141 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C
		
	
	
	
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is dual licensed under the MIT and the University of Illinois Open
 | 
						|
// Source Licenses. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the following soft-fp_t comparison routines:
 | 
						|
//
 | 
						|
//   __eqsf2   __gesf2   __unordsf2
 | 
						|
//   __lesf2   __gtsf2
 | 
						|
//   __ltsf2
 | 
						|
//   __nesf2
 | 
						|
//
 | 
						|
// The semantics of the routines grouped in each column are identical, so there
 | 
						|
// is a single implementation for each, and wrappers to provide the other names.
 | 
						|
//
 | 
						|
// The main routines behave as follows:
 | 
						|
//
 | 
						|
//   __lesf2(a,b) returns -1 if a < b
 | 
						|
//                         0 if a == b
 | 
						|
//                         1 if a > b
 | 
						|
//                         1 if either a or b is NaN
 | 
						|
//
 | 
						|
//   __gesf2(a,b) returns -1 if a < b
 | 
						|
//                         0 if a == b
 | 
						|
//                         1 if a > b
 | 
						|
//                        -1 if either a or b is NaN
 | 
						|
//
 | 
						|
//   __unordsf2(a,b) returns 0 if both a and b are numbers
 | 
						|
//                           1 if either a or b is NaN
 | 
						|
//
 | 
						|
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
 | 
						|
// NaN values.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define SINGLE_PRECISION
 | 
						|
#include "fp_lib.h"
 | 
						|
 | 
						|
enum LE_RESULT {
 | 
						|
    LE_LESS      = -1,
 | 
						|
    LE_EQUAL     =  0,
 | 
						|
    LE_GREATER   =  1,
 | 
						|
    LE_UNORDERED =  1
 | 
						|
};
 | 
						|
 | 
						|
COMPILER_RT_ABI enum LE_RESULT
 | 
						|
__lesf2(fp_t a, fp_t b) {
 | 
						|
    
 | 
						|
    const srep_t aInt = toRep(a);
 | 
						|
    const srep_t bInt = toRep(b);
 | 
						|
    const rep_t aAbs = aInt & absMask;
 | 
						|
    const rep_t bAbs = bInt & absMask;
 | 
						|
    
 | 
						|
    // If either a or b is NaN, they are unordered.
 | 
						|
    if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
 | 
						|
    
 | 
						|
    // If a and b are both zeros, they are equal.
 | 
						|
    if ((aAbs | bAbs) == 0) return LE_EQUAL;
 | 
						|
    
 | 
						|
    // If at least one of a and b is positive, we get the same result comparing
 | 
						|
    // a and b as signed integers as we would with a fp_ting-point compare.
 | 
						|
    if ((aInt & bInt) >= 0) {
 | 
						|
        if (aInt < bInt) return LE_LESS;
 | 
						|
        else if (aInt == bInt) return LE_EQUAL;
 | 
						|
        else return LE_GREATER;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, both are negative, so we need to flip the sense of the
 | 
						|
    // comparison to get the correct result.  (This assumes a twos- or ones-
 | 
						|
    // complement integer representation; if integers are represented in a
 | 
						|
    // sign-magnitude representation, then this flip is incorrect).
 | 
						|
    else {
 | 
						|
        if (aInt > bInt) return LE_LESS;
 | 
						|
        else if (aInt == bInt) return LE_EQUAL;
 | 
						|
        else return LE_GREATER;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
enum GE_RESULT {
 | 
						|
    GE_LESS      = -1,
 | 
						|
    GE_EQUAL     =  0,
 | 
						|
    GE_GREATER   =  1,
 | 
						|
    GE_UNORDERED = -1   // Note: different from LE_UNORDERED
 | 
						|
};
 | 
						|
 | 
						|
COMPILER_RT_ABI enum GE_RESULT
 | 
						|
__gesf2(fp_t a, fp_t b) {
 | 
						|
    
 | 
						|
    const srep_t aInt = toRep(a);
 | 
						|
    const srep_t bInt = toRep(b);
 | 
						|
    const rep_t aAbs = aInt & absMask;
 | 
						|
    const rep_t bAbs = bInt & absMask;
 | 
						|
    
 | 
						|
    if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
 | 
						|
    if ((aAbs | bAbs) == 0) return GE_EQUAL;
 | 
						|
    if ((aInt & bInt) >= 0) {
 | 
						|
        if (aInt < bInt) return GE_LESS;
 | 
						|
        else if (aInt == bInt) return GE_EQUAL;
 | 
						|
        else return GE_GREATER;
 | 
						|
    } else {
 | 
						|
        if (aInt > bInt) return GE_LESS;
 | 
						|
        else if (aInt == bInt) return GE_EQUAL;
 | 
						|
        else return GE_GREATER;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
ARM_EABI_FNALIAS(fcmpun, unordsf2)
 | 
						|
 | 
						|
COMPILER_RT_ABI int
 | 
						|
__unordsf2(fp_t a, fp_t b) {
 | 
						|
    const rep_t aAbs = toRep(a) & absMask;
 | 
						|
    const rep_t bAbs = toRep(b) & absMask;
 | 
						|
    return aAbs > infRep || bAbs > infRep;
 | 
						|
}
 | 
						|
 | 
						|
// The following are alternative names for the preceding routines.
 | 
						|
 | 
						|
COMPILER_RT_ABI enum LE_RESULT
 | 
						|
__eqsf2(fp_t a, fp_t b) {
 | 
						|
    return __lesf2(a, b);
 | 
						|
}
 | 
						|
 | 
						|
COMPILER_RT_ABI enum LE_RESULT
 | 
						|
__ltsf2(fp_t a, fp_t b) {
 | 
						|
    return __lesf2(a, b);
 | 
						|
}
 | 
						|
 | 
						|
COMPILER_RT_ABI enum LE_RESULT
 | 
						|
__nesf2(fp_t a, fp_t b) {
 | 
						|
    return __lesf2(a, b);
 | 
						|
}
 | 
						|
 | 
						|
COMPILER_RT_ABI enum GE_RESULT
 | 
						|
__gtsf2(fp_t a, fp_t b) {
 | 
						|
    return __gesf2(a, b);
 | 
						|
}
 |