be zero we can reset BitsToClear.
 | 
						|
        if (I->getOpcode() == Instruction::And)
 | 
						|
          BitsToClear = 0;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we don't know how to analyze this BitsToClear case yet.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
 | 
						|
    // upper bits we can reduce BitsToClear by the shift amount.
 | 
						|
    const APInt *Amt;
 | 
						|
    if (match(I->getOperand(1), m_APInt(Amt))) {
 | 
						|
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
        return false;
 | 
						|
      uint64_t ShiftAmt = Amt->getZExtValue();
 | 
						|
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::LShr: {
 | 
						|
    // We can promote lshr(x, cst) if we can promote x.  This requires the
 | 
						|
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
 | 
						|
    const APInt *Amt;
 | 
						|
    if (match(I->getOperand(1), m_APInt(Amt))) {
 | 
						|
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
        return false;
 | 
						|
      BitsToClear += Amt->getZExtValue();
 | 
						|
      if (BitsToClear > V->getType()->getScalarSizeInBits())
 | 
						|
        BitsToClear = V->getType()->getScalarSizeInBits();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Cannot promote variable LSHR.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
 | 
						|
        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
 | 
						|
        // TODO: If important, we could handle the case when the BitsToClear are
 | 
						|
        // known zero in the disagreeing side.
 | 
						|
        Tmp != BitsToClear)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
 | 
						|
          // TODO: If important, we could handle the case when the BitsToClear
 | 
						|
          // are known zero in the disagreeing input.
 | 
						|
          Tmp != BitsToClear)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
 | 
						|
  // If this zero extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this zext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If one of the common conversion will work, do it.
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Try to extend the entire expression tree to the wide destination type.
 | 
						|
  unsigned BitsToClear;
 | 
						|
  if (shouldChangeType(SrcTy, DestTy) &&
 | 
						|
      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
 | 
						|
    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
 | 
						|
           "Can't clear more bits than in SrcTy");
 | 
						|
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
                  " to avoid zero extend: "
 | 
						|
               << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    // Preserve debug values referring to Src if the zext is its last use.
 | 
						|
    if (auto *SrcOp = dyn_cast<Instruction>(Src))
 | 
						|
      if (SrcOp->hasOneUse())
 | 
						|
        replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
 | 
						|
 | 
						|
    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with zeros, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (MaskedValueIsZero(Res,
 | 
						|
                          APInt::getHighBitsSet(DestBitSize,
 | 
						|
                                                DestBitSize-SrcBitsKept),
 | 
						|
                             0, &CI))
 | 
						|
      return replaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit an AND to clear the high bits.
 | 
						|
    Constant *C = ConstantInt::get(Res->getType(),
 | 
						|
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
 | 
						|
    return BinaryOperator::CreateAnd(Res, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | 
						|
  // types and if the sizes are just right we can convert this into a logical
 | 
						|
  // 'and' which will be much cheaper than the pair of casts.
 | 
						|
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | 
						|
    // TODO: Subsume this into EvaluateInDifferentType.
 | 
						|
 | 
						|
    // Get the sizes of the types involved.  We know that the intermediate type
 | 
						|
    // will be smaller than A or C, but don't know the relation between A and C.
 | 
						|
    Value *A = CSrc->getOperand(0);
 | 
						|
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | 
						|
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | 
						|
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | 
						|
    // If we're actually extending zero bits, then if
 | 
						|
    // SrcSize <  DstSize: zext(a & mask)
 | 
						|
    // SrcSize == DstSize: a & mask
 | 
						|
    // SrcSize  > DstSize: trunc(a) & mask
 | 
						|
    if (SrcSize < DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | 
						|
      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
 | 
						|
      return new ZExtInst(And, CI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    if (SrcSize == DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | 
						|
                                                           AndValue));
 | 
						|
    }
 | 
						|
    if (SrcSize > DstSize) {
 | 
						|
      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(Trunc,
 | 
						|
                                       ConstantInt::get(Trunc->getType(),
 | 
						|
                                                        AndValue));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformZExtICmp(Cmp, CI);
 | 
						|
 | 
						|
  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | 
						|
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | 
						|
    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
 | 
						|
    // of the (zext icmp) can be eliminated. If so, immediately perform the
 | 
						|
    // according elimination.
 | 
						|
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | 
						|
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | 
						|
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | 
						|
        LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() &&
 | 
						|
        (transformZExtICmp(LHS, CI, false) ||
 | 
						|
         transformZExtICmp(RHS, CI, false))) {
 | 
						|
      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
 | 
						|
      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
 | 
						|
      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
 | 
						|
      Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
 | 
						|
      if (auto *OrInst = dyn_cast<Instruction>(Or))
 | 
						|
        Builder.SetInsertPoint(OrInst);
 | 
						|
 | 
						|
      // Perform the elimination.
 | 
						|
      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
 | 
						|
        transformZExtICmp(LHS, *LZExt);
 | 
						|
      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
 | 
						|
        transformZExtICmp(RHS, *RZExt);
 | 
						|
 | 
						|
      return replaceInstUsesWith(CI, Or);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(trunc(X) & C) -> (X & zext(C)).
 | 
						|
  Constant *C;
 | 
						|
  Value *X;
 | 
						|
  if (SrcI &&
 | 
						|
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
 | 
						|
      X->getType() == CI.getType())
 | 
						|
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
 | 
						|
 | 
						|
  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
 | 
						|
  Value *And;
 | 
						|
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
 | 
						|
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
 | 
						|
      X->getType() == CI.getType()) {
 | 
						|
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | 
						|
    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
 | 
						|
Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
 | 
						|
                                                 Instruction &CI) {
 | 
						|
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
 | 
						|
  // Don't bother if Op1 isn't of vector or integer type.
 | 
						|
  if (!Op1->getType()->isIntOrIntVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
 | 
						|
      (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
 | 
						|
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
 | 
						|
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
 | 
						|
    Value *Sh = ConstantInt::get(Op0->getType(),
 | 
						|
                                 Op0->getType()->getScalarSizeInBits() - 1);
 | 
						|
    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
 | 
						|
    if (In->getType() != CI.getType())
 | 
						|
      In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
 | 
						|
 | 
						|
    if (Pred == ICmpInst::ICMP_SGT)
 | 
						|
      In = Builder.CreateNot(In, In->getName() + ".not");
 | 
						|
    return replaceInstUsesWith(CI, In);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // If we know that only one bit of the LHS of the icmp can be set and we
 | 
						|
    // have an equality comparison with zero or a power of 2, we can transform
 | 
						|
    // the icmp and sext into bitwise/integer operations.
 | 
						|
    if (ICI->hasOneUse() &&
 | 
						|
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
 | 
						|
      KnownBits Known = computeKnownBits(Op0, 0, &CI);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~Known.Zero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) {
 | 
						|
        Value *In = ICI->getOperand(0);
 | 
						|
 | 
						|
        // If the icmp tests for a known zero bit we can constant fold it.
 | 
						|
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
 | 
						|
          Value *V = Pred == ICmpInst::ICMP_NE ?
 | 
						|
                       ConstantInt::getAllOnesValue(CI.getType()) :
 | 
						|
                       ConstantInt::getNullValue(CI.getType());
 | 
						|
          return replaceInstUsesWith(CI, V);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
 | 
						|
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
 | 
						|
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
 | 
						|
          // Perform a right shift to place the desired bit in the LSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder.CreateLShr(In,
 | 
						|
                                    ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // At this point "In" is either 1 or 0. Subtract 1 to turn
 | 
						|
          // {1, 0} -> {0, -1}.
 | 
						|
          In = Builder.CreateAdd(In,
 | 
						|
                                 ConstantInt::getAllOnesValue(In->getType()),
 | 
						|
                                 "sext");
 | 
						|
        } else {
 | 
						|
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
 | 
						|
          // Perform a left shift to place the desired bit in the MSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder.CreateShl(In,
 | 
						|
                                   ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // Distribute the bit over the whole bit width.
 | 
						|
          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
 | 
						|
                                  KnownZeroMask.getBitWidth() - 1), "sext");
 | 
						|
        }
 | 
						|
 | 
						|
        if (CI.getType() == In->getType())
 | 
						|
          return replaceInstUsesWith(CI, In);
 | 
						|
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can take the specified value and return it as type Ty
 | 
						|
/// without inserting any new casts and without changing the value of the common
 | 
						|
/// low bits.  This is used by code that tries to promote integer operations to
 | 
						|
/// a wider types will allow us to eliminate the extension.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool canEvaluateSExtd(Value *V, Type *Ty) {
 | 
						|
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
 | 
						|
         "Can't sign extend type to a smaller type");
 | 
						|
  if (canAlwaysEvaluateInType(V, Ty))
 | 
						|
    return true;
 | 
						|
  if (canNotEvaluateInType(V, Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *I = cast<Instruction>(V);
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
 | 
						|
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
 | 
						|
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // These operators can all arbitrarily be extended if their inputs can.
 | 
						|
    return canEvaluateSExtd(I->getOperand(0), Ty) &&
 | 
						|
           canEvaluateSExtd(I->getOperand(1), Ty);
 | 
						|
 | 
						|
  //case Instruction::Shl:   TODO
 | 
						|
  //case Instruction::LShr:  TODO
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    return canEvaluateSExtd(I->getOperand(1), Ty) &&
 | 
						|
           canEvaluateSExtd(I->getOperand(2), Ty);
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (Value *IncValue : PN->incoming_values())
 | 
						|
      if (!canEvaluateSExtd(IncValue, Ty)) return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
 | 
						|
  // If this sign extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this sext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // If we know that the value being extended is positive, we can use a zext
 | 
						|
  // instead.
 | 
						|
  KnownBits Known = computeKnownBits(Src, 0, &CI);
 | 
						|
  if (Known.isNonNegative())
 | 
						|
    return CastInst::Create(Instruction::ZExt, Src, DestTy);
 | 
						|
 | 
						|
  // Try to extend the entire expression tree to the wide destination type.
 | 
						|
  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
                  " to avoid sign extend: "
 | 
						|
               << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with sign bit, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
 | 
						|
      return replaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit a shl + ashr to do the sign extend.
 | 
						|
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | 
						|
    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
 | 
						|
                                      ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the input is a trunc from the destination type, then turn sext(trunc(x))
 | 
						|
  // into shifts.
 | 
						|
  Value *X;
 | 
						|
  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
 | 
						|
    // sext(trunc(X)) --> ashr(shl(X, C), C)
 | 
						|
    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
    unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
 | 
						|
    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformSExtICmp(ICI, CI);
 | 
						|
 | 
						|
  // If the input is a shl/ashr pair of a same constant, then this is a sign
 | 
						|
  // extension from a smaller value.  If we could trust arbitrary bitwidth
 | 
						|
  // integers, we could turn this into a truncate to the smaller bit and then
 | 
						|
  // use a sext for the whole extension.  Since we don't, look deeper and check
 | 
						|
  // for a truncate.  If the source and dest are the same type, eliminate the
 | 
						|
  // trunc and extend and just do shifts.  For example, turn:
 | 
						|
  //   %a = trunc i32 %i to i8
 | 
						|
  //   %b = shl i8 %a, C
 | 
						|
  //   %c = ashr i8 %b, C
 | 
						|
  //   %d = sext i8 %c to i32
 | 
						|
  // into:
 | 
						|
  //   %a = shl i32 %i, 32-(8-C)
 | 
						|
  //   %d = ashr i32 %a, 32-(8-C)
 | 
						|
  Value *A = nullptr;
 | 
						|
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
 | 
						|
  Constant *BA = nullptr, *CA = nullptr;
 | 
						|
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
 | 
						|
                        m_Constant(CA))) &&
 | 
						|
      BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
 | 
						|
    Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
 | 
						|
    Constant *NumLowbitsLeft = ConstantExpr::getSub(
 | 
						|
        ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
 | 
						|
    Constant *NewShAmt = ConstantExpr::getSub(
 | 
						|
        ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
 | 
						|
        NumLowbitsLeft);
 | 
						|
    NewShAmt =
 | 
						|
        Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
 | 
						|
    A = Builder.CreateShl(A, NewShAmt, CI.getName());
 | 
						|
    return BinaryOperator::CreateAShr(A, NewShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return a Constant* for the specified floating-point constant if it fits
 | 
						|
/// in the specified FP type without changing its value.
 | 
						|
static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
 | 
						|
  bool losesInfo;
 | 
						|
  APFloat F = CFP->getValueAPF();
 | 
						|
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
  return !losesInfo;
 | 
						|
}
 | 
						|
 | 
						|
static Type *shrinkFPConstant(ConstantFP *CFP) {
 | 
						|
  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
 | 
						|
    return nullptr;  // No constant folding of this.
 | 
						|
  // See if the value can be truncated to half and then reextended.
 | 
						|
  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
 | 
						|
    return Type::getHalfTy(CFP->getContext());
 | 
						|
  // See if the value can be truncated to float and then reextended.
 | 
						|
  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
 | 
						|
    return Type::getFloatTy(CFP->getContext());
 | 
						|
  if (CFP->getType()->isDoubleTy())
 | 
						|
    return nullptr;  // Won't shrink.
 | 
						|
  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
 | 
						|
    return Type::getDoubleTy(CFP->getContext());
 | 
						|
  // Don't try to shrink to various long double types.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Determine if this is a vector of ConstantFPs and if so, return the minimal
 | 
						|
// type we can safely truncate all elements to.
 | 
						|
// TODO: Make these support undef elements.
 | 
						|
static Type *shrinkFPConstantVector(Value *V) {
 | 
						|
  auto *CV = dyn_cast<Constant>(V);
 | 
						|
  auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
 | 
						|
  if (!CV || !CVVTy)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *MinType = nullptr;
 | 
						|
 | 
						|
  unsigned NumElts = CVVTy->getNumElements();
 | 
						|
 | 
						|
  // For fixed-width vectors we find the minimal type by looking
 | 
						|
  // through the constant values of the vector.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
 | 
						|
    if (!CFP)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Type *T = shrinkFPConstant(CFP);
 | 
						|
    if (!T)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If we haven't found a type yet or this type has a larger mantissa than
 | 
						|
    // our previous type, this is our new minimal type.
 | 
						|
    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
 | 
						|
      MinType = T;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a vector type from the minimal type.
 | 
						|
  return FixedVectorType::get(MinType, NumElts);
 | 
						|
}
 | 
						|
 | 
						|
/// Find the minimum FP type we can safely truncate to.
 | 
						|
static Type *getMinimumFPType(Value *V) {
 | 
						|
  if (auto *FPExt = dyn_cast<FPExtInst>(V))
 | 
						|
    return FPExt->getOperand(0)->getType();
 | 
						|
 | 
						|
  // If this value is a constant, return the constant in the smallest FP type
 | 
						|
  // that can accurately represent it.  This allows us to turn
 | 
						|
  // (float)((double)X+2.0) into x+2.0f.
 | 
						|
  if (auto *CFP = dyn_cast<ConstantFP>(V))
 | 
						|
    if (Type *T = shrinkFPConstant(CFP))
 | 
						|
      return T;
 | 
						|
 | 
						|
  // We can only correctly find a minimum type for a scalable vector when it is
 | 
						|
  // a splat. For splats of constant values the fpext is wrapped up as a
 | 
						|
  // ConstantExpr.
 | 
						|
  if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (FPCExt->getOpcode() == Instruction::FPExt)
 | 
						|
      return FPCExt->getOperand(0)->getType();
 | 
						|
 | 
						|
  // Try to shrink a vector of FP constants. This returns nullptr on scalable
 | 
						|
  // vectors
 | 
						|
  if (Type *T = shrinkFPConstantVector(V))
 | 
						|
    return T;
 | 
						|
 | 
						|
  return V->getType();
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the cast from integer to FP can be proven to be exact for all
 | 
						|
/// possible inputs (the conversion does not lose any precision).
 | 
						|
static bool isKnownExactCastIntToFP(CastInst &I) {
 | 
						|
  CastInst::CastOps Opcode = I.getOpcode();
 | 
						|
  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
 | 
						|
         "Unexpected cast");
 | 
						|
  Value *Src = I.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();
 | 
						|
  Type *FPTy = I.getType();
 | 
						|
  bool IsSigned = Opcode == Instruction::SIToFP;
 | 
						|
  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
 | 
						|
 | 
						|
  // Easy case - if the source integer type has less bits than the FP mantissa,
 | 
						|
  // then the cast must be exact.
 | 
						|
  int DestNumSigBits = FPTy->getFPMantissaWidth();
 | 
						|
  if (SrcSize <= DestNumSigBits)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Cast from FP to integer and back to FP is independent of the intermediate
 | 
						|
  // integer width because of poison on overflow.
 | 
						|
  Value *F;
 | 
						|
  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
 | 
						|
    // If this is uitofp (fptosi F), the source needs an extra bit to avoid
 | 
						|
    // potential rounding of negative FP input values.
 | 
						|
    int SrcNumSigBits = F->getType()->getFPMantissaWidth();
 | 
						|
    if (!IsSigned && match(Src, m_FPToSI(m_Value())))
 | 
						|
      SrcNumSigBits++;
 | 
						|
 | 
						|
    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
 | 
						|
    // significant bits than the destination (and make sure neither type is
 | 
						|
    // weird -- ppc_fp128).
 | 
						|
    if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
 | 
						|
        SrcNumSigBits <= DestNumSigBits)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO:
 | 
						|
  // Try harder to find if the source integer type has less significant bits.
 | 
						|
  // For example, compute number of sign bits or compute low bit mask.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
 | 
						|
  if (Instruction *I = commonCastTransforms(FPT))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
 | 
						|
  // simplify this expression to avoid one or more of the trunc/extend
 | 
						|
  // operations if we can do so without changing the numerical results.
 | 
						|
  //
 | 
						|
  // The exact manner in which the widths of the operands interact to limit
 | 
						|
  // what we can and cannot do safely varies from operation to operation, and
 | 
						|
  // is explained below in the various case statements.
 | 
						|
  Type *Ty = FPT.getType();
 | 
						|
  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
 | 
						|
  if (BO && BO->hasOneUse()) {
 | 
						|
    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
 | 
						|
    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
 | 
						|
    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
 | 
						|
    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
 | 
						|
    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
 | 
						|
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
 | 
						|
    unsigned DstWidth = Ty->getFPMantissaWidth();
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::FAdd:
 | 
						|
      case Instruction::FSub:
 | 
						|
        // For addition and subtraction, the infinitely precise result can
 | 
						|
        // essentially be arbitrarily wide; proving that double rounding
 | 
						|
        // will not occur because the result of OpI is exact (as we will for
 | 
						|
        // FMul, for example) is hopeless.  However, we *can* nonetheless
 | 
						|
        // frequently know that double rounding cannot occur (or that it is
 | 
						|
        // innocuous) by taking advantage of the specific structure of
 | 
						|
        // infinitely-precise results that admit double rounding.
 | 
						|
        //
 | 
						|
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
 | 
						|
        // to represent both sources, we can guarantee that the double
 | 
						|
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
 | 
						|
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
 | 
						|
        // for proof of this fact).
 | 
						|
        //
 | 
						|
        // Note: Figueroa does not consider the case where DstFormat !=
 | 
						|
        // SrcFormat.  It's possible (likely even!) that this analysis
 | 
						|
        // could be tightened for those cases, but they are rare (the main
 | 
						|
        // case of interest here is (float)((double)float + float)).
 | 
						|
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
 | 
						|
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
 | 
						|
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
 | 
						|
          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
 | 
						|
          RI->copyFastMathFlags(BO);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FMul:
 | 
						|
        // For multiplication, the infinitely precise result has at most
 | 
						|
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
 | 
						|
        // that such a value can be exactly represented, then no double
 | 
						|
        // rounding can possibly occur; we can safely perform the operation
 | 
						|
        // in the destination format if it can represent both sources.
 | 
						|
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
 | 
						|
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
 | 
						|
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
 | 
						|
          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FDiv:
 | 
						|
        // For division, we use again use the bound from Figueroa's
 | 
						|
        // dissertation.  I am entirely certain that this bound can be
 | 
						|
        // tightened in the unbalanced operand case by an analysis based on
 | 
						|
        // the diophantine rational approximation bound, but the well-known
 | 
						|
        // condition used here is a good conservative first pass.
 | 
						|
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
 | 
						|
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
 | 
						|
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
 | 
						|
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
 | 
						|
          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FRem: {
 | 
						|
        // Remainder is straightforward.  Remainder is always exact, so the
 | 
						|
        // type of OpI doesn't enter into things at all.  We simply evaluate
 | 
						|
        // in whichever source type is larger, then convert to the
 | 
						|
        // destination type.
 | 
						|
        if (SrcWidth == OpWidth)
 | 
						|
          break;
 | 
						|
        Value *LHS, *RHS;
 | 
						|
        if (LHSWidth == SrcWidth) {
 | 
						|
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
 | 
						|
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
 | 
						|
        } else {
 | 
						|
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
 | 
						|
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
 | 
						|
        return CastInst::CreateFPCast(ExactResult, Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
 | 
						|
  Value *X;
 | 
						|
  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
 | 
						|
  if (Op && Op->hasOneUse()) {
 | 
						|
    // FIXME: The FMF should propagate from the fptrunc, not the source op.
 | 
						|
    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | 
						|
    if (isa<FPMathOperator>(Op))
 | 
						|
      Builder.setFastMathFlags(Op->getFastMathFlags());
 | 
						|
 | 
						|
    if (match(Op, m_FNeg(m_Value(X)))) {
 | 
						|
      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
 | 
						|
 | 
						|
      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are truncating a select that has an extended operand, we can
 | 
						|
    // narrow the other operand and do the select as a narrow op.
 | 
						|
    Value *Cond, *X, *Y;
 | 
						|
    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
 | 
						|
        X->getType() == Ty) {
 | 
						|
      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
 | 
						|
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
 | 
						|
      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
 | 
						|
      return replaceInstUsesWith(FPT, Sel);
 | 
						|
    }
 | 
						|
    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
 | 
						|
        X->getType() == Ty) {
 | 
						|
      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
 | 
						|
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
 | 
						|
      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
 | 
						|
      return replaceInstUsesWith(FPT, Sel);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ceil:
 | 
						|
    case Intrinsic::fabs:
 | 
						|
    case Intrinsic::floor:
 | 
						|
    case Intrinsic::nearbyint:
 | 
						|
    case Intrinsic::rint:
 | 
						|
    case Intrinsic::round:
 | 
						|
    case Intrinsic::roundeven:
 | 
						|
    case Intrinsic::trunc: {
 | 
						|
      Value *Src = II->getArgOperand(0);
 | 
						|
      if (!Src->hasOneUse())
 | 
						|
        break;
 | 
						|
 | 
						|
      // Except for fabs, this transformation requires the input of the unary FP
 | 
						|
      // operation to be itself an fpext from the type to which we're
 | 
						|
      // truncating.
 | 
						|
      if (II->getIntrinsicID() != Intrinsic::fabs) {
 | 
						|
        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
 | 
						|
        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Do unary FP operation on smaller type.
 | 
						|
      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
 | 
						|
      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
 | 
						|
      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
 | 
						|
                                                     II->getIntrinsicID(), Ty);
 | 
						|
      SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
      II->getOperandBundlesAsDefs(OpBundles);
 | 
						|
      CallInst *NewCI =
 | 
						|
          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
 | 
						|
      NewCI->copyFastMathFlags(II);
 | 
						|
      return NewCI;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = shrinkInsertElt(FPT, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  Value *Src = FPT.getOperand(0);
 | 
						|
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
 | 
						|
    auto *FPCast = cast<CastInst>(Src);
 | 
						|
    if (isKnownExactCastIntToFP(*FPCast))
 | 
						|
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
 | 
						|
  // If the source operand is a cast from integer to FP and known exact, then
 | 
						|
  // cast the integer operand directly to the destination type.
 | 
						|
  Type *Ty = FPExt.getType();
 | 
						|
  Value *Src = FPExt.getOperand(0);
 | 
						|
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
 | 
						|
    auto *FPCast = cast<CastInst>(Src);
 | 
						|
    if (isKnownExactCastIntToFP(*FPCast))
 | 
						|
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  return commonCastTransforms(FPExt);
 | 
						|
}
 | 
						|
 | 
						|
/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
 | 
						|
/// This is safe if the intermediate type has enough bits in its mantissa to
 | 
						|
/// accurately represent all values of X.  For example, this won't work with
 | 
						|
/// i64 -> float -> i64.
 | 
						|
Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
 | 
						|
  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *OpI = cast<CastInst>(FI.getOperand(0));
 | 
						|
  Value *X = OpI->getOperand(0);
 | 
						|
  Type *XType = X->getType();
 | 
						|
  Type *DestType = FI.getType();
 | 
						|
  bool IsOutputSigned = isa<FPToSIInst>(FI);
 | 
						|
 | 
						|
  // Since we can assume the conversion won't overflow, our decision as to
 | 
						|
  // whether the input will fit in the float should depend on the minimum
 | 
						|
  // of the input range and output range.
 | 
						|
 | 
						|
  // This means this is also safe for a signed input and unsigned output, since
 | 
						|
  // a negative input would lead to undefined behavior.
 | 
						|
  if (!isKnownExactCastIntToFP(*OpI)) {
 | 
						|
    // The first cast may not round exactly based on the source integer width
 | 
						|
    // and FP width, but the overflow UB rules can still allow this to fold.
 | 
						|
    // If the destination type is narrow, that means the intermediate FP value
 | 
						|
    // must be large enough to hold the source value exactly.
 | 
						|
    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
 | 
						|
    int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
 | 
						|
    if (OutputSize > OpI->getType()->getFPMantissaWidth())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
 | 
						|
    bool IsInputSigned = isa<SIToFPInst>(OpI);
 | 
						|
    if (IsInputSigned && IsOutputSigned)
 | 
						|
      return new SExtInst(X, DestType);
 | 
						|
    return new ZExtInst(X, DestType);
 | 
						|
  }
 | 
						|
  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
 | 
						|
    return new TruncInst(X, DestType);
 | 
						|
 | 
						|
  assert(XType == DestType && "Unexpected types for int to FP to int casts");
 | 
						|
  return replaceInstUsesWith(FI, X);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
 | 
						|
  if (Instruction *I = foldItoFPtoI(FI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
 | 
						|
  if (Instruction *I = foldItoFPtoI(FI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
 | 
						|
  // If the source integer type is not the intptr_t type for this target, do a
 | 
						|
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
 | 
						|
  // cast to be exposed to other transforms.
 | 
						|
  unsigned AS = CI.getAddressSpace();
 | 
						|
  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
 | 
						|
      DL.getPointerSizeInBits(AS)) {
 | 
						|
    Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
 | 
						|
        DL.getIntPtrType(CI.getContext(), AS));
 | 
						|
    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
 | 
						|
    return new IntToPtrInst(P, CI.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | 
						|
Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
    // this into a cast of the original pointer!
 | 
						|
    if (GEP->hasAllZeroIndices() &&
 | 
						|
        // If CI is an addrspacecast and GEP changes the poiner type, merging
 | 
						|
        // GEP into CI would undo canonicalizing addrspacecast with different
 | 
						|
        // pointer types, causing infinite loops.
 | 
						|
        (!isa<AddrSpaceCastInst>(CI) ||
 | 
						|
         GEP->getType() == GEP->getPointerOperandType())) {
 | 
						|
      // Changing the cast operand is usually not a good idea but it is safe
 | 
						|
      // here because the pointer operand is being replaced with another
 | 
						|
      // pointer operand so the opcode doesn't need to change.
 | 
						|
      return replaceOperand(CI, 0, GEP->getOperand(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
 | 
						|
  // If the destination integer type is not the intptr_t type for this target,
 | 
						|
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
 | 
						|
  // to be exposed to other transforms.
 | 
						|
  Value *SrcOp = CI.getPointerOperand();
 | 
						|
  Type *SrcTy = SrcOp->getType();
 | 
						|
  Type *Ty = CI.getType();
 | 
						|
  unsigned AS = CI.getPointerAddressSpace();
 | 
						|
  unsigned TySize = Ty->getScalarSizeInBits();
 | 
						|
  unsigned PtrSize = DL.getPointerSizeInBits(AS);
 | 
						|
  if (TySize != PtrSize) {
 | 
						|
    Type *IntPtrTy =
 | 
						|
        SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
 | 
						|
    Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
 | 
						|
    return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Vec, *Scalar, *Index;
 | 
						|
  if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
 | 
						|
                                        m_Value(Scalar), m_Value(Index)))) &&
 | 
						|
      Vec->getType() == Ty) {
 | 
						|
    assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
 | 
						|
    // Convert the scalar to int followed by insert to eliminate one cast:
 | 
						|
    // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
 | 
						|
    Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
 | 
						|
    return InsertElementInst::Create(Vec, NewCast, Index);
 | 
						|
  }
 | 
						|
 | 
						|
  return commonPointerCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
/// This input value (which is known to have vector type) is being zero extended
 | 
						|
/// or truncated to the specified vector type. Since the zext/trunc is done
 | 
						|
/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
 | 
						|
/// endianness will impact which end of the vector that is extended or
 | 
						|
/// truncated.
 | 
						|
///
 | 
						|
/// A vector is always stored with index 0 at the lowest address, which
 | 
						|
/// corresponds to the most significant bits for a big endian stored integer and
 | 
						|
/// the least significant bits for little endian. A trunc/zext of an integer
 | 
						|
/// impacts the big end of the integer. Thus, we need to add/remove elements at
 | 
						|
/// the front of the vector for big endian targets, and the back of the vector
 | 
						|
/// for little endian targets.
 | 
						|
///
 | 
						|
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
 | 
						|
///
 | 
						|
/// The source and destination vector types may have different element types.
 | 
						|
static Instruction *
 | 
						|
optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
 | 
						|
                                        InstCombinerImpl &IC) {
 | 
						|
  // We can only do this optimization if the output is a multiple of the input
 | 
						|
  // element size, or the input is a multiple of the output element size.
 | 
						|
  // Convert the input type to have the same element type as the output.
 | 
						|
  VectorType *SrcTy = cast<VectorType>(InVal->getType());
 | 
						|
 | 
						|
  if (SrcTy->getElementType() != DestTy->getElementType()) {
 | 
						|
    // The input types don't need to be identical, but for now they must be the
 | 
						|
    // same size.  There is no specific reason we couldn't handle things like
 | 
						|
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
 | 
						|
    // there yet.
 | 
						|
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
 | 
						|
        DestTy->getElementType()->getPrimitiveSizeInBits())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    SrcTy =
 | 
						|
        FixedVectorType::get(DestTy->getElementType(),
 | 
						|
                             cast<FixedVectorType>(SrcTy)->getNumElements());
 | 
						|
    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsBigEndian = IC.getDataLayout().isBigEndian();
 | 
						|
  unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
 | 
						|
  unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
 | 
						|
 | 
						|
  assert(SrcElts != DestElts && "Element counts should be different.");
 | 
						|
 | 
						|
  // Now that the element types match, get the shuffle mask and RHS of the
 | 
						|
  // shuffle to use, which depends on whether we're increasing or decreasing the
 | 
						|
  // size of the input.
 | 
						|
  SmallVector<int, 16> ShuffleMaskStorage;
 | 
						|
  ArrayRef<int> ShuffleMask;
 | 
						|
  Value *V2;
 | 
						|
 | 
						|
  // Produce an identify shuffle mask for the src vector.
 | 
						|
  ShuffleMaskStorage.resize(SrcElts);
 | 
						|
  std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
 | 
						|
 | 
						|
  if (SrcElts > DestElts) {
 | 
						|
    // If we're shrinking the number of elements (rewriting an integer
 | 
						|
    // truncate), just shuffle in the elements corresponding to the least
 | 
						|
    // significant bits from the input and use undef as the second shuffle
 | 
						|
    // input.
 | 
						|
    V2 = UndefValue::get(SrcTy);
 | 
						|
    // Make sure the shuffle mask selects the "least significant bits" by
 | 
						|
    // keeping elements from back of the src vector for big endian, and from the
 | 
						|
    // front for little endian.
 | 
						|
    ShuffleMask = ShuffleMaskStorage;
 | 
						|
    if (IsBigEndian)
 | 
						|
      ShuffleMask = ShuffleMask.take_back(DestElts);
 | 
						|
    else
 | 
						|
      ShuffleMask = ShuffleMask.take_front(DestElts);
 | 
						|
  } else {
 | 
						|
    // If we're increasing the number of elements (rewriting an integer zext),
 | 
						|
    // shuffle in all of the elements from InVal. Fill the rest of the result
 | 
						|
    // elements with zeros from a constant zero.
 | 
						|
    V2 = Constant::getNullValue(SrcTy);
 | 
						|
    // Use first elt from V2 when indicating zero in the shuffle mask.
 | 
						|
    uint32_t NullElt = SrcElts;
 | 
						|
    // Extend with null values in the "most significant bits" by adding elements
 | 
						|
    // in front of the src vector for big endian, and at the back for little
 | 
						|
    // endian.
 | 
						|
    unsigned DeltaElts = DestElts - SrcElts;
 | 
						|
    if (IsBigEndian)
 | 
						|
      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
 | 
						|
    else
 | 
						|
      ShuffleMaskStorage.append(DeltaElts, NullElt);
 | 
						|
    ShuffleMask = ShuffleMaskStorage;
 | 
						|
  }
 | 
						|
 | 
						|
  return new ShuffleVectorInst(InVal, V2, ShuffleMask);
 | 
						|
}
 | 
						|
 | 
						|
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
 | 
						|
  return Value % Ty->getPrimitiveSizeInBits() == 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
 | 
						|
  return Value / Ty->getPrimitiveSizeInBits();
 | 
						|
}
 | 
						|
 | 
						|
/// V is a value which is inserted into a vector of VecEltTy.
 | 
						|
/// Look through the value to see if we can decompose it into
 | 
						|
/// insertions into the vector.  See the example in the comment for
 | 
						|
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
 | 
						|
/// The type of V is always a non-zero multiple of VecEltTy's size.
 | 
						|
/// Shift is the number of bits between the lsb of V and the lsb of
 | 
						|
/// the vector.
 | 
						|
///
 | 
						|
/// This returns false if the pattern can't be matched or true if it can,
 | 
						|
/// filling in Elements with the elements found here.
 | 
						|
static bool collectInsertionElements(Value *V, unsigned Shift,
 | 
						|
                                     SmallVectorImpl<Value *> &Elements,
 | 
						|
                                     Type *VecEltTy, bool isBigEndian) {
 | 
						|
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
 | 
						|
         "Shift should be a multiple of the element type size");
 | 
						|
 | 
						|
  // Undef values never contribute useful bits to the result.
 | 
						|
  if (isa<UndefValue>(V)) return true;
 | 
						|
 | 
						|
  // If we got down to a value of the right type, we win, try inserting into the
 | 
						|
  // right element.
 | 
						|
  if (V->getType() == VecEltTy) {
 | 
						|
    // Inserting null doesn't actually insert any elements.
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
      if (C->isNullValue())
 | 
						|
        return true;
 | 
						|
 | 
						|
    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
 | 
						|
    if (isBigEndian)
 | 
						|
      ElementIndex = Elements.size() - ElementIndex - 1;
 | 
						|
 | 
						|
    // Fail if multiple elements are inserted into this slot.
 | 
						|
    if (Elements[ElementIndex])
 | 
						|
      return false;
 | 
						|
 | 
						|
    Elements[ElementIndex] = V;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    // Figure out the # elements this provides, and bitcast it or slice it up
 | 
						|
    // as required.
 | 
						|
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
 | 
						|
                                        VecEltTy);
 | 
						|
    // If the constant is the size of a vector element, we just need to bitcast
 | 
						|
    // it to the right type so it gets properly inserted.
 | 
						|
    if (NumElts == 1)
 | 
						|
      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
 | 
						|
                                      Shift, Elements, VecEltTy, isBigEndian);
 | 
						|
 | 
						|
    // Okay, this is a constant that covers multiple elements.  Slice it up into
 | 
						|
    // pieces and insert each element-sized piece into the vector.
 | 
						|
    if (!isa<IntegerType>(C->getType()))
 | 
						|
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
 | 
						|
                                       C->getType()->getPrimitiveSizeInBits()));
 | 
						|
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
 | 
						|
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      unsigned ShiftI = Shift+i*ElementSize;
 | 
						|
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
 | 
						|
                                                                  ShiftI));
 | 
						|
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
 | 
						|
      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
 | 
						|
                                    isBigEndian))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!V->hasOneUse()) return false;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: return false; // Unhandled case.
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    if (!isMultipleOfTypeSize(
 | 
						|
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
 | 
						|
                              VecEltTy))
 | 
						|
      return false;
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::Or:
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian) &&
 | 
						|
           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Must be shifting by a constant that is a multiple of the element size.
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    if (!CI) return false;
 | 
						|
    Shift += CI->getZExtValue();
 | 
						|
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// If the input is an 'or' instruction, we may be doing shifts and ors to
 | 
						|
/// assemble the elements of the vector manually.
 | 
						|
/// Try to rip the code out and replace it with insertelements.  This is to
 | 
						|
/// optimize code like this:
 | 
						|
///
 | 
						|
///    %tmp37 = bitcast float %inc to i32
 | 
						|
///    %tmp38 = zext i32 %tmp37 to i64
 | 
						|
///    %tmp31 = bitcast float %inc5 to i32
 | 
						|
///    %tmp32 = zext i32 %tmp31 to i64
 | 
						|
///    %tmp33 = shl i64 %tmp32, 32
 | 
						|
///    %ins35 = or i64 %tmp33, %tmp38
 | 
						|
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
 | 
						|
///
 | 
						|
/// Into two insertelements that do "buildvector{%inc, %inc5}".
 | 
						|
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
 | 
						|
                                                InstCombinerImpl &IC) {
 | 
						|
  auto *DestVecTy = cast<FixedVectorType>(CI.getType());
 | 
						|
  Value *IntInput = CI.getOperand(0);
 | 
						|
 | 
						|
  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
 | 
						|
  if (!collectInsertionElements(IntInput, 0, Elements,
 | 
						|
                                DestVecTy->getElementType(),
 | 
						|
                                IC.getDataLayout().isBigEndian()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we succeeded, we know that all of the element are specified by Elements
 | 
						|
  // or are zero if Elements has a null entry.  Recast this as a set of
 | 
						|
  // insertions.
 | 
						|
  Value *Result = Constant::getNullValue(CI.getType());
 | 
						|
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | 
						|
    if (!Elements[i]) continue;  // Unset element.
 | 
						|
 | 
						|
    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
 | 
						|
                                            IC.Builder.getInt32(i));
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
 | 
						|
/// vector followed by extract element. The backend tends to handle bitcasts of
 | 
						|
/// vectors better than bitcasts of scalars because vector registers are
 | 
						|
/// usually not type-specific like scalar integer or scalar floating-point.
 | 
						|
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
 | 
						|
                                              InstCombinerImpl &IC) {
 | 
						|
  // TODO: Create and use a pattern matcher for ExtractElementInst.
 | 
						|
  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
 | 
						|
  if (!ExtElt || !ExtElt->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The bitcast must be to a vectorizable type, otherwise we can't make a new
 | 
						|
  // type to extract from.
 | 
						|
  Type *DestType = BitCast.getType();
 | 
						|
  if (!VectorType::isValidElementType(DestType))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
 | 
						|
  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
 | 
						|
                                         NewVecType, "bc");
 | 
						|
  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
 | 
						|
}
 | 
						|
 | 
						|
/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
 | 
						|
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
 | 
						|
                                            InstCombiner::BuilderTy &Builder) {
 | 
						|
  Type *DestTy = BitCast.getType();
 | 
						|
  BinaryOperator *BO;
 | 
						|
  if (!DestTy->isIntOrIntVectorTy() ||
 | 
						|
      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
 | 
						|
      !BO->isBitwiseLogicOp())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // FIXME: This transform is restricted to vector types to avoid backend
 | 
						|
  // problems caused by creating potentially illegal operations. If a fix-up is
 | 
						|
  // added to handle that situation, we can remove this check.
 | 
						|
  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X;
 | 
						|
  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
 | 
						|
      X->getType() == DestTy && !isa<Constant>(X)) {
 | 
						|
    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
 | 
						|
    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
 | 
						|
      X->getType() == DestTy && !isa<Constant>(X)) {
 | 
						|
    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
 | 
						|
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize vector bitcasts to come before vector bitwise logic with a
 | 
						|
  // constant. This eases recognition of special constants for later ops.
 | 
						|
  // Example:
 | 
						|
  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
 | 
						|
  Constant *C;
 | 
						|
  if (match(BO->getOperand(1), m_Constant(C))) {
 | 
						|
    // bitcast (logic X, C) --> logic (bitcast X, C')
 | 
						|
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | 
						|
    Value *CastedC = Builder.CreateBitCast(C, DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Change the type of a select if we can eliminate a bitcast.
 | 
						|
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
 | 
						|
                                      InstCombiner::BuilderTy &Builder) {
 | 
						|
  Value *Cond, *TVal, *FVal;
 | 
						|
  if (!match(BitCast.getOperand(0),
 | 
						|
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // A vector select must maintain the same number of elements in its operands.
 | 
						|
  Type *CondTy = Cond->getType();
 | 
						|
  Type *DestTy = BitCast.getType();
 | 
						|
  if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
 | 
						|
    if (!DestTy->isVectorTy() ||
 | 
						|
        CondVTy->getElementCount() !=
 | 
						|
            cast<VectorType>(DestTy)->getElementCount())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  // FIXME: This transform is restricted from changing the select between
 | 
						|
  // scalars and vectors to avoid backend problems caused by creating
 | 
						|
  // potentially illegal operations. If a fix-up is added to handle that
 | 
						|
  // situation, we can remove this check.
 | 
						|
  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
 | 
						|
  Value *X;
 | 
						|
  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
 | 
						|
    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
 | 
						|
    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
 | 
						|
    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
 | 
						|
    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if all users of CI are StoreInsts.
 | 
						|
static bool hasStoreUsersOnly(CastInst &CI) {
 | 
						|
  for (User *U : CI.users()) {
 | 
						|
    if (!isa<StoreInst>(U))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This function handles following case
 | 
						|
///
 | 
						|
///     A  ->  B    cast
 | 
						|
///     PHI
 | 
						|
///     B  ->  A    cast
 | 
						|
///
 | 
						|
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
 | 
						|
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
 | 
						|
Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
 | 
						|
                                                      PHINode *PN) {
 | 
						|
  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
 | 
						|
  if (hasStoreUsersOnly(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();         // Type B
 | 
						|
  Type *DestTy = CI.getType();          // Type A
 | 
						|
 | 
						|
  SmallVector<PHINode *, 4> PhiWorklist;
 | 
						|
  SmallSetVector<PHINode *, 4> OldPhiNodes;
 | 
						|
 | 
						|
  // Find all of the A->B casts and PHI nodes.
 | 
						|
  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
 | 
						|
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
 | 
						|
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
 | 
						|
  PhiWorklist.push_back(PN);
 | 
						|
  OldPhiNodes.insert(PN);
 | 
						|
  while (!PhiWorklist.empty()) {
 | 
						|
    auto *OldPN = PhiWorklist.pop_back_val();
 | 
						|
    for (Value *IncValue : OldPN->incoming_values()) {
 | 
						|
      if (isa<Constant>(IncValue))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
 | 
						|
        // If there is a sequence of one or more load instructions, each loaded
 | 
						|
        // value is used as address of later load instruction, bitcast is
 | 
						|
        // necessary to change the value type, don't optimize it. For
 | 
						|
        // simplicity we give up if the load address comes from another load.
 | 
						|
        Value *Addr = LI->getOperand(0);
 | 
						|
        if (Addr == &CI || isa<LoadInst>(Addr))
 | 
						|
          return nullptr;
 | 
						|
        // If there is any loss for the pointer bitcast, abandon.
 | 
						|
        auto *DestPtrTy = DestTy->getPointerTo(LI->getPointerAddressSpace());
 | 
						|
        auto *SrcPtrTy = Addr->getType();
 | 
						|
        if (!SrcPtrTy->canLosslesslyBitCastTo(DestPtrTy))
 | 
						|
          return nullptr;
 | 
						|
        if (LI->hasOneUse() && LI->isSimple())
 | 
						|
          continue;
 | 
						|
        // If a LoadInst has more than one use, changing the type of loaded
 | 
						|
        // value may create another bitcast.
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
 | 
						|
        if (OldPhiNodes.insert(PNode))
 | 
						|
          PhiWorklist.push_back(PNode);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto *BCI = dyn_cast<BitCastInst>(IncValue);
 | 
						|
      // We can't handle other instructions.
 | 
						|
      if (!BCI)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Verify it's a A->B cast.
 | 
						|
      Type *TyA = BCI->getOperand(0)->getType();
 | 
						|
      Type *TyB = BCI->getType();
 | 
						|
      if (TyA != DestTy || TyB != SrcTy)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that each user of each old PHI node is something that we can
 | 
						|
  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    for (User *V : OldPN->users()) {
 | 
						|
      if (auto *SI = dyn_cast<StoreInst>(V)) {
 | 
						|
        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
 | 
						|
          return nullptr;
 | 
						|
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
        // Verify it's a B->A cast.
 | 
						|
        Type *TyB = BCI->getOperand(0)->getType();
 | 
						|
        Type *TyA = BCI->getType();
 | 
						|
        if (TyA != DestTy || TyB != SrcTy)
 | 
						|
          return nullptr;
 | 
						|
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
 | 
						|
        // As long as the user is another old PHI node, then even if we don't
 | 
						|
        // rewrite it, the PHI web we're considering won't have any users
 | 
						|
        // outside itself, so it'll be dead.
 | 
						|
        if (OldPhiNodes.count(PHI) == 0)
 | 
						|
          return nullptr;
 | 
						|
      } else {
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For each old PHI node, create a corresponding new PHI node with a type A.
 | 
						|
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    Builder.SetInsertPoint(OldPN);
 | 
						|
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
 | 
						|
    NewPNodes[OldPN] = NewPN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in the operands of new PHI nodes.
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    PHINode *NewPN = NewPNodes[OldPN];
 | 
						|
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
 | 
						|
      Value *V = OldPN->getOperand(j);
 | 
						|
      Value *NewV = nullptr;
 | 
						|
      if (auto *C = dyn_cast<Constant>(V)) {
 | 
						|
        NewV = ConstantExpr::getBitCast(C, DestTy);
 | 
						|
      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
 | 
						|
        // Explicitly perform load combine to make sure no opposing transform
 | 
						|
        // can remove the bitcast in the meantime and trigger an infinite loop.
 | 
						|
        Builder.SetInsertPoint(LI);
 | 
						|
        NewV = combineLoadToNewType(*LI, DestTy);
 | 
						|
        // Remove the old load and its use in the old phi, which itself becomes
 | 
						|
        // dead once the whole transform finishes.
 | 
						|
        replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
 | 
						|
        eraseInstFromFunction(*LI);
 | 
						|
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
        NewV = BCI->getOperand(0);
 | 
						|
      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
 | 
						|
        NewV = NewPNodes[PrevPN];
 | 
						|
      }
 | 
						|
      assert(NewV);
 | 
						|
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse all accumulated PHI nodes and process its users,
 | 
						|
  // which are Stores and BitcCasts. Without this processing
 | 
						|
  // NewPHI nodes could be replicated and could lead to extra
 | 
						|
  // moves generated after DeSSA.
 | 
						|
  // If there is a store with type B, change it to type A.
 | 
						|
 | 
						|
 | 
						|
  // Replace users of BitCast B->A with NewPHI. These will help
 | 
						|
  // later to get rid off a closure formed by OldPHI nodes.
 | 
						|
  Instruction *RetVal = nullptr;
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    PHINode *NewPN = NewPNodes[OldPN];
 | 
						|
    for (User *V : make_early_inc_range(OldPN->users())) {
 | 
						|
      if (auto *SI = dyn_cast<StoreInst>(V)) {
 | 
						|
        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
 | 
						|
        Builder.SetInsertPoint(SI);
 | 
						|
        auto *NewBC =
 | 
						|
          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
 | 
						|
        SI->setOperand(0, NewBC);
 | 
						|
        Worklist.push(SI);
 | 
						|
        assert(hasStoreUsersOnly(*NewBC));
 | 
						|
      }
 | 
						|
      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
        Type *TyB = BCI->getOperand(0)->getType();
 | 
						|
        Type *TyA = BCI->getType();
 | 
						|
        assert(TyA == DestTy && TyB == SrcTy);
 | 
						|
        (void) TyA;
 | 
						|
        (void) TyB;
 | 
						|
        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
 | 
						|
        if (BCI == &CI)
 | 
						|
          RetVal = I;
 | 
						|
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
 | 
						|
        assert(OldPhiNodes.contains(PHI));
 | 
						|
        (void) PHI;
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("all uses should be handled");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return RetVal;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
 | 
						|
  // If the operands are integer typed then apply the integer transforms,
 | 
						|
  // otherwise just apply the common ones.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();
 | 
						|
  Type *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Get rid of casts from one type to the same type. These are useless and can
 | 
						|
  // be replaced by the operand.
 | 
						|
  if (DestTy == Src->getType())
 | 
						|
    return replaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
 | 
						|
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | 
						|
    PointerType *DstPTy = cast<PointerType>(DestTy);
 | 
						|
    Type *DstElTy = DstPTy->getElementType();
 | 
						|
    Type *SrcElTy = SrcPTy->getElementType();
 | 
						|
 | 
						|
    // Casting pointers between the same type, but with different address spaces
 | 
						|
    // is an addrspace cast rather than a bitcast.
 | 
						|
    if ((DstElTy == SrcElTy) &&
 | 
						|
        (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
 | 
						|
      return new AddrSpaceCastInst(Src, DestTy);
 | 
						|
 | 
						|
    // If we are casting a alloca to a pointer to a type of the same
 | 
						|
    // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
    // There is no need to modify malloc calls because it is their bitcast that
 | 
						|
    // needs to be cleaned up.
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
 | 
						|
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // When the type pointed to is not sized the cast cannot be
 | 
						|
    // turned into a gep.
 | 
						|
    Type *PointeeType =
 | 
						|
        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
 | 
						|
    if (!PointeeType->isSized())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If the source and destination are pointers, and this cast is equivalent
 | 
						|
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | 
						|
    // This can enhance SROA and other transforms that want type-safe pointers.
 | 
						|
    unsigned NumZeros = 0;
 | 
						|
    while (SrcElTy && SrcElTy != DstElTy) {
 | 
						|
      SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
 | 
						|
      ++NumZeros;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a path from the src to dest, create the getelementptr now.
 | 
						|
    if (SrcElTy == DstElTy) {
 | 
						|
      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
 | 
						|
      GetElementPtrInst *GEP =
 | 
						|
          GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
 | 
						|
 | 
						|
      // If the source pointer is dereferenceable, then assume it points to an
 | 
						|
      // allocated object and apply "inbounds" to the GEP.
 | 
						|
      bool CanBeNull, CanBeFreed;
 | 
						|
      if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
 | 
						|
        // In a non-default address space (not 0), a null pointer can not be
 | 
						|
        // assumed inbounds, so ignore that case (dereferenceable_or_null).
 | 
						|
        // The reason is that 'null' is not treated differently in these address
 | 
						|
        // spaces, and we consequently ignore the 'gep inbounds' special case
 | 
						|
        // for 'null' which allows 'inbounds' on 'null' if the indices are
 | 
						|
        // zeros.
 | 
						|
        if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
 | 
						|
          GEP->setIsInBounds();
 | 
						|
      }
 | 
						|
      return GEP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
 | 
						|
    // Beware: messing with this target-specific oddity may cause trouble.
 | 
						|
    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
 | 
						|
      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
 | 
						|
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<IntegerType>(SrcTy)) {
 | 
						|
      // If this is a cast from an integer to vector, check to see if the input
 | 
						|
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
 | 
						|
      // the casts with a shuffle and (potentially) a bitcast.
 | 
						|
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
 | 
						|
        CastInst *SrcCast = cast<CastInst>(Src);
 | 
						|
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
 | 
						|
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
 | 
						|
            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
 | 
						|
                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
 | 
						|
              return I;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the input is an 'or' instruction, we may be doing shifts and ors to
 | 
						|
      // assemble the elements of the vector manually.  Try to rip the code out
 | 
						|
      // and replace it with insertelements.
 | 
						|
      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
 | 
						|
        return replaceInstUsesWith(CI, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
 | 
						|
    if (SrcVTy->getNumElements() == 1) {
 | 
						|
      // If our destination is not a vector, then make this a straight
 | 
						|
      // scalar-scalar cast.
 | 
						|
      if (!DestTy->isVectorTy()) {
 | 
						|
        Value *Elem =
 | 
						|
          Builder.CreateExtractElement(Src,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, see if our source is an insert. If so, then use the scalar
 | 
						|
      // component directly:
 | 
						|
      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
 | 
						|
      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
 | 
						|
        return new BitCastInst(InsElt->getOperand(1), DestTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
 | 
						|
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
 | 
						|
    // a bitcast to a vector with the same # elts.
 | 
						|
    Value *ShufOp0 = Shuf->getOperand(0);
 | 
						|
    Value *ShufOp1 = Shuf->getOperand(1);
 | 
						|
    auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
 | 
						|
    auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
 | 
						|
    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
 | 
						|
        cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
 | 
						|
        ShufElts == SrcVecElts) {
 | 
						|
      BitCastInst *Tmp;
 | 
						|
      // If either of the operands is a cast from CI.getType(), then
 | 
						|
      // evaluating the shuffle in the casted destination's type will allow
 | 
						|
      // us to eliminate at least one cast.
 | 
						|
      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy) ||
 | 
						|
          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy)) {
 | 
						|
        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
 | 
						|
        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
 | 
						|
        // Return a new shuffle vector.  Use the same element ID's, as we
 | 
						|
        // know the vector types match #elts.
 | 
						|
        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
 | 
						|
    // a byte-swap:
 | 
						|
    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
 | 
						|
    // TODO: We should match the related pattern for bitreverse.
 | 
						|
    if (DestTy->isIntegerTy() &&
 | 
						|
        DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
 | 
						|
        SrcTy->getScalarSizeInBits() == 8 &&
 | 
						|
        ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
 | 
						|
        Shuf->isReverse()) {
 | 
						|
      assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
 | 
						|
      assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
 | 
						|
      Function *Bswap =
 | 
						|
          Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
 | 
						|
      Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
 | 
						|
      return CallInst::Create(Bswap, { ScalarX });
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the A->B->A cast, and there is an intervening PHI node.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(Src))
 | 
						|
    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
 | 
						|
      return I;
 | 
						|
 | 
						|
  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldBitCastSelect(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (SrcTy->isPointerTy())
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
 | 
						|
  // If the destination pointer element type is not the same as the source's
 | 
						|
  // first do a bitcast to the destination type, and then the addrspacecast.
 | 
						|
  // This allows the cast to be exposed to other transforms.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
 | 
						|
  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
 | 
						|
 | 
						|
  Type *DestElemTy = DestTy->getElementType();
 | 
						|
  if (SrcTy->getElementType() != DestElemTy) {
 | 
						|
    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
 | 
						|
    // Handle vectors of pointers.
 | 
						|
    if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
 | 
						|
      MidTy = VectorType::get(MidTy, VT->getElementCount());
 | 
						|
 | 
						|
    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
 | 
						|
    return new AddrSpaceCastInst(NewBitCast, CI.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  return commonPointerCastTransforms(CI);
 | 
						|
}
 |