1033 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1033 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- tsan_rtl.cc -------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is a part of ThreadSanitizer (TSan), a race detector.
 | 
						|
//
 | 
						|
// Main file (entry points) for the TSan run-time.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "sanitizer_common/sanitizer_atomic.h"
 | 
						|
#include "sanitizer_common/sanitizer_common.h"
 | 
						|
#include "sanitizer_common/sanitizer_libc.h"
 | 
						|
#include "sanitizer_common/sanitizer_stackdepot.h"
 | 
						|
#include "sanitizer_common/sanitizer_placement_new.h"
 | 
						|
#include "sanitizer_common/sanitizer_symbolizer.h"
 | 
						|
#include "tsan_defs.h"
 | 
						|
#include "tsan_platform.h"
 | 
						|
#include "tsan_rtl.h"
 | 
						|
#include "tsan_mman.h"
 | 
						|
#include "tsan_suppressions.h"
 | 
						|
#include "tsan_symbolize.h"
 | 
						|
#include "ubsan/ubsan_init.h"
 | 
						|
 | 
						|
#ifdef __SSE3__
 | 
						|
// <emmintrin.h> transitively includes <stdlib.h>,
 | 
						|
// and it's prohibited to include std headers into tsan runtime.
 | 
						|
// So we do this dirty trick.
 | 
						|
#define _MM_MALLOC_H_INCLUDED
 | 
						|
#define __MM_MALLOC_H
 | 
						|
#include <emmintrin.h>
 | 
						|
typedef __m128i m128;
 | 
						|
#endif
 | 
						|
 | 
						|
volatile int __tsan_resumed = 0;
 | 
						|
 | 
						|
extern "C" void __tsan_resume() {
 | 
						|
  __tsan_resumed = 1;
 | 
						|
}
 | 
						|
 | 
						|
namespace __tsan {
 | 
						|
 | 
						|
#if !defined(SANITIZER_GO) && !SANITIZER_MAC
 | 
						|
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
 | 
						|
#endif
 | 
						|
static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
 | 
						|
Context *ctx;
 | 
						|
 | 
						|
// Can be overriden by a front-end.
 | 
						|
#ifdef TSAN_EXTERNAL_HOOKS
 | 
						|
bool OnFinalize(bool failed);
 | 
						|
void OnInitialize();
 | 
						|
#else
 | 
						|
SANITIZER_WEAK_CXX_DEFAULT_IMPL
 | 
						|
bool OnFinalize(bool failed) {
 | 
						|
  return failed;
 | 
						|
}
 | 
						|
SANITIZER_WEAK_CXX_DEFAULT_IMPL
 | 
						|
void OnInitialize() {}
 | 
						|
#endif
 | 
						|
 | 
						|
static char thread_registry_placeholder[sizeof(ThreadRegistry)];
 | 
						|
 | 
						|
static ThreadContextBase *CreateThreadContext(u32 tid) {
 | 
						|
  // Map thread trace when context is created.
 | 
						|
  char name[50];
 | 
						|
  internal_snprintf(name, sizeof(name), "trace %u", tid);
 | 
						|
  MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
 | 
						|
  const uptr hdr = GetThreadTraceHeader(tid);
 | 
						|
  internal_snprintf(name, sizeof(name), "trace header %u", tid);
 | 
						|
  MapThreadTrace(hdr, sizeof(Trace), name);
 | 
						|
  new((void*)hdr) Trace();
 | 
						|
  // We are going to use only a small part of the trace with the default
 | 
						|
  // value of history_size. However, the constructor writes to the whole trace.
 | 
						|
  // Unmap the unused part.
 | 
						|
  uptr hdr_end = hdr + sizeof(Trace);
 | 
						|
  hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
 | 
						|
  hdr_end = RoundUp(hdr_end, GetPageSizeCached());
 | 
						|
  if (hdr_end < hdr + sizeof(Trace))
 | 
						|
    UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
 | 
						|
  void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
 | 
						|
  return new(mem) ThreadContext(tid);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
static const u32 kThreadQuarantineSize = 16;
 | 
						|
#else
 | 
						|
static const u32 kThreadQuarantineSize = 64;
 | 
						|
#endif
 | 
						|
 | 
						|
Context::Context()
 | 
						|
  : initialized()
 | 
						|
  , report_mtx(MutexTypeReport, StatMtxReport)
 | 
						|
  , nreported()
 | 
						|
  , nmissed_expected()
 | 
						|
  , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
 | 
						|
      CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
 | 
						|
  , racy_mtx(MutexTypeRacy, StatMtxRacy)
 | 
						|
  , racy_stacks(MBlockRacyStacks)
 | 
						|
  , racy_addresses(MBlockRacyAddresses)
 | 
						|
  , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
 | 
						|
  , fired_suppressions(8) {
 | 
						|
}
 | 
						|
 | 
						|
// The objects are allocated in TLS, so one may rely on zero-initialization.
 | 
						|
ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
 | 
						|
                         unsigned reuse_count,
 | 
						|
                         uptr stk_addr, uptr stk_size,
 | 
						|
                         uptr tls_addr, uptr tls_size)
 | 
						|
  : fast_state(tid, epoch)
 | 
						|
  // Do not touch these, rely on zero initialization,
 | 
						|
  // they may be accessed before the ctor.
 | 
						|
  // , ignore_reads_and_writes()
 | 
						|
  // , ignore_interceptors()
 | 
						|
  , clock(tid, reuse_count)
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  , jmp_bufs(MBlockJmpBuf)
 | 
						|
#endif
 | 
						|
  , tid(tid)
 | 
						|
  , unique_id(unique_id)
 | 
						|
  , stk_addr(stk_addr)
 | 
						|
  , stk_size(stk_size)
 | 
						|
  , tls_addr(tls_addr)
 | 
						|
  , tls_size(tls_size)
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  , last_sleep_clock(tid)
 | 
						|
#endif
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
 | 
						|
  uptr n_threads;
 | 
						|
  uptr n_running_threads;
 | 
						|
  ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
 | 
						|
  InternalScopedBuffer<char> buf(4096);
 | 
						|
  WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
 | 
						|
  WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
 | 
						|
}
 | 
						|
 | 
						|
static void BackgroundThread(void *arg) {
 | 
						|
  // This is a non-initialized non-user thread, nothing to see here.
 | 
						|
  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
 | 
						|
  // enabled even when the thread function exits (e.g. during pthread thread
 | 
						|
  // shutdown code).
 | 
						|
  cur_thread()->ignore_interceptors++;
 | 
						|
  const u64 kMs2Ns = 1000 * 1000;
 | 
						|
 | 
						|
  fd_t mprof_fd = kInvalidFd;
 | 
						|
  if (flags()->profile_memory && flags()->profile_memory[0]) {
 | 
						|
    if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
 | 
						|
      mprof_fd = 1;
 | 
						|
    } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
 | 
						|
      mprof_fd = 2;
 | 
						|
    } else {
 | 
						|
      InternalScopedString filename(kMaxPathLength);
 | 
						|
      filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
 | 
						|
      fd_t fd = OpenFile(filename.data(), WrOnly);
 | 
						|
      if (fd == kInvalidFd) {
 | 
						|
        Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
 | 
						|
            &filename[0]);
 | 
						|
      } else {
 | 
						|
        mprof_fd = fd;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  u64 last_flush = NanoTime();
 | 
						|
  uptr last_rss = 0;
 | 
						|
  for (int i = 0;
 | 
						|
      atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
 | 
						|
      i++) {
 | 
						|
    SleepForMillis(100);
 | 
						|
    u64 now = NanoTime();
 | 
						|
 | 
						|
    // Flush memory if requested.
 | 
						|
    if (flags()->flush_memory_ms > 0) {
 | 
						|
      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
 | 
						|
        VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
 | 
						|
        FlushShadowMemory();
 | 
						|
        last_flush = NanoTime();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // GetRSS can be expensive on huge programs, so don't do it every 100ms.
 | 
						|
    if (flags()->memory_limit_mb > 0) {
 | 
						|
      uptr rss = GetRSS();
 | 
						|
      uptr limit = uptr(flags()->memory_limit_mb) << 20;
 | 
						|
      VPrintf(1, "ThreadSanitizer: memory flush check"
 | 
						|
                 " RSS=%llu LAST=%llu LIMIT=%llu\n",
 | 
						|
              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
 | 
						|
      if (2 * rss > limit + last_rss) {
 | 
						|
        VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
 | 
						|
        FlushShadowMemory();
 | 
						|
        rss = GetRSS();
 | 
						|
        VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
 | 
						|
      }
 | 
						|
      last_rss = rss;
 | 
						|
    }
 | 
						|
 | 
						|
    // Write memory profile if requested.
 | 
						|
    if (mprof_fd != kInvalidFd)
 | 
						|
      MemoryProfiler(ctx, mprof_fd, i);
 | 
						|
 | 
						|
    // Flush symbolizer cache if requested.
 | 
						|
    if (flags()->flush_symbolizer_ms > 0) {
 | 
						|
      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
 | 
						|
                             memory_order_relaxed);
 | 
						|
      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
 | 
						|
        Lock l(&ctx->report_mtx);
 | 
						|
        SpinMutexLock l2(&CommonSanitizerReportMutex);
 | 
						|
        SymbolizeFlush();
 | 
						|
        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void StartBackgroundThread() {
 | 
						|
  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __mips__
 | 
						|
static void StopBackgroundThread() {
 | 
						|
  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
 | 
						|
  internal_join_thread(ctx->background_thread);
 | 
						|
  ctx->background_thread = 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
void DontNeedShadowFor(uptr addr, uptr size) {
 | 
						|
  uptr shadow_beg = MemToShadow(addr);
 | 
						|
  uptr shadow_end = MemToShadow(addr + size);
 | 
						|
  ReleaseMemoryToOS(shadow_beg, shadow_end - shadow_beg);
 | 
						|
}
 | 
						|
 | 
						|
void MapShadow(uptr addr, uptr size) {
 | 
						|
  // Global data is not 64K aligned, but there are no adjacent mappings,
 | 
						|
  // so we can get away with unaligned mapping.
 | 
						|
  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
 | 
						|
  MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier, "shadow");
 | 
						|
 | 
						|
  // Meta shadow is 2:1, so tread carefully.
 | 
						|
  static bool data_mapped = false;
 | 
						|
  static uptr mapped_meta_end = 0;
 | 
						|
  uptr meta_begin = (uptr)MemToMeta(addr);
 | 
						|
  uptr meta_end = (uptr)MemToMeta(addr + size);
 | 
						|
  meta_begin = RoundDownTo(meta_begin, 64 << 10);
 | 
						|
  meta_end = RoundUpTo(meta_end, 64 << 10);
 | 
						|
  if (!data_mapped) {
 | 
						|
    // First call maps data+bss.
 | 
						|
    data_mapped = true;
 | 
						|
    MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
 | 
						|
  } else {
 | 
						|
    // Mapping continous heap.
 | 
						|
    // Windows wants 64K alignment.
 | 
						|
    meta_begin = RoundDownTo(meta_begin, 64 << 10);
 | 
						|
    meta_end = RoundUpTo(meta_end, 64 << 10);
 | 
						|
    if (meta_end <= mapped_meta_end)
 | 
						|
      return;
 | 
						|
    if (meta_begin < mapped_meta_end)
 | 
						|
      meta_begin = mapped_meta_end;
 | 
						|
    MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
 | 
						|
    mapped_meta_end = meta_end;
 | 
						|
  }
 | 
						|
  VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
 | 
						|
      addr, addr+size, meta_begin, meta_end);
 | 
						|
}
 | 
						|
 | 
						|
void MapThreadTrace(uptr addr, uptr size, const char *name) {
 | 
						|
  DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
 | 
						|
  CHECK_GE(addr, TraceMemBeg());
 | 
						|
  CHECK_LE(addr + size, TraceMemEnd());
 | 
						|
  CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
 | 
						|
  uptr addr1 = (uptr)MmapFixedNoReserve(addr, size, name);
 | 
						|
  if (addr1 != addr) {
 | 
						|
    Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
 | 
						|
        addr, size, addr1);
 | 
						|
    Die();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void CheckShadowMapping() {
 | 
						|
  uptr beg, end;
 | 
						|
  for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
 | 
						|
    // Skip cases for empty regions (heap definition for architectures that
 | 
						|
    // do not use 64-bit allocator).
 | 
						|
    if (beg ==end)
 | 
						|
      continue;
 | 
						|
    VPrintf(3, "checking shadow region %p-%p\n", beg, end);
 | 
						|
    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
 | 
						|
      for (int x = -1; x <= 1; x++) {
 | 
						|
        const uptr p = p0 + x;
 | 
						|
        if (p < beg || p >= end)
 | 
						|
          continue;
 | 
						|
        const uptr s = MemToShadow(p);
 | 
						|
        const uptr m = (uptr)MemToMeta(p);
 | 
						|
        VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
 | 
						|
        CHECK(IsAppMem(p));
 | 
						|
        CHECK(IsShadowMem(s));
 | 
						|
        CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
 | 
						|
        CHECK(IsMetaMem(m));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Initialize(ThreadState *thr) {
 | 
						|
  // Thread safe because done before all threads exist.
 | 
						|
  static bool is_initialized = false;
 | 
						|
  if (is_initialized)
 | 
						|
    return;
 | 
						|
  is_initialized = true;
 | 
						|
  // We are not ready to handle interceptors yet.
 | 
						|
  ScopedIgnoreInterceptors ignore;
 | 
						|
  SanitizerToolName = "ThreadSanitizer";
 | 
						|
  // Install tool-specific callbacks in sanitizer_common.
 | 
						|
  SetCheckFailedCallback(TsanCheckFailed);
 | 
						|
 | 
						|
  ctx = new(ctx_placeholder) Context;
 | 
						|
  const char *options = GetEnv(kTsanOptionsEnv);
 | 
						|
  CacheBinaryName();
 | 
						|
  InitializeFlags(&ctx->flags, options);
 | 
						|
  AvoidCVE_2016_2143();
 | 
						|
  InitializePlatformEarly();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  // Re-exec ourselves if we need to set additional env or command line args.
 | 
						|
  MaybeReexec();
 | 
						|
 | 
						|
  InitializeAllocator();
 | 
						|
  ReplaceSystemMalloc();
 | 
						|
#endif
 | 
						|
  if (common_flags()->detect_deadlocks)
 | 
						|
    ctx->dd = DDetector::Create(flags());
 | 
						|
  Processor *proc = ProcCreate();
 | 
						|
  ProcWire(proc, thr);
 | 
						|
  InitializeInterceptors();
 | 
						|
  CheckShadowMapping();
 | 
						|
  InitializePlatform();
 | 
						|
  InitializeMutex();
 | 
						|
  InitializeDynamicAnnotations();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  InitializeShadowMemory();
 | 
						|
  InitializeAllocatorLate();
 | 
						|
#endif
 | 
						|
  // Setup correct file descriptor for error reports.
 | 
						|
  __sanitizer_set_report_path(common_flags()->log_path);
 | 
						|
  InitializeSuppressions();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  InitializeLibIgnore();
 | 
						|
  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
 | 
						|
  // On MIPS, TSan initialization is run before
 | 
						|
  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
 | 
						|
  // new threads.
 | 
						|
#ifndef __mips__
 | 
						|
  StartBackgroundThread();
 | 
						|
  SetSandboxingCallback(StopBackgroundThread);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
  VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
 | 
						|
          (int)internal_getpid());
 | 
						|
 | 
						|
  // Initialize thread 0.
 | 
						|
  int tid = ThreadCreate(thr, 0, 0, true);
 | 
						|
  CHECK_EQ(tid, 0);
 | 
						|
  ThreadStart(thr, tid, internal_getpid());
 | 
						|
#if TSAN_CONTAINS_UBSAN
 | 
						|
  __ubsan::InitAsPlugin();
 | 
						|
#endif
 | 
						|
  ctx->initialized = true;
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  Symbolizer::LateInitialize();
 | 
						|
#endif
 | 
						|
 | 
						|
  if (flags()->stop_on_start) {
 | 
						|
    Printf("ThreadSanitizer is suspended at startup (pid %d)."
 | 
						|
           " Call __tsan_resume().\n",
 | 
						|
           (int)internal_getpid());
 | 
						|
    while (__tsan_resumed == 0) {}
 | 
						|
  }
 | 
						|
 | 
						|
  OnInitialize();
 | 
						|
}
 | 
						|
 | 
						|
int Finalize(ThreadState *thr) {
 | 
						|
  bool failed = false;
 | 
						|
 | 
						|
  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
 | 
						|
    SleepForMillis(flags()->atexit_sleep_ms);
 | 
						|
 | 
						|
  // Wait for pending reports.
 | 
						|
  ctx->report_mtx.Lock();
 | 
						|
  CommonSanitizerReportMutex.Lock();
 | 
						|
  CommonSanitizerReportMutex.Unlock();
 | 
						|
  ctx->report_mtx.Unlock();
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  if (Verbosity()) AllocatorPrintStats();
 | 
						|
#endif
 | 
						|
 | 
						|
  ThreadFinalize(thr);
 | 
						|
 | 
						|
  if (ctx->nreported) {
 | 
						|
    failed = true;
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
 | 
						|
#else
 | 
						|
    Printf("Found %d data race(s)\n", ctx->nreported);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (ctx->nmissed_expected) {
 | 
						|
    failed = true;
 | 
						|
    Printf("ThreadSanitizer: missed %d expected races\n",
 | 
						|
        ctx->nmissed_expected);
 | 
						|
  }
 | 
						|
 | 
						|
  if (common_flags()->print_suppressions)
 | 
						|
    PrintMatchedSuppressions();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  if (flags()->print_benign)
 | 
						|
    PrintMatchedBenignRaces();
 | 
						|
#endif
 | 
						|
 | 
						|
  failed = OnFinalize(failed);
 | 
						|
 | 
						|
#if TSAN_COLLECT_STATS
 | 
						|
  StatAggregate(ctx->stat, thr->stat);
 | 
						|
  StatOutput(ctx->stat);
 | 
						|
#endif
 | 
						|
 | 
						|
  return failed ? common_flags()->exitcode : 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
void ForkBefore(ThreadState *thr, uptr pc) {
 | 
						|
  ctx->thread_registry->Lock();
 | 
						|
  ctx->report_mtx.Lock();
 | 
						|
}
 | 
						|
 | 
						|
void ForkParentAfter(ThreadState *thr, uptr pc) {
 | 
						|
  ctx->report_mtx.Unlock();
 | 
						|
  ctx->thread_registry->Unlock();
 | 
						|
}
 | 
						|
 | 
						|
void ForkChildAfter(ThreadState *thr, uptr pc) {
 | 
						|
  ctx->report_mtx.Unlock();
 | 
						|
  ctx->thread_registry->Unlock();
 | 
						|
 | 
						|
  uptr nthread = 0;
 | 
						|
  ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
 | 
						|
  VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
 | 
						|
      " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
 | 
						|
  if (nthread == 1) {
 | 
						|
    StartBackgroundThread();
 | 
						|
  } else {
 | 
						|
    // We've just forked a multi-threaded process. We cannot reasonably function
 | 
						|
    // after that (some mutexes may be locked before fork). So just enable
 | 
						|
    // ignores for everything in the hope that we will exec soon.
 | 
						|
    ctx->after_multithreaded_fork = true;
 | 
						|
    thr->ignore_interceptors++;
 | 
						|
    ThreadIgnoreBegin(thr, pc);
 | 
						|
    ThreadIgnoreSyncBegin(thr, pc);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SANITIZER_GO
 | 
						|
NOINLINE
 | 
						|
void GrowShadowStack(ThreadState *thr) {
 | 
						|
  const int sz = thr->shadow_stack_end - thr->shadow_stack;
 | 
						|
  const int newsz = 2 * sz;
 | 
						|
  uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
 | 
						|
      newsz * sizeof(uptr));
 | 
						|
  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
 | 
						|
  internal_free(thr->shadow_stack);
 | 
						|
  thr->shadow_stack = newstack;
 | 
						|
  thr->shadow_stack_pos = newstack + sz;
 | 
						|
  thr->shadow_stack_end = newstack + newsz;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
u32 CurrentStackId(ThreadState *thr, uptr pc) {
 | 
						|
  if (!thr->is_inited)  // May happen during bootstrap.
 | 
						|
    return 0;
 | 
						|
  if (pc != 0) {
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
 | 
						|
#else
 | 
						|
    if (thr->shadow_stack_pos == thr->shadow_stack_end)
 | 
						|
      GrowShadowStack(thr);
 | 
						|
#endif
 | 
						|
    thr->shadow_stack_pos[0] = pc;
 | 
						|
    thr->shadow_stack_pos++;
 | 
						|
  }
 | 
						|
  u32 id = StackDepotPut(
 | 
						|
      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
 | 
						|
  if (pc != 0)
 | 
						|
    thr->shadow_stack_pos--;
 | 
						|
  return id;
 | 
						|
}
 | 
						|
 | 
						|
void TraceSwitch(ThreadState *thr) {
 | 
						|
  thr->nomalloc++;
 | 
						|
  Trace *thr_trace = ThreadTrace(thr->tid);
 | 
						|
  Lock l(&thr_trace->mtx);
 | 
						|
  unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
 | 
						|
  TraceHeader *hdr = &thr_trace->headers[trace];
 | 
						|
  hdr->epoch0 = thr->fast_state.epoch();
 | 
						|
  ObtainCurrentStack(thr, 0, &hdr->stack0);
 | 
						|
  hdr->mset0 = thr->mset;
 | 
						|
  thr->nomalloc--;
 | 
						|
}
 | 
						|
 | 
						|
Trace *ThreadTrace(int tid) {
 | 
						|
  return (Trace*)GetThreadTraceHeader(tid);
 | 
						|
}
 | 
						|
 | 
						|
uptr TraceTopPC(ThreadState *thr) {
 | 
						|
  Event *events = (Event*)GetThreadTrace(thr->tid);
 | 
						|
  uptr pc = events[thr->fast_state.GetTracePos()];
 | 
						|
  return pc;
 | 
						|
}
 | 
						|
 | 
						|
uptr TraceSize() {
 | 
						|
  return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
 | 
						|
}
 | 
						|
 | 
						|
uptr TraceParts() {
 | 
						|
  return TraceSize() / kTracePartSize;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
extern "C" void __tsan_trace_switch() {
 | 
						|
  TraceSwitch(cur_thread());
 | 
						|
}
 | 
						|
 | 
						|
extern "C" void __tsan_report_race() {
 | 
						|
  ReportRace(cur_thread());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
Shadow LoadShadow(u64 *p) {
 | 
						|
  u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
 | 
						|
  return Shadow(raw);
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
void StoreShadow(u64 *sp, u64 s) {
 | 
						|
  atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
void StoreIfNotYetStored(u64 *sp, u64 *s) {
 | 
						|
  StoreShadow(sp, *s);
 | 
						|
  *s = 0;
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
void HandleRace(ThreadState *thr, u64 *shadow_mem,
 | 
						|
                              Shadow cur, Shadow old) {
 | 
						|
  thr->racy_state[0] = cur.raw();
 | 
						|
  thr->racy_state[1] = old.raw();
 | 
						|
  thr->racy_shadow_addr = shadow_mem;
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  HACKY_CALL(__tsan_report_race);
 | 
						|
#else
 | 
						|
  ReportRace(thr);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline bool HappensBefore(Shadow old, ThreadState *thr) {
 | 
						|
  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
void MemoryAccessImpl1(ThreadState *thr, uptr addr,
 | 
						|
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
 | 
						|
    u64 *shadow_mem, Shadow cur) {
 | 
						|
  StatInc(thr, StatMop);
 | 
						|
  StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
 | 
						|
  StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
 | 
						|
 | 
						|
  // This potentially can live in an MMX/SSE scratch register.
 | 
						|
  // The required intrinsics are:
 | 
						|
  // __m128i _mm_move_epi64(__m128i*);
 | 
						|
  // _mm_storel_epi64(u64*, __m128i);
 | 
						|
  u64 store_word = cur.raw();
 | 
						|
 | 
						|
  // scan all the shadow values and dispatch to 4 categories:
 | 
						|
  // same, replace, candidate and race (see comments below).
 | 
						|
  // we consider only 3 cases regarding access sizes:
 | 
						|
  // equal, intersect and not intersect. initially I considered
 | 
						|
  // larger and smaller as well, it allowed to replace some
 | 
						|
  // 'candidates' with 'same' or 'replace', but I think
 | 
						|
  // it's just not worth it (performance- and complexity-wise).
 | 
						|
 | 
						|
  Shadow old(0);
 | 
						|
 | 
						|
  // It release mode we manually unroll the loop,
 | 
						|
  // because empirically gcc generates better code this way.
 | 
						|
  // However, we can't afford unrolling in debug mode, because the function
 | 
						|
  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
 | 
						|
  // threads, which is not enough for the unrolled loop.
 | 
						|
#if SANITIZER_DEBUG
 | 
						|
  for (int idx = 0; idx < 4; idx++) {
 | 
						|
#include "tsan_update_shadow_word_inl.h"
 | 
						|
  }
 | 
						|
#else
 | 
						|
  int idx = 0;
 | 
						|
#include "tsan_update_shadow_word_inl.h"
 | 
						|
  idx = 1;
 | 
						|
#include "tsan_update_shadow_word_inl.h"
 | 
						|
  idx = 2;
 | 
						|
#include "tsan_update_shadow_word_inl.h"
 | 
						|
  idx = 3;
 | 
						|
#include "tsan_update_shadow_word_inl.h"
 | 
						|
#endif
 | 
						|
 | 
						|
  // we did not find any races and had already stored
 | 
						|
  // the current access info, so we are done
 | 
						|
  if (LIKELY(store_word == 0))
 | 
						|
    return;
 | 
						|
  // choose a random candidate slot and replace it
 | 
						|
  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
 | 
						|
  StatInc(thr, StatShadowReplace);
 | 
						|
  return;
 | 
						|
 RACE:
 | 
						|
  HandleRace(thr, shadow_mem, cur, old);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
 | 
						|
    int size, bool kAccessIsWrite, bool kIsAtomic) {
 | 
						|
  while (size) {
 | 
						|
    int size1 = 1;
 | 
						|
    int kAccessSizeLog = kSizeLog1;
 | 
						|
    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
 | 
						|
      size1 = 8;
 | 
						|
      kAccessSizeLog = kSizeLog8;
 | 
						|
    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
 | 
						|
      size1 = 4;
 | 
						|
      kAccessSizeLog = kSizeLog4;
 | 
						|
    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
 | 
						|
      size1 = 2;
 | 
						|
      kAccessSizeLog = kSizeLog2;
 | 
						|
    }
 | 
						|
    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
 | 
						|
    addr += size1;
 | 
						|
    size -= size1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
 | 
						|
  Shadow cur(a);
 | 
						|
  for (uptr i = 0; i < kShadowCnt; i++) {
 | 
						|
    Shadow old(LoadShadow(&s[i]));
 | 
						|
    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
 | 
						|
        old.TidWithIgnore() == cur.TidWithIgnore() &&
 | 
						|
        old.epoch() > sync_epoch &&
 | 
						|
        old.IsAtomic() == cur.IsAtomic() &&
 | 
						|
        old.IsRead() <= cur.IsRead())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__SSE3__)
 | 
						|
#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
 | 
						|
    _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
 | 
						|
    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
 | 
						|
ALWAYS_INLINE
 | 
						|
bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
 | 
						|
  // This is an optimized version of ContainsSameAccessSlow.
 | 
						|
  // load current access into access[0:63]
 | 
						|
  const m128 access     = _mm_cvtsi64_si128(a);
 | 
						|
  // duplicate high part of access in addr0:
 | 
						|
  // addr0[0:31]        = access[32:63]
 | 
						|
  // addr0[32:63]       = access[32:63]
 | 
						|
  // addr0[64:95]       = access[32:63]
 | 
						|
  // addr0[96:127]      = access[32:63]
 | 
						|
  const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
 | 
						|
  // load 4 shadow slots
 | 
						|
  const m128 shadow0    = _mm_load_si128((__m128i*)s);
 | 
						|
  const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
 | 
						|
  // load high parts of 4 shadow slots into addr_vect:
 | 
						|
  // addr_vect[0:31]    = shadow0[32:63]
 | 
						|
  // addr_vect[32:63]   = shadow0[96:127]
 | 
						|
  // addr_vect[64:95]   = shadow1[32:63]
 | 
						|
  // addr_vect[96:127]  = shadow1[96:127]
 | 
						|
  m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
 | 
						|
  if (!is_write) {
 | 
						|
    // set IsRead bit in addr_vect
 | 
						|
    const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
 | 
						|
    const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
 | 
						|
    addr_vect           = _mm_or_si128(addr_vect, rw_mask);
 | 
						|
  }
 | 
						|
  // addr0 == addr_vect?
 | 
						|
  const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
 | 
						|
  // epoch1[0:63]       = sync_epoch
 | 
						|
  const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
 | 
						|
  // epoch[0:31]        = sync_epoch[0:31]
 | 
						|
  // epoch[32:63]       = sync_epoch[0:31]
 | 
						|
  // epoch[64:95]       = sync_epoch[0:31]
 | 
						|
  // epoch[96:127]      = sync_epoch[0:31]
 | 
						|
  const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
 | 
						|
  // load low parts of shadow cell epochs into epoch_vect:
 | 
						|
  // epoch_vect[0:31]   = shadow0[0:31]
 | 
						|
  // epoch_vect[32:63]  = shadow0[64:95]
 | 
						|
  // epoch_vect[64:95]  = shadow1[0:31]
 | 
						|
  // epoch_vect[96:127] = shadow1[64:95]
 | 
						|
  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
 | 
						|
  // epoch_vect >= sync_epoch?
 | 
						|
  const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
 | 
						|
  // addr_res & epoch_res
 | 
						|
  const m128 res        = _mm_and_si128(addr_res, epoch_res);
 | 
						|
  // mask[0] = res[7]
 | 
						|
  // mask[1] = res[15]
 | 
						|
  // ...
 | 
						|
  // mask[15] = res[127]
 | 
						|
  const int mask        = _mm_movemask_epi8(res);
 | 
						|
  return mask != 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
ALWAYS_INLINE
 | 
						|
bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
 | 
						|
#if defined(__SSE3__)
 | 
						|
  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
 | 
						|
  // NOTE: this check can fail if the shadow is concurrently mutated
 | 
						|
  // by other threads. But it still can be useful if you modify
 | 
						|
  // ContainsSameAccessFast and want to ensure that it's not completely broken.
 | 
						|
  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
 | 
						|
  return res;
 | 
						|
#else
 | 
						|
  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE USED
 | 
						|
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
 | 
						|
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
 | 
						|
  u64 *shadow_mem = (u64*)MemToShadow(addr);
 | 
						|
  DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
 | 
						|
      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
 | 
						|
      (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
 | 
						|
      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
 | 
						|
      (uptr)shadow_mem[0], (uptr)shadow_mem[1],
 | 
						|
      (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
 | 
						|
#if SANITIZER_DEBUG
 | 
						|
  if (!IsAppMem(addr)) {
 | 
						|
    Printf("Access to non app mem %zx\n", addr);
 | 
						|
    DCHECK(IsAppMem(addr));
 | 
						|
  }
 | 
						|
  if (!IsShadowMem((uptr)shadow_mem)) {
 | 
						|
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
 | 
						|
    DCHECK(IsShadowMem((uptr)shadow_mem));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  if (kCppMode && *shadow_mem == kShadowRodata) {
 | 
						|
    // Access to .rodata section, no races here.
 | 
						|
    // Measurements show that it can be 10-20% of all memory accesses.
 | 
						|
    StatInc(thr, StatMop);
 | 
						|
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
 | 
						|
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
 | 
						|
    StatInc(thr, StatMopRodata);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FastState fast_state = thr->fast_state;
 | 
						|
  if (fast_state.GetIgnoreBit()) {
 | 
						|
    StatInc(thr, StatMop);
 | 
						|
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
 | 
						|
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
 | 
						|
    StatInc(thr, StatMopIgnored);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Shadow cur(fast_state);
 | 
						|
  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
 | 
						|
  cur.SetWrite(kAccessIsWrite);
 | 
						|
  cur.SetAtomic(kIsAtomic);
 | 
						|
 | 
						|
  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
 | 
						|
      thr->fast_synch_epoch, kAccessIsWrite))) {
 | 
						|
    StatInc(thr, StatMop);
 | 
						|
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
 | 
						|
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
 | 
						|
    StatInc(thr, StatMopSame);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (kCollectHistory) {
 | 
						|
    fast_state.IncrementEpoch();
 | 
						|
    thr->fast_state = fast_state;
 | 
						|
    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
 | 
						|
    cur.IncrementEpoch();
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
 | 
						|
      shadow_mem, cur);
 | 
						|
}
 | 
						|
 | 
						|
// Called by MemoryAccessRange in tsan_rtl_thread.cc
 | 
						|
ALWAYS_INLINE USED
 | 
						|
void MemoryAccessImpl(ThreadState *thr, uptr addr,
 | 
						|
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
 | 
						|
    u64 *shadow_mem, Shadow cur) {
 | 
						|
  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
 | 
						|
      thr->fast_synch_epoch, kAccessIsWrite))) {
 | 
						|
    StatInc(thr, StatMop);
 | 
						|
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
 | 
						|
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
 | 
						|
    StatInc(thr, StatMopSame);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
 | 
						|
      shadow_mem, cur);
 | 
						|
}
 | 
						|
 | 
						|
static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
 | 
						|
                           u64 val) {
 | 
						|
  (void)thr;
 | 
						|
  (void)pc;
 | 
						|
  if (size == 0)
 | 
						|
    return;
 | 
						|
  // FIXME: fix me.
 | 
						|
  uptr offset = addr % kShadowCell;
 | 
						|
  if (offset) {
 | 
						|
    offset = kShadowCell - offset;
 | 
						|
    if (size <= offset)
 | 
						|
      return;
 | 
						|
    addr += offset;
 | 
						|
    size -= offset;
 | 
						|
  }
 | 
						|
  DCHECK_EQ(addr % 8, 0);
 | 
						|
  // If a user passes some insane arguments (memset(0)),
 | 
						|
  // let it just crash as usual.
 | 
						|
  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
 | 
						|
    return;
 | 
						|
  // Don't want to touch lots of shadow memory.
 | 
						|
  // If a program maps 10MB stack, there is no need reset the whole range.
 | 
						|
  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
 | 
						|
  // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
 | 
						|
  // so we do it only for C/C++.
 | 
						|
  if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
 | 
						|
    u64 *p = (u64*)MemToShadow(addr);
 | 
						|
    CHECK(IsShadowMem((uptr)p));
 | 
						|
    CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
 | 
						|
    // FIXME: may overwrite a part outside the region
 | 
						|
    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
 | 
						|
      p[i++] = val;
 | 
						|
      for (uptr j = 1; j < kShadowCnt; j++)
 | 
						|
        p[i++] = 0;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The region is big, reset only beginning and end.
 | 
						|
    const uptr kPageSize = GetPageSizeCached();
 | 
						|
    u64 *begin = (u64*)MemToShadow(addr);
 | 
						|
    u64 *end = begin + size / kShadowCell * kShadowCnt;
 | 
						|
    u64 *p = begin;
 | 
						|
    // Set at least first kPageSize/2 to page boundary.
 | 
						|
    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
 | 
						|
      *p++ = val;
 | 
						|
      for (uptr j = 1; j < kShadowCnt; j++)
 | 
						|
        *p++ = 0;
 | 
						|
    }
 | 
						|
    // Reset middle part.
 | 
						|
    u64 *p1 = p;
 | 
						|
    p = RoundDown(end, kPageSize);
 | 
						|
    UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
 | 
						|
    MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
 | 
						|
    // Set the ending.
 | 
						|
    while (p < end) {
 | 
						|
      *p++ = val;
 | 
						|
      for (uptr j = 1; j < kShadowCnt; j++)
 | 
						|
        *p++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
 | 
						|
  MemoryRangeSet(thr, pc, addr, size, 0);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
 | 
						|
  // Processing more than 1k (4k of shadow) is expensive,
 | 
						|
  // can cause excessive memory consumption (user does not necessary touch
 | 
						|
  // the whole range) and most likely unnecessary.
 | 
						|
  if (size > 1024)
 | 
						|
    size = 1024;
 | 
						|
  CHECK_EQ(thr->is_freeing, false);
 | 
						|
  thr->is_freeing = true;
 | 
						|
  MemoryAccessRange(thr, pc, addr, size, true);
 | 
						|
  thr->is_freeing = false;
 | 
						|
  if (kCollectHistory) {
 | 
						|
    thr->fast_state.IncrementEpoch();
 | 
						|
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
 | 
						|
  }
 | 
						|
  Shadow s(thr->fast_state);
 | 
						|
  s.ClearIgnoreBit();
 | 
						|
  s.MarkAsFreed();
 | 
						|
  s.SetWrite(true);
 | 
						|
  s.SetAddr0AndSizeLog(0, 3);
 | 
						|
  MemoryRangeSet(thr, pc, addr, size, s.raw());
 | 
						|
}
 | 
						|
 | 
						|
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
 | 
						|
  if (kCollectHistory) {
 | 
						|
    thr->fast_state.IncrementEpoch();
 | 
						|
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
 | 
						|
  }
 | 
						|
  Shadow s(thr->fast_state);
 | 
						|
  s.ClearIgnoreBit();
 | 
						|
  s.SetWrite(true);
 | 
						|
  s.SetAddr0AndSizeLog(0, 3);
 | 
						|
  MemoryRangeSet(thr, pc, addr, size, s.raw());
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE USED
 | 
						|
void FuncEntry(ThreadState *thr, uptr pc) {
 | 
						|
  StatInc(thr, StatFuncEnter);
 | 
						|
  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
 | 
						|
  if (kCollectHistory) {
 | 
						|
    thr->fast_state.IncrementEpoch();
 | 
						|
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Shadow stack maintenance can be replaced with
 | 
						|
  // stack unwinding during trace switch (which presumably must be faster).
 | 
						|
  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
 | 
						|
#else
 | 
						|
  if (thr->shadow_stack_pos == thr->shadow_stack_end)
 | 
						|
    GrowShadowStack(thr);
 | 
						|
#endif
 | 
						|
  thr->shadow_stack_pos[0] = pc;
 | 
						|
  thr->shadow_stack_pos++;
 | 
						|
}
 | 
						|
 | 
						|
ALWAYS_INLINE USED
 | 
						|
void FuncExit(ThreadState *thr) {
 | 
						|
  StatInc(thr, StatFuncExit);
 | 
						|
  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
 | 
						|
  if (kCollectHistory) {
 | 
						|
    thr->fast_state.IncrementEpoch();
 | 
						|
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
 | 
						|
#endif
 | 
						|
  thr->shadow_stack_pos--;
 | 
						|
}
 | 
						|
 | 
						|
void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
 | 
						|
  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
 | 
						|
  thr->ignore_reads_and_writes++;
 | 
						|
  CHECK_GT(thr->ignore_reads_and_writes, 0);
 | 
						|
  thr->fast_state.SetIgnoreBit();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  if (!ctx->after_multithreaded_fork)
 | 
						|
    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
 | 
						|
  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
 | 
						|
  thr->ignore_reads_and_writes--;
 | 
						|
  CHECK_GE(thr->ignore_reads_and_writes, 0);
 | 
						|
  if (thr->ignore_reads_and_writes == 0) {
 | 
						|
    thr->fast_state.ClearIgnoreBit();
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
    thr->mop_ignore_set.Reset();
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
 | 
						|
  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
 | 
						|
  thr->ignore_sync++;
 | 
						|
  CHECK_GT(thr->ignore_sync, 0);
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  if (!ctx->after_multithreaded_fork)
 | 
						|
    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
 | 
						|
  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
 | 
						|
  thr->ignore_sync--;
 | 
						|
  CHECK_GE(thr->ignore_sync, 0);
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
  if (thr->ignore_sync == 0)
 | 
						|
    thr->sync_ignore_set.Reset();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
bool MD5Hash::operator==(const MD5Hash &other) const {
 | 
						|
  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
 | 
						|
}
 | 
						|
 | 
						|
#if SANITIZER_DEBUG
 | 
						|
void build_consistency_debug() {}
 | 
						|
#else
 | 
						|
void build_consistency_release() {}
 | 
						|
#endif
 | 
						|
 | 
						|
#if TSAN_COLLECT_STATS
 | 
						|
void build_consistency_stats() {}
 | 
						|
#else
 | 
						|
void build_consistency_nostats() {}
 | 
						|
#endif
 | 
						|
 | 
						|
}  // namespace __tsan
 | 
						|
 | 
						|
#ifndef SANITIZER_GO
 | 
						|
// Must be included in this file to make sure everything is inlined.
 | 
						|
#include "tsan_interface_inl.h"
 | 
						|
#endif
 |