llvm-project/llvm/lib/Target/X86/X86FixupSFB.cpp

581 lines
24 KiB
C++

//===- X86FixupSFB.cpp - Avoid HW Store Forward Block issues -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// If a load follows a store and reloads data that the store has written to
// memory, Intel microarchitectures can in many cases forward the data directly
// from the store to the load, This "store forwarding" saves cycles by enabling
// the load to directly obtain the data instead of accessing the data from
// cache or memory.
// A "store forward block" occurs in cases that a store cannot be forwarded to
// the load. The most typical case of store forward block on Intel Core
// microarchitecture that a small store cannot be forwarded to a large load.
// The estimated penalty for a store forward block is ~13 cycles.
//
// This pass tries to recognize and handle cases where "store forward block"
// is created by the compiler when lowering memcpy calls to a sequence
// of a load and a store.
//
// The pass currently only handles cases where memcpy is lowered to
// XMM/YMM registers, it tries to break the memcpy into smaller copies.
// breaking the memcpy should be possible since there is no atomicity
// guarantee for loads and stores to XMM/YMM.
//
// It could be better for performance to solve the problem by loading
// to XMM/YMM then inserting the partial store before storing back from XMM/YMM
// to memory, but this will result in a more conservative optimization since it
// requires we prove that all memory accesses between the blocking store and the
// load must alias/don't alias before we can move the store, whereas the
// transformation done here is correct regardless to other memory accesses.
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCInstrDesc.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-SFB"
static cl::opt<bool> DisableX86FixupSFB("disable-fixup-SFB", cl::Hidden,
cl::desc("X86: Disable SFB fixup."),
cl::init(false));
namespace {
class FixupSFBPass : public MachineFunctionPass {
public:
FixupSFBPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "X86 Fixup Store Forward Block";
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
MachineRegisterInfo *MRI;
const X86InstrInfo *TII;
const X86RegisterInfo *TRI;
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2> BlockedLoadsStores;
SmallVector<MachineInstr *, 2> ForRemoval;
bool Is64Bit;
/// \brief Returns couples of Load then Store to memory which look
/// like a memcpy.
void findPotentiallylBlockedCopies(MachineFunction &MF);
/// \brief Break the memcpy's load and store into smaller copies
/// such that each memory load that was blocked by a smaller store
/// would now be copied separately.
void
breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
const std::map<int64_t, unsigned> &BlockingStoresDisp);
/// \brief Break a copy of size Size to smaller copies.
void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
MachineInstr *StoreInst, int64_t StDispImm,
int64_t LMMOffset, int64_t SMMOffset);
void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
MachineInstr *StoreInst, unsigned NStoreOpcode,
int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
int64_t SMMOffset);
unsigned getRegSizeInBytes(MachineInstr *Inst);
static char ID;
};
} // end anonymous namespace
char FixupSFBPass::ID = 0;
FunctionPass *llvm::createX86FixupSFB() { return new FixupSFBPass(); }
static bool isXMMLoadOpcode(unsigned Opcode) {
return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
}
static bool isYMMLoadOpcode(unsigned Opcode) {
return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
}
static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
}
std::map<unsigned, std::pair<unsigned, unsigned>> PotentialBlockedMemCpy{
{X86::MOVUPSrm, {X86::MOVUPSmr, X86::MOVAPSmr}},
{X86::MOVAPSrm, {X86::MOVUPSmr, X86::MOVAPSmr}},
{X86::VMOVUPSrm, {X86::VMOVUPSmr, X86::VMOVAPSmr}},
{X86::VMOVAPSrm, {X86::VMOVUPSmr, X86::VMOVAPSmr}},
{X86::VMOVUPDrm, {X86::VMOVUPDmr, X86::VMOVAPDmr}},
{X86::VMOVAPDrm, {X86::VMOVUPDmr, X86::VMOVAPDmr}},
{X86::VMOVDQUrm, {X86::VMOVDQUmr, X86::VMOVDQAmr}},
{X86::VMOVDQArm, {X86::VMOVDQUmr, X86::VMOVDQAmr}},
{X86::VMOVUPSZ128rm, {X86::VMOVUPSZ128mr, X86::VMOVAPSZ128mr}},
{X86::VMOVAPSZ128rm, {X86::VMOVUPSZ128mr, X86::VMOVAPSZ128mr}},
{X86::VMOVUPDZ128rm, {X86::VMOVUPDZ128mr, X86::VMOVAPDZ128mr}},
{X86::VMOVAPDZ128rm, {X86::VMOVUPDZ128mr, X86::VMOVAPDZ128mr}},
{X86::VMOVUPSYrm, {X86::VMOVUPSYmr, X86::VMOVAPSYmr}},
{X86::VMOVAPSYrm, {X86::VMOVUPSYmr, X86::VMOVAPSYmr}},
{X86::VMOVUPDYrm, {X86::VMOVUPDYmr, X86::VMOVAPDYmr}},
{X86::VMOVAPDYrm, {X86::VMOVUPDYmr, X86::VMOVAPDYmr}},
{X86::VMOVDQUYrm, {X86::VMOVDQUYmr, X86::VMOVDQAYmr}},
{X86::VMOVDQAYrm, {X86::VMOVDQUYmr, X86::VMOVDQAYmr}},
{X86::VMOVUPSZ256rm, {X86::VMOVUPSZ256mr, X86::VMOVAPSZ256mr}},
{X86::VMOVAPSZ256rm, {X86::VMOVUPSZ256mr, X86::VMOVAPSZ256mr}},
{X86::VMOVUPDZ256rm, {X86::VMOVUPDZ256mr, X86::VMOVAPDZ256mr}},
{X86::VMOVAPDZ256rm, {X86::VMOVUPDZ256mr, X86::VMOVAPDZ256mr}},
{X86::VMOVDQU64Z128rm, {X86::VMOVDQU64Z128mr, X86::VMOVDQA64Z128mr}},
{X86::VMOVDQA64Z128rm, {X86::VMOVDQU64Z128mr, X86::VMOVDQA64Z128mr}},
{X86::VMOVDQU32Z128rm, {X86::VMOVDQU32Z128mr, X86::VMOVDQA32Z128mr}},
{X86::VMOVDQA32Z128rm, {X86::VMOVDQU32Z128mr, X86::VMOVDQA32Z128mr}},
{X86::VMOVDQU64Z256rm, {X86::VMOVDQU64Z256mr, X86::VMOVDQA64Z256mr}},
{X86::VMOVDQA64Z256rm, {X86::VMOVDQU64Z256mr, X86::VMOVDQA64Z256mr}},
{X86::VMOVDQU32Z256rm, {X86::VMOVDQU32Z256mr, X86::VMOVDQA32Z256mr}},
{X86::VMOVDQA32Z256rm, {X86::VMOVDQU32Z256mr, X86::VMOVDQA32Z256mr}},
};
static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode, unsigned StOpcode) {
auto PotentialStores = PotentialBlockedMemCpy.at(LdOpcode);
return PotentialStores.first == StOpcode ||
PotentialStores.second == StOpcode;
}
static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
bool PBlock = false;
PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
if (isYMMLoadOpcode(LoadOpcode))
PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
Opcode == X86::VMOVDQU64Z128mr ||
Opcode == X86::VMOVDQA64Z128mr ||
Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
return PBlock;
}
static const int MOV128SZ = 16;
static const int MOV64SZ = 8;
static const int MOV32SZ = 4;
static const int MOV16SZ = 2;
static const int MOV8SZ = 1;
std::map<unsigned, unsigned> YMMtoXMMLoadMap = {
{X86::VMOVUPSYrm, X86::VMOVUPSrm},
{X86::VMOVAPSYrm, X86::VMOVUPSrm},
{X86::VMOVUPDYrm, X86::VMOVUPDrm},
{X86::VMOVAPDYrm, X86::VMOVUPDrm},
{X86::VMOVDQUYrm, X86::VMOVDQUrm},
{X86::VMOVDQAYrm, X86::VMOVDQUrm},
{X86::VMOVUPSZ256rm, X86::VMOVUPSZ128rm},
{X86::VMOVAPSZ256rm, X86::VMOVUPSZ128rm},
{X86::VMOVUPDZ256rm, X86::VMOVUPDZ128rm},
{X86::VMOVAPDZ256rm, X86::VMOVUPDZ128rm},
{X86::VMOVDQU64Z256rm, X86::VMOVDQU64Z128rm},
{X86::VMOVDQA64Z256rm, X86::VMOVDQU64Z128rm},
{X86::VMOVDQU32Z256rm, X86::VMOVDQU32Z128rm},
{X86::VMOVDQA32Z256rm, X86::VMOVDQU32Z128rm},
};
std::map<unsigned, unsigned> YMMtoXMMStoreMap = {
{X86::VMOVUPSYmr, X86::VMOVUPSmr},
{X86::VMOVAPSYmr, X86::VMOVUPSmr},
{X86::VMOVUPDYmr, X86::VMOVUPDmr},
{X86::VMOVAPDYmr, X86::VMOVUPDmr},
{X86::VMOVDQUYmr, X86::VMOVDQUmr},
{X86::VMOVDQAYmr, X86::VMOVDQUmr},
{X86::VMOVUPSZ256mr, X86::VMOVUPSZ128mr},
{X86::VMOVAPSZ256mr, X86::VMOVUPSZ128mr},
{X86::VMOVUPDZ256mr, X86::VMOVUPDZ128mr},
{X86::VMOVAPDZ256mr, X86::VMOVUPDZ128mr},
{X86::VMOVDQU64Z256mr, X86::VMOVDQU64Z128mr},
{X86::VMOVDQA64Z256mr, X86::VMOVDQU64Z128mr},
{X86::VMOVDQU32Z256mr, X86::VMOVDQU32Z128mr},
{X86::VMOVDQA32Z256mr, X86::VMOVDQU32Z128mr},
};
static int getAddrOffset(MachineInstr *MI) {
const MCInstrDesc &Descl = MI->getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
assert(AddrOffset != -1 && "Expected Memory Operand");
AddrOffset += X86II::getOperandBias(Descl);
return AddrOffset;
}
static MachineOperand &getBaseOperand(MachineInstr *MI) {
int AddrOffset = getAddrOffset(MI);
return MI->getOperand(AddrOffset + X86::AddrBaseReg);
}
static MachineOperand &getDispOperand(MachineInstr *MI) {
int AddrOffset = getAddrOffset(MI);
return MI->getOperand(AddrOffset + X86::AddrDisp);
}
// Relevant addressing modes contain only base register and immediate
// displacement or frameindex and immediate displacement.
// TODO: Consider expanding to other addressing modes in the future
static bool isRelevantAddressingMode(MachineInstr *MI) {
int AddrOffset = getAddrOffset(MI);
MachineOperand &Base = MI->getOperand(AddrOffset + X86::AddrBaseReg);
MachineOperand &Disp = MI->getOperand(AddrOffset + X86::AddrDisp);
MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
return false;
if (!Disp.isImm())
return false;
if (Scale.getImm() != 1)
return false;
if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
return false;
if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
return false;
return true;
}
// Collect potentially blocking stores.
// Limit the number of instructions backwards we want to inspect
// since the effect of store block won't be visible if the store
// and load instructions have enough instructions in between to
// keep the core busy.
static const unsigned LIMIT = 20;
static SmallVector<MachineInstr *, 2>
findPotentialBlockers(MachineInstr *LoadInst) {
SmallVector<MachineInstr *, 2> PotentialBlockers;
unsigned BlockLimit = 0;
for (MachineBasicBlock::iterator LI = LoadInst,
BB = LoadInst->getParent()->begin();
LI != BB; --LI) {
BlockLimit++;
if (BlockLimit >= LIMIT)
break;
MachineInstr &MI = *LI;
if (MI.getDesc().isCall())
break;
PotentialBlockers.push_back(&MI);
}
// If we didn't get to the instructions limit try predecessing blocks.
// Ideally we should traverse the predecessor blocks in depth with some
// coloring algorithm, but for now let's just look at the first order
// predecessors.
if (BlockLimit < LIMIT) {
MachineBasicBlock *MBB = LoadInst->getParent();
int LimitLeft = LIMIT - BlockLimit;
for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
PE = MBB->pred_end();
PB != PE; ++PB) {
MachineBasicBlock *PMBB = *PB;
int PredLimit = 0;
for (MachineBasicBlock::reverse_iterator PMI = PMBB->rbegin(),
PME = PMBB->rend();
PMI != PME; ++PMI) {
PredLimit++;
if (PredLimit >= LimitLeft)
break;
if (PMI->getDesc().isCall())
break;
PotentialBlockers.push_back(&*PMI);
}
}
}
return PotentialBlockers;
}
void FixupSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
int64_t LoadDisp, MachineInstr *StoreInst,
unsigned NStoreOpcode, int64_t StoreDisp,
unsigned Size, int64_t LMMOffset,
int64_t SMMOffset) {
MachineOperand &LoadBase = getBaseOperand(LoadInst);
MachineOperand &StoreBase = getBaseOperand(StoreInst);
MachineBasicBlock *MBB = LoadInst->getParent();
MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
unsigned Reg1 = MRI->createVirtualRegister(
TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode), Reg1)
.add(LoadBase)
.addImm(1)
.addReg(X86::NoRegister)
.addImm(LoadDisp)
.addReg(X86::NoRegister)
.addMemOperand(
MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
DEBUG(LoadInst->getPrevNode()->dump());
// If the load and store are consecutive, use the loadInst location to
// reduce register pressure.
MachineInstr *StInst = StoreInst;
if (StoreInst->getPrevNode() == LoadInst)
StInst = LoadInst;
BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
.add(StoreBase)
.addImm(1)
.addReg(X86::NoRegister)
.addImm(StoreDisp)
.addReg(X86::NoRegister)
.addReg(Reg1)
.addMemOperand(
MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
DEBUG(StInst->getPrevNode()->dump());
}
void FixupSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
int64_t LdDispImm, MachineInstr *StoreInst,
int64_t StDispImm, int64_t LMMOffset,
int64_t SMMOffset) {
int LdDisp = LdDispImm;
int StDisp = StDispImm;
while (Size > 0) {
if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
Size = Size - MOV128SZ;
buildCopy(LoadInst, YMMtoXMMLoadMap.at(LoadInst->getOpcode()), LdDisp,
StoreInst, YMMtoXMMStoreMap.at(StoreInst->getOpcode()), StDisp,
MOV128SZ, LMMOffset, SMMOffset);
LdDisp += MOV128SZ;
StDisp += MOV128SZ;
LMMOffset += MOV128SZ;
SMMOffset += MOV128SZ;
continue;
}
if (Size - MOV64SZ >= 0 && Is64Bit) {
Size = Size - MOV64SZ;
buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
MOV64SZ, LMMOffset, SMMOffset);
LdDisp += MOV64SZ;
StDisp += MOV64SZ;
LMMOffset += MOV64SZ;
SMMOffset += MOV64SZ;
continue;
}
if (Size - MOV32SZ >= 0) {
Size = Size - MOV32SZ;
buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
MOV32SZ, LMMOffset, SMMOffset);
LdDisp += MOV32SZ;
StDisp += MOV32SZ;
LMMOffset += MOV32SZ;
SMMOffset += MOV32SZ;
continue;
}
if (Size - MOV16SZ >= 0) {
Size = Size - MOV16SZ;
buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
MOV16SZ, LMMOffset, SMMOffset);
LdDisp += MOV16SZ;
StDisp += MOV16SZ;
LMMOffset += MOV16SZ;
SMMOffset += MOV16SZ;
continue;
}
if (Size - MOV8SZ >= 0) {
Size = Size - MOV8SZ;
buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
MOV8SZ, LMMOffset, SMMOffset);
LdDisp += MOV8SZ;
StDisp += MOV8SZ;
LMMOffset += MOV8SZ;
SMMOffset += MOV8SZ;
continue;
}
}
assert(Size == 0 && "Wrong size division");
}
static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
MachineOperand &LoadBase = getBaseOperand(LoadInst);
MachineOperand &StoreBase = getBaseOperand(StoreInst);
if (LoadBase.isReg()) {
MachineInstr *LastLoad = LoadInst->getPrevNode();
// If the original load and store to xmm/ymm were consecutive
// then the partial copies were also created in
// a consecutive order to reduce register pressure,
// and the location of the last load is before the last store.
if (StoreInst->getPrevNode() == LoadInst)
LastLoad = LoadInst->getPrevNode()->getPrevNode();
getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
}
if (StoreBase.isReg()) {
MachineInstr *StInst = StoreInst;
if (StoreInst->getPrevNode() == LoadInst)
StInst = LoadInst;
getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
}
}
void FixupSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
for (auto &MBB : MF)
for (auto &MI : MBB)
if (isPotentialBlockedMemCpyLd(MI.getOpcode())) {
int DefVR = MI.getOperand(0).getReg();
if (MRI->hasOneUse(DefVR))
for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
UI != UE;) {
MachineOperand &StoreMO = *UI++;
MachineInstr &StoreMI = *StoreMO.getParent();
if (isPotentialBlockedMemCpyPair(MI.getOpcode(),
StoreMI.getOpcode()) &&
(StoreMI.getParent() == MI.getParent()))
if (isRelevantAddressingMode(&MI) &&
isRelevantAddressingMode(&StoreMI))
BlockedLoadsStores.push_back(
std::pair<MachineInstr *, MachineInstr *>(&MI, &StoreMI));
}
}
}
unsigned FixupSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
*LoadInst->getParent()->getParent());
return TRI->getRegSizeInBits(*TRC) / 8;
}
void FixupSFBPass::breakBlockedCopies(
MachineInstr *LoadInst, MachineInstr *StoreInst,
const std::map<int64_t, unsigned> &BlockingStoresDisp) {
int64_t LdDispImm = getDispOperand(LoadInst).getImm();
int64_t StDispImm = getDispOperand(StoreInst).getImm();
int64_t LMMOffset = (*LoadInst->memoperands_begin())->getOffset();
int64_t SMMOffset = (*StoreInst->memoperands_begin())->getOffset();
int64_t LdDisp1 = LdDispImm;
int64_t LdDisp2 = 0;
int64_t StDisp1 = StDispImm;
int64_t StDisp2 = 0;
unsigned Size1 = 0;
unsigned Size2 = 0;
int64_t LdStDelta = StDispImm - LdDispImm;
for (auto inst : BlockingStoresDisp) {
LdDisp2 = inst.first;
StDisp2 = inst.first + LdStDelta;
Size1 = std::abs(std::abs(LdDisp2) - std::abs(LdDisp1));
Size2 = inst.second;
buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
SMMOffset);
buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
SMMOffset + Size1);
LdDisp1 = LdDisp2 + Size2;
StDisp1 = StDisp2 + Size2;
LMMOffset += Size1 + Size2;
SMMOffset += Size1 + Size2;
}
unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
LMMOffset);
}
bool FixupSFBPass::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
if (DisableX86FixupSFB || skipFunction(MF.getFunction()))
return false;
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "Expected MIR to be in SSA form");
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
Is64Bit = MF.getSubtarget<X86Subtarget>().is64Bit();
DEBUG(dbgs() << "Start X86FixupSFB\n";);
// Look for a load then a store to XMM/YMM which look like a memcpy
findPotentiallylBlockedCopies(MF);
for (auto LoadStoreInst : BlockedLoadsStores) {
MachineInstr *LoadInst = LoadStoreInst.first;
SmallVector<MachineInstr *, 2> PotentialBlockers =
findPotentialBlockers(LoadInst);
MachineOperand &LoadBase = getBaseOperand(LoadInst);
int64_t LdDispImm = getDispOperand(LoadInst).getImm();
std::map<int64_t, unsigned> BlockingStoresDisp;
int LdBaseReg = LoadBase.isReg() ? LoadBase.getReg() : LoadBase.getIndex();
for (auto PBInst : PotentialBlockers) {
if (isPotentialBlockingStoreInst(PBInst->getOpcode(),
LoadInst->getOpcode())) {
if (!isRelevantAddressingMode(PBInst))
continue;
MachineOperand &PBstoreBase = getBaseOperand(PBInst);
int64_t PBstDispImm = getDispOperand(PBInst).getImm();
assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
int PBstBaseReg =
PBstoreBase.isReg() ? PBstoreBase.getReg() : PBstoreBase.getIndex();
// This check doesn't cover all cases, but it will suffice for now.
// TODO: take branch probability into consideration, if the blocking
// store is in an unreached block, breaking the memcopy could lose
// performance.
if (((LoadBase.isReg() && PBstoreBase.isReg()) ||
(LoadBase.isFI() && PBstoreBase.isFI())) &&
LdBaseReg == PBstBaseReg &&
((PBstDispImm >= LdDispImm) &&
(PBstDispImm <=
LdDispImm + (getRegSizeInBytes(LoadInst) - PBstSize)))) {
if (BlockingStoresDisp.count(PBstDispImm)) {
if (BlockingStoresDisp[PBstDispImm] > PBstSize)
BlockingStoresDisp[PBstDispImm] = PBstSize;
} else
BlockingStoresDisp[PBstDispImm] = PBstSize;
}
}
}
if (BlockingStoresDisp.size() == 0)
continue;
// We found a store forward block, break the memcpy's load and store
// into smaller copies such that each smaller store that was causing
// a store block would now be copied separately.
MachineInstr *StoreInst = LoadStoreInst.second;
DEBUG(dbgs() << "Blocked load and store instructions: \n");
DEBUG(LoadInst->dump());
DEBUG(StoreInst->dump());
DEBUG(dbgs() << "Replaced with:\n");
breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDisp);
updateKillStatus(LoadInst, StoreInst);
ForRemoval.push_back(LoadInst);
ForRemoval.push_back(StoreInst);
}
for (auto RemovedInst : ForRemoval) {
RemovedInst->eraseFromParent();
}
ForRemoval.clear();
BlockedLoadsStores.clear();
DEBUG(dbgs() << "End X86FixupSFB\n";);
return Changed;
}