5450 lines
		
	
	
		
			209 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5450 lines
		
	
	
		
			209 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements semantic analysis for initializers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/Designator.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <map>
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Sema Initialization Checking
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
 | 
						|
                          ASTContext &Context) {
 | 
						|
  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // See if this is a string literal or @encode.
 | 
						|
  Init = Init->IgnoreParens();
 | 
						|
 | 
						|
  // Handle @encode, which is a narrow string.
 | 
						|
  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
 | 
						|
    return Init;
 | 
						|
 | 
						|
  // Otherwise we can only handle string literals.
 | 
						|
  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
 | 
						|
  if (SL == 0) return 0;
 | 
						|
 | 
						|
  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
 | 
						|
 | 
						|
  switch (SL->getKind()) {
 | 
						|
  case StringLiteral::Ascii:
 | 
						|
  case StringLiteral::UTF8:
 | 
						|
    // char array can be initialized with a narrow string.
 | 
						|
    // Only allow char x[] = "foo";  not char x[] = L"foo";
 | 
						|
    return ElemTy->isCharType() ? Init : 0;
 | 
						|
  case StringLiteral::UTF16:
 | 
						|
    return ElemTy->isChar16Type() ? Init : 0;
 | 
						|
  case StringLiteral::UTF32:
 | 
						|
    return ElemTy->isChar32Type() ? Init : 0;
 | 
						|
  case StringLiteral::Wide:
 | 
						|
    // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
 | 
						|
    // correction from DR343): "An array with element type compatible with a
 | 
						|
    // qualified or unqualified version of wchar_t may be initialized by a wide
 | 
						|
    // string literal, optionally enclosed in braces."
 | 
						|
    if (Context.typesAreCompatible(Context.getWCharType(),
 | 
						|
                                   ElemTy.getUnqualifiedType()))
 | 
						|
      return Init;
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed a StringLiteral kind?");
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
 | 
						|
  const ArrayType *arrayType = Context.getAsArrayType(declType);
 | 
						|
  if (!arrayType) return 0;
 | 
						|
 | 
						|
  return IsStringInit(init, arrayType, Context);
 | 
						|
}
 | 
						|
 | 
						|
static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
 | 
						|
                            Sema &S) {
 | 
						|
  // Get the length of the string as parsed.
 | 
						|
  uint64_t StrLength =
 | 
						|
    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
 | 
						|
 | 
						|
 | 
						|
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
 | 
						|
    // C99 6.7.8p14. We have an array of character type with unknown size
 | 
						|
    // being initialized to a string literal.
 | 
						|
    llvm::APSInt ConstVal(32);
 | 
						|
    ConstVal = StrLength;
 | 
						|
    // Return a new array type (C99 6.7.8p22).
 | 
						|
    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
 | 
						|
                                           ConstVal,
 | 
						|
                                           ArrayType::Normal, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
 | 
						|
 | 
						|
  // We have an array of character type with known size.  However,
 | 
						|
  // the size may be smaller or larger than the string we are initializing.
 | 
						|
  // FIXME: Avoid truncation for 64-bit length strings.
 | 
						|
  if (S.getLangOptions().CPlusPlus) {
 | 
						|
    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
 | 
						|
      // For Pascal strings it's OK to strip off the terminating null character,
 | 
						|
      // so the example below is valid:
 | 
						|
      //
 | 
						|
      // unsigned char a[2] = "\pa";
 | 
						|
      if (SL->isPascal())
 | 
						|
        StrLength--;
 | 
						|
    }
 | 
						|
  
 | 
						|
    // [dcl.init.string]p2
 | 
						|
    if (StrLength > CAT->getSize().getZExtValue())
 | 
						|
      S.Diag(Str->getSourceRange().getBegin(),
 | 
						|
             diag::err_initializer_string_for_char_array_too_long)
 | 
						|
        << Str->getSourceRange();
 | 
						|
  } else {
 | 
						|
    // C99 6.7.8p14.
 | 
						|
    if (StrLength-1 > CAT->getSize().getZExtValue())
 | 
						|
      S.Diag(Str->getSourceRange().getBegin(),
 | 
						|
             diag::warn_initializer_string_for_char_array_too_long)
 | 
						|
        << Str->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the type to the actual size that we are initializing.  If we have
 | 
						|
  // something like:
 | 
						|
  //   char x[1] = "foo";
 | 
						|
  // then this will set the string literal's type to char[1].
 | 
						|
  Str->setType(DeclT);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Semantic checking for initializer lists.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// @brief Semantic checking for initializer lists.
 | 
						|
///
 | 
						|
/// The InitListChecker class contains a set of routines that each
 | 
						|
/// handle the initialization of a certain kind of entity, e.g.,
 | 
						|
/// arrays, vectors, struct/union types, scalars, etc. The
 | 
						|
/// InitListChecker itself performs a recursive walk of the subobject
 | 
						|
/// structure of the type to be initialized, while stepping through
 | 
						|
/// the initializer list one element at a time. The IList and Index
 | 
						|
/// parameters to each of the Check* routines contain the active
 | 
						|
/// (syntactic) initializer list and the index into that initializer
 | 
						|
/// list that represents the current initializer. Each routine is
 | 
						|
/// responsible for moving that Index forward as it consumes elements.
 | 
						|
///
 | 
						|
/// Each Check* routine also has a StructuredList/StructuredIndex
 | 
						|
/// arguments, which contains the current "structured" (semantic)
 | 
						|
/// initializer list and the index into that initializer list where we
 | 
						|
/// are copying initializers as we map them over to the semantic
 | 
						|
/// list. Once we have completed our recursive walk of the subobject
 | 
						|
/// structure, we will have constructed a full semantic initializer
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// C99 designators cause changes in the initializer list traversal,
 | 
						|
/// because they make the initialization "jump" into a specific
 | 
						|
/// subobject and then continue the initialization from that
 | 
						|
/// point. CheckDesignatedInitializer() recursively steps into the
 | 
						|
/// designated subobject and manages backing out the recursion to
 | 
						|
/// initialize the subobjects after the one designated.
 | 
						|
namespace {
 | 
						|
class InitListChecker {
 | 
						|
  Sema &SemaRef;
 | 
						|
  bool hadError;
 | 
						|
  bool VerifyOnly; // no diagnostics, no structure building
 | 
						|
  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
 | 
						|
  InitListExpr *FullyStructuredList;
 | 
						|
 | 
						|
  void CheckImplicitInitList(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *ParentIList, QualType T,
 | 
						|
                             unsigned &Index, InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex);
 | 
						|
  void CheckExplicitInitList(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType &T,
 | 
						|
                             unsigned &Index, InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckListElementTypes(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType &DeclType,
 | 
						|
                             bool SubobjectIsDesignatorContext,
 | 
						|
                             unsigned &Index,
 | 
						|
                             InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckSubElementType(const InitializedEntity &Entity,
 | 
						|
                           InitListExpr *IList, QualType ElemType,
 | 
						|
                           unsigned &Index,
 | 
						|
                           InitListExpr *StructuredList,
 | 
						|
                           unsigned &StructuredIndex);
 | 
						|
  void CheckComplexType(const InitializedEntity &Entity,
 | 
						|
                        InitListExpr *IList, QualType DeclType,
 | 
						|
                        unsigned &Index,
 | 
						|
                        InitListExpr *StructuredList,
 | 
						|
                        unsigned &StructuredIndex);
 | 
						|
  void CheckScalarType(const InitializedEntity &Entity,
 | 
						|
                       InitListExpr *IList, QualType DeclType,
 | 
						|
                       unsigned &Index,
 | 
						|
                       InitListExpr *StructuredList,
 | 
						|
                       unsigned &StructuredIndex);
 | 
						|
  void CheckReferenceType(const InitializedEntity &Entity,
 | 
						|
                          InitListExpr *IList, QualType DeclType,
 | 
						|
                          unsigned &Index,
 | 
						|
                          InitListExpr *StructuredList,
 | 
						|
                          unsigned &StructuredIndex);
 | 
						|
  void CheckVectorType(const InitializedEntity &Entity,
 | 
						|
                       InitListExpr *IList, QualType DeclType, unsigned &Index,
 | 
						|
                       InitListExpr *StructuredList,
 | 
						|
                       unsigned &StructuredIndex);
 | 
						|
  void CheckStructUnionTypes(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType DeclType,
 | 
						|
                             RecordDecl::field_iterator Field,
 | 
						|
                             bool SubobjectIsDesignatorContext, unsigned &Index,
 | 
						|
                             InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckArrayType(const InitializedEntity &Entity,
 | 
						|
                      InitListExpr *IList, QualType &DeclType,
 | 
						|
                      llvm::APSInt elementIndex,
 | 
						|
                      bool SubobjectIsDesignatorContext, unsigned &Index,
 | 
						|
                      InitListExpr *StructuredList,
 | 
						|
                      unsigned &StructuredIndex);
 | 
						|
  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
 | 
						|
                                  InitListExpr *IList, DesignatedInitExpr *DIE,
 | 
						|
                                  unsigned DesigIdx,
 | 
						|
                                  QualType &CurrentObjectType,
 | 
						|
                                  RecordDecl::field_iterator *NextField,
 | 
						|
                                  llvm::APSInt *NextElementIndex,
 | 
						|
                                  unsigned &Index,
 | 
						|
                                  InitListExpr *StructuredList,
 | 
						|
                                  unsigned &StructuredIndex,
 | 
						|
                                  bool FinishSubobjectInit,
 | 
						|
                                  bool TopLevelObject);
 | 
						|
  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | 
						|
                                           QualType CurrentObjectType,
 | 
						|
                                           InitListExpr *StructuredList,
 | 
						|
                                           unsigned StructuredIndex,
 | 
						|
                                           SourceRange InitRange);
 | 
						|
  void UpdateStructuredListElement(InitListExpr *StructuredList,
 | 
						|
                                   unsigned &StructuredIndex,
 | 
						|
                                   Expr *expr);
 | 
						|
  int numArrayElements(QualType DeclType);
 | 
						|
  int numStructUnionElements(QualType DeclType);
 | 
						|
 | 
						|
  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
 | 
						|
                               const InitializedEntity &ParentEntity,
 | 
						|
                               InitListExpr *ILE, bool &RequiresSecondPass);
 | 
						|
  void FillInValueInitializations(const InitializedEntity &Entity,
 | 
						|
                                  InitListExpr *ILE, bool &RequiresSecondPass);
 | 
						|
  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | 
						|
                              Expr *InitExpr, FieldDecl *Field,
 | 
						|
                              bool TopLevelObject);
 | 
						|
public:
 | 
						|
  InitListChecker(Sema &S, const InitializedEntity &Entity,
 | 
						|
                  InitListExpr *IL, QualType &T, bool VerifyOnly);
 | 
						|
  bool HadError() { return hadError; }
 | 
						|
 | 
						|
  // @brief Retrieves the fully-structured initializer list used for
 | 
						|
  // semantic analysis and code generation.
 | 
						|
  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
 | 
						|
                                        const InitializedEntity &ParentEntity,
 | 
						|
                                              InitListExpr *ILE,
 | 
						|
                                              bool &RequiresSecondPass) {
 | 
						|
  SourceLocation Loc = ILE->getSourceRange().getBegin();
 | 
						|
  unsigned NumInits = ILE->getNumInits();
 | 
						|
  InitializedEntity MemberEntity
 | 
						|
    = InitializedEntity::InitializeMember(Field, &ParentEntity);
 | 
						|
  if (Init >= NumInits || !ILE->getInit(Init)) {
 | 
						|
    // FIXME: We probably don't need to handle references
 | 
						|
    // specially here, since value-initialization of references is
 | 
						|
    // handled in InitializationSequence.
 | 
						|
    if (Field->getType()->isReferenceType()) {
 | 
						|
      // C++ [dcl.init.aggr]p9:
 | 
						|
      //   If an incomplete or empty initializer-list leaves a
 | 
						|
      //   member of reference type uninitialized, the program is
 | 
						|
      //   ill-formed.
 | 
						|
      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
 | 
						|
        << Field->getType()
 | 
						|
        << ILE->getSyntacticForm()->getSourceRange();
 | 
						|
      SemaRef.Diag(Field->getLocation(),
 | 
						|
                   diag::note_uninit_reference_member);
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | 
						|
                                                              true);
 | 
						|
    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
 | 
						|
    if (!InitSeq) {
 | 
						|
      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult MemberInit
 | 
						|
      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
 | 
						|
    if (MemberInit.isInvalid()) {
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hadError) {
 | 
						|
      // Do nothing
 | 
						|
    } else if (Init < NumInits) {
 | 
						|
      ILE->setInit(Init, MemberInit.takeAs<Expr>());
 | 
						|
    } else if (InitSeq.isConstructorInitialization()) {
 | 
						|
      // Value-initialization requires a constructor call, so
 | 
						|
      // extend the initializer list to include the constructor
 | 
						|
      // call and make a note that we'll need to take another pass
 | 
						|
      // through the initializer list.
 | 
						|
      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
 | 
						|
      RequiresSecondPass = true;
 | 
						|
    }
 | 
						|
  } else if (InitListExpr *InnerILE
 | 
						|
               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
 | 
						|
    FillInValueInitializations(MemberEntity, InnerILE,
 | 
						|
                               RequiresSecondPass);
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively replaces NULL values within the given initializer list
 | 
						|
/// with expressions that perform value-initialization of the
 | 
						|
/// appropriate type.
 | 
						|
void
 | 
						|
InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *ILE,
 | 
						|
                                            bool &RequiresSecondPass) {
 | 
						|
  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
 | 
						|
         "Should not have void type");
 | 
						|
  SourceLocation Loc = ILE->getSourceRange().getBegin();
 | 
						|
  if (ILE->getSyntacticForm())
 | 
						|
    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
 | 
						|
 | 
						|
  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
 | 
						|
    if (RType->getDecl()->isUnion() &&
 | 
						|
        ILE->getInitializedFieldInUnion())
 | 
						|
      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
 | 
						|
                              Entity, ILE, RequiresSecondPass);
 | 
						|
    else {
 | 
						|
      unsigned Init = 0;
 | 
						|
      for (RecordDecl::field_iterator
 | 
						|
             Field = RType->getDecl()->field_begin(),
 | 
						|
             FieldEnd = RType->getDecl()->field_end();
 | 
						|
           Field != FieldEnd; ++Field) {
 | 
						|
        if (Field->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (hadError)
 | 
						|
          return;
 | 
						|
 | 
						|
        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
 | 
						|
        if (hadError)
 | 
						|
          return;
 | 
						|
 | 
						|
        ++Init;
 | 
						|
 | 
						|
        // Only look at the first initialization of a union.
 | 
						|
        if (RType->getDecl()->isUnion())
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElementType;
 | 
						|
 | 
						|
  InitializedEntity ElementEntity = Entity;
 | 
						|
  unsigned NumInits = ILE->getNumInits();
 | 
						|
  unsigned NumElements = NumInits;
 | 
						|
  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
 | 
						|
    ElementType = AType->getElementType();
 | 
						|
    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
 | 
						|
      NumElements = CAType->getSize().getZExtValue();
 | 
						|
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | 
						|
                                                         0, Entity);
 | 
						|
  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
 | 
						|
    ElementType = VType->getElementType();
 | 
						|
    NumElements = VType->getNumElements();
 | 
						|
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | 
						|
                                                         0, Entity);
 | 
						|
  } else
 | 
						|
    ElementType = ILE->getType();
 | 
						|
 | 
						|
 | 
						|
  for (unsigned Init = 0; Init != NumElements; ++Init) {
 | 
						|
    if (hadError)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
 | 
						|
        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
 | 
						|
      ElementEntity.setElementIndex(Init);
 | 
						|
 | 
						|
    if (Init >= NumInits || !ILE->getInit(Init)) {
 | 
						|
      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | 
						|
                                                                true);
 | 
						|
      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
 | 
						|
      if (!InitSeq) {
 | 
						|
        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      ExprResult ElementInit
 | 
						|
        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
 | 
						|
      if (ElementInit.isInvalid()) {
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (hadError) {
 | 
						|
        // Do nothing
 | 
						|
      } else if (Init < NumInits) {
 | 
						|
        // For arrays, just set the expression used for value-initialization
 | 
						|
        // of the "holes" in the array.
 | 
						|
        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
 | 
						|
          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
 | 
						|
        else
 | 
						|
          ILE->setInit(Init, ElementInit.takeAs<Expr>());
 | 
						|
      } else {
 | 
						|
        // For arrays, just set the expression used for value-initialization
 | 
						|
        // of the rest of elements and exit.
 | 
						|
        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
 | 
						|
          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (InitSeq.isConstructorInitialization()) {
 | 
						|
          // Value-initialization requires a constructor call, so
 | 
						|
          // extend the initializer list to include the constructor
 | 
						|
          // call and make a note that we'll need to take another pass
 | 
						|
          // through the initializer list.
 | 
						|
          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
 | 
						|
          RequiresSecondPass = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (InitListExpr *InnerILE
 | 
						|
                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
 | 
						|
      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
 | 
						|
                                 InitListExpr *IL, QualType &T,
 | 
						|
                                 bool VerifyOnly)
 | 
						|
  : SemaRef(S), VerifyOnly(VerifyOnly) {
 | 
						|
  hadError = false;
 | 
						|
 | 
						|
  unsigned newIndex = 0;
 | 
						|
  unsigned newStructuredIndex = 0;
 | 
						|
  FullyStructuredList
 | 
						|
    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
 | 
						|
  CheckExplicitInitList(Entity, IL, T, newIndex,
 | 
						|
                        FullyStructuredList, newStructuredIndex,
 | 
						|
                        /*TopLevelObject=*/true);
 | 
						|
 | 
						|
  if (!hadError && !VerifyOnly) {
 | 
						|
    bool RequiresSecondPass = false;
 | 
						|
    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
 | 
						|
    if (RequiresSecondPass && !hadError)
 | 
						|
      FillInValueInitializations(Entity, FullyStructuredList,
 | 
						|
                                 RequiresSecondPass);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int InitListChecker::numArrayElements(QualType DeclType) {
 | 
						|
  // FIXME: use a proper constant
 | 
						|
  int maxElements = 0x7FFFFFFF;
 | 
						|
  if (const ConstantArrayType *CAT =
 | 
						|
        SemaRef.Context.getAsConstantArrayType(DeclType)) {
 | 
						|
    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
 | 
						|
  }
 | 
						|
  return maxElements;
 | 
						|
}
 | 
						|
 | 
						|
int InitListChecker::numStructUnionElements(QualType DeclType) {
 | 
						|
  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
 | 
						|
  int InitializableMembers = 0;
 | 
						|
  for (RecordDecl::field_iterator
 | 
						|
         Field = structDecl->field_begin(),
 | 
						|
         FieldEnd = structDecl->field_end();
 | 
						|
       Field != FieldEnd; ++Field) {
 | 
						|
    if (!Field->isUnnamedBitfield())
 | 
						|
      ++InitializableMembers;
 | 
						|
  }
 | 
						|
  if (structDecl->isUnion())
 | 
						|
    return std::min(InitializableMembers, 1);
 | 
						|
  return InitializableMembers - structDecl->hasFlexibleArrayMember();
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *ParentIList,
 | 
						|
                                            QualType T, unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex) {
 | 
						|
  int maxElements = 0;
 | 
						|
 | 
						|
  if (T->isArrayType())
 | 
						|
    maxElements = numArrayElements(T);
 | 
						|
  else if (T->isRecordType())
 | 
						|
    maxElements = numStructUnionElements(T);
 | 
						|
  else if (T->isVectorType())
 | 
						|
    maxElements = T->getAs<VectorType>()->getNumElements();
 | 
						|
  else
 | 
						|
    llvm_unreachable("CheckImplicitInitList(): Illegal type");
 | 
						|
 | 
						|
  if (maxElements == 0) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
 | 
						|
                   diag::err_implicit_empty_initializer);
 | 
						|
    ++Index;
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a structured initializer list corresponding to this subobject.
 | 
						|
  InitListExpr *StructuredSubobjectInitList
 | 
						|
    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
 | 
						|
                                 StructuredIndex,
 | 
						|
          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
 | 
						|
                      ParentIList->getSourceRange().getEnd()));
 | 
						|
  unsigned StructuredSubobjectInitIndex = 0;
 | 
						|
 | 
						|
  // Check the element types and build the structural subobject.
 | 
						|
  unsigned StartIndex = Index;
 | 
						|
  CheckListElementTypes(Entity, ParentIList, T,
 | 
						|
                        /*SubobjectIsDesignatorContext=*/false, Index,
 | 
						|
                        StructuredSubobjectInitList,
 | 
						|
                        StructuredSubobjectInitIndex);
 | 
						|
  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    StructuredSubobjectInitList->setType(T);
 | 
						|
 | 
						|
    // Update the structured sub-object initializer so that it's ending
 | 
						|
    // range corresponds with the end of the last initializer it used.
 | 
						|
    if (EndIndex < ParentIList->getNumInits()) {
 | 
						|
      SourceLocation EndLoc
 | 
						|
        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
 | 
						|
      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    // Warn about missing braces.
 | 
						|
    if (T->isArrayType() || T->isRecordType()) {
 | 
						|
      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
 | 
						|
                   diag::warn_missing_braces)
 | 
						|
        << StructuredSubobjectInitList->getSourceRange()
 | 
						|
        << FixItHint::CreateInsertion(
 | 
						|
              StructuredSubobjectInitList->getLocStart(), "{")
 | 
						|
        << FixItHint::CreateInsertion(
 | 
						|
              SemaRef.PP.getLocForEndOfToken(
 | 
						|
                                      StructuredSubobjectInitList->getLocEnd()),
 | 
						|
              "}");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList, QualType &T,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    SyntacticToSemantic[IList] = StructuredList;
 | 
						|
    StructuredList->setSyntacticForm(IList);
 | 
						|
  }
 | 
						|
  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
 | 
						|
                        Index, StructuredList, StructuredIndex, TopLevelObject);
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
 | 
						|
    IList->setType(ExprTy);
 | 
						|
    StructuredList->setType(ExprTy);
 | 
						|
  }
 | 
						|
  if (hadError)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Index < IList->getNumInits()) {
 | 
						|
    // We have leftover initializers
 | 
						|
    if (VerifyOnly) {
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus ||
 | 
						|
          (SemaRef.getLangOptions().OpenCL &&
 | 
						|
           IList->getType()->isVectorType())) {
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StructuredIndex == 1 &&
 | 
						|
        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
 | 
						|
      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
        DK = diag::err_excess_initializers_in_char_array_initializer;
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
      // Special-case
 | 
						|
      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
 | 
						|
        << IList->getInit(Index)->getSourceRange();
 | 
						|
    } else if (!T->isIncompleteType()) {
 | 
						|
      // Don't complain for incomplete types, since we'll get an error
 | 
						|
      // elsewhere
 | 
						|
      QualType CurrentObjectType = StructuredList->getType();
 | 
						|
      int initKind =
 | 
						|
        CurrentObjectType->isArrayType()? 0 :
 | 
						|
        CurrentObjectType->isVectorType()? 1 :
 | 
						|
        CurrentObjectType->isScalarType()? 2 :
 | 
						|
        CurrentObjectType->isUnionType()? 3 :
 | 
						|
        4;
 | 
						|
 | 
						|
      unsigned DK = diag::warn_excess_initializers;
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
        DK = diag::err_excess_initializers;
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
 | 
						|
        DK = diag::err_excess_initializers;
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
 | 
						|
      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
 | 
						|
        << initKind << IList->getInit(Index)->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
 | 
						|
      !TopLevelObject)
 | 
						|
    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
 | 
						|
      << IList->getSourceRange()
 | 
						|
      << FixItHint::CreateRemoval(IList->getLocStart())
 | 
						|
      << FixItHint::CreateRemoval(IList->getLocEnd());
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList,
 | 
						|
                                            QualType &DeclType,
 | 
						|
                                            bool SubobjectIsDesignatorContext,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
 | 
						|
    // Explicitly braced initializer for complex type can be real+imaginary
 | 
						|
    // parts.
 | 
						|
    CheckComplexType(Entity, IList, DeclType, Index,
 | 
						|
                     StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isScalarType()) {
 | 
						|
    CheckScalarType(Entity, IList, DeclType, Index,
 | 
						|
                    StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isVectorType()) {
 | 
						|
    CheckVectorType(Entity, IList, DeclType, Index,
 | 
						|
                    StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isAggregateType()) {
 | 
						|
    if (DeclType->isRecordType()) {
 | 
						|
      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | 
						|
      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
 | 
						|
                            SubobjectIsDesignatorContext, Index,
 | 
						|
                            StructuredList, StructuredIndex,
 | 
						|
                            TopLevelObject);
 | 
						|
    } else if (DeclType->isArrayType()) {
 | 
						|
      llvm::APSInt Zero(
 | 
						|
                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
 | 
						|
                      false);
 | 
						|
      CheckArrayType(Entity, IList, DeclType, Zero,
 | 
						|
                     SubobjectIsDesignatorContext, Index,
 | 
						|
                     StructuredList, StructuredIndex);
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Aggregate that isn't a structure or array?!");
 | 
						|
  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
 | 
						|
    // This type is invalid, issue a diagnostic.
 | 
						|
    ++Index;
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
 | 
						|
        << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  } else if (DeclType->isRecordType()) {
 | 
						|
    // C++ [dcl.init]p14:
 | 
						|
    //   [...] If the class is an aggregate (8.5.1), and the initializer
 | 
						|
    //   is a brace-enclosed list, see 8.5.1.
 | 
						|
    //
 | 
						|
    // Note: 8.5.1 is handled below; here, we diagnose the case where
 | 
						|
    // we have an initializer list and a destination type that is not
 | 
						|
    // an aggregate.
 | 
						|
    // FIXME: In C++0x, this is yet another form of initialization.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
 | 
						|
        << DeclType << IList->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
  } else if (DeclType->isReferenceType()) {
 | 
						|
    CheckReferenceType(Entity, IList, DeclType, Index,
 | 
						|
                       StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isObjCObjectType()) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
 | 
						|
        << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  } else {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
 | 
						|
        << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
 | 
						|
                                          InitListExpr *IList,
 | 
						|
                                          QualType ElemType,
 | 
						|
                                          unsigned &Index,
 | 
						|
                                          InitListExpr *StructuredList,
 | 
						|
                                          unsigned &StructuredIndex) {
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
 | 
						|
    unsigned newIndex = 0;
 | 
						|
    unsigned newStructuredIndex = 0;
 | 
						|
    InitListExpr *newStructuredList
 | 
						|
      = getStructuredSubobjectInit(IList, Index, ElemType,
 | 
						|
                                   StructuredList, StructuredIndex,
 | 
						|
                                   SubInitList->getSourceRange());
 | 
						|
    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
 | 
						|
                          newStructuredList, newStructuredIndex);
 | 
						|
    ++StructuredIndex;
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  } else if (ElemType->isScalarType()) {
 | 
						|
    return CheckScalarType(Entity, IList, ElemType, Index,
 | 
						|
                           StructuredList, StructuredIndex);
 | 
						|
  } else if (ElemType->isReferenceType()) {
 | 
						|
    return CheckReferenceType(Entity, IList, ElemType, Index,
 | 
						|
                              StructuredList, StructuredIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
 | 
						|
    // arrayType can be incomplete if we're initializing a flexible
 | 
						|
    // array member.  There's nothing we can do with the completed
 | 
						|
    // type here, though.
 | 
						|
 | 
						|
    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        CheckStringInit(Str, ElemType, arrayType, SemaRef);
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for subaggregate initialization.
 | 
						|
 | 
						|
  } else if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
    // C++ [dcl.init.aggr]p12:
 | 
						|
    //   All implicit type conversions (clause 4) are considered when
 | 
						|
    //   initializing the aggregate member with an initializer from
 | 
						|
    //   an initializer-list. If the initializer can initialize a
 | 
						|
    //   member, the member is initialized. [...]
 | 
						|
 | 
						|
    // FIXME: Better EqualLoc?
 | 
						|
    InitializationKind Kind =
 | 
						|
      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
 | 
						|
    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
 | 
						|
 | 
						|
    if (Seq) {
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        ExprResult Result =
 | 
						|
          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
 | 
						|
        if (Result.isInvalid())
 | 
						|
          hadError = true;
 | 
						|
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    Result.takeAs<Expr>());
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for subaggregate initialization
 | 
						|
  } else {
 | 
						|
    // C99 6.7.8p13:
 | 
						|
    //
 | 
						|
    //   The initializer for a structure or union object that has
 | 
						|
    //   automatic storage duration shall be either an initializer
 | 
						|
    //   list as described below, or a single expression that has
 | 
						|
    //   compatible structure or union type. In the latter case, the
 | 
						|
    //   initial value of the object, including unnamed members, is
 | 
						|
    //   that of the expression.
 | 
						|
    ExprResult ExprRes = SemaRef.Owned(expr);
 | 
						|
    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
 | 
						|
        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
 | 
						|
                                                 !VerifyOnly)
 | 
						|
          == Sema::Compatible) {
 | 
						|
      if (ExprRes.isInvalid())
 | 
						|
        hadError = true;
 | 
						|
      else {
 | 
						|
        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
 | 
						|
	      if (ExprRes.isInvalid())
 | 
						|
	        hadError = true;
 | 
						|
      }
 | 
						|
      UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                  ExprRes.takeAs<Expr>());
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    ExprRes.release();
 | 
						|
    // Fall through for subaggregate initialization
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.init.aggr]p12:
 | 
						|
  //
 | 
						|
  //   [...] Otherwise, if the member is itself a non-empty
 | 
						|
  //   subaggregate, brace elision is assumed and the initializer is
 | 
						|
  //   considered for the initialization of the first member of
 | 
						|
  //   the subaggregate.
 | 
						|
  if (!SemaRef.getLangOptions().OpenCL && 
 | 
						|
      (ElemType->isAggregateType() || ElemType->isVectorType())) {
 | 
						|
    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
 | 
						|
                          StructuredIndex);
 | 
						|
    ++StructuredIndex;
 | 
						|
  } else {
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      // We cannot initialize this element, so let
 | 
						|
      // PerformCopyInitialization produce the appropriate diagnostic.
 | 
						|
      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
 | 
						|
                                        SemaRef.Owned(expr),
 | 
						|
                                        /*TopLevelOfInitList=*/true);
 | 
						|
    }
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
 | 
						|
                                       InitListExpr *IList, QualType DeclType,
 | 
						|
                                       unsigned &Index,
 | 
						|
                                       InitListExpr *StructuredList,
 | 
						|
                                       unsigned &StructuredIndex) {
 | 
						|
  assert(Index == 0 && "Index in explicit init list must be zero");
 | 
						|
 | 
						|
  // As an extension, clang supports complex initializers, which initialize
 | 
						|
  // a complex number component-wise.  When an explicit initializer list for
 | 
						|
  // a complex number contains two two initializers, this extension kicks in:
 | 
						|
  // it exepcts the initializer list to contain two elements convertible to
 | 
						|
  // the element type of the complex type. The first element initializes
 | 
						|
  // the real part, and the second element intitializes the imaginary part.
 | 
						|
 | 
						|
  if (IList->getNumInits() != 2)
 | 
						|
    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
 | 
						|
                           StructuredIndex);
 | 
						|
 | 
						|
  // This is an extension in C.  (The builtin _Complex type does not exist
 | 
						|
  // in the C++ standard.)
 | 
						|
  if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
 | 
						|
    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
 | 
						|
      << IList->getSourceRange();
 | 
						|
 | 
						|
  // Initialize the complex number.
 | 
						|
  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i) {
 | 
						|
    ElementEntity.setElementIndex(Index);
 | 
						|
    CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
 | 
						|
                                      InitListExpr *IList, QualType DeclType,
 | 
						|
                                      unsigned &Index,
 | 
						|
                                      InitListExpr *StructuredList,
 | 
						|
                                      unsigned &StructuredIndex) {
 | 
						|
  if (Index >= IList->getNumInits()) {
 | 
						|
    if (!SemaRef.getLangOptions().CPlusPlus0x) {
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
 | 
						|
          << IList->getSourceRange();
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(SubIList->getLocStart(),
 | 
						|
                   diag::warn_many_braces_around_scalar_init)
 | 
						|
        << SubIList->getSourceRange();
 | 
						|
 | 
						|
    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
 | 
						|
                    StructuredIndex);
 | 
						|
    return;
 | 
						|
  } else if (isa<DesignatedInitExpr>(expr)) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(expr->getSourceRange().getBegin(),
 | 
						|
                   diag::err_designator_for_scalar_init)
 | 
						|
        << DeclType << expr->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VerifyOnly) {
 | 
						|
    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
 | 
						|
      hadError = true;
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result =
 | 
						|
    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
 | 
						|
                                      SemaRef.Owned(expr),
 | 
						|
                                      /*TopLevelOfInitList=*/true);
 | 
						|
 | 
						|
  Expr *ResultExpr = 0;
 | 
						|
 | 
						|
  if (Result.isInvalid())
 | 
						|
    hadError = true; // types weren't compatible.
 | 
						|
  else {
 | 
						|
    ResultExpr = Result.takeAs<Expr>();
 | 
						|
 | 
						|
    if (ResultExpr != expr) {
 | 
						|
      // The type was promoted, update initializer list.
 | 
						|
      IList->setInit(Index, ResultExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (hadError)
 | 
						|
    ++StructuredIndex;
 | 
						|
  else
 | 
						|
    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
 | 
						|
  ++Index;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
 | 
						|
                                         InitListExpr *IList, QualType DeclType,
 | 
						|
                                         unsigned &Index,
 | 
						|
                                         InitListExpr *StructuredList,
 | 
						|
                                         unsigned &StructuredIndex) {
 | 
						|
  if (Index >= IList->getNumInits()) {
 | 
						|
    // FIXME: It would be wonderful if we could point at the actual member. In
 | 
						|
    // general, it would be useful to pass location information down the stack,
 | 
						|
    // so that we know the location (or decl) of the "current object" being
 | 
						|
    // initialized.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(),
 | 
						|
                    diag::err_init_reference_member_uninitialized)
 | 
						|
        << DeclType
 | 
						|
        << IList->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
  if (isa<InitListExpr>(expr)) {
 | 
						|
    // FIXME: Allowed in C++11.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
 | 
						|
        << DeclType << IList->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VerifyOnly) {
 | 
						|
    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
 | 
						|
      hadError = true;
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result =
 | 
						|
    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
 | 
						|
                                      SemaRef.Owned(expr),
 | 
						|
                                      /*TopLevelOfInitList=*/true);
 | 
						|
 | 
						|
  if (Result.isInvalid())
 | 
						|
    hadError = true;
 | 
						|
 | 
						|
  expr = Result.takeAs<Expr>();
 | 
						|
  IList->setInit(Index, expr);
 | 
						|
 | 
						|
  if (hadError)
 | 
						|
    ++StructuredIndex;
 | 
						|
  else
 | 
						|
    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | 
						|
  ++Index;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
 | 
						|
                                      InitListExpr *IList, QualType DeclType,
 | 
						|
                                      unsigned &Index,
 | 
						|
                                      InitListExpr *StructuredList,
 | 
						|
                                      unsigned &StructuredIndex) {
 | 
						|
  if (Index >= IList->getNumInits())
 | 
						|
    return;
 | 
						|
 | 
						|
  const VectorType *VT = DeclType->getAs<VectorType>();
 | 
						|
  unsigned maxElements = VT->getNumElements();
 | 
						|
  unsigned numEltsInit = 0;
 | 
						|
  QualType elementType = VT->getElementType();
 | 
						|
 | 
						|
  if (!SemaRef.getLangOptions().OpenCL) {
 | 
						|
    // If the initializing element is a vector, try to copy-initialize
 | 
						|
    // instead of breaking it apart (which is doomed to failure anyway).
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
 | 
						|
      if (VerifyOnly) {
 | 
						|
        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
 | 
						|
          hadError = true;
 | 
						|
        ++Index;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      ExprResult Result =
 | 
						|
        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
 | 
						|
                                          SemaRef.Owned(Init),
 | 
						|
                                          /*TopLevelOfInitList=*/true);
 | 
						|
 | 
						|
      Expr *ResultExpr = 0;
 | 
						|
      if (Result.isInvalid())
 | 
						|
        hadError = true; // types weren't compatible.
 | 
						|
      else {
 | 
						|
        ResultExpr = Result.takeAs<Expr>();
 | 
						|
 | 
						|
        if (ResultExpr != Init) {
 | 
						|
          // The type was promoted, update initializer list.
 | 
						|
          IList->setInit(Index, ResultExpr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (hadError)
 | 
						|
        ++StructuredIndex;
 | 
						|
      else
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    ResultExpr);
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    InitializedEntity ElementEntity =
 | 
						|
      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
 | 
						|
      // Don't attempt to go past the end of the init list
 | 
						|
      if (Index >= IList->getNumInits())
 | 
						|
        break;
 | 
						|
 | 
						|
      ElementEntity.setElementIndex(Index);
 | 
						|
      CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  // OpenCL initializers allows vectors to be constructed from vectors.
 | 
						|
  for (unsigned i = 0; i < maxElements; ++i) {
 | 
						|
    // Don't attempt to go past the end of the init list
 | 
						|
    if (Index >= IList->getNumInits())
 | 
						|
      break;
 | 
						|
 | 
						|
    ElementEntity.setElementIndex(Index);
 | 
						|
 | 
						|
    QualType IType = IList->getInit(Index)->getType();
 | 
						|
    if (!IType->isVectorType()) {
 | 
						|
      CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
      ++numEltsInit;
 | 
						|
    } else {
 | 
						|
      QualType VecType;
 | 
						|
      const VectorType *IVT = IType->getAs<VectorType>();
 | 
						|
      unsigned numIElts = IVT->getNumElements();
 | 
						|
 | 
						|
      if (IType->isExtVectorType())
 | 
						|
        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
 | 
						|
      else
 | 
						|
        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
 | 
						|
                                                IVT->getVectorKind());
 | 
						|
      CheckSubElementType(ElementEntity, IList, VecType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
      numEltsInit += numIElts;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL requires all elements to be initialized.
 | 
						|
  // FIXME: Shouldn't this set hadError to true then?
 | 
						|
  if (numEltsInit != maxElements && !VerifyOnly)
 | 
						|
    SemaRef.Diag(IList->getSourceRange().getBegin(),
 | 
						|
                 diag::err_vector_incorrect_num_initializers)
 | 
						|
      << (numEltsInit < maxElements) << maxElements << numEltsInit;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
 | 
						|
                                     InitListExpr *IList, QualType &DeclType,
 | 
						|
                                     llvm::APSInt elementIndex,
 | 
						|
                                     bool SubobjectIsDesignatorContext,
 | 
						|
                                     unsigned &Index,
 | 
						|
                                     InitListExpr *StructuredList,
 | 
						|
                                     unsigned &StructuredIndex) {
 | 
						|
  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
 | 
						|
 | 
						|
  // Check for the special-case of initializing an array with a string.
 | 
						|
  if (Index < IList->getNumInits()) {
 | 
						|
    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
 | 
						|
                                 SemaRef.Context)) {
 | 
						|
      // We place the string literal directly into the resulting
 | 
						|
      // initializer list. This is the only place where the structure
 | 
						|
      // of the structured initializer list doesn't match exactly,
 | 
						|
      // because doing so would involve allocating one character
 | 
						|
      // constant for each string.
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        CheckStringInit(Str, DeclType, arrayType, SemaRef);
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
 | 
						|
        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
 | 
						|
    // Check for VLAs; in standard C it would be possible to check this
 | 
						|
    // earlier, but I don't know where clang accepts VLAs (gcc accepts
 | 
						|
    // them in all sorts of strange places).
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
 | 
						|
                    diag::err_variable_object_no_init)
 | 
						|
        << VAT->getSizeExpr()->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We might know the maximum number of elements in advance.
 | 
						|
  llvm::APSInt maxElements(elementIndex.getBitWidth(),
 | 
						|
                           elementIndex.isUnsigned());
 | 
						|
  bool maxElementsKnown = false;
 | 
						|
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
 | 
						|
    maxElements = CAT->getSize();
 | 
						|
    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
 | 
						|
    elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | 
						|
    maxElementsKnown = true;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType elementType = arrayType->getElementType();
 | 
						|
  while (Index < IList->getNumInits()) {
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | 
						|
      // If we're not the subobject that matches up with the '{' for
 | 
						|
      // the designator, we shouldn't be handling the
 | 
						|
      // designator. Return immediately.
 | 
						|
      if (!SubobjectIsDesignatorContext)
 | 
						|
        return;
 | 
						|
 | 
						|
      // Handle this designated initializer. elementIndex will be
 | 
						|
      // updated to be the next array element we'll initialize.
 | 
						|
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | 
						|
                                     DeclType, 0, &elementIndex, Index,
 | 
						|
                                     StructuredList, StructuredIndex, true,
 | 
						|
                                     false)) {
 | 
						|
        hadError = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
 | 
						|
        maxElements = maxElements.extend(elementIndex.getBitWidth());
 | 
						|
      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
 | 
						|
        elementIndex = elementIndex.extend(maxElements.getBitWidth());
 | 
						|
      elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | 
						|
 | 
						|
      // If the array is of incomplete type, keep track of the number of
 | 
						|
      // elements in the initializer.
 | 
						|
      if (!maxElementsKnown && elementIndex > maxElements)
 | 
						|
        maxElements = elementIndex;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know the maximum number of elements, and we've already
 | 
						|
    // hit it, stop consuming elements in the initializer list.
 | 
						|
    if (maxElementsKnown && elementIndex == maxElements)
 | 
						|
      break;
 | 
						|
 | 
						|
    InitializedEntity ElementEntity =
 | 
						|
      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
 | 
						|
                                           Entity);
 | 
						|
    // Check this element.
 | 
						|
    CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
    ++elementIndex;
 | 
						|
 | 
						|
    // If the array is of incomplete type, keep track of the number of
 | 
						|
    // elements in the initializer.
 | 
						|
    if (!maxElementsKnown && elementIndex > maxElements)
 | 
						|
      maxElements = elementIndex;
 | 
						|
  }
 | 
						|
  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
 | 
						|
    // If this is an incomplete array type, the actual type needs to
 | 
						|
    // be calculated here.
 | 
						|
    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
 | 
						|
    if (maxElements == Zero) {
 | 
						|
      // Sizing an array implicitly to zero is not allowed by ISO C,
 | 
						|
      // but is supported by GNU.
 | 
						|
      SemaRef.Diag(IList->getLocStart(),
 | 
						|
                    diag::ext_typecheck_zero_array_size);
 | 
						|
    }
 | 
						|
 | 
						|
    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
 | 
						|
                                                     ArrayType::Normal, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | 
						|
                                             Expr *InitExpr,
 | 
						|
                                             FieldDecl *Field,
 | 
						|
                                             bool TopLevelObject) {
 | 
						|
  // Handle GNU flexible array initializers.
 | 
						|
  unsigned FlexArrayDiag;
 | 
						|
  if (isa<InitListExpr>(InitExpr) &&
 | 
						|
      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
 | 
						|
    // Empty flexible array init always allowed as an extension
 | 
						|
    FlexArrayDiag = diag::ext_flexible_array_init;
 | 
						|
  } else if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
    // Disallow flexible array init in C++; it is not required for gcc
 | 
						|
    // compatibility, and it needs work to IRGen correctly in general.
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else if (!TopLevelObject) {
 | 
						|
    // Disallow flexible array init on non-top-level object
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
 | 
						|
    // Disallow flexible array init on anything which is not a variable.
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
 | 
						|
    // Disallow flexible array init on local variables.
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else {
 | 
						|
    // Allow other cases.
 | 
						|
    FlexArrayDiag = diag::ext_flexible_array_init;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    SemaRef.Diag(InitExpr->getSourceRange().getBegin(),
 | 
						|
                 FlexArrayDiag)
 | 
						|
      << InitExpr->getSourceRange().getBegin();
 | 
						|
    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
      << Field;
 | 
						|
  }
 | 
						|
 | 
						|
  return FlexArrayDiag != diag::ext_flexible_array_init;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList,
 | 
						|
                                            QualType DeclType,
 | 
						|
                                            RecordDecl::field_iterator Field,
 | 
						|
                                            bool SubobjectIsDesignatorContext,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
  // If the record is invalid, some of it's members are invalid. To avoid
 | 
						|
  // confusion, we forgo checking the intializer for the entire record.
 | 
						|
  if (structDecl->isInvalidDecl()) {
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      // Value-initialize the first named member of the union.
 | 
						|
      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | 
						|
      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
 | 
						|
           Field != FieldEnd; ++Field) {
 | 
						|
        if (Field->getDeclName()) {
 | 
						|
          StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If structDecl is a forward declaration, this loop won't do
 | 
						|
  // anything except look at designated initializers; That's okay,
 | 
						|
  // because an error should get printed out elsewhere. It might be
 | 
						|
  // worthwhile to skip over the rest of the initializer, though.
 | 
						|
  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | 
						|
  RecordDecl::field_iterator FieldEnd = RD->field_end();
 | 
						|
  bool InitializedSomething = false;
 | 
						|
  bool CheckForMissingFields = true;
 | 
						|
  while (Index < IList->getNumInits()) {
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
 | 
						|
    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | 
						|
      // If we're not the subobject that matches up with the '{' for
 | 
						|
      // the designator, we shouldn't be handling the
 | 
						|
      // designator. Return immediately.
 | 
						|
      if (!SubobjectIsDesignatorContext)
 | 
						|
        return;
 | 
						|
 | 
						|
      // Handle this designated initializer. Field will be updated to
 | 
						|
      // the next field that we'll be initializing.
 | 
						|
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | 
						|
                                     DeclType, &Field, 0, Index,
 | 
						|
                                     StructuredList, StructuredIndex,
 | 
						|
                                     true, TopLevelObject))
 | 
						|
        hadError = true;
 | 
						|
 | 
						|
      InitializedSomething = true;
 | 
						|
 | 
						|
      // Disable check for missing fields when designators are used.
 | 
						|
      // This matches gcc behaviour.
 | 
						|
      CheckForMissingFields = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Field == FieldEnd) {
 | 
						|
      // We've run out of fields. We're done.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We've already initialized a member of a union. We're done.
 | 
						|
    if (InitializedSomething && DeclType->isUnionType())
 | 
						|
      break;
 | 
						|
 | 
						|
    // If we've hit the flexible array member at the end, we're done.
 | 
						|
    if (Field->getType()->isIncompleteArrayType())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Field->isUnnamedBitfield()) {
 | 
						|
      // Don't initialize unnamed bitfields, e.g. "int : 20;"
 | 
						|
      ++Field;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we can use this declaration.
 | 
						|
    bool InvalidUse;
 | 
						|
    if (VerifyOnly)
 | 
						|
      InvalidUse = !SemaRef.CanUseDecl(*Field);
 | 
						|
    else
 | 
						|
      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
 | 
						|
                                          IList->getInit(Index)->getLocStart());
 | 
						|
    if (InvalidUse) {
 | 
						|
      ++Index;
 | 
						|
      ++Field;
 | 
						|
      hadError = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    InitializedEntity MemberEntity =
 | 
						|
      InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
    InitializedSomething = true;
 | 
						|
 | 
						|
    if (DeclType->isUnionType() && !VerifyOnly) {
 | 
						|
      // Initialize the first field within the union.
 | 
						|
      StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
    }
 | 
						|
 | 
						|
    ++Field;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit warnings for missing struct field initializers.
 | 
						|
  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
 | 
						|
      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
 | 
						|
      !DeclType->isUnionType()) {
 | 
						|
    // It is possible we have one or more unnamed bitfields remaining.
 | 
						|
    // Find first (if any) named field and emit warning.
 | 
						|
    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
 | 
						|
         it != end; ++it) {
 | 
						|
      if (!it->isUnnamedBitfield()) {
 | 
						|
        SemaRef.Diag(IList->getSourceRange().getEnd(),
 | 
						|
                     diag::warn_missing_field_initializers) << it->getName();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
 | 
						|
      Index >= IList->getNumInits())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
 | 
						|
                             TopLevelObject)) {
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitializedEntity MemberEntity =
 | 
						|
    InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
 | 
						|
  if (isa<InitListExpr>(IList->getInit(Index)))
 | 
						|
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
  else
 | 
						|
    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Expand a field designator that refers to a member of an
 | 
						|
/// anonymous struct or union into a series of field designators that
 | 
						|
/// refers to the field within the appropriate subobject.
 | 
						|
///
 | 
						|
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
 | 
						|
                                           DesignatedInitExpr *DIE,
 | 
						|
                                           unsigned DesigIdx,
 | 
						|
                                           IndirectFieldDecl *IndirectField) {
 | 
						|
  typedef DesignatedInitExpr::Designator Designator;
 | 
						|
 | 
						|
  // Build the replacement designators.
 | 
						|
  SmallVector<Designator, 4> Replacements;
 | 
						|
  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
 | 
						|
       PE = IndirectField->chain_end(); PI != PE; ++PI) {
 | 
						|
    if (PI + 1 == PE)
 | 
						|
      Replacements.push_back(Designator((IdentifierInfo *)0,
 | 
						|
                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
 | 
						|
                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
 | 
						|
    else
 | 
						|
      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
 | 
						|
                                        SourceLocation()));
 | 
						|
    assert(isa<FieldDecl>(*PI));
 | 
						|
    Replacements.back().setField(cast<FieldDecl>(*PI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the current designator into the set of replacement
 | 
						|
  // designators, so we have a full subobject path down to where the
 | 
						|
  // member of the anonymous struct/union is actually stored.
 | 
						|
  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
 | 
						|
                        &Replacements[0] + Replacements.size());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given an implicit anonymous field, search the IndirectField that
 | 
						|
///  corresponds to FieldName.
 | 
						|
static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
 | 
						|
                                                 IdentifierInfo *FieldName) {
 | 
						|
  assert(AnonField->isAnonymousStructOrUnion());
 | 
						|
  Decl *NextDecl = AnonField->getNextDeclInContext();
 | 
						|
  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
 | 
						|
    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
 | 
						|
      return IF;
 | 
						|
    NextDecl = NextDecl->getNextDeclInContext();
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
 | 
						|
                                                   DesignatedInitExpr *DIE) {
 | 
						|
  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
 | 
						|
  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
 | 
						|
  for (unsigned I = 0; I < NumIndexExprs; ++I)
 | 
						|
    IndexExprs[I] = DIE->getSubExpr(I + 1);
 | 
						|
  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
 | 
						|
                                    DIE->size(), IndexExprs.data(),
 | 
						|
                                    NumIndexExprs, DIE->getEqualOrColonLoc(),
 | 
						|
                                    DIE->usesGNUSyntax(), DIE->getInit());
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Check the well-formedness of a C99 designated initializer.
 | 
						|
///
 | 
						|
/// Determines whether the designated initializer @p DIE, which
 | 
						|
/// resides at the given @p Index within the initializer list @p
 | 
						|
/// IList, is well-formed for a current object of type @p DeclType
 | 
						|
/// (C99 6.7.8). The actual subobject that this designator refers to
 | 
						|
/// within the current subobject is returned in either
 | 
						|
/// @p NextField or @p NextElementIndex (whichever is appropriate).
 | 
						|
///
 | 
						|
/// @param IList  The initializer list in which this designated
 | 
						|
/// initializer occurs.
 | 
						|
///
 | 
						|
/// @param DIE The designated initializer expression.
 | 
						|
///
 | 
						|
/// @param DesigIdx  The index of the current designator.
 | 
						|
///
 | 
						|
/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
 | 
						|
/// into which the designation in @p DIE should refer.
 | 
						|
///
 | 
						|
/// @param NextField  If non-NULL and the first designator in @p DIE is
 | 
						|
/// a field, this will be set to the field declaration corresponding
 | 
						|
/// to the field named by the designator.
 | 
						|
///
 | 
						|
/// @param NextElementIndex  If non-NULL and the first designator in @p
 | 
						|
/// DIE is an array designator or GNU array-range designator, this
 | 
						|
/// will be set to the last index initialized by this designator.
 | 
						|
///
 | 
						|
/// @param Index  Index into @p IList where the designated initializer
 | 
						|
/// @p DIE occurs.
 | 
						|
///
 | 
						|
/// @param StructuredList  The initializer list expression that
 | 
						|
/// describes all of the subobject initializers in the order they'll
 | 
						|
/// actually be initialized.
 | 
						|
///
 | 
						|
/// @returns true if there was an error, false otherwise.
 | 
						|
bool
 | 
						|
InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList,
 | 
						|
                                            DesignatedInitExpr *DIE,
 | 
						|
                                            unsigned DesigIdx,
 | 
						|
                                            QualType &CurrentObjectType,
 | 
						|
                                          RecordDecl::field_iterator *NextField,
 | 
						|
                                            llvm::APSInt *NextElementIndex,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool FinishSubobjectInit,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  if (DesigIdx == DIE->size()) {
 | 
						|
    // Check the actual initialization for the designated object type.
 | 
						|
    bool prevHadError = hadError;
 | 
						|
 | 
						|
    // Temporarily remove the designator expression from the
 | 
						|
    // initializer list that the child calls see, so that we don't try
 | 
						|
    // to re-process the designator.
 | 
						|
    unsigned OldIndex = Index;
 | 
						|
    IList->setInit(OldIndex, DIE->getInit());
 | 
						|
 | 
						|
    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
 | 
						|
    // Restore the designated initializer expression in the syntactic
 | 
						|
    // form of the initializer list.
 | 
						|
    if (IList->getInit(OldIndex) != DIE->getInit())
 | 
						|
      DIE->setInit(IList->getInit(OldIndex));
 | 
						|
    IList->setInit(OldIndex, DIE);
 | 
						|
 | 
						|
    return hadError && !prevHadError;
 | 
						|
  }
 | 
						|
 | 
						|
  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
 | 
						|
  bool IsFirstDesignator = (DesigIdx == 0);
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    assert((IsFirstDesignator || StructuredList) &&
 | 
						|
           "Need a non-designated initializer list to start from");
 | 
						|
 | 
						|
    // Determine the structural initializer list that corresponds to the
 | 
						|
    // current subobject.
 | 
						|
    StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
 | 
						|
      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
 | 
						|
                                   StructuredList, StructuredIndex,
 | 
						|
                                   SourceRange(D->getStartLocation(),
 | 
						|
                                               DIE->getSourceRange().getEnd()));
 | 
						|
    assert(StructuredList && "Expected a structured initializer list");
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->isFieldDesignator()) {
 | 
						|
    // C99 6.7.8p7:
 | 
						|
    //
 | 
						|
    //   If a designator has the form
 | 
						|
    //
 | 
						|
    //      . identifier
 | 
						|
    //
 | 
						|
    //   then the current object (defined below) shall have
 | 
						|
    //   structure or union type and the identifier shall be the
 | 
						|
    //   name of a member of that type.
 | 
						|
    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
 | 
						|
    if (!RT) {
 | 
						|
      SourceLocation Loc = D->getDotLoc();
 | 
						|
      if (Loc.isInvalid())
 | 
						|
        Loc = D->getFieldLoc();
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
 | 
						|
          << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: we perform a linear search of the fields here, despite
 | 
						|
    // the fact that we have a faster lookup method, because we always
 | 
						|
    // need to compute the field's index.
 | 
						|
    FieldDecl *KnownField = D->getField();
 | 
						|
    IdentifierInfo *FieldName = D->getFieldName();
 | 
						|
    unsigned FieldIndex = 0;
 | 
						|
    RecordDecl::field_iterator
 | 
						|
      Field = RT->getDecl()->field_begin(),
 | 
						|
      FieldEnd = RT->getDecl()->field_end();
 | 
						|
    for (; Field != FieldEnd; ++Field) {
 | 
						|
      if (Field->isUnnamedBitfield())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we find a field representing an anonymous field, look in the
 | 
						|
      // IndirectFieldDecl that follow for the designated initializer.
 | 
						|
      if (!KnownField && Field->isAnonymousStructOrUnion()) {
 | 
						|
        if (IndirectFieldDecl *IF =
 | 
						|
            FindIndirectFieldDesignator(*Field, FieldName)) {
 | 
						|
          // In verify mode, don't modify the original.
 | 
						|
          if (VerifyOnly)
 | 
						|
            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
 | 
						|
          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
 | 
						|
          D = DIE->getDesignator(DesigIdx);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (KnownField && KnownField == *Field)
 | 
						|
        break;
 | 
						|
      if (FieldName && FieldName == Field->getIdentifier())
 | 
						|
        break;
 | 
						|
 | 
						|
      ++FieldIndex;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Field == FieldEnd) {
 | 
						|
      if (VerifyOnly) {
 | 
						|
        ++Index;
 | 
						|
        return true; // No typo correction when just trying this out.
 | 
						|
      }
 | 
						|
 | 
						|
      // There was no normal field in the struct with the designated
 | 
						|
      // name. Perform another lookup for this name, which may find
 | 
						|
      // something that we can't designate (e.g., a member function),
 | 
						|
      // may find nothing, or may find a member of an anonymous
 | 
						|
      // struct/union.
 | 
						|
      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
 | 
						|
      FieldDecl *ReplacementField = 0;
 | 
						|
      if (Lookup.first == Lookup.second) {
 | 
						|
        // Name lookup didn't find anything. Determine whether this
 | 
						|
        // was a typo for another field name.
 | 
						|
        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
 | 
						|
                       Sema::LookupMemberName);
 | 
						|
        TypoCorrection Corrected = SemaRef.CorrectTypo(
 | 
						|
            DeclarationNameInfo(FieldName, D->getFieldLoc()),
 | 
						|
            Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
 | 
						|
            RT->getDecl(), false, Sema::CTC_NoKeywords);
 | 
						|
        if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
 | 
						|
            ReplacementField->getDeclContext()->getRedeclContext()
 | 
						|
                                                      ->Equals(RT->getDecl())) {
 | 
						|
          std::string CorrectedStr(
 | 
						|
              Corrected.getAsString(SemaRef.getLangOptions()));
 | 
						|
          std::string CorrectedQuotedStr(
 | 
						|
              Corrected.getQuoted(SemaRef.getLangOptions()));
 | 
						|
          SemaRef.Diag(D->getFieldLoc(),
 | 
						|
                       diag::err_field_designator_unknown_suggest)
 | 
						|
            << FieldName << CurrentObjectType << CorrectedQuotedStr
 | 
						|
            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
 | 
						|
          SemaRef.Diag(ReplacementField->getLocation(),
 | 
						|
                       diag::note_previous_decl) << CorrectedQuotedStr;
 | 
						|
          hadError = true;
 | 
						|
        } else {
 | 
						|
          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
 | 
						|
            << FieldName << CurrentObjectType;
 | 
						|
          ++Index;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ReplacementField) {
 | 
						|
        // Name lookup found something, but it wasn't a field.
 | 
						|
        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
 | 
						|
          << FieldName;
 | 
						|
        SemaRef.Diag((*Lookup.first)->getLocation(),
 | 
						|
                      diag::note_field_designator_found);
 | 
						|
        ++Index;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!KnownField) {
 | 
						|
        // The replacement field comes from typo correction; find it
 | 
						|
        // in the list of fields.
 | 
						|
        FieldIndex = 0;
 | 
						|
        Field = RT->getDecl()->field_begin();
 | 
						|
        for (; Field != FieldEnd; ++Field) {
 | 
						|
          if (Field->isUnnamedBitfield())
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (ReplacementField == *Field ||
 | 
						|
              Field->getIdentifier() == ReplacementField->getIdentifier())
 | 
						|
            break;
 | 
						|
 | 
						|
          ++FieldIndex;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // All of the fields of a union are located at the same place in
 | 
						|
    // the initializer list.
 | 
						|
    if (RT->getDecl()->isUnion()) {
 | 
						|
      FieldIndex = 0;
 | 
						|
      if (!VerifyOnly)
 | 
						|
        StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we can use this declaration.
 | 
						|
    bool InvalidUse;
 | 
						|
    if (VerifyOnly)
 | 
						|
      InvalidUse = !SemaRef.CanUseDecl(*Field);
 | 
						|
    else
 | 
						|
      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
 | 
						|
    if (InvalidUse) {
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      // Update the designator with the field declaration.
 | 
						|
      D->setField(*Field);
 | 
						|
 | 
						|
      // Make sure that our non-designated initializer list has space
 | 
						|
      // for a subobject corresponding to this field.
 | 
						|
      if (FieldIndex >= StructuredList->getNumInits())
 | 
						|
        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    // This designator names a flexible array member.
 | 
						|
    if (Field->getType()->isIncompleteArrayType()) {
 | 
						|
      bool Invalid = false;
 | 
						|
      if ((DesigIdx + 1) != DIE->size()) {
 | 
						|
        // We can't designate an object within the flexible array
 | 
						|
        // member (because GCC doesn't allow it).
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          DesignatedInitExpr::Designator *NextD
 | 
						|
            = DIE->getDesignator(DesigIdx + 1);
 | 
						|
          SemaRef.Diag(NextD->getStartLocation(),
 | 
						|
                        diag::err_designator_into_flexible_array_member)
 | 
						|
            << SourceRange(NextD->getStartLocation(),
 | 
						|
                           DIE->getSourceRange().getEnd());
 | 
						|
          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
            << *Field;
 | 
						|
        }
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
 | 
						|
          !isa<StringLiteral>(DIE->getInit())) {
 | 
						|
        // The initializer is not an initializer list.
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
 | 
						|
                        diag::err_flexible_array_init_needs_braces)
 | 
						|
            << DIE->getInit()->getSourceRange();
 | 
						|
          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
            << *Field;
 | 
						|
        }
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check GNU flexible array initializer.
 | 
						|
      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
 | 
						|
                                             TopLevelObject))
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      if (Invalid) {
 | 
						|
        ++Index;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Initialize the array.
 | 
						|
      bool prevHadError = hadError;
 | 
						|
      unsigned newStructuredIndex = FieldIndex;
 | 
						|
      unsigned OldIndex = Index;
 | 
						|
      IList->setInit(Index, DIE->getInit());
 | 
						|
 | 
						|
      InitializedEntity MemberEntity =
 | 
						|
        InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                          StructuredList, newStructuredIndex);
 | 
						|
 | 
						|
      IList->setInit(OldIndex, DIE);
 | 
						|
      if (hadError && !prevHadError) {
 | 
						|
        ++Field;
 | 
						|
        ++FieldIndex;
 | 
						|
        if (NextField)
 | 
						|
          *NextField = Field;
 | 
						|
        StructuredIndex = FieldIndex;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Recurse to check later designated subobjects.
 | 
						|
      QualType FieldType = (*Field)->getType();
 | 
						|
      unsigned newStructuredIndex = FieldIndex;
 | 
						|
 | 
						|
      InitializedEntity MemberEntity =
 | 
						|
        InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
 | 
						|
                                     FieldType, 0, 0, Index,
 | 
						|
                                     StructuredList, newStructuredIndex,
 | 
						|
                                     true, false))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the position of the next field to be initialized in this
 | 
						|
    // subobject.
 | 
						|
    ++Field;
 | 
						|
    ++FieldIndex;
 | 
						|
 | 
						|
    // If this the first designator, our caller will continue checking
 | 
						|
    // the rest of this struct/class/union subobject.
 | 
						|
    if (IsFirstDesignator) {
 | 
						|
      if (NextField)
 | 
						|
        *NextField = Field;
 | 
						|
      StructuredIndex = FieldIndex;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!FinishSubobjectInit)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We've already initialized something in the union; we're done.
 | 
						|
    if (RT->getDecl()->isUnion())
 | 
						|
      return hadError;
 | 
						|
 | 
						|
    // Check the remaining fields within this class/struct/union subobject.
 | 
						|
    bool prevHadError = hadError;
 | 
						|
 | 
						|
    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
 | 
						|
                          StructuredList, FieldIndex);
 | 
						|
    return hadError && !prevHadError;
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.7.8p6:
 | 
						|
  //
 | 
						|
  //   If a designator has the form
 | 
						|
  //
 | 
						|
  //      [ constant-expression ]
 | 
						|
  //
 | 
						|
  //   then the current object (defined below) shall have array
 | 
						|
  //   type and the expression shall be an integer constant
 | 
						|
  //   expression. If the array is of unknown size, any
 | 
						|
  //   nonnegative value is valid.
 | 
						|
  //
 | 
						|
  // Additionally, cope with the GNU extension that permits
 | 
						|
  // designators of the form
 | 
						|
  //
 | 
						|
  //      [ constant-expression ... constant-expression ]
 | 
						|
  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
 | 
						|
  if (!AT) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
 | 
						|
        << CurrentObjectType;
 | 
						|
    ++Index;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *IndexExpr = 0;
 | 
						|
  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
 | 
						|
  if (D->isArrayDesignator()) {
 | 
						|
    IndexExpr = DIE->getArrayIndex(*D);
 | 
						|
    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
 | 
						|
    DesignatedEndIndex = DesignatedStartIndex;
 | 
						|
  } else {
 | 
						|
    assert(D->isArrayRangeDesignator() && "Need array-range designator");
 | 
						|
 | 
						|
    DesignatedStartIndex =
 | 
						|
      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
 | 
						|
    DesignatedEndIndex =
 | 
						|
      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
 | 
						|
    IndexExpr = DIE->getArrayRangeEnd(*D);
 | 
						|
 | 
						|
    // Codegen can't handle evaluating array range designators that have side
 | 
						|
    // effects, because we replicate the AST value for each initialized element.
 | 
						|
    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
 | 
						|
    // elements with something that has a side effect, so codegen can emit an
 | 
						|
    // "error unsupported" error instead of miscompiling the app.
 | 
						|
    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
 | 
						|
        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
 | 
						|
      FullyStructuredList->sawArrayRangeDesignator();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantArrayType>(AT)) {
 | 
						|
    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
 | 
						|
    DesignatedStartIndex
 | 
						|
      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
 | 
						|
    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
 | 
						|
    DesignatedEndIndex
 | 
						|
      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
 | 
						|
    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
 | 
						|
    if (DesignatedEndIndex >= MaxElements) {
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
 | 
						|
                      diag::err_array_designator_too_large)
 | 
						|
          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
 | 
						|
          << IndexExpr->getSourceRange();
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Make sure the bit-widths and signedness match.
 | 
						|
    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
 | 
						|
      DesignatedEndIndex
 | 
						|
        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
 | 
						|
    else if (DesignatedStartIndex.getBitWidth() <
 | 
						|
             DesignatedEndIndex.getBitWidth())
 | 
						|
      DesignatedStartIndex
 | 
						|
        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
 | 
						|
    DesignatedStartIndex.setIsUnsigned(true);
 | 
						|
    DesignatedEndIndex.setIsUnsigned(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that our non-designated initializer list has space
 | 
						|
  // for a subobject corresponding to this array element.
 | 
						|
  if (!VerifyOnly &&
 | 
						|
      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
 | 
						|
    StructuredList->resizeInits(SemaRef.Context,
 | 
						|
                                DesignatedEndIndex.getZExtValue() + 1);
 | 
						|
 | 
						|
  // Repeatedly perform subobject initializations in the range
 | 
						|
  // [DesignatedStartIndex, DesignatedEndIndex].
 | 
						|
 | 
						|
  // Move to the next designator
 | 
						|
  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
 | 
						|
  unsigned OldIndex = Index;
 | 
						|
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  while (DesignatedStartIndex <= DesignatedEndIndex) {
 | 
						|
    // Recurse to check later designated subobjects.
 | 
						|
    QualType ElementType = AT->getElementType();
 | 
						|
    Index = OldIndex;
 | 
						|
 | 
						|
    ElementEntity.setElementIndex(ElementIndex);
 | 
						|
    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
 | 
						|
                                   ElementType, 0, 0, Index,
 | 
						|
                                   StructuredList, ElementIndex,
 | 
						|
                                   (DesignatedStartIndex == DesignatedEndIndex),
 | 
						|
                                   false))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Move to the next index in the array that we'll be initializing.
 | 
						|
    ++DesignatedStartIndex;
 | 
						|
    ElementIndex = DesignatedStartIndex.getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If this the first designator, our caller will continue checking
 | 
						|
  // the rest of this array subobject.
 | 
						|
  if (IsFirstDesignator) {
 | 
						|
    if (NextElementIndex)
 | 
						|
      *NextElementIndex = DesignatedStartIndex;
 | 
						|
    StructuredIndex = ElementIndex;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FinishSubobjectInit)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check the remaining elements within this array subobject.
 | 
						|
  bool prevHadError = hadError;
 | 
						|
  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
 | 
						|
                 /*SubobjectIsDesignatorContext=*/false, Index,
 | 
						|
                 StructuredList, ElementIndex);
 | 
						|
  return hadError && !prevHadError;
 | 
						|
}
 | 
						|
 | 
						|
// Get the structured initializer list for a subobject of type
 | 
						|
// @p CurrentObjectType.
 | 
						|
InitListExpr *
 | 
						|
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | 
						|
                                            QualType CurrentObjectType,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned StructuredIndex,
 | 
						|
                                            SourceRange InitRange) {
 | 
						|
  if (VerifyOnly)
 | 
						|
    return 0; // No structured list in verification-only mode.
 | 
						|
  Expr *ExistingInit = 0;
 | 
						|
  if (!StructuredList)
 | 
						|
    ExistingInit = SyntacticToSemantic[IList];
 | 
						|
  else if (StructuredIndex < StructuredList->getNumInits())
 | 
						|
    ExistingInit = StructuredList->getInit(StructuredIndex);
 | 
						|
 | 
						|
  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  if (ExistingInit) {
 | 
						|
    // We are creating an initializer list that initializes the
 | 
						|
    // subobjects of the current object, but there was already an
 | 
						|
    // initialization that completely initialized the current
 | 
						|
    // subobject, e.g., by a compound literal:
 | 
						|
    //
 | 
						|
    // struct X { int a, b; };
 | 
						|
    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
 | 
						|
    //
 | 
						|
    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
 | 
						|
    // designated initializer re-initializes the whole
 | 
						|
    // subobject [0], overwriting previous initializers.
 | 
						|
    SemaRef.Diag(InitRange.getBegin(),
 | 
						|
                 diag::warn_subobject_initializer_overrides)
 | 
						|
      << InitRange;
 | 
						|
    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
 | 
						|
                  diag::note_previous_initializer)
 | 
						|
      << /*FIXME:has side effects=*/0
 | 
						|
      << ExistingInit->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  InitListExpr *Result
 | 
						|
    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
 | 
						|
                                         InitRange.getBegin(), 0, 0,
 | 
						|
                                         InitRange.getEnd());
 | 
						|
 | 
						|
  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
 | 
						|
 | 
						|
  // Pre-allocate storage for the structured initializer list.
 | 
						|
  unsigned NumElements = 0;
 | 
						|
  unsigned NumInits = 0;
 | 
						|
  bool GotNumInits = false;
 | 
						|
  if (!StructuredList) {
 | 
						|
    NumInits = IList->getNumInits();
 | 
						|
    GotNumInits = true;
 | 
						|
  } else if (Index < IList->getNumInits()) {
 | 
						|
    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
 | 
						|
      NumInits = SubList->getNumInits();
 | 
						|
      GotNumInits = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ArrayType *AType
 | 
						|
      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
 | 
						|
    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
 | 
						|
      NumElements = CAType->getSize().getZExtValue();
 | 
						|
      // Simple heuristic so that we don't allocate a very large
 | 
						|
      // initializer with many empty entries at the end.
 | 
						|
      if (GotNumInits && NumElements > NumInits)
 | 
						|
        NumElements = 0;
 | 
						|
    }
 | 
						|
  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
 | 
						|
    NumElements = VType->getNumElements();
 | 
						|
  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
 | 
						|
    RecordDecl *RDecl = RType->getDecl();
 | 
						|
    if (RDecl->isUnion())
 | 
						|
      NumElements = 1;
 | 
						|
    else
 | 
						|
      NumElements = std::distance(RDecl->field_begin(),
 | 
						|
                                  RDecl->field_end());
 | 
						|
  }
 | 
						|
 | 
						|
  Result->reserveInits(SemaRef.Context, NumElements);
 | 
						|
 | 
						|
  // Link this new initializer list into the structured initializer
 | 
						|
  // lists.
 | 
						|
  if (StructuredList)
 | 
						|
    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
 | 
						|
  else {
 | 
						|
    Result->setSyntacticForm(IList);
 | 
						|
    SyntacticToSemantic[IList] = Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the initializer at index @p StructuredIndex within the
 | 
						|
/// structured initializer list to the value @p expr.
 | 
						|
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
 | 
						|
                                                  unsigned &StructuredIndex,
 | 
						|
                                                  Expr *expr) {
 | 
						|
  // No structured initializer list to update
 | 
						|
  if (!StructuredList)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
 | 
						|
                                                  StructuredIndex, expr)) {
 | 
						|
    // This initializer overwrites a previous initializer. Warn.
 | 
						|
    SemaRef.Diag(expr->getSourceRange().getBegin(),
 | 
						|
                  diag::warn_initializer_overrides)
 | 
						|
      << expr->getSourceRange();
 | 
						|
    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
 | 
						|
                  diag::note_previous_initializer)
 | 
						|
      << /*FIXME:has side effects=*/0
 | 
						|
      << PrevInit->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  ++StructuredIndex;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the given Index expression is a valid array designator
 | 
						|
/// value. This is essentailly just a wrapper around
 | 
						|
/// VerifyIntegerConstantExpression that also checks for negative values
 | 
						|
/// and produces a reasonable diagnostic if there is a
 | 
						|
/// failure. Returns true if there was an error, false otherwise.  If
 | 
						|
/// everything went okay, Value will receive the value of the constant
 | 
						|
/// expression.
 | 
						|
static bool
 | 
						|
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
 | 
						|
  SourceLocation Loc = Index->getSourceRange().getBegin();
 | 
						|
 | 
						|
  // Make sure this is an integer constant expression.
 | 
						|
  if (S.VerifyIntegerConstantExpression(Index, &Value))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Value.isSigned() && Value.isNegative())
 | 
						|
    return S.Diag(Loc, diag::err_array_designator_negative)
 | 
						|
      << Value.toString(10) << Index->getSourceRange();
 | 
						|
 | 
						|
  Value.setIsUnsigned(true);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
 | 
						|
                                            SourceLocation Loc,
 | 
						|
                                            bool GNUSyntax,
 | 
						|
                                            ExprResult Init) {
 | 
						|
  typedef DesignatedInitExpr::Designator ASTDesignator;
 | 
						|
 | 
						|
  bool Invalid = false;
 | 
						|
  SmallVector<ASTDesignator, 32> Designators;
 | 
						|
  SmallVector<Expr *, 32> InitExpressions;
 | 
						|
 | 
						|
  // Build designators and check array designator expressions.
 | 
						|
  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
 | 
						|
    const Designator &D = Desig.getDesignator(Idx);
 | 
						|
    switch (D.getKind()) {
 | 
						|
    case Designator::FieldDesignator:
 | 
						|
      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
 | 
						|
                                          D.getFieldLoc()));
 | 
						|
      break;
 | 
						|
 | 
						|
    case Designator::ArrayDesignator: {
 | 
						|
      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
 | 
						|
      llvm::APSInt IndexValue;
 | 
						|
      if (!Index->isTypeDependent() &&
 | 
						|
          !Index->isValueDependent() &&
 | 
						|
          CheckArrayDesignatorExpr(*this, Index, IndexValue))
 | 
						|
        Invalid = true;
 | 
						|
      else {
 | 
						|
        Designators.push_back(ASTDesignator(InitExpressions.size(),
 | 
						|
                                            D.getLBracketLoc(),
 | 
						|
                                            D.getRBracketLoc()));
 | 
						|
        InitExpressions.push_back(Index);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Designator::ArrayRangeDesignator: {
 | 
						|
      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
 | 
						|
      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
 | 
						|
      llvm::APSInt StartValue;
 | 
						|
      llvm::APSInt EndValue;
 | 
						|
      bool StartDependent = StartIndex->isTypeDependent() ||
 | 
						|
                            StartIndex->isValueDependent();
 | 
						|
      bool EndDependent = EndIndex->isTypeDependent() ||
 | 
						|
                          EndIndex->isValueDependent();
 | 
						|
      if ((!StartDependent &&
 | 
						|
           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
 | 
						|
          (!EndDependent &&
 | 
						|
           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
 | 
						|
        Invalid = true;
 | 
						|
      else {
 | 
						|
        // Make sure we're comparing values with the same bit width.
 | 
						|
        if (StartDependent || EndDependent) {
 | 
						|
          // Nothing to compute.
 | 
						|
        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
 | 
						|
          EndValue = EndValue.extend(StartValue.getBitWidth());
 | 
						|
        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
 | 
						|
          StartValue = StartValue.extend(EndValue.getBitWidth());
 | 
						|
 | 
						|
        if (!StartDependent && !EndDependent && EndValue < StartValue) {
 | 
						|
          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
 | 
						|
            << StartValue.toString(10) << EndValue.toString(10)
 | 
						|
            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
 | 
						|
          Invalid = true;
 | 
						|
        } else {
 | 
						|
          Designators.push_back(ASTDesignator(InitExpressions.size(),
 | 
						|
                                              D.getLBracketLoc(),
 | 
						|
                                              D.getEllipsisLoc(),
 | 
						|
                                              D.getRBracketLoc()));
 | 
						|
          InitExpressions.push_back(StartIndex);
 | 
						|
          InitExpressions.push_back(EndIndex);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid || Init.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Clear out the expressions within the designation.
 | 
						|
  Desig.ClearExprs(*this);
 | 
						|
 | 
						|
  DesignatedInitExpr *DIE
 | 
						|
    = DesignatedInitExpr::Create(Context,
 | 
						|
                                 Designators.data(), Designators.size(),
 | 
						|
                                 InitExpressions.data(), InitExpressions.size(),
 | 
						|
                                 Loc, GNUSyntax, Init.takeAs<Expr>());
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
 | 
						|
      << DIE->getSourceRange();
 | 
						|
  else if (!getLangOptions().C99)
 | 
						|
    Diag(DIE->getLocStart(), diag::ext_designated_init)
 | 
						|
      << DIE->getSourceRange();
 | 
						|
 | 
						|
  return Owned(DIE);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization entity
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
 | 
						|
                                     const InitializedEntity &Parent)
 | 
						|
  : Parent(&Parent), Index(Index)
 | 
						|
{
 | 
						|
  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
 | 
						|
    Kind = EK_ArrayElement;
 | 
						|
    Type = AT->getElementType();
 | 
						|
  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
 | 
						|
    Kind = EK_VectorElement;
 | 
						|
    Type = VT->getElementType();
 | 
						|
  } else {
 | 
						|
    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
 | 
						|
    assert(CT && "Unexpected type");
 | 
						|
    Kind = EK_ComplexElement;
 | 
						|
    Type = CT->getElementType();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
 | 
						|
                                                    CXXBaseSpecifier *Base,
 | 
						|
                                                    bool IsInheritedVirtualBase)
 | 
						|
{
 | 
						|
  InitializedEntity Result;
 | 
						|
  Result.Kind = EK_Base;
 | 
						|
  Result.Base = reinterpret_cast<uintptr_t>(Base);
 | 
						|
  if (IsInheritedVirtualBase)
 | 
						|
    Result.Base |= 0x01;
 | 
						|
 | 
						|
  Result.Type = Base->getType();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
DeclarationName InitializedEntity::getName() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Parameter: {
 | 
						|
    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
 | 
						|
    return (D ? D->getDeclName() : DeclarationName());
 | 
						|
  }
 | 
						|
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Member:
 | 
						|
    return VariableOrMember->getDeclName();
 | 
						|
 | 
						|
  case EK_Result:
 | 
						|
  case EK_Exception:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
    return DeclarationName();
 | 
						|
  }
 | 
						|
 | 
						|
  // Silence GCC warning
 | 
						|
  return DeclarationName();
 | 
						|
}
 | 
						|
 | 
						|
DeclaratorDecl *InitializedEntity::getDecl() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Member:
 | 
						|
    return VariableOrMember;
 | 
						|
 | 
						|
  case EK_Parameter:
 | 
						|
    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
 | 
						|
 | 
						|
  case EK_Result:
 | 
						|
  case EK_Exception:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Silence GCC warning
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool InitializedEntity::allowsNRVO() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Result:
 | 
						|
  case EK_Exception:
 | 
						|
    return LocAndNRVO.NRVO;
 | 
						|
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Parameter:
 | 
						|
  case EK_Member:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization sequence
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InitializationSequence::Step::Destroy() {
 | 
						|
  switch (Kind) {
 | 
						|
  case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
  case SK_CastDerivedToBaseRValue:
 | 
						|
  case SK_CastDerivedToBaseXValue:
 | 
						|
  case SK_CastDerivedToBaseLValue:
 | 
						|
  case SK_BindReference:
 | 
						|
  case SK_BindReferenceToTemporary:
 | 
						|
  case SK_ExtraneousCopyToTemporary:
 | 
						|
  case SK_UserConversion:
 | 
						|
  case SK_QualificationConversionRValue:
 | 
						|
  case SK_QualificationConversionXValue:
 | 
						|
  case SK_QualificationConversionLValue:
 | 
						|
  case SK_ListInitialization:
 | 
						|
  case SK_ListConstructorCall:
 | 
						|
  case SK_ConstructorInitialization:
 | 
						|
  case SK_ZeroInitialization:
 | 
						|
  case SK_CAssignment:
 | 
						|
  case SK_StringInit:
 | 
						|
  case SK_ObjCObjectConversion:
 | 
						|
  case SK_ArrayInit:
 | 
						|
  case SK_PassByIndirectCopyRestore:
 | 
						|
  case SK_PassByIndirectRestore:
 | 
						|
  case SK_ProduceObjCObject:
 | 
						|
    break;
 | 
						|
 | 
						|
  case SK_ConversionSequence:
 | 
						|
    delete ICS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isDirectReferenceBinding() const {
 | 
						|
  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isAmbiguous() const {
 | 
						|
  if (!Failed())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (getFailureKind()) {
 | 
						|
  case FK_TooManyInitsForReference:
 | 
						|
  case FK_ArrayNeedsInitList:
 | 
						|
  case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
  case FK_AddressOfOverloadFailed: // FIXME: Could do better
 | 
						|
  case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
  case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
  case FK_RValueReferenceBindingToLValue:
 | 
						|
  case FK_ReferenceInitDropsQualifiers:
 | 
						|
  case FK_ReferenceInitFailed:
 | 
						|
  case FK_ConversionFailed:
 | 
						|
  case FK_ConversionFromPropertyFailed:
 | 
						|
  case FK_TooManyInitsForScalar:
 | 
						|
  case FK_ReferenceBindingToInitList:
 | 
						|
  case FK_InitListBadDestinationType:
 | 
						|
  case FK_DefaultInitOfConst:
 | 
						|
  case FK_Incomplete:
 | 
						|
  case FK_ArrayTypeMismatch:
 | 
						|
  case FK_NonConstantArrayInit:
 | 
						|
  case FK_ListInitializationFailed:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case FK_ReferenceInitOverloadFailed:
 | 
						|
  case FK_UserConversionOverloadFailed:
 | 
						|
  case FK_ConstructorOverloadFailed:
 | 
						|
    return FailedOverloadResult == OR_Ambiguous;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isConstructorInitialization() const {
 | 
						|
  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
 | 
						|
                                               const Expr *Initializer,
 | 
						|
                                               bool *isInitializerConstant,
 | 
						|
                                               APValue *ConstantValue) const {
 | 
						|
  if (Steps.empty() || Initializer->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Step &LastStep = Steps.back();
 | 
						|
  if (LastStep.Kind != SK_ConversionSequence)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ImplicitConversionSequence &ICS = *LastStep.ICS;
 | 
						|
  const StandardConversionSequence *SCS = NULL;
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    SCS = &ICS.Standard;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion:
 | 
						|
    SCS = &ICS.UserDefined.After;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if SCS represents a narrowing conversion, according to C++0x
 | 
						|
  // [dcl.init.list]p7:
 | 
						|
  //
 | 
						|
  // A narrowing conversion is an implicit conversion ...
 | 
						|
  ImplicitConversionKind PossibleNarrowing = SCS->Second;
 | 
						|
  QualType FromType = SCS->getToType(0);
 | 
						|
  QualType ToType = SCS->getToType(1);
 | 
						|
  switch (PossibleNarrowing) {
 | 
						|
  // * from a floating-point type to an integer type, or
 | 
						|
  //
 | 
						|
  // * from an integer type or unscoped enumeration type to a floating-point
 | 
						|
  //   type, except where the source is a constant expression and the actual
 | 
						|
  //   value after conversion will fit into the target type and will produce
 | 
						|
  //   the original value when converted back to the original type, or
 | 
						|
  case ICK_Floating_Integral:
 | 
						|
    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
 | 
						|
      *isInitializerConstant = false;
 | 
						|
      return true;
 | 
						|
    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
 | 
						|
      llvm::APSInt IntConstantValue;
 | 
						|
      if (Initializer &&
 | 
						|
          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
 | 
						|
        // Convert the integer to the floating type.
 | 
						|
        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
 | 
						|
        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
 | 
						|
                                llvm::APFloat::rmNearestTiesToEven);
 | 
						|
        // And back.
 | 
						|
        llvm::APSInt ConvertedValue = IntConstantValue;
 | 
						|
        bool ignored;
 | 
						|
        Result.convertToInteger(ConvertedValue,
 | 
						|
                                llvm::APFloat::rmTowardZero, &ignored);
 | 
						|
        // If the resulting value is different, this was a narrowing conversion.
 | 
						|
        if (IntConstantValue != ConvertedValue) {
 | 
						|
          *isInitializerConstant = true;
 | 
						|
          *ConstantValue = APValue(IntConstantValue);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Variables are always narrowings.
 | 
						|
        *isInitializerConstant = false;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
 | 
						|
  // * from long double to double or float, or from double to float, except
 | 
						|
  //   where the source is a constant expression and the actual value after
 | 
						|
  //   conversion is within the range of values that can be represented (even
 | 
						|
  //   if it cannot be represented exactly), or
 | 
						|
  case ICK_Floating_Conversion:
 | 
						|
    if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
 | 
						|
      // FromType is larger than ToType.
 | 
						|
      Expr::EvalResult InitializerValue;
 | 
						|
      // FIXME: Check whether Initializer is a constant expression according
 | 
						|
      // to C++0x [expr.const], rather than just whether it can be folded.
 | 
						|
      if (Initializer->Evaluate(InitializerValue, Ctx) &&
 | 
						|
          !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
 | 
						|
        // Constant! (Except for FIXME above.)
 | 
						|
        llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
 | 
						|
        // Convert the source value into the target type.
 | 
						|
        bool ignored;
 | 
						|
        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
 | 
						|
          Ctx.getFloatTypeSemantics(ToType),
 | 
						|
          llvm::APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
        // If there was no overflow, the source value is within the range of
 | 
						|
        // values that can be represented.
 | 
						|
        if (ConvertStatus & llvm::APFloat::opOverflow) {
 | 
						|
          *isInitializerConstant = true;
 | 
						|
          *ConstantValue = InitializerValue.Val;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        *isInitializerConstant = false;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
 | 
						|
  // * from an integer type or unscoped enumeration type to an integer type
 | 
						|
  //   that cannot represent all the values of the original type, except where
 | 
						|
  //   the source is a constant expression and the actual value after
 | 
						|
  //   conversion will fit into the target type and will produce the original
 | 
						|
  //   value when converted back to the original type.
 | 
						|
  case ICK_Boolean_Conversion:  // Bools are integers too.
 | 
						|
    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
 | 
						|
      // Boolean conversions can be from pointers and pointers to members
 | 
						|
      // [conv.bool], and those aren't considered narrowing conversions.
 | 
						|
      return false;
 | 
						|
    }  // Otherwise, fall through to the integral case.
 | 
						|
  case ICK_Integral_Conversion: {
 | 
						|
    assert(FromType->isIntegralOrUnscopedEnumerationType());
 | 
						|
    assert(ToType->isIntegralOrUnscopedEnumerationType());
 | 
						|
    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
 | 
						|
    const unsigned FromWidth = Ctx.getIntWidth(FromType);
 | 
						|
    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
 | 
						|
    const unsigned ToWidth = Ctx.getIntWidth(ToType);
 | 
						|
 | 
						|
    if (FromWidth > ToWidth ||
 | 
						|
        (FromWidth == ToWidth && FromSigned != ToSigned)) {
 | 
						|
      // Not all values of FromType can be represented in ToType.
 | 
						|
      llvm::APSInt InitializerValue;
 | 
						|
      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
 | 
						|
        *isInitializerConstant = true;
 | 
						|
        *ConstantValue = APValue(InitializerValue);
 | 
						|
 | 
						|
        // Add a bit to the InitializerValue so we don't have to worry about
 | 
						|
        // signed vs. unsigned comparisons.
 | 
						|
        InitializerValue = InitializerValue.extend(
 | 
						|
          InitializerValue.getBitWidth() + 1);
 | 
						|
        // Convert the initializer to and from the target width and signed-ness.
 | 
						|
        llvm::APSInt ConvertedValue = InitializerValue;
 | 
						|
        ConvertedValue = ConvertedValue.trunc(ToWidth);
 | 
						|
        ConvertedValue.setIsSigned(ToSigned);
 | 
						|
        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
 | 
						|
        ConvertedValue.setIsSigned(InitializerValue.isSigned());
 | 
						|
        // If the result is different, this was a narrowing conversion.
 | 
						|
        return ConvertedValue != InitializerValue;
 | 
						|
      } else {
 | 
						|
        // Variables are always narrowings.
 | 
						|
        *isInitializerConstant = false;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    // Other kinds of conversions are not narrowings.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddAddressOverloadResolutionStep(
 | 
						|
                                                      FunctionDecl *Function,
 | 
						|
                                                      DeclAccessPair Found) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ResolveAddressOfOverloadedFunction;
 | 
						|
  S.Type = Function->getType();
 | 
						|
  S.Function.HadMultipleCandidates = false;
 | 
						|
  S.Function.Function = Function;
 | 
						|
  S.Function.FoundDecl = Found;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
 | 
						|
                                                      ExprValueKind VK) {
 | 
						|
  Step S;
 | 
						|
  switch (VK) {
 | 
						|
  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
 | 
						|
  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
 | 
						|
  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
 | 
						|
  default: llvm_unreachable("No such category");
 | 
						|
  }
 | 
						|
  S.Type = BaseType;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddReferenceBindingStep(QualType T,
 | 
						|
                                                     bool BindingTemporary) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ExtraneousCopyToTemporary;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
 | 
						|
                                                   DeclAccessPair FoundDecl,
 | 
						|
                                                   QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_UserConversion;
 | 
						|
  S.Type = T;
 | 
						|
  S.Function.HadMultipleCandidates = false;
 | 
						|
  S.Function.Function = Function;
 | 
						|
  S.Function.FoundDecl = FoundDecl;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddQualificationConversionStep(QualType Ty,
 | 
						|
                                                            ExprValueKind VK) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
 | 
						|
  switch (VK) {
 | 
						|
  case VK_RValue:
 | 
						|
    S.Kind = SK_QualificationConversionRValue;
 | 
						|
    break;
 | 
						|
  case VK_XValue:
 | 
						|
    S.Kind = SK_QualificationConversionXValue;
 | 
						|
    break;
 | 
						|
  case VK_LValue:
 | 
						|
    S.Kind = SK_QualificationConversionLValue;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  S.Type = Ty;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddConversionSequenceStep(
 | 
						|
                                       const ImplicitConversionSequence &ICS,
 | 
						|
                                                       QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ConversionSequence;
 | 
						|
  S.Type = T;
 | 
						|
  S.ICS = new ImplicitConversionSequence(ICS);
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddListInitializationStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ListInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
InitializationSequence::AddConstructorInitializationStep(
 | 
						|
                                              CXXConstructorDecl *Constructor,
 | 
						|
                                                       AccessSpecifier Access,
 | 
						|
                                                         QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ConstructorInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  S.Function.HadMultipleCandidates = false;
 | 
						|
  S.Function.Function = Constructor;
 | 
						|
  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddZeroInitializationStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ZeroInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddCAssignmentStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_CAssignment;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddStringInitStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_StringInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ObjCObjectConversion;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddArrayInitStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ArrayInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
 | 
						|
                                                              bool shouldCopy) {
 | 
						|
  Step s;
 | 
						|
  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
 | 
						|
                       : SK_PassByIndirectRestore);
 | 
						|
  s.Type = type;
 | 
						|
  Steps.push_back(s);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ProduceObjCObject;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::SetOverloadFailure(FailureKind Failure,
 | 
						|
                                                OverloadingResult Result) {
 | 
						|
  setSequenceKind(FailedSequence);
 | 
						|
  this->Failure = Failure;
 | 
						|
  this->FailedOverloadResult = Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Attempt initialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void MaybeProduceObjCObject(Sema &S,
 | 
						|
                                   InitializationSequence &Sequence,
 | 
						|
                                   const InitializedEntity &Entity) {
 | 
						|
  if (!S.getLangOptions().ObjCAutoRefCount) return;
 | 
						|
 | 
						|
  /// When initializing a parameter, produce the value if it's marked
 | 
						|
  /// __attribute__((ns_consumed)).
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
 | 
						|
    if (!Entity.isParameterConsumed())
 | 
						|
      return;
 | 
						|
 | 
						|
    assert(Entity.getType()->isObjCRetainableType() &&
 | 
						|
           "consuming an object of unretainable type?");
 | 
						|
    Sequence.AddProduceObjCObjectStep(Entity.getType());
 | 
						|
 | 
						|
  /// When initializing a return value, if the return type is a
 | 
						|
  /// retainable type, then returns need to immediately retain the
 | 
						|
  /// object.  If an autorelease is required, it will be done at the
 | 
						|
  /// last instant.
 | 
						|
  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
 | 
						|
    if (!Entity.getType()->isObjCRetainableType())
 | 
						|
      return;
 | 
						|
 | 
						|
    Sequence.AddProduceObjCObjectStep(Entity.getType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt list initialization (C++0x [dcl.init.list])
 | 
						|
static void TryListInitialization(Sema &S,
 | 
						|
                                  const InitializedEntity &Entity,
 | 
						|
                                  const InitializationKind &Kind,
 | 
						|
                                  InitListExpr *InitList,
 | 
						|
                                  InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
 | 
						|
  // C++ doesn't allow scalar initialization with more than one argument.
 | 
						|
  // But C99 complex numbers are scalars and it makes sense there.
 | 
						|
  if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
 | 
						|
      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // FIXME: C++0x defines behavior for these two cases.
 | 
						|
  if (DestType->isReferenceType()) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (DestType->isRecordType() && !DestType->isAggregateType()) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitListChecker CheckInitList(S, Entity, InitList,
 | 
						|
          DestType, /*VerifyOnly=*/true);
 | 
						|
  if (CheckInitList.HadError()) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the list initialization step with the built init list.
 | 
						|
  Sequence.AddListInitializationStep(DestType);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try a reference initialization that involves calling a conversion
 | 
						|
/// function.
 | 
						|
static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
 | 
						|
                                             const InitializedEntity &Entity,
 | 
						|
                                             const InitializationKind &Kind,
 | 
						|
                                                          Expr *Initializer,
 | 
						|
                                                          bool AllowRValues,
 | 
						|
                                             InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
 | 
						|
  QualType T1 = cv1T1.getUnqualifiedType();
 | 
						|
  QualType cv2T2 = Initializer->getType();
 | 
						|
  QualType T2 = cv2T2.getUnqualifiedType();
 | 
						|
 | 
						|
  bool DerivedToBase;
 | 
						|
  bool ObjCConversion;
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
 | 
						|
                                         T1, T2, DerivedToBase,
 | 
						|
                                         ObjCConversion,
 | 
						|
                                         ObjCLifetimeConversion) &&
 | 
						|
         "Must have incompatible references when binding via conversion");
 | 
						|
  (void)DerivedToBase;
 | 
						|
  (void)ObjCConversion;
 | 
						|
  (void)ObjCLifetimeConversion;
 | 
						|
  
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
  CandidateSet.clear();
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
 | 
						|
 | 
						|
  const RecordType *T1RecordType = 0;
 | 
						|
  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
 | 
						|
      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
 | 
						|
    // The type we're converting to is a class type. Enumerate its constructors
 | 
						|
    // to see if there is a suitable conversion.
 | 
						|
    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
 | 
						|
 | 
						|
    DeclContext::lookup_iterator Con, ConEnd;
 | 
						|
    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
 | 
						|
         Con != ConEnd; ++Con) {
 | 
						|
      NamedDecl *D = *Con;
 | 
						|
      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | 
						|
 | 
						|
      // Find the constructor (which may be a template).
 | 
						|
      CXXConstructorDecl *Constructor = 0;
 | 
						|
      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
      if (ConstructorTmpl)
 | 
						|
        Constructor = cast<CXXConstructorDecl>(
 | 
						|
                                         ConstructorTmpl->getTemplatedDecl());
 | 
						|
      else
 | 
						|
        Constructor = cast<CXXConstructorDecl>(D);
 | 
						|
 | 
						|
      if (!Constructor->isInvalidDecl() &&
 | 
						|
          Constructor->isConvertingConstructor(AllowExplicit)) {
 | 
						|
        if (ConstructorTmpl)
 | 
						|
          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | 
						|
                                         /*ExplicitArgs*/ 0,
 | 
						|
                                         &Initializer, 1, CandidateSet,
 | 
						|
                                         /*SuppressUserConversions=*/true);
 | 
						|
        else
 | 
						|
          S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                                 &Initializer, 1, CandidateSet,
 | 
						|
                                 /*SuppressUserConversions=*/true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  const RecordType *T2RecordType = 0;
 | 
						|
  if ((T2RecordType = T2->getAs<RecordType>()) &&
 | 
						|
      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
 | 
						|
    // The type we're converting from is a class type, enumerate its conversion
 | 
						|
    // functions.
 | 
						|
    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
 | 
						|
 | 
						|
    const UnresolvedSetImpl *Conversions
 | 
						|
      = T2RecordDecl->getVisibleConversionFunctions();
 | 
						|
    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
 | 
						|
           E = Conversions->end(); I != E; ++I) {
 | 
						|
      NamedDecl *D = *I;
 | 
						|
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
      if (isa<UsingShadowDecl>(D))
 | 
						|
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
      CXXConversionDecl *Conv;
 | 
						|
      if (ConvTemplate)
 | 
						|
        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
      else
 | 
						|
        Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
      // If the conversion function doesn't return a reference type,
 | 
						|
      // it can't be considered for this conversion unless we're allowed to
 | 
						|
      // consider rvalues.
 | 
						|
      // FIXME: Do we need to make sure that we only consider conversion
 | 
						|
      // candidates with reference-compatible results? That might be needed to
 | 
						|
      // break recursion.
 | 
						|
      if ((AllowExplicit || !Conv->isExplicit()) &&
 | 
						|
          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
 | 
						|
        if (ConvTemplate)
 | 
						|
          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
 | 
						|
                                           ActingDC, Initializer,
 | 
						|
                                           DestType, CandidateSet);
 | 
						|
        else
 | 
						|
          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
 | 
						|
                                   Initializer, DestType, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  SourceLocation DeclLoc = Initializer->getLocStart();
 | 
						|
 | 
						|
  // Perform overload resolution. If it fails, return the failed result.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  if (OverloadingResult Result
 | 
						|
        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  FunctionDecl *Function = Best->Function;
 | 
						|
 | 
						|
  // This is the overload that will actually be used for the initialization, so
 | 
						|
  // mark it as used.
 | 
						|
  S.MarkDeclarationReferenced(DeclLoc, Function);
 | 
						|
 | 
						|
  // Compute the returned type of the conversion.
 | 
						|
  if (isa<CXXConversionDecl>(Function))
 | 
						|
    T2 = Function->getResultType();
 | 
						|
  else
 | 
						|
    T2 = cv1T1;
 | 
						|
 | 
						|
  // Add the user-defined conversion step.
 | 
						|
  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
 | 
						|
                                 T2.getNonLValueExprType(S.Context));
 | 
						|
 | 
						|
  // Determine whether we need to perform derived-to-base or
 | 
						|
  // cv-qualification adjustments.
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  if (T2->isLValueReferenceType())
 | 
						|
    VK = VK_LValue;
 | 
						|
  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
 | 
						|
    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
 | 
						|
 | 
						|
  bool NewDerivedToBase = false;
 | 
						|
  bool NewObjCConversion = false;
 | 
						|
  bool NewObjCLifetimeConversion = false;
 | 
						|
  Sema::ReferenceCompareResult NewRefRelationship
 | 
						|
    = S.CompareReferenceRelationship(DeclLoc, T1,
 | 
						|
                                     T2.getNonLValueExprType(S.Context),
 | 
						|
                                     NewDerivedToBase, NewObjCConversion,
 | 
						|
                                     NewObjCLifetimeConversion);
 | 
						|
  if (NewRefRelationship == Sema::Ref_Incompatible) {
 | 
						|
    // If the type we've converted to is not reference-related to the
 | 
						|
    // type we're looking for, then there is another conversion step
 | 
						|
    // we need to perform to produce a temporary of the right type
 | 
						|
    // that we'll be binding to.
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard = Best->FinalConversion;
 | 
						|
    T2 = ICS.Standard.getToType(2);
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, T2);
 | 
						|
  } else if (NewDerivedToBase)
 | 
						|
    Sequence.AddDerivedToBaseCastStep(
 | 
						|
                                S.Context.getQualifiedType(T1,
 | 
						|
                                  T2.getNonReferenceType().getQualifiers()),
 | 
						|
                                      VK);
 | 
						|
  else if (NewObjCConversion)
 | 
						|
    Sequence.AddObjCObjectConversionStep(
 | 
						|
                                S.Context.getQualifiedType(T1,
 | 
						|
                                  T2.getNonReferenceType().getQualifiers()));
 | 
						|
 | 
						|
  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
 | 
						|
    Sequence.AddQualificationConversionStep(cv1T1, VK);
 | 
						|
 | 
						|
  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
 | 
						|
  return OR_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
 | 
						|
static void TryReferenceInitialization(Sema &S,
 | 
						|
                                       const InitializedEntity &Entity,
 | 
						|
                                       const InitializationKind &Kind,
 | 
						|
                                       Expr *Initializer,
 | 
						|
                                       InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
 | 
						|
  Qualifiers T1Quals;
 | 
						|
  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
 | 
						|
  QualType cv2T2 = Initializer->getType();
 | 
						|
  Qualifiers T2Quals;
 | 
						|
  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
 | 
						|
  SourceLocation DeclLoc = Initializer->getLocStart();
 | 
						|
 | 
						|
  // If the initializer is the address of an overloaded function, try
 | 
						|
  // to resolve the overloaded function. If all goes well, T2 is the
 | 
						|
  // type of the resulting function.
 | 
						|
  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
 | 
						|
                                                                T1,
 | 
						|
                                                                false,
 | 
						|
                                                                Found)) {
 | 
						|
      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
 | 
						|
      cv2T2 = Fn->getType();
 | 
						|
      T2 = cv2T2.getUnqualifiedType();
 | 
						|
    } else if (!T1->isRecordType()) {
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute some basic properties of the types and the initializer.
 | 
						|
  bool isLValueRef = DestType->isLValueReferenceType();
 | 
						|
  bool isRValueRef = !isLValueRef;
 | 
						|
  bool DerivedToBase = false;
 | 
						|
  bool ObjCConversion = false;
 | 
						|
  bool ObjCLifetimeConversion = false;
 | 
						|
  Expr::Classification InitCategory = Initializer->Classify(S.Context);
 | 
						|
  Sema::ReferenceCompareResult RefRelationship
 | 
						|
    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
 | 
						|
                                     ObjCConversion, ObjCLifetimeConversion);
 | 
						|
 | 
						|
  // C++0x [dcl.init.ref]p5:
 | 
						|
  //   A reference to type "cv1 T1" is initialized by an expression of type
 | 
						|
  //   "cv2 T2" as follows:
 | 
						|
  //
 | 
						|
  //     - If the reference is an lvalue reference and the initializer
 | 
						|
  //       expression
 | 
						|
  // Note the analogous bullet points for rvlaue refs to functions. Because
 | 
						|
  // there are no function rvalues in C++, rvalue refs to functions are treated
 | 
						|
  // like lvalue refs.
 | 
						|
  OverloadingResult ConvOvlResult = OR_Success;
 | 
						|
  bool T1Function = T1->isFunctionType();
 | 
						|
  if (isLValueRef || T1Function) {
 | 
						|
    if (InitCategory.isLValue() &&
 | 
						|
        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
 | 
						|
         (Kind.isCStyleOrFunctionalCast() &&
 | 
						|
          RefRelationship == Sema::Ref_Related))) {
 | 
						|
      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
 | 
						|
      //     reference-compatible with "cv2 T2," or
 | 
						|
      //
 | 
						|
      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
 | 
						|
      // bit-field when we're determining whether the reference initialization
 | 
						|
      // can occur. However, we do pay attention to whether it is a bit-field
 | 
						|
      // to decide whether we're actually binding to a temporary created from
 | 
						|
      // the bit-field.
 | 
						|
      if (DerivedToBase)
 | 
						|
        Sequence.AddDerivedToBaseCastStep(
 | 
						|
                         S.Context.getQualifiedType(T1, T2Quals),
 | 
						|
                         VK_LValue);
 | 
						|
      else if (ObjCConversion)
 | 
						|
        Sequence.AddObjCObjectConversionStep(
 | 
						|
                                     S.Context.getQualifiedType(T1, T2Quals));
 | 
						|
 | 
						|
      if (T1Quals != T2Quals)
 | 
						|
        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
 | 
						|
      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
 | 
						|
        (Initializer->getBitField() || Initializer->refersToVectorElement());
 | 
						|
      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    //     - has a class type (i.e., T2 is a class type), where T1 is not
 | 
						|
    //       reference-related to T2, and can be implicitly converted to an
 | 
						|
    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
 | 
						|
    //       with "cv3 T3" (this conversion is selected by enumerating the
 | 
						|
    //       applicable conversion functions (13.3.1.6) and choosing the best
 | 
						|
    //       one through overload resolution (13.3)),
 | 
						|
    // If we have an rvalue ref to function type here, the rhs must be
 | 
						|
    // an rvalue.
 | 
						|
    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
 | 
						|
        (isLValueRef || InitCategory.isRValue())) {
 | 
						|
      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
 | 
						|
                                                       Initializer,
 | 
						|
                                                   /*AllowRValues=*/isRValueRef,
 | 
						|
                                                       Sequence);
 | 
						|
      if (ConvOvlResult == OR_Success)
 | 
						|
        return;
 | 
						|
      if (ConvOvlResult != OR_No_Viable_Function) {
 | 
						|
        Sequence.SetOverloadFailure(
 | 
						|
                      InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                    ConvOvlResult);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     - Otherwise, the reference shall be an lvalue reference to a
 | 
						|
  //       non-volatile const type (i.e., cv1 shall be const), or the reference
 | 
						|
  //       shall be an rvalue reference.
 | 
						|
  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
 | 
						|
    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | 
						|
      Sequence.SetOverloadFailure(
 | 
						|
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                  ConvOvlResult);
 | 
						|
    else
 | 
						|
      Sequence.SetFailed(InitCategory.isLValue()
 | 
						|
        ? (RefRelationship == Sema::Ref_Related
 | 
						|
             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
 | 
						|
             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
 | 
						|
        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - If the initializer expression
 | 
						|
  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
 | 
						|
  //        "cv1 T1" is reference-compatible with "cv2 T2"
 | 
						|
  // Note: functions are handled below.
 | 
						|
  if (!T1Function &&
 | 
						|
      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
 | 
						|
       (Kind.isCStyleOrFunctionalCast() &&
 | 
						|
        RefRelationship == Sema::Ref_Related)) &&
 | 
						|
      (InitCategory.isXValue() ||
 | 
						|
       (InitCategory.isPRValue() && T2->isRecordType()) ||
 | 
						|
       (InitCategory.isPRValue() && T2->isArrayType()))) {
 | 
						|
    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
 | 
						|
    if (InitCategory.isPRValue() && T2->isRecordType()) {
 | 
						|
      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
 | 
						|
      // compiler the freedom to perform a copy here or bind to the
 | 
						|
      // object, while C++0x requires that we bind directly to the
 | 
						|
      // object. Hence, we always bind to the object without making an
 | 
						|
      // extra copy. However, in C++03 requires that we check for the
 | 
						|
      // presence of a suitable copy constructor:
 | 
						|
      //
 | 
						|
      //   The constructor that would be used to make the copy shall
 | 
						|
      //   be callable whether or not the copy is actually done.
 | 
						|
      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
 | 
						|
        Sequence.AddExtraneousCopyToTemporary(cv2T2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (DerivedToBase)
 | 
						|
      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
 | 
						|
                                        ValueKind);
 | 
						|
    else if (ObjCConversion)
 | 
						|
      Sequence.AddObjCObjectConversionStep(
 | 
						|
                                       S.Context.getQualifiedType(T1, T2Quals));
 | 
						|
 | 
						|
    if (T1Quals != T2Quals)
 | 
						|
      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
 | 
						|
    Sequence.AddReferenceBindingStep(cv1T1,
 | 
						|
         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //       - has a class type (i.e., T2 is a class type), where T1 is not
 | 
						|
  //         reference-related to T2, and can be implicitly converted to an
 | 
						|
  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
 | 
						|
  //         where "cv1 T1" is reference-compatible with "cv3 T3",
 | 
						|
  if (T2->isRecordType()) {
 | 
						|
    if (RefRelationship == Sema::Ref_Incompatible) {
 | 
						|
      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
 | 
						|
                                                       Kind, Initializer,
 | 
						|
                                                       /*AllowRValues=*/true,
 | 
						|
                                                       Sequence);
 | 
						|
      if (ConvOvlResult)
 | 
						|
        Sequence.SetOverloadFailure(
 | 
						|
                      InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                    ConvOvlResult);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
 | 
						|
  //        from the initializer expression using the rules for a non-reference
 | 
						|
  //        copy initialization (8.5). The reference is then bound to the
 | 
						|
  //        temporary. [...]
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
 | 
						|
 | 
						|
  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
 | 
						|
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
 | 
						|
                              /*SuppressUserConversions*/ false,
 | 
						|
                              AllowExplicit,
 | 
						|
                              /*FIXME:InOverloadResolution=*/false,
 | 
						|
                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | 
						|
                              /*AllowObjCWritebackConversion=*/false);
 | 
						|
  
 | 
						|
  if (ICS.isBad()) {
 | 
						|
    // FIXME: Use the conversion function set stored in ICS to turn
 | 
						|
    // this into an overloading ambiguity diagnostic. However, we need
 | 
						|
    // to keep that set as an OverloadCandidateSet rather than as some
 | 
						|
    // other kind of set.
 | 
						|
    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | 
						|
      Sequence.SetOverloadFailure(
 | 
						|
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                  ConvOvlResult);
 | 
						|
    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  //        [...] If T1 is reference-related to T2, cv1 must be the
 | 
						|
  //        same cv-qualification as, or greater cv-qualification
 | 
						|
  //        than, cv2; otherwise, the program is ill-formed.
 | 
						|
  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
 | 
						|
  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
 | 
						|
  if (RefRelationship == Sema::Ref_Related &&
 | 
						|
      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
 | 
						|
  //   reference, the initializer expression shall not be an lvalue.
 | 
						|
  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
 | 
						|
      InitCategory.isLValue()) {
 | 
						|
    Sequence.SetFailed(
 | 
						|
                    InitializationSequence::FK_RValueReferenceBindingToLValue);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt character array initialization from a string literal
 | 
						|
/// (C++ [dcl.init.string], C99 6.7.8).
 | 
						|
static void TryStringLiteralInitialization(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           Expr *Initializer,
 | 
						|
                                       InitializationSequence &Sequence) {
 | 
						|
  Sequence.AddStringInitStep(Entity.getType());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
 | 
						|
/// enumerates the constructors of the initialized entity and performs overload
 | 
						|
/// resolution to select the best.
 | 
						|
static void TryConstructorInitialization(Sema &S,
 | 
						|
                                         const InitializedEntity &Entity,
 | 
						|
                                         const InitializationKind &Kind,
 | 
						|
                                         Expr **Args, unsigned NumArgs,
 | 
						|
                                         QualType DestType,
 | 
						|
                                         InitializationSequence &Sequence) {
 | 
						|
  // Check constructor arguments for self reference.
 | 
						|
  if (DeclaratorDecl *DD = Entity.getDecl())
 | 
						|
    // Parameters arguments are occassionially constructed with itself,
 | 
						|
    // for instance, in recursive functions.  Skip them.
 | 
						|
    if (!isa<ParmVarDecl>(DD))
 | 
						|
      for (unsigned i = 0; i < NumArgs; ++i)
 | 
						|
        S.CheckSelfReference(DD, Args[i]);
 | 
						|
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
  CandidateSet.clear();
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
 | 
						|
                        Kind.getKind() == InitializationKind::IK_Value ||
 | 
						|
                        Kind.getKind() == InitializationKind::IK_Default);
 | 
						|
 | 
						|
  // The type we're constructing needs to be complete.
 | 
						|
  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The type we're converting to is a class type. Enumerate its constructors
 | 
						|
  // to see if one is suitable.
 | 
						|
  const RecordType *DestRecordType = DestType->getAs<RecordType>();
 | 
						|
  assert(DestRecordType && "Constructor initialization requires record type");
 | 
						|
  CXXRecordDecl *DestRecordDecl
 | 
						|
    = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | 
						|
 | 
						|
  DeclContext::lookup_iterator Con, ConEnd;
 | 
						|
  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
 | 
						|
       Con != ConEnd; ++Con) {
 | 
						|
    NamedDecl *D = *Con;
 | 
						|
    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | 
						|
    bool SuppressUserConversions = false;
 | 
						|
 | 
						|
    // Find the constructor (which may be a template).
 | 
						|
    CXXConstructorDecl *Constructor = 0;
 | 
						|
    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
    if (ConstructorTmpl)
 | 
						|
      Constructor = cast<CXXConstructorDecl>(
 | 
						|
                                           ConstructorTmpl->getTemplatedDecl());
 | 
						|
    else {
 | 
						|
      Constructor = cast<CXXConstructorDecl>(D);
 | 
						|
 | 
						|
      // If we're performing copy initialization using a copy constructor, we
 | 
						|
      // suppress user-defined conversions on the arguments.
 | 
						|
      // FIXME: Move constructors?
 | 
						|
      if (Kind.getKind() == InitializationKind::IK_Copy &&
 | 
						|
          Constructor->isCopyConstructor())
 | 
						|
        SuppressUserConversions = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Constructor->isInvalidDecl() &&
 | 
						|
        (AllowExplicit || !Constructor->isExplicit())) {
 | 
						|
      if (ConstructorTmpl)
 | 
						|
        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | 
						|
                                       /*ExplicitArgs*/ 0,
 | 
						|
                                       Args, NumArgs, CandidateSet,
 | 
						|
                                       SuppressUserConversions);
 | 
						|
      else
 | 
						|
        S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                               Args, NumArgs, CandidateSet,
 | 
						|
                               SuppressUserConversions);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation DeclLoc = Kind.getLocation();
 | 
						|
 | 
						|
  // Perform overload resolution. If it fails, return the failed result.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  if (OverloadingResult Result
 | 
						|
        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
 | 
						|
    Sequence.SetOverloadFailure(
 | 
						|
                          InitializationSequence::FK_ConstructorOverloadFailed,
 | 
						|
                                Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [dcl.init]p6:
 | 
						|
  //   If a program calls for the default initialization of an object
 | 
						|
  //   of a const-qualified type T, T shall be a class type with a
 | 
						|
  //   user-provided default constructor.
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Default &&
 | 
						|
      Entity.getType().isConstQualified() &&
 | 
						|
      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the constructor initialization step. Any cv-qualification conversion is
 | 
						|
  // subsumed by the initialization.
 | 
						|
  Sequence.AddConstructorInitializationStep(
 | 
						|
                                      cast<CXXConstructorDecl>(Best->Function),
 | 
						|
                                      Best->FoundDecl.getAccess(),
 | 
						|
                                      DestType);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt value initialization (C++ [dcl.init]p7).
 | 
						|
static void TryValueInitialization(Sema &S,
 | 
						|
                                   const InitializedEntity &Entity,
 | 
						|
                                   const InitializationKind &Kind,
 | 
						|
                                   InitializationSequence &Sequence) {
 | 
						|
  // C++ [dcl.init]p5:
 | 
						|
  //
 | 
						|
  //   To value-initialize an object of type T means:
 | 
						|
  QualType T = Entity.getType();
 | 
						|
 | 
						|
  //     -- if T is an array type, then each element is value-initialized;
 | 
						|
  while (const ArrayType *AT = S.Context.getAsArrayType(T))
 | 
						|
    T = AT->getElementType();
 | 
						|
 | 
						|
  if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | 
						|
      // -- if T is a class type (clause 9) with a user-declared
 | 
						|
      //    constructor (12.1), then the default constructor for T is
 | 
						|
      //    called (and the initialization is ill-formed if T has no
 | 
						|
      //    accessible default constructor);
 | 
						|
      //
 | 
						|
      // FIXME: we really want to refer to a single subobject of the array,
 | 
						|
      // but Entity doesn't have a way to capture that (yet).
 | 
						|
      if (ClassDecl->hasUserDeclaredConstructor())
 | 
						|
        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
 | 
						|
 | 
						|
      // -- if T is a (possibly cv-qualified) non-union class type
 | 
						|
      //    without a user-provided constructor, then the object is
 | 
						|
      //    zero-initialized and, if T's implicitly-declared default
 | 
						|
      //    constructor is non-trivial, that constructor is called.
 | 
						|
      if ((ClassDecl->getTagKind() == TTK_Class ||
 | 
						|
           ClassDecl->getTagKind() == TTK_Struct)) {
 | 
						|
        Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt default initialization (C++ [dcl.init]p6).
 | 
						|
static void TryDefaultInitialization(Sema &S,
 | 
						|
                                     const InitializedEntity &Entity,
 | 
						|
                                     const InitializationKind &Kind,
 | 
						|
                                     InitializationSequence &Sequence) {
 | 
						|
  assert(Kind.getKind() == InitializationKind::IK_Default);
 | 
						|
 | 
						|
  // C++ [dcl.init]p6:
 | 
						|
  //   To default-initialize an object of type T means:
 | 
						|
  //     - if T is an array type, each element is default-initialized;
 | 
						|
  QualType DestType = S.Context.getBaseElementType(Entity.getType());
 | 
						|
         
 | 
						|
  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
 | 
						|
  //       constructor for T is called (and the initialization is ill-formed if
 | 
						|
  //       T has no accessible default constructor);
 | 
						|
  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
 | 
						|
    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - otherwise, no initialization is performed.
 | 
						|
 | 
						|
  //   If a program calls for the default initialization of an object of
 | 
						|
  //   a const-qualified type T, T shall be a class type with a user-provided
 | 
						|
  //   default constructor.
 | 
						|
  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the destination type has a lifetime property, zero-initialize it.
 | 
						|
  if (DestType.getQualifiers().hasObjCLifetime()) {
 | 
						|
    Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
 | 
						|
/// which enumerates all conversion functions and performs overload resolution
 | 
						|
/// to select the best.
 | 
						|
static void TryUserDefinedConversion(Sema &S,
 | 
						|
                                     const InitializedEntity &Entity,
 | 
						|
                                     const InitializationKind &Kind,
 | 
						|
                                     Expr *Initializer,
 | 
						|
                                     InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  assert(!DestType->isReferenceType() && "References are handled elsewhere");
 | 
						|
  QualType SourceType = Initializer->getType();
 | 
						|
  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
 | 
						|
         "Must have a class type to perform a user-defined conversion");
 | 
						|
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
  CandidateSet.clear();
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
 | 
						|
 | 
						|
  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
 | 
						|
    // The type we're converting to is a class type. Enumerate its constructors
 | 
						|
    // to see if there is a suitable conversion.
 | 
						|
    CXXRecordDecl *DestRecordDecl
 | 
						|
      = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | 
						|
 | 
						|
    // Try to complete the type we're converting to.
 | 
						|
    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
 | 
						|
      DeclContext::lookup_iterator Con, ConEnd;
 | 
						|
      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
 | 
						|
           Con != ConEnd; ++Con) {
 | 
						|
        NamedDecl *D = *Con;
 | 
						|
        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | 
						|
 | 
						|
        // Find the constructor (which may be a template).
 | 
						|
        CXXConstructorDecl *Constructor = 0;
 | 
						|
        FunctionTemplateDecl *ConstructorTmpl
 | 
						|
          = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
        if (ConstructorTmpl)
 | 
						|
          Constructor = cast<CXXConstructorDecl>(
 | 
						|
                                           ConstructorTmpl->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Constructor = cast<CXXConstructorDecl>(D);
 | 
						|
 | 
						|
        if (!Constructor->isInvalidDecl() &&
 | 
						|
            Constructor->isConvertingConstructor(AllowExplicit)) {
 | 
						|
          if (ConstructorTmpl)
 | 
						|
            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | 
						|
                                           /*ExplicitArgs*/ 0,
 | 
						|
                                           &Initializer, 1, CandidateSet,
 | 
						|
                                           /*SuppressUserConversions=*/true);
 | 
						|
          else
 | 
						|
            S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                                   &Initializer, 1, CandidateSet,
 | 
						|
                                   /*SuppressUserConversions=*/true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation DeclLoc = Initializer->getLocStart();
 | 
						|
 | 
						|
  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
 | 
						|
    // The type we're converting from is a class type, enumerate its conversion
 | 
						|
    // functions.
 | 
						|
 | 
						|
    // We can only enumerate the conversion functions for a complete type; if
 | 
						|
    // the type isn't complete, simply skip this step.
 | 
						|
    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
 | 
						|
      CXXRecordDecl *SourceRecordDecl
 | 
						|
        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
 | 
						|
 | 
						|
      const UnresolvedSetImpl *Conversions
 | 
						|
        = SourceRecordDecl->getVisibleConversionFunctions();
 | 
						|
      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
 | 
						|
           E = Conversions->end();
 | 
						|
           I != E; ++I) {
 | 
						|
        NamedDecl *D = *I;
 | 
						|
        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
        if (isa<UsingShadowDecl>(D))
 | 
						|
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        if (ConvTemplate)
 | 
						|
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
        if (AllowExplicit || !Conv->isExplicit()) {
 | 
						|
          if (ConvTemplate)
 | 
						|
            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
 | 
						|
                                             ActingDC, Initializer, DestType,
 | 
						|
                                             CandidateSet);
 | 
						|
          else
 | 
						|
            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
 | 
						|
                                     Initializer, DestType, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform overload resolution. If it fails, return the failed result.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  if (OverloadingResult Result
 | 
						|
        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
 | 
						|
    Sequence.SetOverloadFailure(
 | 
						|
                        InitializationSequence::FK_UserConversionOverloadFailed,
 | 
						|
                                Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Function = Best->Function;
 | 
						|
  S.MarkDeclarationReferenced(DeclLoc, Function);
 | 
						|
 | 
						|
  if (isa<CXXConstructorDecl>(Function)) {
 | 
						|
    // Add the user-defined conversion step. Any cv-qualification conversion is
 | 
						|
    // subsumed by the initialization.
 | 
						|
    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the user-defined conversion step that calls the conversion function.
 | 
						|
  QualType ConvType = Function->getCallResultType();
 | 
						|
  if (ConvType->getAs<RecordType>()) {
 | 
						|
    // If we're converting to a class type, there may be an copy if
 | 
						|
    // the resulting temporary object (possible to create an object of
 | 
						|
    // a base class type). That copy is not a separate conversion, so
 | 
						|
    // we just make a note of the actual destination type (possibly a
 | 
						|
    // base class of the type returned by the conversion function) and
 | 
						|
    // let the user-defined conversion step handle the conversion.
 | 
						|
    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
 | 
						|
 | 
						|
  // If the conversion following the call to the conversion function
 | 
						|
  // is interesting, add it as a separate step.
 | 
						|
  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
 | 
						|
      Best->FinalConversion.Third) {
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard = Best->FinalConversion;
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, DestType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The non-zero enum values here are indexes into diagnostic alternatives.
 | 
						|
enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
 | 
						|
 | 
						|
/// Determines whether this expression is an acceptable ICR source.
 | 
						|
static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
 | 
						|
                                         bool isAddressOf) {
 | 
						|
  // Skip parens.
 | 
						|
  e = e->IgnoreParens();
 | 
						|
 | 
						|
  // Skip address-of nodes.
 | 
						|
  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
 | 
						|
    if (op->getOpcode() == UO_AddrOf)
 | 
						|
      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
 | 
						|
 | 
						|
  // Skip certain casts.
 | 
						|
  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
 | 
						|
    switch (ce->getCastKind()) {
 | 
						|
    case CK_Dependent:
 | 
						|
    case CK_BitCast:
 | 
						|
    case CK_LValueBitCast:
 | 
						|
    case CK_NoOp:
 | 
						|
      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
 | 
						|
 | 
						|
    case CK_ArrayToPointerDecay:
 | 
						|
      return IIK_nonscalar;
 | 
						|
 | 
						|
    case CK_NullToPointer:
 | 
						|
      return IIK_okay;
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // If we have a declaration reference, it had better be a local variable.
 | 
						|
  } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
 | 
						|
    if (!isAddressOf) return IIK_nonlocal;
 | 
						|
 | 
						|
    VarDecl *var;
 | 
						|
    if (isa<DeclRefExpr>(e)) {
 | 
						|
      var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
 | 
						|
      if (!var) return IIK_nonlocal;
 | 
						|
    } else {
 | 
						|
      var = cast<BlockDeclRefExpr>(e)->getDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
 | 
						|
 | 
						|
  // If we have a conditional operator, check both sides.
 | 
						|
  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
 | 
						|
    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
 | 
						|
      return iik;
 | 
						|
 | 
						|
    return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
 | 
						|
 | 
						|
  // These are never scalar.
 | 
						|
  } else if (isa<ArraySubscriptExpr>(e)) {
 | 
						|
    return IIK_nonscalar;
 | 
						|
 | 
						|
  // Otherwise, it needs to be a null pointer constant.
 | 
						|
  } else {
 | 
						|
    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
 | 
						|
            ? IIK_okay : IIK_nonlocal);
 | 
						|
  }
 | 
						|
 | 
						|
  return IIK_nonlocal;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given expression is a valid operand for an
 | 
						|
/// indirect copy/restore.
 | 
						|
static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
 | 
						|
  assert(src->isRValue());
 | 
						|
 | 
						|
  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
 | 
						|
  if (iik == IIK_okay) return;
 | 
						|
 | 
						|
  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
 | 
						|
    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
 | 
						|
    << src->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether we have compatible array types for the
 | 
						|
/// purposes of GNU by-copy array initialization.
 | 
						|
static bool hasCompatibleArrayTypes(ASTContext &Context,
 | 
						|
                                    const ArrayType *Dest, 
 | 
						|
                                    const ArrayType *Source) {
 | 
						|
  // If the source and destination array types are equivalent, we're
 | 
						|
  // done.
 | 
						|
  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Make sure that the element types are the same.
 | 
						|
  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The only mismatch we allow is when the destination is an
 | 
						|
  // incomplete array type and the source is a constant array type.
 | 
						|
  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
 | 
						|
}
 | 
						|
 | 
						|
static bool tryObjCWritebackConversion(Sema &S,
 | 
						|
                                       InitializationSequence &Sequence,
 | 
						|
                                       const InitializedEntity &Entity,
 | 
						|
                                       Expr *Initializer) {
 | 
						|
  bool ArrayDecay = false;
 | 
						|
  QualType ArgType = Initializer->getType();
 | 
						|
  QualType ArgPointee;
 | 
						|
  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
 | 
						|
    ArrayDecay = true;
 | 
						|
    ArgPointee = ArgArrayType->getElementType();
 | 
						|
    ArgType = S.Context.getPointerType(ArgPointee);
 | 
						|
  }
 | 
						|
      
 | 
						|
  // Handle write-back conversion.
 | 
						|
  QualType ConvertedArgType;
 | 
						|
  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
 | 
						|
                                   ConvertedArgType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We should copy unless we're passing to an argument explicitly
 | 
						|
  // marked 'out'.
 | 
						|
  bool ShouldCopy = true;
 | 
						|
  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | 
						|
    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | 
						|
 | 
						|
  // Do we need an lvalue conversion?
 | 
						|
  if (ArrayDecay || Initializer->isGLValue()) {
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard.setAsIdentityConversion();
 | 
						|
 | 
						|
    QualType ResultType;
 | 
						|
    if (ArrayDecay) {
 | 
						|
      ICS.Standard.First = ICK_Array_To_Pointer;
 | 
						|
      ResultType = S.Context.getPointerType(ArgPointee);
 | 
						|
    } else {
 | 
						|
      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
 | 
						|
      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
 | 
						|
    }
 | 
						|
          
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, ResultType);
 | 
						|
  }
 | 
						|
        
 | 
						|
  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
InitializationSequence::InitializationSequence(Sema &S,
 | 
						|
                                               const InitializedEntity &Entity,
 | 
						|
                                               const InitializationKind &Kind,
 | 
						|
                                               Expr **Args,
 | 
						|
                                               unsigned NumArgs)
 | 
						|
    : FailedCandidateSet(Kind.getLocation()) {
 | 
						|
  ASTContext &Context = S.Context;
 | 
						|
 | 
						|
  // C++0x [dcl.init]p16:
 | 
						|
  //   The semantics of initializers are as follows. The destination type is
 | 
						|
  //   the type of the object or reference being initialized and the source
 | 
						|
  //   type is the type of the initializer expression. The source type is not
 | 
						|
  //   defined when the initializer is a braced-init-list or when it is a
 | 
						|
  //   parenthesized list of expressions.
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
 | 
						|
  if (DestType->isDependentType() ||
 | 
						|
      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
 | 
						|
    SequenceKind = DependentSequence;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Almost everything is a normal sequence.
 | 
						|
  setSequenceKind(NormalSequence);
 | 
						|
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I)
 | 
						|
    if (Args[I]->getObjectKind() == OK_ObjCProperty) {
 | 
						|
      ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
 | 
						|
      if (Result.isInvalid()) {
 | 
						|
        SetFailed(FK_ConversionFromPropertyFailed);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Args[I] = Result.take();
 | 
						|
    }
 | 
						|
 | 
						|
  QualType SourceType;
 | 
						|
  Expr *Initializer = 0;
 | 
						|
  if (NumArgs == 1) {
 | 
						|
    Initializer = Args[0];
 | 
						|
    if (!isa<InitListExpr>(Initializer))
 | 
						|
      SourceType = Initializer->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the initializer is a braced-init-list, the object is
 | 
						|
  //       list-initialized (8.5.4).
 | 
						|
  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
 | 
						|
    TryListInitialization(S, Entity, Kind, InitList, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the destination type is a reference type, see 8.5.3.
 | 
						|
  if (DestType->isReferenceType()) {
 | 
						|
    // C++0x [dcl.init.ref]p1:
 | 
						|
    //   A variable declared to be a T& or T&&, that is, "reference to type T"
 | 
						|
    //   (8.3.2), shall be initialized by an object, or function, of type T or
 | 
						|
    //   by an object that can be converted into a T.
 | 
						|
    // (Therefore, multiple arguments are not permitted.)
 | 
						|
    if (NumArgs != 1)
 | 
						|
      SetFailed(FK_TooManyInitsForReference);
 | 
						|
    else
 | 
						|
      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the initializer is (), the object is value-initialized.
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Value ||
 | 
						|
      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
 | 
						|
    TryValueInitialization(S, Entity, Kind, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle default initialization.
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Default) {
 | 
						|
    TryDefaultInitialization(S, Entity, Kind, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the destination type is an array of characters, an array of
 | 
						|
  //       char16_t, an array of char32_t, or an array of wchar_t, and the
 | 
						|
  //       initializer is a string literal, see 8.5.2.
 | 
						|
  //     - Otherwise, if the destination type is an array, the program is
 | 
						|
  //       ill-formed.
 | 
						|
  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
 | 
						|
    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
 | 
						|
      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: as an GNU C extension, we allow initialization of an
 | 
						|
    // array from a compound literal that creates an array of the same
 | 
						|
    // type, so long as the initializer has no side effects.
 | 
						|
    if (!S.getLangOptions().CPlusPlus && Initializer &&
 | 
						|
        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
 | 
						|
        Initializer->getType()->isArrayType()) {
 | 
						|
      const ArrayType *SourceAT
 | 
						|
        = Context.getAsArrayType(Initializer->getType());
 | 
						|
      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
 | 
						|
        SetFailed(FK_ArrayTypeMismatch);
 | 
						|
      else if (Initializer->HasSideEffects(S.Context))
 | 
						|
        SetFailed(FK_NonConstantArrayInit);
 | 
						|
      else {
 | 
						|
        AddArrayInitStep(DestType);
 | 
						|
      }
 | 
						|
    } else if (DestAT->getElementType()->isAnyCharacterType())
 | 
						|
      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
 | 
						|
    else
 | 
						|
      SetFailed(FK_ArrayNeedsInitList);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether we should consider writeback conversions for 
 | 
						|
  // Objective-C ARC.
 | 
						|
  bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
 | 
						|
    Entity.getKind() == InitializedEntity::EK_Parameter;
 | 
						|
 | 
						|
  // We're at the end of the line for C: it's either a write-back conversion
 | 
						|
  // or it's a C assignment. There's no need to check anything else.
 | 
						|
  if (!S.getLangOptions().CPlusPlus) {
 | 
						|
    // If allowed, check whether this is an Objective-C writeback conversion.
 | 
						|
    if (allowObjCWritebackConversion &&
 | 
						|
        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Handle initialization in C
 | 
						|
    AddCAssignmentStep(DestType);
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(S.getLangOptions().CPlusPlus);
 | 
						|
      
 | 
						|
  //     - If the destination type is a (possibly cv-qualified) class type:
 | 
						|
  if (DestType->isRecordType()) {
 | 
						|
    //     - If the initialization is direct-initialization, or if it is
 | 
						|
    //       copy-initialization where the cv-unqualified version of the
 | 
						|
    //       source type is the same class as, or a derived class of, the
 | 
						|
    //       class of the destination, constructors are considered. [...]
 | 
						|
    if (Kind.getKind() == InitializationKind::IK_Direct ||
 | 
						|
        (Kind.getKind() == InitializationKind::IK_Copy &&
 | 
						|
         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
 | 
						|
          S.IsDerivedFrom(SourceType, DestType))))
 | 
						|
      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
 | 
						|
                                   Entity.getType(), *this);
 | 
						|
    //     - Otherwise (i.e., for the remaining copy-initialization cases),
 | 
						|
    //       user-defined conversion sequences that can convert from the source
 | 
						|
    //       type to the destination type or (when a conversion function is
 | 
						|
    //       used) to a derived class thereof are enumerated as described in
 | 
						|
    //       13.3.1.4, and the best one is chosen through overload resolution
 | 
						|
    //       (13.3).
 | 
						|
    else
 | 
						|
      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumArgs > 1) {
 | 
						|
    SetFailed(FK_TooManyInitsForScalar);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(NumArgs == 1 && "Zero-argument case handled above");
 | 
						|
 | 
						|
  //    - Otherwise, if the source type is a (possibly cv-qualified) class
 | 
						|
  //      type, conversion functions are considered.
 | 
						|
  if (!SourceType.isNull() && SourceType->isRecordType()) {
 | 
						|
    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - Otherwise, the initial value of the object being initialized is the
 | 
						|
  //      (possibly converted) value of the initializer expression. Standard
 | 
						|
  //      conversions (Clause 4) will be used, if necessary, to convert the
 | 
						|
  //      initializer expression to the cv-unqualified version of the
 | 
						|
  //      destination type; no user-defined conversions are considered.
 | 
						|
      
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = S.TryImplicitConversion(Initializer, Entity.getType(),
 | 
						|
                              /*SuppressUserConversions*/true,
 | 
						|
                              /*AllowExplicitConversions*/ false,
 | 
						|
                              /*InOverloadResolution*/ false,
 | 
						|
                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | 
						|
                              allowObjCWritebackConversion);
 | 
						|
      
 | 
						|
  if (ICS.isStandard() && 
 | 
						|
      ICS.Standard.Second == ICK_Writeback_Conversion) {
 | 
						|
    // Objective-C ARC writeback conversion.
 | 
						|
    
 | 
						|
    // We should copy unless we're passing to an argument explicitly
 | 
						|
    // marked 'out'.
 | 
						|
    bool ShouldCopy = true;
 | 
						|
    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | 
						|
      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | 
						|
    
 | 
						|
    // If there was an lvalue adjustment, add it as a separate conversion.
 | 
						|
    if (ICS.Standard.First == ICK_Array_To_Pointer ||
 | 
						|
        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
 | 
						|
      ImplicitConversionSequence LvalueICS;
 | 
						|
      LvalueICS.setStandard();
 | 
						|
      LvalueICS.Standard.setAsIdentityConversion();
 | 
						|
      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
 | 
						|
      LvalueICS.Standard.First = ICS.Standard.First;
 | 
						|
      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
 | 
						|
    }
 | 
						|
    
 | 
						|
    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
 | 
						|
  } else if (ICS.isBad()) {
 | 
						|
    DeclAccessPair dap;
 | 
						|
    if (Initializer->getType() == Context.OverloadTy && 
 | 
						|
          !S.ResolveAddressOfOverloadedFunction(Initializer
 | 
						|
                      , DestType, false, dap))
 | 
						|
      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else
 | 
						|
      SetFailed(InitializationSequence::FK_ConversionFailed);
 | 
						|
  } else {
 | 
						|
    AddConversionSequenceStep(ICS, Entity.getType());
 | 
						|
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InitializationSequence::~InitializationSequence() {
 | 
						|
  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
 | 
						|
                                          StepEnd = Steps.end();
 | 
						|
       Step != StepEnd; ++Step)
 | 
						|
    Step->Destroy();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Perform initialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
static Sema::AssignmentAction
 | 
						|
getAssignmentAction(const InitializedEntity &Entity) {
 | 
						|
  switch(Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
    return Sema::AA_Initializing;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
    if (Entity.getDecl() &&
 | 
						|
        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
 | 
						|
      return Sema::AA_Sending;
 | 
						|
 | 
						|
    return Sema::AA_Passing;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
    return Sema::AA_Returning;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
    // FIXME: Can we tell apart casting vs. converting?
 | 
						|
    return Sema::AA_Casting;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
    return Sema::AA_Initializing;
 | 
						|
  }
 | 
						|
 | 
						|
  return Sema::AA_Converting;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Whether we should binding a created object as a temporary when
 | 
						|
/// initializing the given entity.
 | 
						|
static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed an InitializedEntity kind?");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Whether the given entity, when initialized with an object
 | 
						|
/// created for that initialization, requires destruction.
 | 
						|
static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
    case InitializedEntity::EK_Member:
 | 
						|
    case InitializedEntity::EK_Result:
 | 
						|
    case InitializedEntity::EK_New:
 | 
						|
    case InitializedEntity::EK_Base:
 | 
						|
    case InitializedEntity::EK_Delegating:
 | 
						|
    case InitializedEntity::EK_VectorElement:
 | 
						|
    case InitializedEntity::EK_ComplexElement:
 | 
						|
    case InitializedEntity::EK_BlockElement:
 | 
						|
      return false;
 | 
						|
 | 
						|
    case InitializedEntity::EK_Variable:
 | 
						|
    case InitializedEntity::EK_Parameter:
 | 
						|
    case InitializedEntity::EK_Temporary:
 | 
						|
    case InitializedEntity::EK_ArrayElement:
 | 
						|
    case InitializedEntity::EK_Exception:
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed an InitializedEntity kind?");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Make a (potentially elidable) temporary copy of the object
 | 
						|
/// provided by the given initializer by calling the appropriate copy
 | 
						|
/// constructor.
 | 
						|
///
 | 
						|
/// \param S The Sema object used for type-checking.
 | 
						|
///
 | 
						|
/// \param T The type of the temporary object, which must either be
 | 
						|
/// the type of the initializer expression or a superclass thereof.
 | 
						|
///
 | 
						|
/// \param Enter The entity being initialized.
 | 
						|
///
 | 
						|
/// \param CurInit The initializer expression.
 | 
						|
///
 | 
						|
/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
 | 
						|
/// is permitted in C++03 (but not C++0x) when binding a reference to
 | 
						|
/// an rvalue.
 | 
						|
///
 | 
						|
/// \returns An expression that copies the initializer expression into
 | 
						|
/// a temporary object, or an error expression if a copy could not be
 | 
						|
/// created.
 | 
						|
static ExprResult CopyObject(Sema &S,
 | 
						|
                             QualType T,
 | 
						|
                             const InitializedEntity &Entity,
 | 
						|
                             ExprResult CurInit,
 | 
						|
                             bool IsExtraneousCopy) {
 | 
						|
  // Determine which class type we're copying to.
 | 
						|
  Expr *CurInitExpr = (Expr *)CurInit.get();
 | 
						|
  CXXRecordDecl *Class = 0;
 | 
						|
  if (const RecordType *Record = T->getAs<RecordType>())
 | 
						|
    Class = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
  if (!Class)
 | 
						|
    return move(CurInit);
 | 
						|
 | 
						|
  // C++0x [class.copy]p32:
 | 
						|
  //   When certain criteria are met, an implementation is allowed to
 | 
						|
  //   omit the copy/move construction of a class object, even if the
 | 
						|
  //   copy/move constructor and/or destructor for the object have
 | 
						|
  //   side effects. [...]
 | 
						|
  //     - when a temporary class object that has not been bound to a
 | 
						|
  //       reference (12.2) would be copied/moved to a class object
 | 
						|
  //       with the same cv-unqualified type, the copy/move operation
 | 
						|
  //       can be omitted by constructing the temporary object
 | 
						|
  //       directly into the target of the omitted copy/move
 | 
						|
  //
 | 
						|
  // Note that the other three bullets are handled elsewhere. Copy
 | 
						|
  // elision for return statements and throw expressions are handled as part
 | 
						|
  // of constructor initialization, while copy elision for exception handlers
 | 
						|
  // is handled by the run-time.
 | 
						|
  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
 | 
						|
  SourceLocation Loc;
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
    Loc = Entity.getReturnLoc();
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
    Loc = Entity.getThrowLoc();
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
    Loc = Entity.getDecl()->getLocation();
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
    Loc = CurInitExpr->getLocStart();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that the type we are copying is complete.
 | 
						|
  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
 | 
						|
    return move(CurInit);
 | 
						|
 | 
						|
  // Perform overload resolution using the class's copy/move constructors.
 | 
						|
  DeclContext::lookup_iterator Con, ConEnd;
 | 
						|
  OverloadCandidateSet CandidateSet(Loc);
 | 
						|
  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
 | 
						|
       Con != ConEnd; ++Con) {
 | 
						|
    // Only consider copy/move constructors and constructor templates. Per
 | 
						|
    // C++0x [dcl.init]p16, second bullet to class types, this
 | 
						|
    // initialization is direct-initialization.
 | 
						|
    CXXConstructorDecl *Constructor = 0;
 | 
						|
 | 
						|
    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
 | 
						|
      // Handle copy/moveconstructors, only.
 | 
						|
      if (!Constructor || Constructor->isInvalidDecl() ||
 | 
						|
          !Constructor->isCopyOrMoveConstructor() ||
 | 
						|
          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
 | 
						|
        continue;
 | 
						|
 | 
						|
      DeclAccessPair FoundDecl
 | 
						|
        = DeclAccessPair::make(Constructor, Constructor->getAccess());
 | 
						|
      S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                             &CurInitExpr, 1, CandidateSet);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle constructor templates.
 | 
						|
    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
 | 
						|
    if (ConstructorTmpl->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Constructor = cast<CXXConstructorDecl>(
 | 
						|
                                         ConstructorTmpl->getTemplatedDecl());
 | 
						|
    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: Do we need to limit this to copy-constructor-like
 | 
						|
    // candidates?
 | 
						|
    DeclAccessPair FoundDecl
 | 
						|
      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
 | 
						|
    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
 | 
						|
                                   &CurInitExpr, 1, CandidateSet, true);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
 | 
						|
           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
 | 
						|
           : diag::err_temp_copy_no_viable)
 | 
						|
      << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
      << CurInitExpr->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
 | 
						|
    if (!IsExtraneousCopy || S.isSFINAEContext())
 | 
						|
      return ExprError();
 | 
						|
    return move(CurInit);
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    S.Diag(Loc, diag::err_temp_copy_ambiguous)
 | 
						|
      << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
      << CurInitExpr->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    S.Diag(Loc, diag::err_temp_copy_deleted)
 | 
						|
      << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
      << CurInitExpr->getSourceRange();
 | 
						|
    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
 | 
						|
      << 1 << Best->Function->isDeleted();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
  ASTOwningVector<Expr*> ConstructorArgs(S);
 | 
						|
  CurInit.release(); // Ownership transferred into MultiExprArg, below.
 | 
						|
 | 
						|
  S.CheckConstructorAccess(Loc, Constructor, Entity,
 | 
						|
                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
 | 
						|
 | 
						|
  if (IsExtraneousCopy) {
 | 
						|
    // If this is a totally extraneous copy for C++03 reference
 | 
						|
    // binding purposes, just return the original initialization
 | 
						|
    // expression. We don't generate an (elided) copy operation here
 | 
						|
    // because doing so would require us to pass down a flag to avoid
 | 
						|
    // infinite recursion, where each step adds another extraneous,
 | 
						|
    // elidable copy.
 | 
						|
 | 
						|
    // Instantiate the default arguments of any extra parameters in
 | 
						|
    // the selected copy constructor, as if we were going to create a
 | 
						|
    // proper call to the copy constructor.
 | 
						|
    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
 | 
						|
      ParmVarDecl *Parm = Constructor->getParamDecl(I);
 | 
						|
      if (S.RequireCompleteType(Loc, Parm->getType(),
 | 
						|
                                S.PDiag(diag::err_call_incomplete_argument)))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Build the default argument expression; we don't actually care
 | 
						|
      // if this succeeds or not, because this routine will complain
 | 
						|
      // if there was a problem.
 | 
						|
      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
 | 
						|
    }
 | 
						|
 | 
						|
    return S.Owned(CurInitExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  S.MarkDeclarationReferenced(Loc, Constructor);
 | 
						|
 | 
						|
  // Determine the arguments required to actually perform the
 | 
						|
  // constructor call (we might have derived-to-base conversions, or
 | 
						|
  // the copy constructor may have default arguments).
 | 
						|
  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
 | 
						|
                                Loc, ConstructorArgs))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Actually perform the constructor call.
 | 
						|
  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
 | 
						|
                                    move_arg(ConstructorArgs),
 | 
						|
                                    HadMultipleCandidates,
 | 
						|
                                    /*ZeroInit*/ false,
 | 
						|
                                    CXXConstructExpr::CK_Complete,
 | 
						|
                                    SourceRange());
 | 
						|
 | 
						|
  // If we're supposed to bind temporaries, do so.
 | 
						|
  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
 | 
						|
    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
 | 
						|
  return move(CurInit);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::PrintInitLocationNote(Sema &S,
 | 
						|
                                              const InitializedEntity &Entity) {
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
 | 
						|
    if (Entity.getDecl()->getLocation().isInvalid())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (Entity.getDecl()->getDeclName())
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
 | 
						|
        << Entity.getDecl()->getDeclName();
 | 
						|
    else
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isReferenceBinding(const InitializationSequence::Step &s) {
 | 
						|
  return s.Kind == InitializationSequence::SK_BindReference ||
 | 
						|
         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
InitializationSequence::Perform(Sema &S,
 | 
						|
                                const InitializedEntity &Entity,
 | 
						|
                                const InitializationKind &Kind,
 | 
						|
                                MultiExprArg Args,
 | 
						|
                                QualType *ResultType) {
 | 
						|
  if (Failed()) {
 | 
						|
    unsigned NumArgs = Args.size();
 | 
						|
    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (getKind() == DependentSequence) {
 | 
						|
    // If the declaration is a non-dependent, incomplete array type
 | 
						|
    // that has an initializer, then its type will be completed once
 | 
						|
    // the initializer is instantiated.
 | 
						|
    if (ResultType && !Entity.getType()->isDependentType() &&
 | 
						|
        Args.size() == 1) {
 | 
						|
      QualType DeclType = Entity.getType();
 | 
						|
      if (const IncompleteArrayType *ArrayT
 | 
						|
                           = S.Context.getAsIncompleteArrayType(DeclType)) {
 | 
						|
        // FIXME: We don't currently have the ability to accurately
 | 
						|
        // compute the length of an initializer list without
 | 
						|
        // performing full type-checking of the initializer list
 | 
						|
        // (since we have to determine where braces are implicitly
 | 
						|
        // introduced and such).  So, we fall back to making the array
 | 
						|
        // type a dependently-sized array type with no specified
 | 
						|
        // bound.
 | 
						|
        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
 | 
						|
          SourceRange Brackets;
 | 
						|
 | 
						|
          // Scavange the location of the brackets from the entity, if we can.
 | 
						|
          if (DeclaratorDecl *DD = Entity.getDecl()) {
 | 
						|
            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
 | 
						|
              TypeLoc TL = TInfo->getTypeLoc();
 | 
						|
              if (IncompleteArrayTypeLoc *ArrayLoc
 | 
						|
                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
 | 
						|
              Brackets = ArrayLoc->getBracketsRange();
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          *ResultType
 | 
						|
            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
 | 
						|
                                                   /*NumElts=*/0,
 | 
						|
                                                   ArrayT->getSizeModifier(),
 | 
						|
                                       ArrayT->getIndexTypeCVRQualifiers(),
 | 
						|
                                                   Brackets);
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(Kind.getKind() == InitializationKind::IK_Copy ||
 | 
						|
           Kind.isExplicitCast());
 | 
						|
    return ExprResult(Args.release()[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // No steps means no initialization.
 | 
						|
  if (Steps.empty())
 | 
						|
    return S.Owned((Expr *)0);
 | 
						|
 | 
						|
  QualType DestType = Entity.getType().getNonReferenceType();
 | 
						|
  // FIXME: Ugly hack around the fact that Entity.getType() is not
 | 
						|
  // the same as Entity.getDecl()->getType() in cases involving type merging,
 | 
						|
  //  and we want latter when it makes sense.
 | 
						|
  if (ResultType)
 | 
						|
    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
 | 
						|
                                     Entity.getType();
 | 
						|
 | 
						|
  ExprResult CurInit = S.Owned((Expr *)0);
 | 
						|
 | 
						|
  // For initialization steps that start with a single initializer,
 | 
						|
  // grab the only argument out the Args and place it into the "current"
 | 
						|
  // initializer.
 | 
						|
  switch (Steps.front().Kind) {
 | 
						|
  case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
  case SK_CastDerivedToBaseRValue:
 | 
						|
  case SK_CastDerivedToBaseXValue:
 | 
						|
  case SK_CastDerivedToBaseLValue:
 | 
						|
  case SK_BindReference:
 | 
						|
  case SK_BindReferenceToTemporary:
 | 
						|
  case SK_ExtraneousCopyToTemporary:
 | 
						|
  case SK_UserConversion:
 | 
						|
  case SK_QualificationConversionLValue:
 | 
						|
  case SK_QualificationConversionXValue:
 | 
						|
  case SK_QualificationConversionRValue:
 | 
						|
  case SK_ConversionSequence:
 | 
						|
  case SK_ListConstructorCall:
 | 
						|
  case SK_ListInitialization:
 | 
						|
  case SK_CAssignment:
 | 
						|
  case SK_StringInit:
 | 
						|
  case SK_ObjCObjectConversion:
 | 
						|
  case SK_ArrayInit:
 | 
						|
  case SK_PassByIndirectCopyRestore:
 | 
						|
  case SK_PassByIndirectRestore:
 | 
						|
  case SK_ProduceObjCObject: {
 | 
						|
    assert(Args.size() == 1);
 | 
						|
    CurInit = Args.get()[0];
 | 
						|
    if (!CurInit.get()) return ExprError();
 | 
						|
 | 
						|
    // Read from a property when initializing something with it.
 | 
						|
    if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
 | 
						|
      CurInit = S.ConvertPropertyForRValue(CurInit.take());
 | 
						|
      if (CurInit.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case SK_ConstructorInitialization:
 | 
						|
  case SK_ZeroInitialization:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk through the computed steps for the initialization sequence,
 | 
						|
  // performing the specified conversions along the way.
 | 
						|
  bool ConstructorInitRequiresZeroInit = false;
 | 
						|
  for (step_iterator Step = step_begin(), StepEnd = step_end();
 | 
						|
       Step != StepEnd; ++Step) {
 | 
						|
    if (CurInit.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
 | 
						|
 | 
						|
    switch (Step->Kind) {
 | 
						|
    case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
      // Overload resolution determined which function invoke; update the
 | 
						|
      // initializer to reflect that choice.
 | 
						|
      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
 | 
						|
      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
 | 
						|
      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
 | 
						|
                                                 Step->Function.FoundDecl,
 | 
						|
                                                 Step->Function.Function);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseRValue:
 | 
						|
    case SK_CastDerivedToBaseXValue:
 | 
						|
    case SK_CastDerivedToBaseLValue: {
 | 
						|
      // We have a derived-to-base cast that produces either an rvalue or an
 | 
						|
      // lvalue. Perform that cast.
 | 
						|
 | 
						|
      CXXCastPath BasePath;
 | 
						|
 | 
						|
      // Casts to inaccessible base classes are allowed with C-style casts.
 | 
						|
      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
 | 
						|
      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
 | 
						|
                                         CurInit.get()->getLocStart(),
 | 
						|
                                         CurInit.get()->getSourceRange(),
 | 
						|
                                         &BasePath, IgnoreBaseAccess))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      if (S.BasePathInvolvesVirtualBase(BasePath)) {
 | 
						|
        QualType T = SourceType;
 | 
						|
        if (const PointerType *Pointer = T->getAs<PointerType>())
 | 
						|
          T = Pointer->getPointeeType();
 | 
						|
        if (const RecordType *RecordTy = T->getAs<RecordType>())
 | 
						|
          S.MarkVTableUsed(CurInit.get()->getLocStart(),
 | 
						|
                           cast<CXXRecordDecl>(RecordTy->getDecl()));
 | 
						|
      }
 | 
						|
 | 
						|
      ExprValueKind VK =
 | 
						|
          Step->Kind == SK_CastDerivedToBaseLValue ?
 | 
						|
              VK_LValue :
 | 
						|
              (Step->Kind == SK_CastDerivedToBaseXValue ?
 | 
						|
                   VK_XValue :
 | 
						|
                   VK_RValue);
 | 
						|
      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
 | 
						|
                                                 Step->Type,
 | 
						|
                                                 CK_DerivedToBase,
 | 
						|
                                                 CurInit.get(),
 | 
						|
                                                 &BasePath, VK));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_BindReference:
 | 
						|
      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
 | 
						|
        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
 | 
						|
          << Entity.getType().isVolatileQualified()
 | 
						|
          << BitField->getDeclName()
 | 
						|
          << CurInit.get()->getSourceRange();
 | 
						|
        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
 | 
						|
      if (CurInit.get()->refersToVectorElement()) {
 | 
						|
        // References cannot bind to vector elements.
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
 | 
						|
          << Entity.getType().isVolatileQualified()
 | 
						|
          << CurInit.get()->getSourceRange();
 | 
						|
        PrintInitLocationNote(S, Entity);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
 | 
						|
      // Reference binding does not have any corresponding ASTs.
 | 
						|
 | 
						|
      // Check exception specifications
 | 
						|
      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReferenceToTemporary:
 | 
						|
      // Check exception specifications
 | 
						|
      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Materialize the temporary into memory.
 | 
						|
      CurInit = new (S.Context) MaterializeTemporaryExpr(
 | 
						|
                                         Entity.getType().getNonReferenceType(),
 | 
						|
                                                         CurInit.get(),
 | 
						|
                                     Entity.getType()->isLValueReferenceType());
 | 
						|
 | 
						|
      // If we're binding to an Objective-C object that has lifetime, we
 | 
						|
      // need cleanups.
 | 
						|
      if (S.getLangOptions().ObjCAutoRefCount &&
 | 
						|
          CurInit.get()->getType()->isObjCLifetimeType())
 | 
						|
        S.ExprNeedsCleanups = true;
 | 
						|
            
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ExtraneousCopyToTemporary:
 | 
						|
      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
 | 
						|
                           /*IsExtraneousCopy=*/true);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_UserConversion: {
 | 
						|
      // We have a user-defined conversion that invokes either a constructor
 | 
						|
      // or a conversion function.
 | 
						|
      CastKind CastKind;
 | 
						|
      bool IsCopy = false;
 | 
						|
      FunctionDecl *Fn = Step->Function.Function;
 | 
						|
      DeclAccessPair FoundFn = Step->Function.FoundDecl;
 | 
						|
      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
 | 
						|
      bool CreatedObject = false;
 | 
						|
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
 | 
						|
        // Build a call to the selected constructor.
 | 
						|
        ASTOwningVector<Expr*> ConstructorArgs(S);
 | 
						|
        SourceLocation Loc = CurInit.get()->getLocStart();
 | 
						|
        CurInit.release(); // Ownership transferred into MultiExprArg, below.
 | 
						|
 | 
						|
        // Determine the arguments required to actually perform the constructor
 | 
						|
        // call.
 | 
						|
        Expr *Arg = CurInit.get();
 | 
						|
        if (S.CompleteConstructorCall(Constructor,
 | 
						|
                                      MultiExprArg(&Arg, 1),
 | 
						|
                                      Loc, ConstructorArgs))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        // Build the an expression that constructs a temporary.
 | 
						|
        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
 | 
						|
                                          move_arg(ConstructorArgs),
 | 
						|
                                          HadMultipleCandidates,
 | 
						|
                                          /*ZeroInit*/ false,
 | 
						|
                                          CXXConstructExpr::CK_Complete,
 | 
						|
                                          SourceRange());
 | 
						|
        if (CurInit.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
 | 
						|
                                 FoundFn.getAccess());
 | 
						|
        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
 | 
						|
 | 
						|
        CastKind = CK_ConstructorConversion;
 | 
						|
        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
 | 
						|
        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
 | 
						|
            S.IsDerivedFrom(SourceType, Class))
 | 
						|
          IsCopy = true;
 | 
						|
 | 
						|
        CreatedObject = true;
 | 
						|
      } else {
 | 
						|
        // Build a call to the conversion function.
 | 
						|
        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
 | 
						|
        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
 | 
						|
                                    FoundFn);
 | 
						|
        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
 | 
						|
 | 
						|
        // FIXME: Should we move this initialization into a separate
 | 
						|
        // derived-to-base conversion? I believe the answer is "no", because
 | 
						|
        // we don't want to turn off access control here for c-style casts.
 | 
						|
        ExprResult CurInitExprRes =
 | 
						|
          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
 | 
						|
                                                FoundFn, Conversion);
 | 
						|
        if(CurInitExprRes.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        CurInit = move(CurInitExprRes);
 | 
						|
 | 
						|
        // Build the actual call to the conversion function.
 | 
						|
        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
 | 
						|
                                           HadMultipleCandidates);
 | 
						|
        if (CurInit.isInvalid() || !CurInit.get())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CastKind = CK_UserDefinedConversion;
 | 
						|
 | 
						|
        CreatedObject = Conversion->getResultType()->isRecordType();
 | 
						|
      }
 | 
						|
 | 
						|
      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
 | 
						|
      if (RequiresCopy || shouldBindAsTemporary(Entity))
 | 
						|
        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
 | 
						|
      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
 | 
						|
        QualType T = CurInit.get()->getType();
 | 
						|
        if (const RecordType *Record = T->getAs<RecordType>()) {
 | 
						|
          CXXDestructorDecl *Destructor
 | 
						|
            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
 | 
						|
          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
 | 
						|
                                  S.PDiag(diag::err_access_dtor_temp) << T);
 | 
						|
          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
 | 
						|
          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
 | 
						|
                                                 CurInit.get()->getType(),
 | 
						|
                                                 CastKind, CurInit.get(), 0,
 | 
						|
                                                CurInit.get()->getValueKind()));
 | 
						|
 | 
						|
      if (RequiresCopy)
 | 
						|
        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
 | 
						|
                             move(CurInit), /*IsExtraneousCopy=*/false);
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_QualificationConversionLValue:
 | 
						|
    case SK_QualificationConversionXValue:
 | 
						|
    case SK_QualificationConversionRValue: {
 | 
						|
      // Perform a qualification conversion; these can never go wrong.
 | 
						|
      ExprValueKind VK =
 | 
						|
          Step->Kind == SK_QualificationConversionLValue ?
 | 
						|
              VK_LValue :
 | 
						|
              (Step->Kind == SK_QualificationConversionXValue ?
 | 
						|
                   VK_XValue :
 | 
						|
                   VK_RValue);
 | 
						|
      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ConversionSequence: {
 | 
						|
      Sema::CheckedConversionKind CCK 
 | 
						|
        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
 | 
						|
        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
 | 
						|
        : Kind.isExplicitCast()? Sema::CCK_OtherCast
 | 
						|
        : Sema::CCK_ImplicitConversion;
 | 
						|
      ExprResult CurInitExprRes =
 | 
						|
        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
 | 
						|
                                    getAssignmentAction(Entity), CCK);
 | 
						|
      if (CurInitExprRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      CurInit = move(CurInitExprRes);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ListInitialization: {
 | 
						|
      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
 | 
						|
      QualType Ty = Step->Type;
 | 
						|
      InitListChecker PerformInitList(S, Entity, InitList,
 | 
						|
          ResultType ? *ResultType : Ty, /*VerifyOnly=*/false);
 | 
						|
      if (PerformInitList.HadError())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      CurInit.release();
 | 
						|
      CurInit = S.Owned(PerformInitList.getFullyStructuredList());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ListConstructorCall:
 | 
						|
      assert(false && "List constructor calls not yet supported.");
 | 
						|
 | 
						|
    case SK_ConstructorInitialization: {
 | 
						|
      unsigned NumArgs = Args.size();
 | 
						|
      CXXConstructorDecl *Constructor
 | 
						|
        = cast<CXXConstructorDecl>(Step->Function.Function);
 | 
						|
      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
 | 
						|
 | 
						|
      // Build a call to the selected constructor.
 | 
						|
      ASTOwningVector<Expr*> ConstructorArgs(S);
 | 
						|
      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
 | 
						|
                             ? Kind.getEqualLoc()
 | 
						|
                             : Kind.getLocation();
 | 
						|
 | 
						|
      if (Kind.getKind() == InitializationKind::IK_Default) {
 | 
						|
        // Force even a trivial, implicit default constructor to be
 | 
						|
        // semantically checked. We do this explicitly because we don't build
 | 
						|
        // the definition for completely trivial constructors.
 | 
						|
        CXXRecordDecl *ClassDecl = Constructor->getParent();
 | 
						|
        assert(ClassDecl && "No parent class for constructor.");
 | 
						|
        if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
 | 
						|
            ClassDecl->hasTrivialDefaultConstructor() &&
 | 
						|
            !Constructor->isUsed(false))
 | 
						|
          S.DefineImplicitDefaultConstructor(Loc, Constructor);
 | 
						|
      }
 | 
						|
 | 
						|
      // Determine the arguments required to actually perform the constructor
 | 
						|
      // call.
 | 
						|
      if (S.CompleteConstructorCall(Constructor, move(Args),
 | 
						|
                                    Loc, ConstructorArgs))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
 | 
						|
      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
 | 
						|
          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
 | 
						|
          (Kind.getKind() == InitializationKind::IK_Direct ||
 | 
						|
           Kind.getKind() == InitializationKind::IK_Value)) {
 | 
						|
        // An explicitly-constructed temporary, e.g., X(1, 2).
 | 
						|
        unsigned NumExprs = ConstructorArgs.size();
 | 
						|
        Expr **Exprs = (Expr **)ConstructorArgs.take();
 | 
						|
        S.MarkDeclarationReferenced(Loc, Constructor);
 | 
						|
        S.DiagnoseUseOfDecl(Constructor, Loc);
 | 
						|
 | 
						|
        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | 
						|
        if (!TSInfo)
 | 
						|
          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
 | 
						|
 | 
						|
        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
 | 
						|
                                                                 Constructor,
 | 
						|
                                                                 TSInfo,
 | 
						|
                                                                 Exprs,
 | 
						|
                                                                 NumExprs,
 | 
						|
                                                         Kind.getParenRange(),
 | 
						|
                                                         HadMultipleCandidates,
 | 
						|
                                             ConstructorInitRequiresZeroInit));
 | 
						|
      } else {
 | 
						|
        CXXConstructExpr::ConstructionKind ConstructKind =
 | 
						|
          CXXConstructExpr::CK_Complete;
 | 
						|
 | 
						|
        if (Entity.getKind() == InitializedEntity::EK_Base) {
 | 
						|
          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
 | 
						|
            CXXConstructExpr::CK_VirtualBase :
 | 
						|
            CXXConstructExpr::CK_NonVirtualBase;
 | 
						|
        } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
 | 
						|
          ConstructKind = CXXConstructExpr::CK_Delegating;
 | 
						|
        }
 | 
						|
 | 
						|
        // Only get the parenthesis range if it is a direct construction.
 | 
						|
        SourceRange parenRange =
 | 
						|
            Kind.getKind() == InitializationKind::IK_Direct ?
 | 
						|
            Kind.getParenRange() : SourceRange();
 | 
						|
 | 
						|
        // If the entity allows NRVO, mark the construction as elidable
 | 
						|
        // unconditionally.
 | 
						|
        if (Entity.allowsNRVO())
 | 
						|
          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
 | 
						|
                                            Constructor, /*Elidable=*/true,
 | 
						|
                                            move_arg(ConstructorArgs),
 | 
						|
                                            HadMultipleCandidates,
 | 
						|
                                            ConstructorInitRequiresZeroInit,
 | 
						|
                                            ConstructKind,
 | 
						|
                                            parenRange);
 | 
						|
        else
 | 
						|
          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
 | 
						|
                                            Constructor,
 | 
						|
                                            move_arg(ConstructorArgs),
 | 
						|
                                            HadMultipleCandidates,
 | 
						|
                                            ConstructorInitRequiresZeroInit,
 | 
						|
                                            ConstructKind,
 | 
						|
                                            parenRange);
 | 
						|
      }
 | 
						|
      if (CurInit.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Only check access if all of that succeeded.
 | 
						|
      S.CheckConstructorAccess(Loc, Constructor, Entity,
 | 
						|
                               Step->Function.FoundDecl.getAccess());
 | 
						|
      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
 | 
						|
 | 
						|
      if (shouldBindAsTemporary(Entity))
 | 
						|
        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ZeroInitialization: {
 | 
						|
      step_iterator NextStep = Step;
 | 
						|
      ++NextStep;
 | 
						|
      if (NextStep != StepEnd &&
 | 
						|
          NextStep->Kind == SK_ConstructorInitialization) {
 | 
						|
        // The need for zero-initialization is recorded directly into
 | 
						|
        // the call to the object's constructor within the next step.
 | 
						|
        ConstructorInitRequiresZeroInit = true;
 | 
						|
      } else if (Kind.getKind() == InitializationKind::IK_Value &&
 | 
						|
                 S.getLangOptions().CPlusPlus &&
 | 
						|
                 !Kind.isImplicitValueInit()) {
 | 
						|
        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | 
						|
        if (!TSInfo)
 | 
						|
          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
 | 
						|
                                                    Kind.getRange().getBegin());
 | 
						|
 | 
						|
        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
 | 
						|
                              TSInfo->getType().getNonLValueExprType(S.Context),
 | 
						|
                                                                 TSInfo,
 | 
						|
                                                    Kind.getRange().getEnd()));
 | 
						|
      } else {
 | 
						|
        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_CAssignment: {
 | 
						|
      QualType SourceType = CurInit.get()->getType();
 | 
						|
      ExprResult Result = move(CurInit);
 | 
						|
      Sema::AssignConvertType ConvTy =
 | 
						|
        S.CheckSingleAssignmentConstraints(Step->Type, Result);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      CurInit = move(Result);
 | 
						|
 | 
						|
      // If this is a call, allow conversion to a transparent union.
 | 
						|
      ExprResult CurInitExprRes = move(CurInit);
 | 
						|
      if (ConvTy != Sema::Compatible &&
 | 
						|
          Entity.getKind() == InitializedEntity::EK_Parameter &&
 | 
						|
          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
 | 
						|
            == Sema::Compatible)
 | 
						|
        ConvTy = Sema::Compatible;
 | 
						|
      if (CurInitExprRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      CurInit = move(CurInitExprRes);
 | 
						|
 | 
						|
      bool Complained;
 | 
						|
      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
 | 
						|
                                     Step->Type, SourceType,
 | 
						|
                                     CurInit.get(),
 | 
						|
                                     getAssignmentAction(Entity),
 | 
						|
                                     &Complained)) {
 | 
						|
        PrintInitLocationNote(S, Entity);
 | 
						|
        return ExprError();
 | 
						|
      } else if (Complained)
 | 
						|
        PrintInitLocationNote(S, Entity);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_StringInit: {
 | 
						|
      QualType Ty = Step->Type;
 | 
						|
      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
 | 
						|
                      S.Context.getAsArrayType(Ty), S);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ObjCObjectConversion:
 | 
						|
      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
 | 
						|
                          CK_ObjCObjectLValueCast,
 | 
						|
                          CurInit.get()->getValueKind());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayInit:
 | 
						|
      // Okay: we checked everything before creating this step. Note that
 | 
						|
      // this is a GNU extension.
 | 
						|
      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
 | 
						|
        << Step->Type << CurInit.get()->getType()
 | 
						|
        << CurInit.get()->getSourceRange();
 | 
						|
 | 
						|
      // If the destination type is an incomplete array type, update the
 | 
						|
      // type accordingly.
 | 
						|
      if (ResultType) {
 | 
						|
        if (const IncompleteArrayType *IncompleteDest
 | 
						|
                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
 | 
						|
          if (const ConstantArrayType *ConstantSource
 | 
						|
                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
 | 
						|
            *ResultType = S.Context.getConstantArrayType(
 | 
						|
                                             IncompleteDest->getElementType(),
 | 
						|
                                             ConstantSource->getSize(),
 | 
						|
                                             ArrayType::Normal, 0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectCopyRestore:
 | 
						|
    case SK_PassByIndirectRestore:
 | 
						|
      checkIndirectCopyRestoreSource(S, CurInit.get());
 | 
						|
      CurInit = S.Owned(new (S.Context)
 | 
						|
                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
 | 
						|
                                Step->Kind == SK_PassByIndirectCopyRestore));
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ProduceObjCObject:
 | 
						|
      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
 | 
						|
                                                 CK_ARCProduceObject,
 | 
						|
                                                 CurInit.take(), 0, VK_RValue));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose non-fatal problems with the completed initialization.
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Member &&
 | 
						|
      cast<FieldDecl>(Entity.getDecl())->isBitField())
 | 
						|
    S.CheckBitFieldInitialization(Kind.getLocation(),
 | 
						|
                                  cast<FieldDecl>(Entity.getDecl()),
 | 
						|
                                  CurInit.get());
 | 
						|
 | 
						|
  return move(CurInit);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Diagnose initialization failures
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
bool InitializationSequence::Diagnose(Sema &S,
 | 
						|
                                      const InitializedEntity &Entity,
 | 
						|
                                      const InitializationKind &Kind,
 | 
						|
                                      Expr **Args, unsigned NumArgs) {
 | 
						|
  if (!Failed())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  switch (Failure) {
 | 
						|
  case FK_TooManyInitsForReference:
 | 
						|
    // FIXME: Customize for the initialized entity?
 | 
						|
    if (NumArgs == 0)
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
 | 
						|
        << DestType.getNonReferenceType();
 | 
						|
    else  // FIXME: diagnostic below could be better!
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
 | 
						|
        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ArrayNeedsInitList:
 | 
						|
  case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
 | 
						|
      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ArrayTypeMismatch:
 | 
						|
  case FK_NonConstantArrayInit:
 | 
						|
    S.Diag(Kind.getLocation(), 
 | 
						|
           (Failure == FK_ArrayTypeMismatch
 | 
						|
              ? diag::err_array_init_different_type
 | 
						|
              : diag::err_array_init_non_constant_array))
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << Args[0]->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_AddressOfOverloadFailed: {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    S.ResolveAddressOfOverloadedFunction(Args[0],
 | 
						|
                                         DestType.getNonReferenceType(),
 | 
						|
                                         true,
 | 
						|
                                         Found);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ReferenceInitOverloadFailed:
 | 
						|
  case FK_UserConversionOverloadFailed:
 | 
						|
    switch (FailedOverloadResult) {
 | 
						|
    case OR_Ambiguous:
 | 
						|
      if (Failure == FK_UserConversionOverloadFailed)
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
 | 
						|
          << Args[0]->getType() << DestType
 | 
						|
          << Args[0]->getSourceRange();
 | 
						|
      else
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
 | 
						|
          << DestType << Args[0]->getType()
 | 
						|
          << Args[0]->getSourceRange();
 | 
						|
 | 
						|
      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
 | 
						|
        << Args[0]->getType() << DestType.getNonReferenceType()
 | 
						|
        << Args[0]->getSourceRange();
 | 
						|
      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Deleted: {
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
 | 
						|
        << Args[0]->getType() << DestType.getNonReferenceType()
 | 
						|
        << Args[0]->getSourceRange();
 | 
						|
      OverloadCandidateSet::iterator Best;
 | 
						|
      OverloadingResult Ovl
 | 
						|
        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
 | 
						|
                                                true);
 | 
						|
      if (Ovl == OR_Deleted) {
 | 
						|
        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
 | 
						|
          << 1 << Best->Function->isDeleted();
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Inconsistent overload resolution?");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_Success:
 | 
						|
      llvm_unreachable("Conversion did not fail!");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
  case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           Failure == FK_NonConstLValueReferenceBindingToTemporary
 | 
						|
             ? diag::err_lvalue_reference_bind_to_temporary
 | 
						|
             : diag::err_lvalue_reference_bind_to_unrelated)
 | 
						|
      << DestType.getNonReferenceType().isVolatileQualified()
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << Args[0]->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_RValueReferenceBindingToLValue:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
 | 
						|
      << DestType.getNonReferenceType() << Args[0]->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ReferenceInitDropsQualifiers:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << Args[0]->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ReferenceInitFailed:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << Args[0]->isLValue()
 | 
						|
      << Args[0]->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
 | 
						|
        Args[0]->getType()->isObjCObjectPointerType())
 | 
						|
      S.EmitRelatedResultTypeNote(Args[0]);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ConversionFailed: {
 | 
						|
    QualType FromType = Args[0]->getType();
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
 | 
						|
      << (int)Entity.getKind()
 | 
						|
      << DestType
 | 
						|
      << Args[0]->isLValue()
 | 
						|
      << FromType
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
 | 
						|
        Args[0]->getType()->isObjCObjectPointerType())
 | 
						|
      S.EmitRelatedResultTypeNote(Args[0]);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ConversionFromPropertyFailed:
 | 
						|
    // No-op. This error has already been reported.
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_TooManyInitsForScalar: {
 | 
						|
    SourceRange R;
 | 
						|
 | 
						|
    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
 | 
						|
      R = SourceRange(InitList->getInit(0)->getLocEnd(),
 | 
						|
                      InitList->getLocEnd());
 | 
						|
    else
 | 
						|
      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
 | 
						|
 | 
						|
    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
 | 
						|
    if (Kind.isCStyleOrFunctionalCast())
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
 | 
						|
        << R;
 | 
						|
    else
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
 | 
						|
        << /*scalar=*/2 << R;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ReferenceBindingToInitList:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
 | 
						|
      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_InitListBadDestinationType:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
 | 
						|
      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ConstructorOverloadFailed: {
 | 
						|
    SourceRange ArgsRange;
 | 
						|
    if (NumArgs)
 | 
						|
      ArgsRange = SourceRange(Args[0]->getLocStart(),
 | 
						|
                              Args[NumArgs - 1]->getLocEnd());
 | 
						|
 | 
						|
    // FIXME: Using "DestType" for the entity we're printing is probably
 | 
						|
    // bad.
 | 
						|
    switch (FailedOverloadResult) {
 | 
						|
      case OR_Ambiguous:
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
 | 
						|
          << DestType << ArgsRange;
 | 
						|
        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
 | 
						|
                                          Args, NumArgs);
 | 
						|
        break;
 | 
						|
 | 
						|
      case OR_No_Viable_Function:
 | 
						|
        if (Kind.getKind() == InitializationKind::IK_Default &&
 | 
						|
            (Entity.getKind() == InitializedEntity::EK_Base ||
 | 
						|
             Entity.getKind() == InitializedEntity::EK_Member) &&
 | 
						|
            isa<CXXConstructorDecl>(S.CurContext)) {
 | 
						|
          // This is implicit default initialization of a member or
 | 
						|
          // base within a constructor. If no viable function was
 | 
						|
          // found, notify the user that she needs to explicitly
 | 
						|
          // initialize this base/member.
 | 
						|
          CXXConstructorDecl *Constructor
 | 
						|
            = cast<CXXConstructorDecl>(S.CurContext);
 | 
						|
          if (Entity.getKind() == InitializedEntity::EK_Base) {
 | 
						|
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | 
						|
              << Constructor->isImplicit()
 | 
						|
              << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
              << /*base=*/0
 | 
						|
              << Entity.getType();
 | 
						|
 | 
						|
            RecordDecl *BaseDecl
 | 
						|
              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
 | 
						|
                                                                  ->getDecl();
 | 
						|
            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
 | 
						|
              << S.Context.getTagDeclType(BaseDecl);
 | 
						|
          } else {
 | 
						|
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | 
						|
              << Constructor->isImplicit()
 | 
						|
              << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
              << /*member=*/1
 | 
						|
              << Entity.getName();
 | 
						|
            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
 | 
						|
 | 
						|
            if (const RecordType *Record
 | 
						|
                                 = Entity.getType()->getAs<RecordType>())
 | 
						|
              S.Diag(Record->getDecl()->getLocation(),
 | 
						|
                     diag::note_previous_decl)
 | 
						|
                << S.Context.getTagDeclType(Record->getDecl());
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
 | 
						|
          << DestType << ArgsRange;
 | 
						|
        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
 | 
						|
        break;
 | 
						|
 | 
						|
      case OR_Deleted: {
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
 | 
						|
          << true << DestType << ArgsRange;
 | 
						|
        OverloadCandidateSet::iterator Best;
 | 
						|
        OverloadingResult Ovl
 | 
						|
          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | 
						|
        if (Ovl == OR_Deleted) {
 | 
						|
          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
 | 
						|
            << 1 << Best->Function->isDeleted();
 | 
						|
        } else {
 | 
						|
          llvm_unreachable("Inconsistent overload resolution?");
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case OR_Success:
 | 
						|
        llvm_unreachable("Conversion did not fail!");
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_DefaultInitOfConst:
 | 
						|
    if (Entity.getKind() == InitializedEntity::EK_Member &&
 | 
						|
        isa<CXXConstructorDecl>(S.CurContext)) {
 | 
						|
      // This is implicit default-initialization of a const member in
 | 
						|
      // a constructor. Complain that it needs to be explicitly
 | 
						|
      // initialized.
 | 
						|
      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
 | 
						|
        << Constructor->isImplicit()
 | 
						|
        << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
        << /*const=*/1
 | 
						|
        << Entity.getName();
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
 | 
						|
        << Entity.getName();
 | 
						|
    } else {
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_default_init_const)
 | 
						|
        << DestType << (bool)DestType->getAs<RecordType>();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_Incomplete:
 | 
						|
    S.RequireCompleteType(Kind.getLocation(), DestType,
 | 
						|
                          diag::err_init_incomplete_type);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ListInitializationFailed: {
 | 
						|
    // Run the init list checker again to emit diagnostics.
 | 
						|
    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
 | 
						|
    QualType DestType = Entity.getType();
 | 
						|
    InitListChecker DiagnoseInitList(S, Entity, InitList,
 | 
						|
            DestType, /*VerifyOnly=*/false);
 | 
						|
    assert(DiagnoseInitList.HadError() &&
 | 
						|
           "Inconsistent init list check result.");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  PrintInitLocationNote(S, Entity);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::dump(raw_ostream &OS) const {
 | 
						|
  switch (SequenceKind) {
 | 
						|
  case FailedSequence: {
 | 
						|
    OS << "Failed sequence: ";
 | 
						|
    switch (Failure) {
 | 
						|
    case FK_TooManyInitsForReference:
 | 
						|
      OS << "too many initializers for reference";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayNeedsInitList:
 | 
						|
      OS << "array requires initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
      OS << "array requires initializer list or string literal";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayTypeMismatch:
 | 
						|
      OS << "array type mismatch";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstantArrayInit:
 | 
						|
      OS << "non-constant array initializer";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_AddressOfOverloadFailed:
 | 
						|
      OS << "address of overloaded function failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitOverloadFailed:
 | 
						|
      OS << "overload resolution for reference initialization failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
      OS << "non-const lvalue reference bound to temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
      OS << "non-const lvalue reference bound to unrelated type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_RValueReferenceBindingToLValue:
 | 
						|
      OS << "rvalue reference bound to an lvalue";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitDropsQualifiers:
 | 
						|
      OS << "reference initialization drops qualifiers";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitFailed:
 | 
						|
      OS << "reference initialization failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConversionFailed:
 | 
						|
      OS << "conversion failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConversionFromPropertyFailed:
 | 
						|
      OS << "conversion from property failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_TooManyInitsForScalar:
 | 
						|
      OS << "too many initializers for scalar";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceBindingToInitList:
 | 
						|
      OS << "referencing binding to initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_InitListBadDestinationType:
 | 
						|
      OS << "initializer list for non-aggregate, non-scalar type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_UserConversionOverloadFailed:
 | 
						|
      OS << "overloading failed for user-defined conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConstructorOverloadFailed:
 | 
						|
      OS << "constructor overloading failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_DefaultInitOfConst:
 | 
						|
      OS << "default initialization of a const variable";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_Incomplete:
 | 
						|
      OS << "initialization of incomplete type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ListInitializationFailed:
 | 
						|
      OS << "list initialization checker failure";
 | 
						|
    }
 | 
						|
    OS << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case DependentSequence:
 | 
						|
    OS << "Dependent sequence\n";
 | 
						|
    return;
 | 
						|
 | 
						|
  case NormalSequence:
 | 
						|
    OS << "Normal sequence: ";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
 | 
						|
    if (S != step_begin()) {
 | 
						|
      OS << " -> ";
 | 
						|
    }
 | 
						|
 | 
						|
    switch (S->Kind) {
 | 
						|
    case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
      OS << "resolve address of overloaded function";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseRValue:
 | 
						|
      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseXValue:
 | 
						|
      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseLValue:
 | 
						|
      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReference:
 | 
						|
      OS << "bind reference to lvalue";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReferenceToTemporary:
 | 
						|
      OS << "bind reference to a temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ExtraneousCopyToTemporary:
 | 
						|
      OS << "extraneous C++03 copy to temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_UserConversion:
 | 
						|
      OS << "user-defined conversion via " << S->Function.Function;
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_QualificationConversionRValue:
 | 
						|
      OS << "qualification conversion (rvalue)";
 | 
						|
 | 
						|
    case SK_QualificationConversionXValue:
 | 
						|
      OS << "qualification conversion (xvalue)";
 | 
						|
 | 
						|
    case SK_QualificationConversionLValue:
 | 
						|
      OS << "qualification conversion (lvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConversionSequence:
 | 
						|
      OS << "implicit conversion sequence (";
 | 
						|
      S->ICS->DebugPrint(); // FIXME: use OS
 | 
						|
      OS << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ListInitialization:
 | 
						|
      OS << "list aggregate initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ListConstructorCall:
 | 
						|
      OS << "list initialization via constructor";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConstructorInitialization:
 | 
						|
      OS << "constructor initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ZeroInitialization:
 | 
						|
      OS << "zero initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CAssignment:
 | 
						|
      OS << "C assignment";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_StringInit:
 | 
						|
      OS << "string initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ObjCObjectConversion:
 | 
						|
      OS << "Objective-C object conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayInit:
 | 
						|
      OS << "array initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectCopyRestore:
 | 
						|
      OS << "pass by indirect copy and restore";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectRestore:
 | 
						|
      OS << "pass by indirect restore";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ProduceObjCObject:
 | 
						|
      OS << "Objective-C object retension";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::dump() const {
 | 
						|
  dump(llvm::errs());
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseNarrowingInInitList(
 | 
						|
    Sema& S, QualType EntityType, const Expr *InitE,
 | 
						|
    bool Constant, const APValue &ConstantValue) {
 | 
						|
  if (Constant) {
 | 
						|
    S.Diag(InitE->getLocStart(),
 | 
						|
           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
 | 
						|
           ? diag::err_init_list_constant_narrowing
 | 
						|
           : diag::warn_init_list_constant_narrowing)
 | 
						|
      << InitE->getSourceRange()
 | 
						|
      << ConstantValue
 | 
						|
      << EntityType.getLocalUnqualifiedType();
 | 
						|
  } else
 | 
						|
    S.Diag(InitE->getLocStart(),
 | 
						|
           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
 | 
						|
           ? diag::err_init_list_variable_narrowing
 | 
						|
           : diag::warn_init_list_variable_narrowing)
 | 
						|
      << InitE->getSourceRange()
 | 
						|
      << InitE->getType().getLocalUnqualifiedType()
 | 
						|
      << EntityType.getLocalUnqualifiedType();
 | 
						|
 | 
						|
  llvm::SmallString<128> StaticCast;
 | 
						|
  llvm::raw_svector_ostream OS(StaticCast);
 | 
						|
  OS << "static_cast<";
 | 
						|
  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
 | 
						|
    // It's important to use the typedef's name if there is one so that the
 | 
						|
    // fixit doesn't break code using types like int64_t.
 | 
						|
    //
 | 
						|
    // FIXME: This will break if the typedef requires qualification.  But
 | 
						|
    // getQualifiedNameAsString() includes non-machine-parsable components.
 | 
						|
    OS << TT->getDecl();
 | 
						|
  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
 | 
						|
    OS << BT->getName(S.getLangOptions());
 | 
						|
  else {
 | 
						|
    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
 | 
						|
    // with a broken cast.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  OS << ">(";
 | 
						|
  S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
 | 
						|
    << InitE->getSourceRange()
 | 
						|
    << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
 | 
						|
    << FixItHint::CreateInsertion(
 | 
						|
      S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
bool
 | 
						|
Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
 | 
						|
                                   ExprResult Init) {
 | 
						|
  if (Init.isInvalid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *InitE = Init.get();
 | 
						|
  assert(InitE && "No initialization expression");
 | 
						|
 | 
						|
  InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
 | 
						|
                                                           SourceLocation());
 | 
						|
  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
 | 
						|
  return !Seq.Failed();
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
 | 
						|
                                SourceLocation EqualLoc,
 | 
						|
                                ExprResult Init,
 | 
						|
                                bool TopLevelOfInitList) {
 | 
						|
  if (Init.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Expr *InitE = Init.get();
 | 
						|
  assert(InitE && "No initialization expression?");
 | 
						|
 | 
						|
  if (EqualLoc.isInvalid())
 | 
						|
    EqualLoc = InitE->getLocStart();
 | 
						|
 | 
						|
  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
 | 
						|
                                                           EqualLoc);
 | 
						|
  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
 | 
						|
  Init.release();
 | 
						|
 | 
						|
  bool Constant = false;
 | 
						|
  APValue Result;
 | 
						|
  if (TopLevelOfInitList &&
 | 
						|
      Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
 | 
						|
    DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
 | 
						|
                                Constant, Result);
 | 
						|
  }
 | 
						|
  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
 | 
						|
}
 |