368 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "gtest/gtest.h"
 | 
						|
 | 
						|
#include <list>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
int f(rank<0>) { return 0; }
 | 
						|
int f(rank<1>) { return 1; }
 | 
						|
int f(rank<2>) { return 2; }
 | 
						|
int f(rank<4>) { return 4; }
 | 
						|
 | 
						|
TEST(STLExtrasTest, Rank) {
 | 
						|
  // We shouldn't get ambiguities and should select the overload of the same
 | 
						|
  // rank as the argument.
 | 
						|
  EXPECT_EQ(0, f(rank<0>()));
 | 
						|
  EXPECT_EQ(1, f(rank<1>()));
 | 
						|
  EXPECT_EQ(2, f(rank<2>()));
 | 
						|
 | 
						|
  // This overload is missing so we end up back at 2.
 | 
						|
  EXPECT_EQ(2, f(rank<3>()));
 | 
						|
 | 
						|
  // But going past 3 should work fine.
 | 
						|
  EXPECT_EQ(4, f(rank<4>()));
 | 
						|
 | 
						|
  // And we can even go higher and just fall back to the last overload.
 | 
						|
  EXPECT_EQ(4, f(rank<5>()));
 | 
						|
  EXPECT_EQ(4, f(rank<6>()));
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, EnumerateLValue) {
 | 
						|
  // Test that a simple LValue can be enumerated and gives correct results with
 | 
						|
  // multiple types, including the empty container.
 | 
						|
  std::vector<char> foo = {'a', 'b', 'c'};
 | 
						|
  typedef std::pair<std::size_t, char> CharPairType;
 | 
						|
  std::vector<CharPairType> CharResults;
 | 
						|
 | 
						|
  for (auto X : llvm::enumerate(foo)) {
 | 
						|
    CharResults.emplace_back(X.index(), X.value());
 | 
						|
  }
 | 
						|
  ASSERT_EQ(3u, CharResults.size());
 | 
						|
  EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
 | 
						|
  EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
 | 
						|
  EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
 | 
						|
 | 
						|
  // Test a const range of a different type.
 | 
						|
  typedef std::pair<std::size_t, int> IntPairType;
 | 
						|
  std::vector<IntPairType> IntResults;
 | 
						|
  const std::vector<int> bar = {1, 2, 3};
 | 
						|
  for (auto X : llvm::enumerate(bar)) {
 | 
						|
    IntResults.emplace_back(X.index(), X.value());
 | 
						|
  }
 | 
						|
  ASSERT_EQ(3u, IntResults.size());
 | 
						|
  EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
 | 
						|
  EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
 | 
						|
  EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
 | 
						|
 | 
						|
  // Test an empty range.
 | 
						|
  IntResults.clear();
 | 
						|
  const std::vector<int> baz{};
 | 
						|
  for (auto X : llvm::enumerate(baz)) {
 | 
						|
    IntResults.emplace_back(X.index(), X.value());
 | 
						|
  }
 | 
						|
  EXPECT_TRUE(IntResults.empty());
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, EnumerateModifyLValue) {
 | 
						|
  // Test that you can modify the underlying entries of an lvalue range through
 | 
						|
  // the enumeration iterator.
 | 
						|
  std::vector<char> foo = {'a', 'b', 'c'};
 | 
						|
 | 
						|
  for (auto X : llvm::enumerate(foo)) {
 | 
						|
    ++X.value();
 | 
						|
  }
 | 
						|
  EXPECT_EQ('b', foo[0]);
 | 
						|
  EXPECT_EQ('c', foo[1]);
 | 
						|
  EXPECT_EQ('d', foo[2]);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, EnumerateRValueRef) {
 | 
						|
  // Test that an rvalue can be enumerated.
 | 
						|
  typedef std::pair<std::size_t, int> PairType;
 | 
						|
  std::vector<PairType> Results;
 | 
						|
 | 
						|
  auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
 | 
						|
 | 
						|
  for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
 | 
						|
    Results.emplace_back(X.index(), X.value());
 | 
						|
  }
 | 
						|
 | 
						|
  ASSERT_EQ(3u, Results.size());
 | 
						|
  EXPECT_EQ(PairType(0u, 1), Results[0]);
 | 
						|
  EXPECT_EQ(PairType(1u, 2), Results[1]);
 | 
						|
  EXPECT_EQ(PairType(2u, 3), Results[2]);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, EnumerateModifyRValue) {
 | 
						|
  // Test that when enumerating an rvalue, modification still works (even if
 | 
						|
  // this isn't terribly useful, it at least shows that we haven't snuck an
 | 
						|
  // extra const in there somewhere.
 | 
						|
  typedef std::pair<std::size_t, char> PairType;
 | 
						|
  std::vector<PairType> Results;
 | 
						|
 | 
						|
  for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
 | 
						|
    ++X.value();
 | 
						|
    Results.emplace_back(X.index(), X.value());
 | 
						|
  }
 | 
						|
 | 
						|
  ASSERT_EQ(3u, Results.size());
 | 
						|
  EXPECT_EQ(PairType(0u, '2'), Results[0]);
 | 
						|
  EXPECT_EQ(PairType(1u, '3'), Results[1]);
 | 
						|
  EXPECT_EQ(PairType(2u, '4'), Results[2]);
 | 
						|
}
 | 
						|
 | 
						|
template <bool B> struct CanMove {};
 | 
						|
template <> struct CanMove<false> {
 | 
						|
  CanMove(CanMove &&) = delete;
 | 
						|
 | 
						|
  CanMove() = default;
 | 
						|
  CanMove(const CanMove &) = default;
 | 
						|
};
 | 
						|
 | 
						|
template <bool B> struct CanCopy {};
 | 
						|
template <> struct CanCopy<false> {
 | 
						|
  CanCopy(const CanCopy &) = delete;
 | 
						|
 | 
						|
  CanCopy() = default;
 | 
						|
  CanCopy(CanCopy &&) = default;
 | 
						|
};
 | 
						|
 | 
						|
template <bool Moveable, bool Copyable>
 | 
						|
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
 | 
						|
  explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
 | 
						|
  Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
 | 
						|
  Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
 | 
						|
    ++M;
 | 
						|
  }
 | 
						|
  ~Range() { ++D; }
 | 
						|
 | 
						|
  int &C;
 | 
						|
  int &M;
 | 
						|
  int &D;
 | 
						|
 | 
						|
  int *begin() { return nullptr; }
 | 
						|
  int *end() { return nullptr; }
 | 
						|
};
 | 
						|
 | 
						|
TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
 | 
						|
  // Test that when enumerating lvalues and rvalues, there are no surprise
 | 
						|
  // copies or moves.
 | 
						|
 | 
						|
  // With an rvalue, it should not be destroyed until the end of the scope.
 | 
						|
  int Copies = 0;
 | 
						|
  int Moves = 0;
 | 
						|
  int Destructors = 0;
 | 
						|
  {
 | 
						|
    auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
 | 
						|
    // Doesn't compile.  rvalue ranges must be moveable.
 | 
						|
    // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
 | 
						|
    EXPECT_EQ(0, Copies);
 | 
						|
    EXPECT_EQ(1, Moves);
 | 
						|
    EXPECT_EQ(1, Destructors);
 | 
						|
  }
 | 
						|
  EXPECT_EQ(0, Copies);
 | 
						|
  EXPECT_EQ(1, Moves);
 | 
						|
  EXPECT_EQ(2, Destructors);
 | 
						|
 | 
						|
  Copies = Moves = Destructors = 0;
 | 
						|
  // With an lvalue, it should not be destroyed even after the end of the scope.
 | 
						|
  // lvalue ranges need be neither copyable nor moveable.
 | 
						|
  Range<false, false> R(Copies, Moves, Destructors);
 | 
						|
  {
 | 
						|
    auto Enumerator = enumerate(R);
 | 
						|
    (void)Enumerator;
 | 
						|
    EXPECT_EQ(0, Copies);
 | 
						|
    EXPECT_EQ(0, Moves);
 | 
						|
    EXPECT_EQ(0, Destructors);
 | 
						|
  }
 | 
						|
  EXPECT_EQ(0, Copies);
 | 
						|
  EXPECT_EQ(0, Moves);
 | 
						|
  EXPECT_EQ(0, Destructors);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, ApplyTuple) {
 | 
						|
  auto T = std::make_tuple(1, 3, 7);
 | 
						|
  auto U = llvm::apply_tuple(
 | 
						|
      [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
 | 
						|
      T);
 | 
						|
 | 
						|
  EXPECT_EQ(-2, std::get<0>(U));
 | 
						|
  EXPECT_EQ(-4, std::get<1>(U));
 | 
						|
  EXPECT_EQ(6, std::get<2>(U));
 | 
						|
 | 
						|
  auto V = llvm::apply_tuple(
 | 
						|
      [](int A, int B, int C) {
 | 
						|
        return std::make_tuple(std::make_pair(A, char('A' + A)),
 | 
						|
                               std::make_pair(B, char('A' + B)),
 | 
						|
                               std::make_pair(C, char('A' + C)));
 | 
						|
      },
 | 
						|
      T);
 | 
						|
 | 
						|
  EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
 | 
						|
  EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
 | 
						|
  EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
 | 
						|
}
 | 
						|
 | 
						|
class apply_variadic {
 | 
						|
  static int apply_one(int X) { return X + 1; }
 | 
						|
  static char apply_one(char C) { return C + 1; }
 | 
						|
  static StringRef apply_one(StringRef S) { return S.drop_back(); }
 | 
						|
 | 
						|
public:
 | 
						|
  template <typename... Ts>
 | 
						|
  auto operator()(Ts &&... Items)
 | 
						|
      -> decltype(std::make_tuple(apply_one(Items)...)) {
 | 
						|
    return std::make_tuple(apply_one(Items)...);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
TEST(STLExtrasTest, ApplyTupleVariadic) {
 | 
						|
  auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
 | 
						|
  auto Values = apply_tuple(apply_variadic(), Items);
 | 
						|
 | 
						|
  EXPECT_EQ(2, std::get<0>(Values));
 | 
						|
  EXPECT_EQ("Tes", std::get<1>(Values));
 | 
						|
  EXPECT_EQ('Y', std::get<2>(Values));
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, CountAdaptor) {
 | 
						|
  std::vector<int> v;
 | 
						|
 | 
						|
  v.push_back(1);
 | 
						|
  v.push_back(2);
 | 
						|
  v.push_back(1);
 | 
						|
  v.push_back(4);
 | 
						|
  v.push_back(3);
 | 
						|
  v.push_back(2);
 | 
						|
  v.push_back(1);
 | 
						|
 | 
						|
  EXPECT_EQ(3, count(v, 1));
 | 
						|
  EXPECT_EQ(2, count(v, 2));
 | 
						|
  EXPECT_EQ(1, count(v, 3));
 | 
						|
  EXPECT_EQ(1, count(v, 4));
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, for_each) {
 | 
						|
  std::vector<int> v{0, 1, 2, 3, 4};
 | 
						|
  int count = 0;
 | 
						|
 | 
						|
  llvm::for_each(v, [&count](int) { ++count; });
 | 
						|
  EXPECT_EQ(5, count);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, ToVector) {
 | 
						|
  std::vector<char> v = {'a', 'b', 'c'};
 | 
						|
  auto Enumerated = to_vector<4>(enumerate(v));
 | 
						|
  ASSERT_EQ(3u, Enumerated.size());
 | 
						|
  for (size_t I = 0; I < v.size(); ++I) {
 | 
						|
    EXPECT_EQ(I, Enumerated[I].index());
 | 
						|
    EXPECT_EQ(v[I], Enumerated[I].value());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, ConcatRange) {
 | 
						|
  std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
 | 
						|
  std::vector<int> Test;
 | 
						|
 | 
						|
  std::vector<int> V1234 = {1, 2, 3, 4};
 | 
						|
  std::list<int> L56 = {5, 6};
 | 
						|
  SmallVector<int, 2> SV78 = {7, 8};
 | 
						|
 | 
						|
  // Use concat across different sized ranges of different types with different
 | 
						|
  // iterators.
 | 
						|
  for (int &i : concat<int>(V1234, L56, SV78))
 | 
						|
    Test.push_back(i);
 | 
						|
  EXPECT_EQ(Expected, Test);
 | 
						|
 | 
						|
  // Use concat between a temporary, an L-value, and an R-value to make sure
 | 
						|
  // complex lifetimes work well.
 | 
						|
  Test.clear();
 | 
						|
  for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
 | 
						|
    Test.push_back(i);
 | 
						|
  EXPECT_EQ(Expected, Test);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, PartitionAdaptor) {
 | 
						|
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
 | 
						|
 | 
						|
  auto I = partition(V, [](int i) { return i % 2 == 0; });
 | 
						|
  ASSERT_EQ(V.begin() + 4, I);
 | 
						|
 | 
						|
  // Sort the two halves as partition may have messed with the order.
 | 
						|
  std::sort(V.begin(), I);
 | 
						|
  std::sort(I, V.end());
 | 
						|
 | 
						|
  EXPECT_EQ(2, V[0]);
 | 
						|
  EXPECT_EQ(4, V[1]);
 | 
						|
  EXPECT_EQ(6, V[2]);
 | 
						|
  EXPECT_EQ(8, V[3]);
 | 
						|
  EXPECT_EQ(1, V[4]);
 | 
						|
  EXPECT_EQ(3, V[5]);
 | 
						|
  EXPECT_EQ(5, V[6]);
 | 
						|
  EXPECT_EQ(7, V[7]);
 | 
						|
}
 | 
						|
 | 
						|
TEST(STLExtrasTest, EraseIf) {
 | 
						|
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
 | 
						|
 | 
						|
  erase_if(V, [](int i) { return i % 2 == 0; });
 | 
						|
  EXPECT_EQ(4u, V.size());
 | 
						|
  EXPECT_EQ(1, V[0]);
 | 
						|
  EXPECT_EQ(3, V[1]);
 | 
						|
  EXPECT_EQ(5, V[2]);
 | 
						|
  EXPECT_EQ(7, V[3]);
 | 
						|
}
 | 
						|
 | 
						|
namespace some_namespace {
 | 
						|
struct some_struct {
 | 
						|
  std::vector<int> data;
 | 
						|
  std::string swap_val;
 | 
						|
};
 | 
						|
 | 
						|
std::vector<int>::const_iterator begin(const some_struct &s) {
 | 
						|
  return s.data.begin();
 | 
						|
}
 | 
						|
 | 
						|
std::vector<int>::const_iterator end(const some_struct &s) {
 | 
						|
  return s.data.end();
 | 
						|
}
 | 
						|
 | 
						|
void swap(some_struct &lhs, some_struct &rhs) {
 | 
						|
  // make swap visible as non-adl swap would even seem to
 | 
						|
  // work with std::swap which defaults to moving
 | 
						|
  lhs.swap_val = "lhs";
 | 
						|
  rhs.swap_val = "rhs";
 | 
						|
}
 | 
						|
} // namespace some_namespace
 | 
						|
 | 
						|
TEST(STLExtrasTest, ADLTest) {
 | 
						|
  some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
 | 
						|
  some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
 | 
						|
 | 
						|
  EXPECT_EQ(*adl_begin(s), 1);
 | 
						|
  EXPECT_EQ(*(adl_end(s) - 1), 5);
 | 
						|
 | 
						|
  adl_swap(s, s2);
 | 
						|
  EXPECT_EQ(s.swap_val, "lhs");
 | 
						|
  EXPECT_EQ(s2.swap_val, "rhs");
 | 
						|
 | 
						|
  int count = 0;
 | 
						|
  llvm::for_each(s, [&count](int) { ++count; });
 | 
						|
  EXPECT_EQ(5, count);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 |