2663 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2663 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineVectorOps.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements instcombine for ExtractElement, InsertElement and
 | 
						|
// ShuffleVector.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
STATISTIC(NumAggregateReconstructionsSimplified,
 | 
						|
          "Number of aggregate reconstructions turned into reuse of the "
 | 
						|
          "original aggregate");
 | 
						|
 | 
						|
/// Return true if the value is cheaper to scalarize than it is to leave as a
 | 
						|
/// vector operation. IsConstantExtractIndex indicates whether we are extracting
 | 
						|
/// one known element from a vector constant.
 | 
						|
///
 | 
						|
/// FIXME: It's possible to create more instructions than previously existed.
 | 
						|
static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
 | 
						|
  // If we can pick a scalar constant value out of a vector, that is free.
 | 
						|
  if (auto *C = dyn_cast<Constant>(V))
 | 
						|
    return IsConstantExtractIndex || C->getSplatValue();
 | 
						|
 | 
						|
  // An insertelement to the same constant index as our extract will simplify
 | 
						|
  // to the scalar inserted element. An insertelement to a different constant
 | 
						|
  // index is irrelevant to our extract.
 | 
						|
  if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
 | 
						|
    return IsConstantExtractIndex;
 | 
						|
 | 
						|
  if (match(V, m_OneUse(m_Load(m_Value()))))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (match(V, m_OneUse(m_UnOp())))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Value *V0, *V1;
 | 
						|
  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
 | 
						|
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
 | 
						|
        cheapToScalarize(V1, IsConstantExtractIndex))
 | 
						|
      return true;
 | 
						|
 | 
						|
  CmpInst::Predicate UnusedPred;
 | 
						|
  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
 | 
						|
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
 | 
						|
        cheapToScalarize(V1, IsConstantExtractIndex))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If we have a PHI node with a vector type that is only used to feed
 | 
						|
// itself and be an operand of extractelement at a constant location,
 | 
						|
// try to replace the PHI of the vector type with a PHI of a scalar type.
 | 
						|
Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
 | 
						|
                                            PHINode *PN) {
 | 
						|
  SmallVector<Instruction *, 2> Extracts;
 | 
						|
  // The users we want the PHI to have are:
 | 
						|
  // 1) The EI ExtractElement (we already know this)
 | 
						|
  // 2) Possibly more ExtractElements with the same index.
 | 
						|
  // 3) Another operand, which will feed back into the PHI.
 | 
						|
  Instruction *PHIUser = nullptr;
 | 
						|
  for (auto U : PN->users()) {
 | 
						|
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
 | 
						|
      if (EI.getIndexOperand() == EU->getIndexOperand())
 | 
						|
        Extracts.push_back(EU);
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    } else if (!PHIUser) {
 | 
						|
      PHIUser = cast<Instruction>(U);
 | 
						|
    } else {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PHIUser)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Verify that this PHI user has one use, which is the PHI itself,
 | 
						|
  // and that it is a binary operation which is cheap to scalarize.
 | 
						|
  // otherwise return nullptr.
 | 
						|
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
 | 
						|
      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Create a scalar PHI node that will replace the vector PHI node
 | 
						|
  // just before the current PHI node.
 | 
						|
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
 | 
						|
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
 | 
						|
  // Scalarize each PHI operand.
 | 
						|
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | 
						|
    Value *PHIInVal = PN->getIncomingValue(i);
 | 
						|
    BasicBlock *inBB = PN->getIncomingBlock(i);
 | 
						|
    Value *Elt = EI.getIndexOperand();
 | 
						|
    // If the operand is the PHI induction variable:
 | 
						|
    if (PHIInVal == PHIUser) {
 | 
						|
      // Scalarize the binary operation. Its first operand is the
 | 
						|
      // scalar PHI, and the second operand is extracted from the other
 | 
						|
      // vector operand.
 | 
						|
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
 | 
						|
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
 | 
						|
      Value *Op = InsertNewInstWith(
 | 
						|
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
 | 
						|
                                     B0->getOperand(opId)->getName() + ".Elt"),
 | 
						|
          *B0);
 | 
						|
      Value *newPHIUser = InsertNewInstWith(
 | 
						|
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
 | 
						|
                                                scalarPHI, Op, B0), *B0);
 | 
						|
      scalarPHI->addIncoming(newPHIUser, inBB);
 | 
						|
    } else {
 | 
						|
      // Scalarize PHI input:
 | 
						|
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
 | 
						|
      // Insert the new instruction into the predecessor basic block.
 | 
						|
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
 | 
						|
      BasicBlock::iterator InsertPos;
 | 
						|
      if (pos && !isa<PHINode>(pos)) {
 | 
						|
        InsertPos = ++pos->getIterator();
 | 
						|
      } else {
 | 
						|
        InsertPos = inBB->getFirstInsertionPt();
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstWith(newEI, *InsertPos);
 | 
						|
 | 
						|
      scalarPHI->addIncoming(newEI, inBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto E : Extracts)
 | 
						|
    replaceInstUsesWith(*E, scalarPHI);
 | 
						|
 | 
						|
  return &EI;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
 | 
						|
                                      InstCombiner::BuilderTy &Builder,
 | 
						|
                                      bool IsBigEndian) {
 | 
						|
  Value *X;
 | 
						|
  uint64_t ExtIndexC;
 | 
						|
  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
 | 
						|
      !X->getType()->isVectorTy() ||
 | 
						|
      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this extractelement is using a bitcast from a vector of the same number
 | 
						|
  // of elements, see if we can find the source element from the source vector:
 | 
						|
  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
 | 
						|
  auto *SrcTy = cast<VectorType>(X->getType());
 | 
						|
  Type *DestTy = Ext.getType();
 | 
						|
  ElementCount NumSrcElts = SrcTy->getElementCount();
 | 
						|
  ElementCount NumElts =
 | 
						|
      cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
 | 
						|
  if (NumSrcElts == NumElts)
 | 
						|
    if (Value *Elt = findScalarElement(X, ExtIndexC))
 | 
						|
      return new BitCastInst(Elt, DestTy);
 | 
						|
 | 
						|
  assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
 | 
						|
         "Src and Dst must be the same sort of vector type");
 | 
						|
 | 
						|
  // If the source elements are wider than the destination, try to shift and
 | 
						|
  // truncate a subset of scalar bits of an insert op.
 | 
						|
  if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
 | 
						|
    Value *Scalar;
 | 
						|
    uint64_t InsIndexC;
 | 
						|
    if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
 | 
						|
                              m_ConstantInt(InsIndexC))))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // The extract must be from the subset of vector elements that we inserted
 | 
						|
    // into. Example: if we inserted element 1 of a <2 x i64> and we are
 | 
						|
    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
 | 
						|
    // of elements 4-7 of the bitcasted vector.
 | 
						|
    unsigned NarrowingRatio =
 | 
						|
        NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
 | 
						|
    if (ExtIndexC / NarrowingRatio != InsIndexC)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // We are extracting part of the original scalar. How that scalar is
 | 
						|
    // inserted into the vector depends on the endian-ness. Example:
 | 
						|
    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
 | 
						|
    //                                       +--+--+--+--+--+--+--+--+
 | 
						|
    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
 | 
						|
    // extelt <4 x i16> V', 3:               |                 |S2|S3|
 | 
						|
    //                                       +--+--+--+--+--+--+--+--+
 | 
						|
    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
 | 
						|
    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
 | 
						|
    // In this example, we must right-shift little-endian. Big-endian is just a
 | 
						|
    // truncate.
 | 
						|
    unsigned Chunk = ExtIndexC % NarrowingRatio;
 | 
						|
    if (IsBigEndian)
 | 
						|
      Chunk = NarrowingRatio - 1 - Chunk;
 | 
						|
 | 
						|
    // Bail out if this is an FP vector to FP vector sequence. That would take
 | 
						|
    // more instructions than we started with unless there is no shift, and it
 | 
						|
    // may not be handled as well in the backend.
 | 
						|
    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
 | 
						|
    bool NeedDestBitcast = DestTy->isFloatingPointTy();
 | 
						|
    if (NeedSrcBitcast && NeedDestBitcast)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
 | 
						|
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
 | 
						|
    unsigned ShAmt = Chunk * DestWidth;
 | 
						|
 | 
						|
    // TODO: This limitation is more strict than necessary. We could sum the
 | 
						|
    // number of new instructions and subtract the number eliminated to know if
 | 
						|
    // we can proceed.
 | 
						|
    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
 | 
						|
      if (NeedSrcBitcast || NeedDestBitcast)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    if (NeedSrcBitcast) {
 | 
						|
      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
 | 
						|
      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShAmt) {
 | 
						|
      // Bail out if we could end with more instructions than we started with.
 | 
						|
      if (!Ext.getVectorOperand()->hasOneUse())
 | 
						|
        return nullptr;
 | 
						|
      Scalar = Builder.CreateLShr(Scalar, ShAmt);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedDestBitcast) {
 | 
						|
      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
 | 
						|
      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
 | 
						|
    }
 | 
						|
    return new TruncInst(Scalar, DestTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Find elements of V demanded by UserInstr.
 | 
						|
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
 | 
						|
  unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  // Conservatively assume that all elements are needed.
 | 
						|
  APInt UsedElts(APInt::getAllOnesValue(VWidth));
 | 
						|
 | 
						|
  switch (UserInstr->getOpcode()) {
 | 
						|
  case Instruction::ExtractElement: {
 | 
						|
    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
 | 
						|
    assert(EEI->getVectorOperand() == V);
 | 
						|
    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
 | 
						|
    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
 | 
						|
      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::ShuffleVector: {
 | 
						|
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
 | 
						|
    unsigned MaskNumElts =
 | 
						|
        cast<FixedVectorType>(UserInstr->getType())->getNumElements();
 | 
						|
 | 
						|
    UsedElts = APInt(VWidth, 0);
 | 
						|
    for (unsigned i = 0; i < MaskNumElts; i++) {
 | 
						|
      unsigned MaskVal = Shuffle->getMaskValue(i);
 | 
						|
      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
 | 
						|
        continue;
 | 
						|
      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
 | 
						|
        UsedElts.setBit(MaskVal);
 | 
						|
      if (Shuffle->getOperand(1) == V &&
 | 
						|
          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
 | 
						|
        UsedElts.setBit(MaskVal - VWidth);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return UsedElts;
 | 
						|
}
 | 
						|
 | 
						|
/// Find union of elements of V demanded by all its users.
 | 
						|
/// If it is known by querying findDemandedEltsBySingleUser that
 | 
						|
/// no user demands an element of V, then the corresponding bit
 | 
						|
/// remains unset in the returned value.
 | 
						|
static APInt findDemandedEltsByAllUsers(Value *V) {
 | 
						|
  unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  APInt UnionUsedElts(VWidth, 0);
 | 
						|
  for (const Use &U : V->uses()) {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
 | 
						|
      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
 | 
						|
    } else {
 | 
						|
      UnionUsedElts = APInt::getAllOnesValue(VWidth);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (UnionUsedElts.isAllOnesValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return UnionUsedElts;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
  Value *SrcVec = EI.getVectorOperand();
 | 
						|
  Value *Index = EI.getIndexOperand();
 | 
						|
  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
 | 
						|
                                            SQ.getWithInstruction(&EI)))
 | 
						|
    return replaceInstUsesWith(EI, V);
 | 
						|
 | 
						|
  // If extracting a specified index from the vector, see if we can recursively
 | 
						|
  // find a previously computed scalar that was inserted into the vector.
 | 
						|
  auto *IndexC = dyn_cast<ConstantInt>(Index);
 | 
						|
  if (IndexC) {
 | 
						|
    ElementCount EC = EI.getVectorOperandType()->getElementCount();
 | 
						|
    unsigned NumElts = EC.getKnownMinValue();
 | 
						|
 | 
						|
    // InstSimplify should handle cases where the index is invalid.
 | 
						|
    // For fixed-length vector, it's invalid to extract out-of-range element.
 | 
						|
    if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // This instruction only demands the single element from the input vector.
 | 
						|
    // Skip for scalable type, the number of elements is unknown at
 | 
						|
    // compile-time.
 | 
						|
    if (!EC.isScalable() && NumElts != 1) {
 | 
						|
      // If the input vector has a single use, simplify it based on this use
 | 
						|
      // property.
 | 
						|
      if (SrcVec->hasOneUse()) {
 | 
						|
        APInt UndefElts(NumElts, 0);
 | 
						|
        APInt DemandedElts(NumElts, 0);
 | 
						|
        DemandedElts.setBit(IndexC->getZExtValue());
 | 
						|
        if (Value *V =
 | 
						|
                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
 | 
						|
          return replaceOperand(EI, 0, V);
 | 
						|
      } else {
 | 
						|
        // If the input vector has multiple uses, simplify it based on a union
 | 
						|
        // of all elements used.
 | 
						|
        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
 | 
						|
        if (!DemandedElts.isAllOnesValue()) {
 | 
						|
          APInt UndefElts(NumElts, 0);
 | 
						|
          if (Value *V = SimplifyDemandedVectorElts(
 | 
						|
                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
 | 
						|
                  true /* AllowMultipleUsers */)) {
 | 
						|
            if (V != SrcVec) {
 | 
						|
              SrcVec->replaceAllUsesWith(V);
 | 
						|
              return &EI;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // If there's a vector PHI feeding a scalar use through this extractelement
 | 
						|
    // instruction, try to scalarize the PHI.
 | 
						|
    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
 | 
						|
      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
 | 
						|
        return ScalarPHI;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO come up with a n-ary matcher that subsumes both unary and
 | 
						|
  // binary matchers.
 | 
						|
  UnaryOperator *UO;
 | 
						|
  if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
 | 
						|
    // extelt (unop X), Index --> unop (extelt X, Index)
 | 
						|
    Value *X = UO->getOperand(0);
 | 
						|
    Value *E = Builder.CreateExtractElement(X, Index);
 | 
						|
    return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BO;
 | 
						|
  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
 | 
						|
    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
 | 
						|
    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
 | 
						|
    Value *E0 = Builder.CreateExtractElement(X, Index);
 | 
						|
    Value *E1 = Builder.CreateExtractElement(Y, Index);
 | 
						|
    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *X, *Y;
 | 
						|
  CmpInst::Predicate Pred;
 | 
						|
  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
 | 
						|
      cheapToScalarize(SrcVec, IndexC)) {
 | 
						|
    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
 | 
						|
    Value *E0 = Builder.CreateExtractElement(X, Index);
 | 
						|
    Value *E1 = Builder.CreateExtractElement(Y, Index);
 | 
						|
    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
 | 
						|
    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
 | 
						|
      // Extracting the inserted element?
 | 
						|
      if (IE->getOperand(2) == Index)
 | 
						|
        return replaceInstUsesWith(EI, IE->getOperand(1));
 | 
						|
      // If the inserted and extracted elements are constants, they must not
 | 
						|
      // be the same value, extract from the pre-inserted value instead.
 | 
						|
      if (isa<Constant>(IE->getOperand(2)) && IndexC)
 | 
						|
        return replaceOperand(EI, 0, IE->getOperand(0));
 | 
						|
    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | 
						|
      // If this is extracting an element from a shufflevector, figure out where
 | 
						|
      // it came from and extract from the appropriate input element instead.
 | 
						|
      // Restrict the following transformation to fixed-length vector.
 | 
						|
      if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
 | 
						|
        int SrcIdx =
 | 
						|
            SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
 | 
						|
        Value *Src;
 | 
						|
        unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
 | 
						|
                                ->getNumElements();
 | 
						|
 | 
						|
        if (SrcIdx < 0)
 | 
						|
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
        if (SrcIdx < (int)LHSWidth)
 | 
						|
          Src = SVI->getOperand(0);
 | 
						|
        else {
 | 
						|
          SrcIdx -= LHSWidth;
 | 
						|
          Src = SVI->getOperand(1);
 | 
						|
        }
 | 
						|
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | 
						|
        return ExtractElementInst::Create(
 | 
						|
            Src, ConstantInt::get(Int32Ty, SrcIdx, false));
 | 
						|
      }
 | 
						|
    } else if (auto *CI = dyn_cast<CastInst>(I)) {
 | 
						|
      // Canonicalize extractelement(cast) -> cast(extractelement).
 | 
						|
      // Bitcasts can change the number of vector elements, and they cost
 | 
						|
      // nothing.
 | 
						|
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
 | 
						|
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
 | 
						|
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If V is a shuffle of values that ONLY returns elements from either LHS or
 | 
						|
/// RHS, return the shuffle mask and true. Otherwise, return false.
 | 
						|
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | 
						|
                                         SmallVectorImpl<int> &Mask) {
 | 
						|
  assert(LHS->getType() == RHS->getType() &&
 | 
						|
         "Invalid CollectSingleShuffleElements");
 | 
						|
  unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, -1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == LHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(i);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == RHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(i + NumElts);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (!isa<ConstantInt>(IdxOp))
 | 
						|
      return false;
 | 
						|
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | 
						|
      // We can handle this if the vector we are inserting into is
 | 
						|
      // transitively ok.
 | 
						|
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
        // If so, update the mask to reflect the inserted undef.
 | 
						|
        Mask[InsertedIdx] = -1;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1))) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned NumLHSElts =
 | 
						|
            cast<FixedVectorType>(LHS->getType())->getNumElements();
 | 
						|
 | 
						|
        // This must be extracting from either LHS or RHS.
 | 
						|
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | 
						|
          // We can handle this if the vector we are inserting into is
 | 
						|
          // transitively ok.
 | 
						|
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
            // If so, update the mask to reflect the inserted value.
 | 
						|
            if (EI->getOperand(0) == LHS) {
 | 
						|
              Mask[InsertedIdx % NumElts] = ExtractedIdx;
 | 
						|
            } else {
 | 
						|
              assert(EI->getOperand(0) == RHS);
 | 
						|
              Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If we have insertion into a vector that is wider than the vector that we
 | 
						|
/// are extracting from, try to widen the source vector to allow a single
 | 
						|
/// shufflevector to replace one or more insert/extract pairs.
 | 
						|
static void replaceExtractElements(InsertElementInst *InsElt,
 | 
						|
                                   ExtractElementInst *ExtElt,
 | 
						|
                                   InstCombinerImpl &IC) {
 | 
						|
  auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
 | 
						|
  auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
 | 
						|
  unsigned NumInsElts = InsVecType->getNumElements();
 | 
						|
  unsigned NumExtElts = ExtVecType->getNumElements();
 | 
						|
 | 
						|
  // The inserted-to vector must be wider than the extracted-from vector.
 | 
						|
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
 | 
						|
      NumExtElts >= NumInsElts)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create a shuffle mask to widen the extended-from vector using undefined
 | 
						|
  // values. The mask selects all of the values of the original vector followed
 | 
						|
  // by as many undefined values as needed to create a vector of the same length
 | 
						|
  // as the inserted-to vector.
 | 
						|
  SmallVector<int, 16> ExtendMask;
 | 
						|
  for (unsigned i = 0; i < NumExtElts; ++i)
 | 
						|
    ExtendMask.push_back(i);
 | 
						|
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
 | 
						|
    ExtendMask.push_back(-1);
 | 
						|
 | 
						|
  Value *ExtVecOp = ExtElt->getVectorOperand();
 | 
						|
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
 | 
						|
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | 
						|
                                   ? ExtVecOpInst->getParent()
 | 
						|
                                   : ExtElt->getParent();
 | 
						|
 | 
						|
  // TODO: This restriction matches the basic block check below when creating
 | 
						|
  // new extractelement instructions. If that limitation is removed, this one
 | 
						|
  // could also be removed. But for now, we just bail out to ensure that we
 | 
						|
  // will replace the extractelement instruction that is feeding our
 | 
						|
  // insertelement instruction. This allows the insertelement to then be
 | 
						|
  // replaced by a shufflevector. If the insertelement is not replaced, we can
 | 
						|
  // induce infinite looping because there's an optimization for extractelement
 | 
						|
  // that will delete our widening shuffle. This would trigger another attempt
 | 
						|
  // here to create that shuffle, and we spin forever.
 | 
						|
  if (InsertionBlock != InsElt->getParent())
 | 
						|
    return;
 | 
						|
 | 
						|
  // TODO: This restriction matches the check in visitInsertElementInst() and
 | 
						|
  // prevents an infinite loop caused by not turning the extract/insert pair
 | 
						|
  // into a shuffle. We really should not need either check, but we're lacking
 | 
						|
  // folds for shufflevectors because we're afraid to generate shuffle masks
 | 
						|
  // that the backend can't handle.
 | 
						|
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *WideVec =
 | 
						|
      new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask);
 | 
						|
 | 
						|
  // Insert the new shuffle after the vector operand of the extract is defined
 | 
						|
  // (as long as it's not a PHI) or at the start of the basic block of the
 | 
						|
  // extract, so any subsequent extracts in the same basic block can use it.
 | 
						|
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
 | 
						|
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | 
						|
    WideVec->insertAfter(ExtVecOpInst);
 | 
						|
  else
 | 
						|
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
 | 
						|
 | 
						|
  // Replace extracts from the original narrow vector with extracts from the new
 | 
						|
  // wide vector.
 | 
						|
  for (User *U : ExtVecOp->users()) {
 | 
						|
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
 | 
						|
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
 | 
						|
      continue;
 | 
						|
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
 | 
						|
    NewExt->insertAfter(OldExt);
 | 
						|
    IC.replaceInstUsesWith(*OldExt, NewExt);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// We are building a shuffle to create V, which is a sequence of insertelement,
 | 
						|
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
 | 
						|
/// not rely on the second vector source. Return a std::pair containing the
 | 
						|
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
 | 
						|
/// parameter as required.
 | 
						|
///
 | 
						|
/// Note: we intentionally don't try to fold earlier shuffles since they have
 | 
						|
/// often been chosen carefully to be efficiently implementable on the target.
 | 
						|
using ShuffleOps = std::pair<Value *, Value *>;
 | 
						|
 | 
						|
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
 | 
						|
                                         Value *PermittedRHS,
 | 
						|
                                         InstCombinerImpl &IC) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
 | 
						|
  unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, -1);
 | 
						|
    return std::make_pair(
 | 
						|
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    Mask.assign(NumElts, 0);
 | 
						|
    return std::make_pair(V, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
        // Either the extracted from or inserted into vector must be RHSVec,
 | 
						|
        // otherwise we'd end up with a shuffle of three inputs.
 | 
						|
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
 | 
						|
          Value *RHS = EI->getOperand(0);
 | 
						|
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
 | 
						|
          assert(LR.second == nullptr || LR.second == RHS);
 | 
						|
 | 
						|
          if (LR.first->getType() != RHS->getType()) {
 | 
						|
            // Although we are giving up for now, see if we can create extracts
 | 
						|
            // that match the inserts for another round of combining.
 | 
						|
            replaceExtractElements(IEI, EI, IC);
 | 
						|
 | 
						|
            // We tried our best, but we can't find anything compatible with RHS
 | 
						|
            // further up the chain. Return a trivial shuffle.
 | 
						|
            for (unsigned i = 0; i < NumElts; ++i)
 | 
						|
              Mask[i] = i;
 | 
						|
            return std::make_pair(V, nullptr);
 | 
						|
          }
 | 
						|
 | 
						|
          unsigned NumLHSElts =
 | 
						|
              cast<FixedVectorType>(RHS->getType())->getNumElements();
 | 
						|
          Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
 | 
						|
          return std::make_pair(LR.first, RHS);
 | 
						|
        }
 | 
						|
 | 
						|
        if (VecOp == PermittedRHS) {
 | 
						|
          // We've gone as far as we can: anything on the other side of the
 | 
						|
          // extractelement will already have been converted into a shuffle.
 | 
						|
          unsigned NumLHSElts =
 | 
						|
              cast<FixedVectorType>(EI->getOperand(0)->getType())
 | 
						|
                  ->getNumElements();
 | 
						|
          for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
            Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
 | 
						|
          return std::make_pair(EI->getOperand(0), PermittedRHS);
 | 
						|
        }
 | 
						|
 | 
						|
        // If this insertelement is a chain that comes from exactly these two
 | 
						|
        // vectors, return the vector and the effective shuffle.
 | 
						|
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
 | 
						|
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
 | 
						|
                                         Mask))
 | 
						|
          return std::make_pair(EI->getOperand(0), PermittedRHS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't do anything fancy. Return an identity vector.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
    Mask.push_back(i);
 | 
						|
  return std::make_pair(V, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// Look for chain of insertvalue's that fully define an aggregate, and trace
 | 
						|
/// back the values inserted, see if they are all were extractvalue'd from
 | 
						|
/// the same source aggregate from the exact same element indexes.
 | 
						|
/// If they were, just reuse the source aggregate.
 | 
						|
/// This potentially deals with PHI indirections.
 | 
						|
Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
 | 
						|
    InsertValueInst &OrigIVI) {
 | 
						|
  Type *AggTy = OrigIVI.getType();
 | 
						|
  unsigned NumAggElts;
 | 
						|
  switch (AggTy->getTypeID()) {
 | 
						|
  case Type::StructTyID:
 | 
						|
    NumAggElts = AggTy->getStructNumElements();
 | 
						|
    break;
 | 
						|
  case Type::ArrayTyID:
 | 
						|
    NumAggElts = AggTy->getArrayNumElements();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled aggregate type?");
 | 
						|
  }
 | 
						|
 | 
						|
  // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
 | 
						|
  // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
 | 
						|
  // FIXME: any interesting patterns to be caught with larger limit?
 | 
						|
  assert(NumAggElts > 0 && "Aggregate should have elements.");
 | 
						|
  if (NumAggElts > 2)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  static constexpr auto NotFound = None;
 | 
						|
  static constexpr auto FoundMismatch = nullptr;
 | 
						|
 | 
						|
  // Try to find a value of each element of an aggregate.
 | 
						|
  // FIXME: deal with more complex, not one-dimensional, aggregate types
 | 
						|
  SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound);
 | 
						|
 | 
						|
  // Do we know values for each element of the aggregate?
 | 
						|
  auto KnowAllElts = [&AggElts]() {
 | 
						|
    return all_of(AggElts,
 | 
						|
                  [](Optional<Value *> Elt) { return Elt != NotFound; });
 | 
						|
  };
 | 
						|
 | 
						|
  int Depth = 0;
 | 
						|
 | 
						|
  // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
 | 
						|
  // every element being overwritten twice, which should never happen.
 | 
						|
  static const int DepthLimit = 2 * NumAggElts;
 | 
						|
 | 
						|
  // Recurse up the chain of `insertvalue` aggregate operands until either we've
 | 
						|
  // reconstructed full initializer or can't visit any more `insertvalue`'s.
 | 
						|
  for (InsertValueInst *CurrIVI = &OrigIVI;
 | 
						|
       Depth < DepthLimit && CurrIVI && !KnowAllElts();
 | 
						|
       CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
 | 
						|
                       ++Depth) {
 | 
						|
    Value *InsertedValue = CurrIVI->getInsertedValueOperand();
 | 
						|
    ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
 | 
						|
 | 
						|
    // Don't bother with more than single-level aggregates.
 | 
						|
    if (Indices.size() != 1)
 | 
						|
      return nullptr; // FIXME: deal with more complex aggregates?
 | 
						|
 | 
						|
    // Now, we may have already previously recorded the value for this element
 | 
						|
    // of an aggregate. If we did, that means the CurrIVI will later be
 | 
						|
    // overwritten with the already-recorded value. But if not, let's record it!
 | 
						|
    Optional<Value *> &Elt = AggElts[Indices.front()];
 | 
						|
    Elt = Elt.getValueOr(InsertedValue);
 | 
						|
 | 
						|
    // FIXME: should we handle chain-terminating undef base operand?
 | 
						|
  }
 | 
						|
 | 
						|
  // Was that sufficient to deduce the full initializer for the aggregate?
 | 
						|
  if (!KnowAllElts())
 | 
						|
    return nullptr; // Give up then.
 | 
						|
 | 
						|
  // We now want to find the source[s] of the aggregate elements we've found.
 | 
						|
  // And with "source" we mean the original aggregate[s] from which
 | 
						|
  // the inserted elements were extracted. This may require PHI translation.
 | 
						|
 | 
						|
  enum class AggregateDescription {
 | 
						|
    /// When analyzing the value that was inserted into an aggregate, we did
 | 
						|
    /// not manage to find defining `extractvalue` instruction to analyze.
 | 
						|
    NotFound,
 | 
						|
    /// When analyzing the value that was inserted into an aggregate, we did
 | 
						|
    /// manage to find defining `extractvalue` instruction[s], and everything
 | 
						|
    /// matched perfectly - aggregate type, element insertion/extraction index.
 | 
						|
    Found,
 | 
						|
    /// When analyzing the value that was inserted into an aggregate, we did
 | 
						|
    /// manage to find defining `extractvalue` instruction, but there was
 | 
						|
    /// a mismatch: either the source type from which the extraction was didn't
 | 
						|
    /// match the aggregate type into which the insertion was,
 | 
						|
    /// or the extraction/insertion channels mismatched,
 | 
						|
    /// or different elements had different source aggregates.
 | 
						|
    FoundMismatch
 | 
						|
  };
 | 
						|
  auto Describe = [](Optional<Value *> SourceAggregate) {
 | 
						|
    if (SourceAggregate == NotFound)
 | 
						|
      return AggregateDescription::NotFound;
 | 
						|
    if (*SourceAggregate == FoundMismatch)
 | 
						|
      return AggregateDescription::FoundMismatch;
 | 
						|
    return AggregateDescription::Found;
 | 
						|
  };
 | 
						|
 | 
						|
  // Given the value \p Elt that was being inserted into element \p EltIdx of an
 | 
						|
  // aggregate AggTy, see if \p Elt was originally defined by an
 | 
						|
  // appropriate extractvalue (same element index, same aggregate type).
 | 
						|
  // If found, return the source aggregate from which the extraction was.
 | 
						|
  // If \p PredBB is provided, does PHI translation of an \p Elt first.
 | 
						|
  auto FindSourceAggregate =
 | 
						|
      [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
 | 
						|
          Optional<BasicBlock *> PredBB) -> Optional<Value *> {
 | 
						|
    // For now(?), only deal with, at most, a single level of PHI indirection.
 | 
						|
    if (UseBB && PredBB)
 | 
						|
      Elt = Elt->DoPHITranslation(*UseBB, *PredBB);
 | 
						|
    // FIXME: deal with multiple levels of PHI indirection?
 | 
						|
 | 
						|
    // Did we find an extraction?
 | 
						|
    auto *EVI = dyn_cast<ExtractValueInst>(Elt);
 | 
						|
    if (!EVI)
 | 
						|
      return NotFound;
 | 
						|
 | 
						|
    Value *SourceAggregate = EVI->getAggregateOperand();
 | 
						|
 | 
						|
    // Is the extraction from the same type into which the insertion was?
 | 
						|
    if (SourceAggregate->getType() != AggTy)
 | 
						|
      return FoundMismatch;
 | 
						|
    // And the element index doesn't change between extraction and insertion?
 | 
						|
    if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
 | 
						|
      return FoundMismatch;
 | 
						|
 | 
						|
    return SourceAggregate; // AggregateDescription::Found
 | 
						|
  };
 | 
						|
 | 
						|
  // Given elements AggElts that were constructing an aggregate OrigIVI,
 | 
						|
  // see if we can find appropriate source aggregate for each of the elements,
 | 
						|
  // and see it's the same aggregate for each element. If so, return it.
 | 
						|
  auto FindCommonSourceAggregate =
 | 
						|
      [&](Optional<BasicBlock *> UseBB,
 | 
						|
          Optional<BasicBlock *> PredBB) -> Optional<Value *> {
 | 
						|
    Optional<Value *> SourceAggregate;
 | 
						|
 | 
						|
    for (auto I : enumerate(AggElts)) {
 | 
						|
      assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
 | 
						|
             "We don't store nullptr in SourceAggregate!");
 | 
						|
      assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
 | 
						|
                 (I.index() != 0) &&
 | 
						|
             "SourceAggregate should be valid after the the first element,");
 | 
						|
 | 
						|
      // For this element, is there a plausible source aggregate?
 | 
						|
      // FIXME: we could special-case undef element, IFF we know that in the
 | 
						|
      //        source aggregate said element isn't poison.
 | 
						|
      Optional<Value *> SourceAggregateForElement =
 | 
						|
          FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
 | 
						|
 | 
						|
      // Okay, what have we found? Does that correlate with previous findings?
 | 
						|
 | 
						|
      // Regardless of whether or not we have previously found source
 | 
						|
      // aggregate for previous elements (if any), if we didn't find one for
 | 
						|
      // this element, passthrough whatever we have just found.
 | 
						|
      if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
 | 
						|
        return SourceAggregateForElement;
 | 
						|
 | 
						|
      // Okay, we have found source aggregate for this element.
 | 
						|
      // Let's see what we already know from previous elements, if any.
 | 
						|
      switch (Describe(SourceAggregate)) {
 | 
						|
      case AggregateDescription::NotFound:
 | 
						|
        // This is apparently the first element that we have examined.
 | 
						|
        SourceAggregate = SourceAggregateForElement; // Record the aggregate!
 | 
						|
        continue; // Great, now look at next element.
 | 
						|
      case AggregateDescription::Found:
 | 
						|
        // We have previously already successfully examined other elements.
 | 
						|
        // Is this the same source aggregate we've found for other elements?
 | 
						|
        if (*SourceAggregateForElement != *SourceAggregate)
 | 
						|
          return FoundMismatch;
 | 
						|
        continue; // Still the same aggregate, look at next element.
 | 
						|
      case AggregateDescription::FoundMismatch:
 | 
						|
        llvm_unreachable("Can't happen. We would have early-exited then.");
 | 
						|
      };
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Describe(SourceAggregate) == AggregateDescription::Found &&
 | 
						|
           "Must be a valid Value");
 | 
						|
    return *SourceAggregate;
 | 
						|
  };
 | 
						|
 | 
						|
  Optional<Value *> SourceAggregate;
 | 
						|
 | 
						|
  // Can we find the source aggregate without looking at predecessors?
 | 
						|
  SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
 | 
						|
  if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
 | 
						|
    if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
 | 
						|
      return nullptr; // Conflicting source aggregates!
 | 
						|
    ++NumAggregateReconstructionsSimplified;
 | 
						|
    return replaceInstUsesWith(OrigIVI, *SourceAggregate);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, apparently we need to look at predecessors.
 | 
						|
 | 
						|
  // We should be smart about picking the "use" basic block, which will be the
 | 
						|
  // merge point for aggregate, where we'll insert the final PHI that will be
 | 
						|
  // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
 | 
						|
  // We should look in which blocks each of the AggElts is being defined,
 | 
						|
  // they all should be defined in the same basic block.
 | 
						|
  BasicBlock *UseBB = nullptr;
 | 
						|
 | 
						|
  for (const Optional<Value *> &Elt : AggElts) {
 | 
						|
    // If this element's value was not defined by an instruction, ignore it.
 | 
						|
    auto *I = dyn_cast<Instruction>(*Elt);
 | 
						|
    if (!I)
 | 
						|
      continue;
 | 
						|
    // Otherwise, in which basic block is this instruction located?
 | 
						|
    BasicBlock *BB = I->getParent();
 | 
						|
    // If it's the first instruction we've encountered, record the basic block.
 | 
						|
    if (!UseBB) {
 | 
						|
      UseBB = BB;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Otherwise, this must be the same basic block we've seen previously.
 | 
						|
    if (UseBB != BB)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If *all* of the elements are basic-block-independent, meaning they are
 | 
						|
  // either function arguments, or constant expressions, then if we didn't
 | 
						|
  // handle them without predecessor-aware handling, we won't handle them now.
 | 
						|
  if (!UseBB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we didn't manage to find source aggregate without looking at
 | 
						|
  // predecessors, and there are no predecessors to look at, then we're done.
 | 
						|
  if (pred_empty(UseBB))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Arbitrary predecessor count limit.
 | 
						|
  static const int PredCountLimit = 64;
 | 
						|
 | 
						|
  // Cache the (non-uniqified!) list of predecessors in a vector,
 | 
						|
  // checking the limit at the same time for efficiency.
 | 
						|
  SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
 | 
						|
  for (BasicBlock *Pred : predecessors(UseBB)) {
 | 
						|
    // Don't bother if there are too many predecessors.
 | 
						|
    if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
 | 
						|
      return nullptr;
 | 
						|
    Preds.emplace_back(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each predecessor, what is the source aggregate,
 | 
						|
  // from which all the elements were originally extracted from?
 | 
						|
  // Note that we want for the map to have stable iteration order!
 | 
						|
  SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
 | 
						|
  for (BasicBlock *Pred : Preds) {
 | 
						|
    std::pair<decltype(SourceAggregates)::iterator, bool> IV =
 | 
						|
        SourceAggregates.insert({Pred, nullptr});
 | 
						|
    // Did we already evaluate this predecessor?
 | 
						|
    if (!IV.second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Let's hope that when coming from predecessor Pred, all elements of the
 | 
						|
    // aggregate produced by OrigIVI must have been originally extracted from
 | 
						|
    // the same aggregate. Is that so? Can we find said original aggregate?
 | 
						|
    SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
 | 
						|
    if (Describe(SourceAggregate) != AggregateDescription::Found)
 | 
						|
      return nullptr; // Give up.
 | 
						|
    IV.first->second = *SourceAggregate;
 | 
						|
  }
 | 
						|
 | 
						|
  // All good! Now we just need to thread the source aggregates here.
 | 
						|
  // Note that we have to insert the new PHI here, ourselves, because we can't
 | 
						|
  // rely on InstCombinerImpl::run() inserting it into the right basic block.
 | 
						|
  // Note that the same block can be a predecessor more than once,
 | 
						|
  // and we need to preserve that invariant for the PHI node.
 | 
						|
  BuilderTy::InsertPointGuard Guard(Builder);
 | 
						|
  Builder.SetInsertPoint(UseBB->getFirstNonPHI());
 | 
						|
  auto *PHI =
 | 
						|
      Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
 | 
						|
  for (BasicBlock *Pred : Preds)
 | 
						|
    PHI->addIncoming(SourceAggregates[Pred], Pred);
 | 
						|
 | 
						|
  ++NumAggregateReconstructionsSimplified;
 | 
						|
  return replaceInstUsesWith(OrigIVI, PHI);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to find redundant insertvalue instructions, like the following ones:
 | 
						|
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
 | 
						|
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
 | 
						|
/// Here the second instruction inserts values at the same indices, as the
 | 
						|
/// first one, making the first one redundant.
 | 
						|
/// It should be transformed to:
 | 
						|
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
 | 
						|
Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
 | 
						|
  bool IsRedundant = false;
 | 
						|
  ArrayRef<unsigned int> FirstIndices = I.getIndices();
 | 
						|
 | 
						|
  // If there is a chain of insertvalue instructions (each of them except the
 | 
						|
  // last one has only one use and it's another insertvalue insn from this
 | 
						|
  // chain), check if any of the 'children' uses the same indices as the first
 | 
						|
  // instruction. In this case, the first one is redundant.
 | 
						|
  Value *V = &I;
 | 
						|
  unsigned Depth = 0;
 | 
						|
  while (V->hasOneUse() && Depth < 10) {
 | 
						|
    User *U = V->user_back();
 | 
						|
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
 | 
						|
    if (!UserInsInst || U->getOperand(0) != V)
 | 
						|
      break;
 | 
						|
    if (UserInsInst->getIndices() == FirstIndices) {
 | 
						|
      IsRedundant = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    V = UserInsInst;
 | 
						|
    Depth++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsRedundant)
 | 
						|
    return replaceInstUsesWith(I, I.getOperand(0));
 | 
						|
 | 
						|
  if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
 | 
						|
    return NewI;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
 | 
						|
  // Can not analyze scalable type, the number of elements is not a compile-time
 | 
						|
  // constant.
 | 
						|
  if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  int MaskSize = Shuf.getShuffleMask().size();
 | 
						|
  int VecSize =
 | 
						|
      cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
 | 
						|
 | 
						|
  // A vector select does not change the size of the operands.
 | 
						|
  if (MaskSize != VecSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Each mask element must be undefined or choose a vector element from one of
 | 
						|
  // the source operands without crossing vector lanes.
 | 
						|
  for (int i = 0; i != MaskSize; ++i) {
 | 
						|
    int Elt = Shuf.getMaskValue(i);
 | 
						|
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Turn a chain of inserts that splats a value into an insert + shuffle:
 | 
						|
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
 | 
						|
/// shufflevector(insertelt(X, %k, 0), undef, zero)
 | 
						|
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
 | 
						|
  // We are interested in the last insert in a chain. So if this insert has a
 | 
						|
  // single user and that user is an insert, bail.
 | 
						|
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  VectorType *VecTy = InsElt.getType();
 | 
						|
  // Can not handle scalable type, the number of elements is not a compile-time
 | 
						|
  // constant.
 | 
						|
  if (isa<ScalableVectorType>(VecTy))
 | 
						|
    return nullptr;
 | 
						|
  unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
 | 
						|
 | 
						|
  // Do not try to do this for a one-element vector, since that's a nop,
 | 
						|
  // and will cause an inf-loop.
 | 
						|
  if (NumElements == 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *SplatVal = InsElt.getOperand(1);
 | 
						|
  InsertElementInst *CurrIE = &InsElt;
 | 
						|
  SmallBitVector ElementPresent(NumElements, false);
 | 
						|
  InsertElementInst *FirstIE = nullptr;
 | 
						|
 | 
						|
  // Walk the chain backwards, keeping track of which indices we inserted into,
 | 
						|
  // until we hit something that isn't an insert of the splatted value.
 | 
						|
  while (CurrIE) {
 | 
						|
    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
 | 
						|
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
 | 
						|
    // Check none of the intermediate steps have any additional uses, except
 | 
						|
    // for the root insertelement instruction, which can be re-used, if it
 | 
						|
    // inserts at position 0.
 | 
						|
    if (CurrIE != &InsElt &&
 | 
						|
        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    ElementPresent[Idx->getZExtValue()] = true;
 | 
						|
    FirstIE = CurrIE;
 | 
						|
    CurrIE = NextIE;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is just a single insertelement (not a sequence), we are done.
 | 
						|
  if (FirstIE == &InsElt)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we are not inserting into an undef vector, make sure we've seen an
 | 
						|
  // insert into every element.
 | 
						|
  // TODO: If the base vector is not undef, it might be better to create a splat
 | 
						|
  //       and then a select-shuffle (blend) with the base vector.
 | 
						|
  if (!isa<UndefValue>(FirstIE->getOperand(0)))
 | 
						|
    if (!ElementPresent.all())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  // Create the insert + shuffle.
 | 
						|
  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
 | 
						|
  UndefValue *UndefVec = UndefValue::get(VecTy);
 | 
						|
  Constant *Zero = ConstantInt::get(Int32Ty, 0);
 | 
						|
  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
 | 
						|
    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
 | 
						|
 | 
						|
  // Splat from element 0, but replace absent elements with undef in the mask.
 | 
						|
  SmallVector<int, 16> Mask(NumElements, 0);
 | 
						|
  for (unsigned i = 0; i != NumElements; ++i)
 | 
						|
    if (!ElementPresent[i])
 | 
						|
      Mask[i] = -1;
 | 
						|
 | 
						|
  return new ShuffleVectorInst(FirstIE, UndefVec, Mask);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold an insert element into an existing splat shuffle by changing
 | 
						|
/// the shuffle's mask to include the index of this insert element.
 | 
						|
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
 | 
						|
  // Check if the vector operand of this insert is a canonical splat shuffle.
 | 
						|
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
 | 
						|
  if (!Shuf || !Shuf->isZeroEltSplat())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Bail out early if shuffle is scalable type. The number of elements in
 | 
						|
  // shuffle mask is unknown at compile-time.
 | 
						|
  if (isa<ScalableVectorType>(Shuf->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check for a constant insertion index.
 | 
						|
  uint64_t IdxC;
 | 
						|
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check if the splat shuffle's input is the same as this insert's scalar op.
 | 
						|
  Value *X = InsElt.getOperand(1);
 | 
						|
  Value *Op0 = Shuf->getOperand(0);
 | 
						|
  if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Replace the shuffle mask element at the index of this insert with a zero.
 | 
						|
  // For example:
 | 
						|
  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
 | 
						|
  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
 | 
						|
  unsigned NumMaskElts =
 | 
						|
      cast<FixedVectorType>(Shuf->getType())->getNumElements();
 | 
						|
  SmallVector<int, 16> NewMask(NumMaskElts);
 | 
						|
  for (unsigned i = 0; i != NumMaskElts; ++i)
 | 
						|
    NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
 | 
						|
 | 
						|
  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold an extract+insert element into an existing identity shuffle by
 | 
						|
/// changing the shuffle's mask to include the index of this insert element.
 | 
						|
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
 | 
						|
  // Check if the vector operand of this insert is an identity shuffle.
 | 
						|
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
 | 
						|
  if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
 | 
						|
      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Bail out early if shuffle is scalable type. The number of elements in
 | 
						|
  // shuffle mask is unknown at compile-time.
 | 
						|
  if (isa<ScalableVectorType>(Shuf->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check for a constant insertion index.
 | 
						|
  uint64_t IdxC;
 | 
						|
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check if this insert's scalar op is extracted from the identity shuffle's
 | 
						|
  // input vector.
 | 
						|
  Value *Scalar = InsElt.getOperand(1);
 | 
						|
  Value *X = Shuf->getOperand(0);
 | 
						|
  if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Replace the shuffle mask element at the index of this extract+insert with
 | 
						|
  // that same index value.
 | 
						|
  // For example:
 | 
						|
  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
 | 
						|
  unsigned NumMaskElts =
 | 
						|
      cast<FixedVectorType>(Shuf->getType())->getNumElements();
 | 
						|
  SmallVector<int, 16> NewMask(NumMaskElts);
 | 
						|
  ArrayRef<int> OldMask = Shuf->getShuffleMask();
 | 
						|
  for (unsigned i = 0; i != NumMaskElts; ++i) {
 | 
						|
    if (i != IdxC) {
 | 
						|
      // All mask elements besides the inserted element remain the same.
 | 
						|
      NewMask[i] = OldMask[i];
 | 
						|
    } else if (OldMask[i] == (int)IdxC) {
 | 
						|
      // If the mask element was already set, there's nothing to do
 | 
						|
      // (demanded elements analysis may unset it later).
 | 
						|
      return nullptr;
 | 
						|
    } else {
 | 
						|
      assert(OldMask[i] == UndefMaskElem &&
 | 
						|
             "Unexpected shuffle mask element for identity shuffle");
 | 
						|
      NewMask[i] = IdxC;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
 | 
						|
}
 | 
						|
 | 
						|
/// If we have an insertelement instruction feeding into another insertelement
 | 
						|
/// and the 2nd is inserting a constant into the vector, canonicalize that
 | 
						|
/// constant insertion before the insertion of a variable:
 | 
						|
///
 | 
						|
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
 | 
						|
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
 | 
						|
///
 | 
						|
/// This has the potential of eliminating the 2nd insertelement instruction
 | 
						|
/// via constant folding of the scalar constant into a vector constant.
 | 
						|
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
 | 
						|
                                     InstCombiner::BuilderTy &Builder) {
 | 
						|
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
 | 
						|
  if (!InsElt1 || !InsElt1->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X, *Y;
 | 
						|
  Constant *ScalarC;
 | 
						|
  ConstantInt *IdxC1, *IdxC2;
 | 
						|
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
 | 
						|
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
 | 
						|
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
 | 
						|
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
 | 
						|
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
 | 
						|
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
 | 
						|
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
 | 
						|
/// --> shufflevector X, CVec', Mask'
 | 
						|
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
 | 
						|
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
 | 
						|
  // Bail out if the parent has more than one use. In that case, we'd be
 | 
						|
  // replacing the insertelt with a shuffle, and that's not a clear win.
 | 
						|
  if (!Inst || !Inst->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
 | 
						|
    // The shuffle must have a constant vector operand. The insertelt must have
 | 
						|
    // a constant scalar being inserted at a constant position in the vector.
 | 
						|
    Constant *ShufConstVec, *InsEltScalar;
 | 
						|
    uint64_t InsEltIndex;
 | 
						|
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
 | 
						|
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
 | 
						|
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Adding an element to an arbitrary shuffle could be expensive, but a
 | 
						|
    // shuffle that selects elements from vectors without crossing lanes is
 | 
						|
    // assumed cheap.
 | 
						|
    // If we're just adding a constant into that shuffle, it will still be
 | 
						|
    // cheap.
 | 
						|
    if (!isShuffleEquivalentToSelect(*Shuf))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // From the above 'select' check, we know that the mask has the same number
 | 
						|
    // of elements as the vector input operands. We also know that each constant
 | 
						|
    // input element is used in its lane and can not be used more than once by
 | 
						|
    // the shuffle. Therefore, replace the constant in the shuffle's constant
 | 
						|
    // vector with the insertelt constant. Replace the constant in the shuffle's
 | 
						|
    // mask vector with the insertelt index plus the length of the vector
 | 
						|
    // (because the constant vector operand of a shuffle is always the 2nd
 | 
						|
    // operand).
 | 
						|
    ArrayRef<int> Mask = Shuf->getShuffleMask();
 | 
						|
    unsigned NumElts = Mask.size();
 | 
						|
    SmallVector<Constant *, 16> NewShufElts(NumElts);
 | 
						|
    SmallVector<int, 16> NewMaskElts(NumElts);
 | 
						|
    for (unsigned I = 0; I != NumElts; ++I) {
 | 
						|
      if (I == InsEltIndex) {
 | 
						|
        NewShufElts[I] = InsEltScalar;
 | 
						|
        NewMaskElts[I] = InsEltIndex + NumElts;
 | 
						|
      } else {
 | 
						|
        // Copy over the existing values.
 | 
						|
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
 | 
						|
        NewMaskElts[I] = Mask[I];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create new operands for a shuffle that includes the constant of the
 | 
						|
    // original insertelt. The old shuffle will be dead now.
 | 
						|
    return new ShuffleVectorInst(Shuf->getOperand(0),
 | 
						|
                                 ConstantVector::get(NewShufElts), NewMaskElts);
 | 
						|
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
 | 
						|
    // Transform sequences of insertelements ops with constant data/indexes into
 | 
						|
    // a single shuffle op.
 | 
						|
    // Can not handle scalable type, the number of elements needed to create
 | 
						|
    // shuffle mask is not a compile-time constant.
 | 
						|
    if (isa<ScalableVectorType>(InsElt.getType()))
 | 
						|
      return nullptr;
 | 
						|
    unsigned NumElts =
 | 
						|
        cast<FixedVectorType>(InsElt.getType())->getNumElements();
 | 
						|
 | 
						|
    uint64_t InsertIdx[2];
 | 
						|
    Constant *Val[2];
 | 
						|
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
 | 
						|
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
 | 
						|
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
 | 
						|
        !match(IEI->getOperand(1), m_Constant(Val[1])))
 | 
						|
      return nullptr;
 | 
						|
    SmallVector<Constant *, 16> Values(NumElts);
 | 
						|
    SmallVector<int, 16> Mask(NumElts);
 | 
						|
    auto ValI = std::begin(Val);
 | 
						|
    // Generate new constant vector and mask.
 | 
						|
    // We have 2 values/masks from the insertelements instructions. Insert them
 | 
						|
    // into new value/mask vectors.
 | 
						|
    for (uint64_t I : InsertIdx) {
 | 
						|
      if (!Values[I]) {
 | 
						|
        Values[I] = *ValI;
 | 
						|
        Mask[I] = NumElts + I;
 | 
						|
      }
 | 
						|
      ++ValI;
 | 
						|
    }
 | 
						|
    // Remaining values are filled with 'undef' values.
 | 
						|
    for (unsigned I = 0; I < NumElts; ++I) {
 | 
						|
      if (!Values[I]) {
 | 
						|
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
 | 
						|
        Mask[I] = I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Create new operands for a shuffle that includes the constant of the
 | 
						|
    // original insertelt.
 | 
						|
    return new ShuffleVectorInst(IEI->getOperand(0),
 | 
						|
                                 ConstantVector::get(Values), Mask);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Value *VecOp    = IE.getOperand(0);
 | 
						|
  Value *ScalarOp = IE.getOperand(1);
 | 
						|
  Value *IdxOp    = IE.getOperand(2);
 | 
						|
 | 
						|
  if (auto *V = SimplifyInsertElementInst(
 | 
						|
          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
 | 
						|
    return replaceInstUsesWith(IE, V);
 | 
						|
 | 
						|
  // If the scalar is bitcast and inserted into undef, do the insert in the
 | 
						|
  // source type followed by bitcast.
 | 
						|
  // TODO: Generalize for insert into any constant, not just undef?
 | 
						|
  Value *ScalarSrc;
 | 
						|
  if (match(VecOp, m_Undef()) &&
 | 
						|
      match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
 | 
						|
      (ScalarSrc->getType()->isIntegerTy() ||
 | 
						|
       ScalarSrc->getType()->isFloatingPointTy())) {
 | 
						|
    // inselt undef, (bitcast ScalarSrc), IdxOp -->
 | 
						|
    //   bitcast (inselt undef, ScalarSrc, IdxOp)
 | 
						|
    Type *ScalarTy = ScalarSrc->getType();
 | 
						|
    Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
 | 
						|
    UndefValue *NewUndef = UndefValue::get(VecTy);
 | 
						|
    Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
 | 
						|
    return new BitCastInst(NewInsElt, IE.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the vector and scalar are both bitcast from the same element type, do
 | 
						|
  // the insert in that source type followed by bitcast.
 | 
						|
  Value *VecSrc;
 | 
						|
  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
 | 
						|
      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
 | 
						|
      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
 | 
						|
      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
 | 
						|
      cast<VectorType>(VecSrc->getType())->getElementType() ==
 | 
						|
          ScalarSrc->getType()) {
 | 
						|
    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
 | 
						|
    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
 | 
						|
    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
 | 
						|
    return new BitCastInst(NewInsElt, IE.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the inserted element was extracted from some other fixed-length vector
 | 
						|
  // and both indexes are valid constants, try to turn this into a shuffle.
 | 
						|
  // Can not handle scalable vector type, the number of elements needed to
 | 
						|
  // create shuffle mask is not a compile-time constant.
 | 
						|
  uint64_t InsertedIdx, ExtractedIdx;
 | 
						|
  Value *ExtVecOp;
 | 
						|
  if (isa<FixedVectorType>(IE.getType()) &&
 | 
						|
      match(IdxOp, m_ConstantInt(InsertedIdx)) &&
 | 
						|
      match(ScalarOp,
 | 
						|
            m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
 | 
						|
      isa<FixedVectorType>(ExtVecOp->getType()) &&
 | 
						|
      ExtractedIdx <
 | 
						|
          cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
 | 
						|
    // TODO: Looking at the user(s) to determine if this insert is a
 | 
						|
    // fold-to-shuffle opportunity does not match the usual instcombine
 | 
						|
    // constraints. We should decide if the transform is worthy based only
 | 
						|
    // on this instruction and its operands, but that may not work currently.
 | 
						|
    //
 | 
						|
    // Here, we are trying to avoid creating shuffles before reaching
 | 
						|
    // the end of a chain of extract-insert pairs. This is complicated because
 | 
						|
    // we do not generally form arbitrary shuffle masks in instcombine
 | 
						|
    // (because those may codegen poorly), but collectShuffleElements() does
 | 
						|
    // exactly that.
 | 
						|
    //
 | 
						|
    // The rules for determining what is an acceptable target-independent
 | 
						|
    // shuffle mask are fuzzy because they evolve based on the backend's
 | 
						|
    // capabilities and real-world impact.
 | 
						|
    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
 | 
						|
      if (!Insert.hasOneUse())
 | 
						|
        return true;
 | 
						|
      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
 | 
						|
      if (!InsertUser)
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    };
 | 
						|
 | 
						|
    // Try to form a shuffle from a chain of extract-insert ops.
 | 
						|
    if (isShuffleRootCandidate(IE)) {
 | 
						|
      SmallVector<int, 16> Mask;
 | 
						|
      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
 | 
						|
 | 
						|
      // The proposed shuffle may be trivial, in which case we shouldn't
 | 
						|
      // perform the combine.
 | 
						|
      if (LR.first != &IE && LR.second != &IE) {
 | 
						|
        // We now have a shuffle of LHS, RHS, Mask.
 | 
						|
        if (LR.second == nullptr)
 | 
						|
          LR.second = UndefValue::get(LR.first->getType());
 | 
						|
        return new ShuffleVectorInst(LR.first, LR.second, Mask);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
 | 
						|
    unsigned VWidth = VecTy->getNumElements();
 | 
						|
    APInt UndefElts(VWidth, 0);
 | 
						|
    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
    if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | 
						|
      if (V != &IE)
 | 
						|
        return replaceInstUsesWith(IE, V);
 | 
						|
      return &IE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
 | 
						|
    return Shuf;
 | 
						|
 | 
						|
  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
 | 
						|
    return NewInsElt;
 | 
						|
 | 
						|
  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  if (Instruction *Splat = foldInsEltIntoSplat(IE))
 | 
						|
    return Splat;
 | 
						|
 | 
						|
  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
 | 
						|
    return IdentityShuf;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can evaluate the specified expression tree if the vector
 | 
						|
/// elements were shuffled in a different order.
 | 
						|
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
 | 
						|
                                unsigned Depth = 5) {
 | 
						|
  // We can always reorder the elements of a constant.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We won't reorder vector arguments. No IPO here.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // Two users may expect different orders of the elements. Don't try it.
 | 
						|
  if (!I->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Depth == 0) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
      // Propagating an undefined shuffle mask element to integer div/rem is not
 | 
						|
      // allowed because those opcodes can create immediate undefined behavior
 | 
						|
      // from an undefined element in an operand.
 | 
						|
      if (llvm::is_contained(Mask, -1))
 | 
						|
        return false;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      // Bail out if we would create longer vector ops. We could allow creating
 | 
						|
      // longer vector ops, but that may result in more expensive codegen.
 | 
						|
      Type *ITy = I->getType();
 | 
						|
      if (ITy->isVectorTy() &&
 | 
						|
          Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
 | 
						|
        return false;
 | 
						|
      for (Value *Operand : I->operands()) {
 | 
						|
        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
      if (!CI) return false;
 | 
						|
      int ElementNumber = CI->getLimitedValue();
 | 
						|
 | 
						|
      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
 | 
						|
      // can't put an element into multiple indices.
 | 
						|
      bool SeenOnce = false;
 | 
						|
      for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
        if (Mask[i] == ElementNumber) {
 | 
						|
          if (SeenOnce)
 | 
						|
            return false;
 | 
						|
          SeenOnce = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Rebuild a new instruction just like 'I' but with the new operands given.
 | 
						|
/// In the event of type mismatch, the type of the operands is correct.
 | 
						|
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
 | 
						|
  // We don't want to use the IRBuilder here because we want the replacement
 | 
						|
  // instructions to appear next to 'I', not the builder's insertion point.
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
 | 
						|
      BinaryOperator *New =
 | 
						|
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
 | 
						|
                                 NewOps[0], NewOps[1], "", BO);
 | 
						|
      if (isa<OverflowingBinaryOperator>(BO)) {
 | 
						|
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
 | 
						|
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
 | 
						|
      }
 | 
						|
      if (isa<PossiblyExactOperator>(BO)) {
 | 
						|
        New->setIsExact(BO->isExact());
 | 
						|
      }
 | 
						|
      if (isa<FPMathOperator>(BO))
 | 
						|
        New->copyFastMathFlags(I);
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
    case Instruction::ICmp:
 | 
						|
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
 | 
						|
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::FCmp:
 | 
						|
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
 | 
						|
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt: {
 | 
						|
      // It's possible that the mask has a different number of elements from
 | 
						|
      // the original cast. We recompute the destination type to match the mask.
 | 
						|
      Type *DestTy = VectorType::get(
 | 
						|
          I->getType()->getScalarType(),
 | 
						|
          cast<VectorType>(NewOps[0]->getType())->getElementCount());
 | 
						|
      assert(NewOps.size() == 1 && "cast with #ops != 1");
 | 
						|
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
 | 
						|
                              "", I);
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      Value *Ptr = NewOps[0];
 | 
						|
      ArrayRef<Value*> Idx = NewOps.slice(1);
 | 
						|
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | 
						|
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
 | 
						|
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
 | 
						|
      return GEP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to rebuild vector instructions");
 | 
						|
}
 | 
						|
 | 
						|
static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
 | 
						|
  // Mask.size() does not need to be equal to the number of vector elements.
 | 
						|
 | 
						|
  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
 | 
						|
  Type *EltTy = V->getType()->getScalarType();
 | 
						|
  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
 | 
						|
  if (isa<UndefValue>(V))
 | 
						|
    return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(V))
 | 
						|
    return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
 | 
						|
                                          Mask);
 | 
						|
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      SmallVector<Value*, 8> NewOps;
 | 
						|
      bool NeedsRebuild =
 | 
						|
          (Mask.size() !=
 | 
						|
           cast<FixedVectorType>(I->getType())->getNumElements());
 | 
						|
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *V;
 | 
						|
        // Recursively call evaluateInDifferentElementOrder on vector arguments
 | 
						|
        // as well. E.g. GetElementPtr may have scalar operands even if the
 | 
						|
        // return value is a vector, so we need to examine the operand type.
 | 
						|
        if (I->getOperand(i)->getType()->isVectorTy())
 | 
						|
          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
 | 
						|
        else
 | 
						|
          V = I->getOperand(i);
 | 
						|
        NewOps.push_back(V);
 | 
						|
        NeedsRebuild |= (V != I->getOperand(i));
 | 
						|
      }
 | 
						|
      if (NeedsRebuild) {
 | 
						|
        return buildNew(I, NewOps);
 | 
						|
      }
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
 | 
						|
 | 
						|
      // The insertelement was inserting at Element. Figure out which element
 | 
						|
      // that becomes after shuffling. The answer is guaranteed to be unique
 | 
						|
      // by CanEvaluateShuffled.
 | 
						|
      bool Found = false;
 | 
						|
      int Index = 0;
 | 
						|
      for (int e = Mask.size(); Index != e; ++Index) {
 | 
						|
        if (Mask[Index] == Element) {
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If element is not in Mask, no need to handle the operand 1 (element to
 | 
						|
      // be inserted). Just evaluate values in operand 0 according to Mask.
 | 
						|
      if (!Found)
 | 
						|
        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | 
						|
 | 
						|
      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | 
						|
      return InsertElementInst::Create(V, I->getOperand(1),
 | 
						|
                                       ConstantInt::get(I32Ty, Index), "", I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to reorder elements of vector instruction!");
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the shuffle is extracting a contiguous range of values from
 | 
						|
// LHS, for example:
 | 
						|
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 
						|
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
 | 
						|
//   Shuffles to:  |EE|FF|GG|HH|
 | 
						|
//                 +--+--+--+--+
 | 
						|
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
 | 
						|
                                       ArrayRef<int> Mask) {
 | 
						|
  unsigned LHSElems =
 | 
						|
      cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
 | 
						|
  unsigned MaskElems = Mask.size();
 | 
						|
  unsigned BegIdx = Mask.front();
 | 
						|
  unsigned EndIdx = Mask.back();
 | 
						|
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
 | 
						|
    return false;
 | 
						|
  for (unsigned I = 0; I != MaskElems; ++I)
 | 
						|
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// These are the ingredients in an alternate form binary operator as described
 | 
						|
/// below.
 | 
						|
struct BinopElts {
 | 
						|
  BinaryOperator::BinaryOps Opcode;
 | 
						|
  Value *Op0;
 | 
						|
  Value *Op1;
 | 
						|
  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
 | 
						|
            Value *V0 = nullptr, Value *V1 = nullptr) :
 | 
						|
      Opcode(Opc), Op0(V0), Op1(V1) {}
 | 
						|
  operator bool() const { return Opcode != 0; }
 | 
						|
};
 | 
						|
 | 
						|
/// Binops may be transformed into binops with different opcodes and operands.
 | 
						|
/// Reverse the usual canonicalization to enable folds with the non-canonical
 | 
						|
/// form of the binop. If a transform is possible, return the elements of the
 | 
						|
/// new binop. If not, return invalid elements.
 | 
						|
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
 | 
						|
  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
 | 
						|
  Type *Ty = BO->getType();
 | 
						|
  switch (BO->getOpcode()) {
 | 
						|
    case Instruction::Shl: {
 | 
						|
      // shl X, C --> mul X, (1 << C)
 | 
						|
      Constant *C;
 | 
						|
      if (match(BO1, m_Constant(C))) {
 | 
						|
        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
 | 
						|
        return { Instruction::Mul, BO0, ShlOne };
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Or: {
 | 
						|
      // or X, C --> add X, C (when X and C have no common bits set)
 | 
						|
      const APInt *C;
 | 
						|
      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
 | 
						|
        return { Instruction::Add, BO0, BO1 };
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
 | 
						|
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
 | 
						|
 | 
						|
  // Are we shuffling together some value and that same value after it has been
 | 
						|
  // modified by a binop with a constant?
 | 
						|
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | 
						|
  Constant *C;
 | 
						|
  bool Op0IsBinop;
 | 
						|
  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
 | 
						|
    Op0IsBinop = true;
 | 
						|
  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
 | 
						|
    Op0IsBinop = false;
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The identity constant for a binop leaves a variable operand unchanged. For
 | 
						|
  // a vector, this is a splat of something like 0, -1, or 1.
 | 
						|
  // If there's no identity constant for this binop, we're done.
 | 
						|
  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
 | 
						|
  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
 | 
						|
  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
 | 
						|
  if (!IdC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Shuffle identity constants into the lanes that return the original value.
 | 
						|
  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
 | 
						|
  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
 | 
						|
  // The existing binop constant vector remains in the same operand position.
 | 
						|
  ArrayRef<int> Mask = Shuf.getShuffleMask();
 | 
						|
  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
 | 
						|
                                ConstantExpr::getShuffleVector(IdC, C, Mask);
 | 
						|
 | 
						|
  bool MightCreatePoisonOrUB =
 | 
						|
      is_contained(Mask, UndefMaskElem) &&
 | 
						|
      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
 | 
						|
  if (MightCreatePoisonOrUB)
 | 
						|
    NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
 | 
						|
 | 
						|
  // shuf (bop X, C), X, M --> bop X, C'
 | 
						|
  // shuf X, (bop X, C), M --> bop X, C'
 | 
						|
  Value *X = Op0IsBinop ? Op1 : Op0;
 | 
						|
  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
 | 
						|
  NewBO->copyIRFlags(BO);
 | 
						|
 | 
						|
  // An undef shuffle mask element may propagate as an undef constant element in
 | 
						|
  // the new binop. That would produce poison where the original code might not.
 | 
						|
  // If we already made a safe constant, then there's no danger.
 | 
						|
  if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
 | 
						|
    NewBO->dropPoisonGeneratingFlags();
 | 
						|
  return NewBO;
 | 
						|
}
 | 
						|
 | 
						|
/// If we have an insert of a scalar to a non-zero element of an undefined
 | 
						|
/// vector and then shuffle that value, that's the same as inserting to the zero
 | 
						|
/// element and shuffling. Splatting from the zero element is recognized as the
 | 
						|
/// canonical form of splat.
 | 
						|
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
 | 
						|
                                            InstCombiner::BuilderTy &Builder) {
 | 
						|
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | 
						|
  ArrayRef<int> Mask = Shuf.getShuffleMask();
 | 
						|
  Value *X;
 | 
						|
  uint64_t IndexC;
 | 
						|
 | 
						|
  // Match a shuffle that is a splat to a non-zero element.
 | 
						|
  if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
 | 
						|
                                       m_ConstantInt(IndexC)))) ||
 | 
						|
      !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Insert into element 0 of an undef vector.
 | 
						|
  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
 | 
						|
  Constant *Zero = Builder.getInt32(0);
 | 
						|
  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
 | 
						|
 | 
						|
  // Splat from element 0. Any mask element that is undefined remains undefined.
 | 
						|
  // For example:
 | 
						|
  // shuf (inselt undef, X, 2), undef, <2,2,undef>
 | 
						|
  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
 | 
						|
  unsigned NumMaskElts =
 | 
						|
      cast<FixedVectorType>(Shuf.getType())->getNumElements();
 | 
						|
  SmallVector<int, 16> NewMask(NumMaskElts, 0);
 | 
						|
  for (unsigned i = 0; i != NumMaskElts; ++i)
 | 
						|
    if (Mask[i] == UndefMaskElem)
 | 
						|
      NewMask[i] = Mask[i];
 | 
						|
 | 
						|
  return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold shuffles that are the equivalent of a vector select.
 | 
						|
static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
 | 
						|
                                      InstCombiner::BuilderTy &Builder,
 | 
						|
                                      const DataLayout &DL) {
 | 
						|
  if (!Shuf.isSelect())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
 | 
						|
  // Commuting undef to operand 0 conflicts with another canonicalization.
 | 
						|
  unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
 | 
						|
  if (!isa<UndefValue>(Shuf.getOperand(1)) &&
 | 
						|
      Shuf.getMaskValue(0) >= (int)NumElts) {
 | 
						|
    // TODO: Can we assert that both operands of a shuffle-select are not undef
 | 
						|
    // (otherwise, it would have been folded by instsimplify?
 | 
						|
    Shuf.commute();
 | 
						|
    return &Shuf;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
 | 
						|
    return I;
 | 
						|
 | 
						|
  BinaryOperator *B0, *B1;
 | 
						|
  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
 | 
						|
      !match(Shuf.getOperand(1), m_BinOp(B1)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X, *Y;
 | 
						|
  Constant *C0, *C1;
 | 
						|
  bool ConstantsAreOp1;
 | 
						|
  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
 | 
						|
      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
 | 
						|
    ConstantsAreOp1 = true;
 | 
						|
  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
 | 
						|
           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
 | 
						|
    ConstantsAreOp1 = false;
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We need matching binops to fold the lanes together.
 | 
						|
  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
 | 
						|
  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
 | 
						|
  bool DropNSW = false;
 | 
						|
  if (ConstantsAreOp1 && Opc0 != Opc1) {
 | 
						|
    // TODO: We drop "nsw" if shift is converted into multiply because it may
 | 
						|
    // not be correct when the shift amount is BitWidth - 1. We could examine
 | 
						|
    // each vector element to determine if it is safe to keep that flag.
 | 
						|
    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
 | 
						|
      DropNSW = true;
 | 
						|
    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
 | 
						|
      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
 | 
						|
      Opc0 = AltB0.Opcode;
 | 
						|
      C0 = cast<Constant>(AltB0.Op1);
 | 
						|
    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
 | 
						|
      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
 | 
						|
      Opc1 = AltB1.Opcode;
 | 
						|
      C1 = cast<Constant>(AltB1.Op1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opc0 != Opc1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The opcodes must be the same. Use a new name to make that clear.
 | 
						|
  BinaryOperator::BinaryOps BOpc = Opc0;
 | 
						|
 | 
						|
  // Select the constant elements needed for the single binop.
 | 
						|
  ArrayRef<int> Mask = Shuf.getShuffleMask();
 | 
						|
  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
 | 
						|
 | 
						|
  // We are moving a binop after a shuffle. When a shuffle has an undefined
 | 
						|
  // mask element, the result is undefined, but it is not poison or undefined
 | 
						|
  // behavior. That is not necessarily true for div/rem/shift.
 | 
						|
  bool MightCreatePoisonOrUB =
 | 
						|
      is_contained(Mask, UndefMaskElem) &&
 | 
						|
      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
 | 
						|
  if (MightCreatePoisonOrUB)
 | 
						|
    NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
 | 
						|
                                                       ConstantsAreOp1);
 | 
						|
 | 
						|
  Value *V;
 | 
						|
  if (X == Y) {
 | 
						|
    // Remove a binop and the shuffle by rearranging the constant:
 | 
						|
    // shuffle (op V, C0), (op V, C1), M --> op V, C'
 | 
						|
    // shuffle (op C0, V), (op C1, V), M --> op C', V
 | 
						|
    V = X;
 | 
						|
  } else {
 | 
						|
    // If there are 2 different variable operands, we must create a new shuffle
 | 
						|
    // (select) first, so check uses to ensure that we don't end up with more
 | 
						|
    // instructions than we started with.
 | 
						|
    if (!B0->hasOneUse() && !B1->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If we use the original shuffle mask and op1 is *variable*, we would be
 | 
						|
    // putting an undef into operand 1 of div/rem/shift. This is either UB or
 | 
						|
    // poison. We do not have to guard against UB when *constants* are op1
 | 
						|
    // because safe constants guarantee that we do not overflow sdiv/srem (and
 | 
						|
    // there's no danger for other opcodes).
 | 
						|
    // TODO: To allow this case, create a new shuffle mask with no undefs.
 | 
						|
    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Note: In general, we do not create new shuffles in InstCombine because we
 | 
						|
    // do not know if a target can lower an arbitrary shuffle optimally. In this
 | 
						|
    // case, the shuffle uses the existing mask, so there is no additional risk.
 | 
						|
 | 
						|
    // Select the variable vectors first, then perform the binop:
 | 
						|
    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
 | 
						|
    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
 | 
						|
    V = Builder.CreateShuffleVector(X, Y, Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
 | 
						|
                                         BinaryOperator::Create(BOpc, NewC, V);
 | 
						|
 | 
						|
  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
 | 
						|
  // 1. If we changed an opcode, poison conditions might have changed.
 | 
						|
  // 2. If the shuffle had undef mask elements, the new binop might have undefs
 | 
						|
  //    where the original code did not. But if we already made a safe constant,
 | 
						|
  //    then there's no danger.
 | 
						|
  NewBO->copyIRFlags(B0);
 | 
						|
  NewBO->andIRFlags(B1);
 | 
						|
  if (DropNSW)
 | 
						|
    NewBO->setHasNoSignedWrap(false);
 | 
						|
  if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
 | 
						|
    NewBO->dropPoisonGeneratingFlags();
 | 
						|
  return NewBO;
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
 | 
						|
/// Example (little endian):
 | 
						|
/// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
 | 
						|
static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
 | 
						|
                                     bool IsBigEndian) {
 | 
						|
  // This must be a bitcasted shuffle of 1 vector integer operand.
 | 
						|
  Type *DestType = Shuf.getType();
 | 
						|
  Value *X;
 | 
						|
  if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
 | 
						|
      !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The source type must have the same number of elements as the shuffle,
 | 
						|
  // and the source element type must be larger than the shuffle element type.
 | 
						|
  Type *SrcType = X->getType();
 | 
						|
  if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
 | 
						|
      cast<FixedVectorType>(SrcType)->getNumElements() !=
 | 
						|
          cast<FixedVectorType>(DestType)->getNumElements() ||
 | 
						|
      SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(Shuf.changesLength() && !Shuf.increasesLength() &&
 | 
						|
         "Expected a shuffle that decreases length");
 | 
						|
 | 
						|
  // Last, check that the mask chooses the correct low bits for each narrow
 | 
						|
  // element in the result.
 | 
						|
  uint64_t TruncRatio =
 | 
						|
      SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
 | 
						|
  ArrayRef<int> Mask = Shuf.getShuffleMask();
 | 
						|
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
    if (Mask[i] == UndefMaskElem)
 | 
						|
      continue;
 | 
						|
    uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
 | 
						|
    assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
 | 
						|
    if (Mask[i] != (int)LSBIndex)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return new TruncInst(X, DestType);
 | 
						|
}
 | 
						|
 | 
						|
/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
 | 
						|
/// narrowing (concatenating with undef and extracting back to the original
 | 
						|
/// length). This allows replacing the wide select with a narrow select.
 | 
						|
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
 | 
						|
                                       InstCombiner::BuilderTy &Builder) {
 | 
						|
  // This must be a narrowing identity shuffle. It extracts the 1st N elements
 | 
						|
  // of the 1st vector operand of a shuffle.
 | 
						|
  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The vector being shuffled must be a vector select that we can eliminate.
 | 
						|
  // TODO: The one-use requirement could be eased if X and/or Y are constants.
 | 
						|
  Value *Cond, *X, *Y;
 | 
						|
  if (!match(Shuf.getOperand(0),
 | 
						|
             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We need a narrow condition value. It must be extended with undef elements
 | 
						|
  // and have the same number of elements as this shuffle.
 | 
						|
  unsigned NarrowNumElts =
 | 
						|
      cast<FixedVectorType>(Shuf.getType())->getNumElements();
 | 
						|
  Value *NarrowCond;
 | 
						|
  if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
 | 
						|
      cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
 | 
						|
          NarrowNumElts ||
 | 
						|
      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
 | 
						|
  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
 | 
						|
  Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
 | 
						|
  Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
 | 
						|
  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
 | 
						|
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
 | 
						|
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | 
						|
  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X, *Y;
 | 
						|
  ArrayRef<int> Mask;
 | 
						|
  if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
 | 
						|
  // then combining may result in worse codegen.
 | 
						|
  if (!Op0->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We are extracting a subvector from a shuffle. Remove excess elements from
 | 
						|
  // the 1st shuffle mask to eliminate the extract.
 | 
						|
  //
 | 
						|
  // This transform is conservatively limited to identity extracts because we do
 | 
						|
  // not allow arbitrary shuffle mask creation as a target-independent transform
 | 
						|
  // (because we can't guarantee that will lower efficiently).
 | 
						|
  //
 | 
						|
  // If the extracting shuffle has an undef mask element, it transfers to the
 | 
						|
  // new shuffle mask. Otherwise, copy the original mask element. Example:
 | 
						|
  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
 | 
						|
  //   shuf X, Y, <C0, undef, C2, undef>
 | 
						|
  unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
 | 
						|
  SmallVector<int, 16> NewMask(NumElts);
 | 
						|
  assert(NumElts < Mask.size() &&
 | 
						|
         "Identity with extract must have less elements than its inputs");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    int ExtractMaskElt = Shuf.getMaskValue(i);
 | 
						|
    int MaskElt = Mask[i];
 | 
						|
    NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
 | 
						|
  }
 | 
						|
  return new ShuffleVectorInst(X, Y, NewMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to replace a shuffle with an insertelement or try to replace a shuffle
 | 
						|
/// operand with the operand of an insertelement.
 | 
						|
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
 | 
						|
                                          InstCombinerImpl &IC) {
 | 
						|
  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
 | 
						|
  SmallVector<int, 16> Mask;
 | 
						|
  Shuf.getShuffleMask(Mask);
 | 
						|
 | 
						|
  // The shuffle must not change vector sizes.
 | 
						|
  // TODO: This restriction could be removed if the insert has only one use
 | 
						|
  //       (because the transform would require a new length-changing shuffle).
 | 
						|
  int NumElts = Mask.size();
 | 
						|
  if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
 | 
						|
  // not be able to handle it there if the insertelement has >1 use.
 | 
						|
  // If the shuffle has an insertelement operand but does not choose the
 | 
						|
  // inserted scalar element from that value, then we can replace that shuffle
 | 
						|
  // operand with the source vector of the insertelement.
 | 
						|
  Value *X;
 | 
						|
  uint64_t IdxC;
 | 
						|
  if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
 | 
						|
    // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
 | 
						|
    if (!is_contained(Mask, (int)IdxC))
 | 
						|
      return IC.replaceOperand(Shuf, 0, X);
 | 
						|
  }
 | 
						|
  if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
 | 
						|
    // Offset the index constant by the vector width because we are checking for
 | 
						|
    // accesses to the 2nd vector input of the shuffle.
 | 
						|
    IdxC += NumElts;
 | 
						|
    // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
 | 
						|
    if (!is_contained(Mask, (int)IdxC))
 | 
						|
      return IC.replaceOperand(Shuf, 1, X);
 | 
						|
  }
 | 
						|
 | 
						|
  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
 | 
						|
  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
 | 
						|
    // We need an insertelement with a constant index.
 | 
						|
    if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
 | 
						|
                               m_ConstantInt(IndexC))))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Test the shuffle mask to see if it splices the inserted scalar into the
 | 
						|
    // operand 1 vector of the shuffle.
 | 
						|
    int NewInsIndex = -1;
 | 
						|
    for (int i = 0; i != NumElts; ++i) {
 | 
						|
      // Ignore undef mask elements.
 | 
						|
      if (Mask[i] == -1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // The shuffle takes elements of operand 1 without lane changes.
 | 
						|
      if (Mask[i] == NumElts + i)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // The shuffle must choose the inserted scalar exactly once.
 | 
						|
      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // The shuffle is placing the inserted scalar into element i.
 | 
						|
      NewInsIndex = i;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
 | 
						|
 | 
						|
    // Index is updated to the potentially translated insertion lane.
 | 
						|
    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // If the shuffle is unnecessary, insert the scalar operand directly into
 | 
						|
  // operand 1 of the shuffle. Example:
 | 
						|
  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
 | 
						|
  Value *Scalar;
 | 
						|
  ConstantInt *IndexC;
 | 
						|
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
 | 
						|
    return InsertElementInst::Create(V1, Scalar, IndexC);
 | 
						|
 | 
						|
  // Try again after commuting shuffle. Example:
 | 
						|
  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
 | 
						|
  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
 | 
						|
  std::swap(V0, V1);
 | 
						|
  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
 | 
						|
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
 | 
						|
    return InsertElementInst::Create(V1, Scalar, IndexC);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
 | 
						|
  // Match the operands as identity with padding (also known as concatenation
 | 
						|
  // with undef) shuffles of the same source type. The backend is expected to
 | 
						|
  // recreate these concatenations from a shuffle of narrow operands.
 | 
						|
  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
 | 
						|
  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
 | 
						|
  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
 | 
						|
      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We limit this transform to power-of-2 types because we expect that the
 | 
						|
  // backend can convert the simplified IR patterns to identical nodes as the
 | 
						|
  // original IR.
 | 
						|
  // TODO: If we can verify the same behavior for arbitrary types, the
 | 
						|
  //       power-of-2 checks can be removed.
 | 
						|
  Value *X = Shuffle0->getOperand(0);
 | 
						|
  Value *Y = Shuffle1->getOperand(0);
 | 
						|
  if (X->getType() != Y->getType() ||
 | 
						|
      !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
 | 
						|
      !isPowerOf2_32(
 | 
						|
          cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
 | 
						|
      !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
 | 
						|
      isa<UndefValue>(X) || isa<UndefValue>(Y))
 | 
						|
    return nullptr;
 | 
						|
  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
 | 
						|
         isa<UndefValue>(Shuffle1->getOperand(1)) &&
 | 
						|
         "Unexpected operand for identity shuffle");
 | 
						|
 | 
						|
  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
 | 
						|
  // operands directly by adjusting the shuffle mask to account for the narrower
 | 
						|
  // types:
 | 
						|
  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
 | 
						|
  int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
 | 
						|
  int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
 | 
						|
  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
 | 
						|
 | 
						|
  ArrayRef<int> Mask = Shuf.getShuffleMask();
 | 
						|
  SmallVector<int, 16> NewMask(Mask.size(), -1);
 | 
						|
  for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
    if (Mask[i] == -1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this shuffle is choosing an undef element from 1 of the sources, that
 | 
						|
    // element is undef.
 | 
						|
    if (Mask[i] < WideElts) {
 | 
						|
      if (Shuffle0->getMaskValue(Mask[i]) == -1)
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this shuffle is choosing from the 1st narrow op, the mask element is
 | 
						|
    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
 | 
						|
    // element is offset down to adjust for the narrow vector widths.
 | 
						|
    if (Mask[i] < WideElts) {
 | 
						|
      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
 | 
						|
      NewMask[i] = Mask[i];
 | 
						|
    } else {
 | 
						|
      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
 | 
						|
      NewMask[i] = Mask[i] - (WideElts - NarrowElts);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return new ShuffleVectorInst(X, Y, NewMask);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  Value *LHS = SVI.getOperand(0);
 | 
						|
  Value *RHS = SVI.getOperand(1);
 | 
						|
  SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
 | 
						|
  if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
 | 
						|
                                          SVI.getType(), ShufQuery))
 | 
						|
    return replaceInstUsesWith(SVI, V);
 | 
						|
 | 
						|
  // Bail out for scalable vectors
 | 
						|
  if (isa<ScalableVectorType>(LHS->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
 | 
						|
  unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
 | 
						|
 | 
						|
  // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
 | 
						|
  //
 | 
						|
  // if X and Y are of the same (vector) type, and the element size is not
 | 
						|
  // changed by the bitcasts, we can distribute the bitcasts through the
 | 
						|
  // shuffle, hopefully reducing the number of instructions. We make sure that
 | 
						|
  // at least one bitcast only has one use, so we don't *increase* the number of
 | 
						|
  // instructions here.
 | 
						|
  Value *X, *Y;
 | 
						|
  if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
 | 
						|
      X->getType()->isVectorTy() && X->getType() == Y->getType() &&
 | 
						|
      X->getType()->getScalarSizeInBits() ==
 | 
						|
          SVI.getType()->getScalarSizeInBits() &&
 | 
						|
      (LHS->hasOneUse() || RHS->hasOneUse())) {
 | 
						|
    Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
 | 
						|
                                           SVI.getName() + ".uncasted");
 | 
						|
    return new BitCastInst(V, SVI.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayRef<int> Mask = SVI.getShuffleMask();
 | 
						|
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | 
						|
 | 
						|
  // Peek through a bitcasted shuffle operand by scaling the mask. If the
 | 
						|
  // simulated shuffle can simplify, then this shuffle is unnecessary:
 | 
						|
  // shuf (bitcast X), undef, Mask --> bitcast X'
 | 
						|
  // TODO: This could be extended to allow length-changing shuffles.
 | 
						|
  //       The transform might also be obsoleted if we allowed canonicalization
 | 
						|
  //       of bitcasted shuffles.
 | 
						|
  if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
 | 
						|
      X->getType()->isVectorTy() && VWidth == LHSWidth) {
 | 
						|
    // Try to create a scaled mask constant.
 | 
						|
    auto *XType = cast<FixedVectorType>(X->getType());
 | 
						|
    unsigned XNumElts = XType->getNumElements();
 | 
						|
    SmallVector<int, 16> ScaledMask;
 | 
						|
    if (XNumElts >= VWidth) {
 | 
						|
      assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
 | 
						|
      narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
 | 
						|
    } else {
 | 
						|
      assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
 | 
						|
      if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
 | 
						|
        ScaledMask.clear();
 | 
						|
    }
 | 
						|
    if (!ScaledMask.empty()) {
 | 
						|
      // If the shuffled source vector simplifies, cast that value to this
 | 
						|
      // shuffle's type.
 | 
						|
      if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
 | 
						|
                                              ScaledMask, XType, ShufQuery))
 | 
						|
        return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // shuffle x, x, mask --> shuffle x, undef, mask'
 | 
						|
  if (LHS == RHS) {
 | 
						|
    assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
 | 
						|
    // Remap any references to RHS to use LHS.
 | 
						|
    SmallVector<int, 16> Elts;
 | 
						|
    for (unsigned i = 0; i != VWidth; ++i) {
 | 
						|
      // Propagate undef elements or force mask to LHS.
 | 
						|
      if (Mask[i] < 0)
 | 
						|
        Elts.push_back(UndefMaskElem);
 | 
						|
      else
 | 
						|
        Elts.push_back(Mask[i] % LHSWidth);
 | 
						|
    }
 | 
						|
    return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
 | 
						|
  }
 | 
						|
 | 
						|
  // shuffle undef, x, mask --> shuffle x, undef, mask'
 | 
						|
  if (isa<UndefValue>(LHS)) {
 | 
						|
    SVI.commute();
 | 
						|
    return &SVI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = narrowVectorSelect(SVI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  APInt UndefElts(VWidth, 0);
 | 
						|
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | 
						|
    if (V != &SVI)
 | 
						|
      return replaceInstUsesWith(SVI, V);
 | 
						|
    return &SVI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = foldIdentityExtractShuffle(SVI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // These transforms have the potential to lose undef knowledge, so they are
 | 
						|
  // intentionally placed after SimplifyDemandedVectorElts().
 | 
						|
  if (Instruction *I = foldShuffleWithInsert(SVI, *this))
 | 
						|
    return I;
 | 
						|
  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
 | 
						|
    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
 | 
						|
    return replaceInstUsesWith(SVI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
 | 
						|
  // a non-vector type. We can instead bitcast the original vector followed by
 | 
						|
  // an extract of the desired element:
 | 
						|
  //
 | 
						|
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
 | 
						|
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
 | 
						|
  //   %1 = bitcast <4 x i8> %sroa to i32
 | 
						|
  // Becomes:
 | 
						|
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
 | 
						|
  //   %ext = extractelement <4 x i32> %bc, i32 0
 | 
						|
  //
 | 
						|
  // If the shuffle is extracting a contiguous range of values from the input
 | 
						|
  // vector then each use which is a bitcast of the extracted size can be
 | 
						|
  // replaced. This will work if the vector types are compatible, and the begin
 | 
						|
  // index is aligned to a value in the casted vector type. If the begin index
 | 
						|
  // isn't aligned then we can shuffle the original vector (keeping the same
 | 
						|
  // vector type) before extracting.
 | 
						|
  //
 | 
						|
  // This code will bail out if the target type is fundamentally incompatible
 | 
						|
  // with vectors of the source type.
 | 
						|
  //
 | 
						|
  // Example of <16 x i8>, target type i32:
 | 
						|
  // Index range [4,8):         v-----------v Will work.
 | 
						|
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 
						|
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 | 
						|
  //     <4 x i32>: |           |           |           |           |
 | 
						|
  //                +-----------+-----------+-----------+-----------+
 | 
						|
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
 | 
						|
  // Target type i40:           ^--------------^ Won't work, bail.
 | 
						|
  bool MadeChange = false;
 | 
						|
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
 | 
						|
    Value *V = LHS;
 | 
						|
    unsigned MaskElems = Mask.size();
 | 
						|
    auto *SrcTy = cast<FixedVectorType>(V->getType());
 | 
						|
    unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
 | 
						|
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
 | 
						|
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
 | 
						|
    unsigned SrcNumElems = SrcTy->getNumElements();
 | 
						|
    SmallVector<BitCastInst *, 8> BCs;
 | 
						|
    DenseMap<Type *, Value *> NewBCs;
 | 
						|
    for (User *U : SVI.users())
 | 
						|
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
 | 
						|
        if (!BC->use_empty())
 | 
						|
          // Only visit bitcasts that weren't previously handled.
 | 
						|
          BCs.push_back(BC);
 | 
						|
    for (BitCastInst *BC : BCs) {
 | 
						|
      unsigned BegIdx = Mask.front();
 | 
						|
      Type *TgtTy = BC->getDestTy();
 | 
						|
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
 | 
						|
      if (!TgtElemBitWidth)
 | 
						|
        continue;
 | 
						|
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
 | 
						|
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
 | 
						|
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
 | 
						|
      if (!VecBitWidthsEqual)
 | 
						|
        continue;
 | 
						|
      if (!VectorType::isValidElementType(TgtTy))
 | 
						|
        continue;
 | 
						|
      auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
 | 
						|
      if (!BegIsAligned) {
 | 
						|
        // Shuffle the input so [0,NumElements) contains the output, and
 | 
						|
        // [NumElems,SrcNumElems) is undef.
 | 
						|
        SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
 | 
						|
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
 | 
						|
          ShuffleMask[I] = Idx;
 | 
						|
        V = Builder.CreateShuffleVector(V, ShuffleMask,
 | 
						|
                                        SVI.getName() + ".extract");
 | 
						|
        BegIdx = 0;
 | 
						|
      }
 | 
						|
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
 | 
						|
      assert(SrcElemsPerTgtElem);
 | 
						|
      BegIdx /= SrcElemsPerTgtElem;
 | 
						|
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
 | 
						|
      auto *NewBC =
 | 
						|
          BCAlreadyExists
 | 
						|
              ? NewBCs[CastSrcTy]
 | 
						|
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
 | 
						|
      if (!BCAlreadyExists)
 | 
						|
        NewBCs[CastSrcTy] = NewBC;
 | 
						|
      auto *Ext = Builder.CreateExtractElement(
 | 
						|
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
 | 
						|
      // The shufflevector isn't being replaced: the bitcast that used it
 | 
						|
      // is. InstCombine will visit the newly-created instructions.
 | 
						|
      replaceInstUsesWith(*BC, Ext);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the LHS is a shufflevector itself, see if we can combine it with this
 | 
						|
  // one without producing an unusual shuffle.
 | 
						|
  // Cases that might be simplified:
 | 
						|
  // 1.
 | 
						|
  // x1=shuffle(v1,v2,mask1)
 | 
						|
  //  x=shuffle(x1,undef,mask)
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,undef,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | 
						|
  // 2.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == mask1.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,x2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | 
						|
  // 3.
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v2.size() == mask2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(x1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | 
						|
  // 4.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == v2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | 
						|
  //
 | 
						|
  // Here we are really conservative:
 | 
						|
  // we are absolutely afraid of producing a shuffle mask not in the input
 | 
						|
  // program, because the code gen may not be smart enough to turn a merged
 | 
						|
  // shuffle into two specific shuffles: it may produce worse code.  As such,
 | 
						|
  // we only merge two shuffles if the result is either a splat or one of the
 | 
						|
  // input shuffle masks.  In this case, merging the shuffles just removes
 | 
						|
  // one instruction, which we know is safe.  This is good for things like
 | 
						|
  // turning: (splat(splat)) -> splat, or
 | 
						|
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | 
						|
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | 
						|
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | 
						|
  if (LHSShuffle)
 | 
						|
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | 
						|
      LHSShuffle = nullptr;
 | 
						|
  if (RHSShuffle)
 | 
						|
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | 
						|
      RHSShuffle = nullptr;
 | 
						|
  if (!LHSShuffle && !RHSShuffle)
 | 
						|
    return MadeChange ? &SVI : nullptr;
 | 
						|
 | 
						|
  Value* LHSOp0 = nullptr;
 | 
						|
  Value* LHSOp1 = nullptr;
 | 
						|
  Value* RHSOp0 = nullptr;
 | 
						|
  unsigned LHSOp0Width = 0;
 | 
						|
  unsigned RHSOp0Width = 0;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    LHSOp0 = LHSShuffle->getOperand(0);
 | 
						|
    LHSOp1 = LHSShuffle->getOperand(1);
 | 
						|
    LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
 | 
						|
  }
 | 
						|
  if (RHSShuffle) {
 | 
						|
    RHSOp0 = RHSShuffle->getOperand(0);
 | 
						|
    RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
 | 
						|
  }
 | 
						|
  Value* newLHS = LHS;
 | 
						|
  Value* newRHS = RHS;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    // case 1
 | 
						|
    if (isa<UndefValue>(RHS)) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
      newRHS = LHSOp1;
 | 
						|
    }
 | 
						|
    // case 2 or 4
 | 
						|
    else if (LHSOp0Width == LHSWidth) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // case 3 or 4
 | 
						|
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | 
						|
    newRHS = RHSOp0;
 | 
						|
  }
 | 
						|
  // case 4
 | 
						|
  if (LHSOp0 == RHSOp0) {
 | 
						|
    newLHS = LHSOp0;
 | 
						|
    newRHS = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (newLHS == LHS && newRHS == RHS)
 | 
						|
    return MadeChange ? &SVI : nullptr;
 | 
						|
 | 
						|
  ArrayRef<int> LHSMask;
 | 
						|
  ArrayRef<int> RHSMask;
 | 
						|
  if (newLHS != LHS)
 | 
						|
    LHSMask = LHSShuffle->getShuffleMask();
 | 
						|
  if (RHSShuffle && newRHS != RHS)
 | 
						|
    RHSMask = RHSShuffle->getShuffleMask();
 | 
						|
 | 
						|
  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | 
						|
  SmallVector<int, 16> newMask;
 | 
						|
  bool isSplat = true;
 | 
						|
  int SplatElt = -1;
 | 
						|
  // Create a new mask for the new ShuffleVectorInst so that the new
 | 
						|
  // ShuffleVectorInst is equivalent to the original one.
 | 
						|
  for (unsigned i = 0; i < VWidth; ++i) {
 | 
						|
    int eltMask;
 | 
						|
    if (Mask[i] < 0) {
 | 
						|
      // This element is an undef value.
 | 
						|
      eltMask = -1;
 | 
						|
    } else if (Mask[i] < (int)LHSWidth) {
 | 
						|
      // This element is from left hand side vector operand.
 | 
						|
      //
 | 
						|
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      if (newLHS != LHS) {
 | 
						|
        eltMask = LHSMask[Mask[i]];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | 
						|
          eltMask = -1;
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i];
 | 
						|
    } else {
 | 
						|
      // This element is from right hand side vector operand
 | 
						|
      //
 | 
						|
      // If the value selected is an undef value, explicitly specify it
 | 
						|
      // with a -1 mask value. (case 1)
 | 
						|
      if (isa<UndefValue>(RHS))
 | 
						|
        eltMask = -1;
 | 
						|
      // If RHS is going to be replaced (case 3 or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      else if (newRHS != RHS) {
 | 
						|
        eltMask = RHSMask[Mask[i]-LHSWidth];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)RHSOp0Width) {
 | 
						|
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | 
						|
                 && "should have been check above");
 | 
						|
          eltMask = -1;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i]-LHSWidth;
 | 
						|
 | 
						|
      // If LHS's width is changed, shift the mask value accordingly.
 | 
						|
      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
 | 
						|
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | 
						|
      // If newRHS == newLHS, we want to remap any references from newRHS to
 | 
						|
      // newLHS so that we can properly identify splats that may occur due to
 | 
						|
      // obfuscation across the two vectors.
 | 
						|
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
 | 
						|
        eltMask += newLHSWidth;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this could still be a splat.
 | 
						|
    if (eltMask >= 0) {
 | 
						|
      if (SplatElt >= 0 && SplatElt != eltMask)
 | 
						|
        isSplat = false;
 | 
						|
      SplatElt = eltMask;
 | 
						|
    }
 | 
						|
 | 
						|
    newMask.push_back(eltMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the result mask is equal to one of the original shuffle masks,
 | 
						|
  // or is a splat, do the replacement.
 | 
						|
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | 
						|
    if (!newRHS)
 | 
						|
      newRHS = UndefValue::get(newLHS->getType());
 | 
						|
    return new ShuffleVectorInst(newLHS, newRHS, newMask);
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange ? &SVI : nullptr;
 | 
						|
}
 |