1138 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1138 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Stmt nodes as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Basic/PrettyStackTrace.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Statement Emission
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CodeGenFunction::EmitStopPoint(const Stmt *S) {
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    DI->setLocation(S->getLocStart());
 | 
						|
    DI->EmitStopPoint(CurFn, Builder);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStmt(const Stmt *S) {
 | 
						|
  assert(S && "Null statement?");
 | 
						|
 | 
						|
  // Check if we can handle this without bothering to generate an
 | 
						|
  // insert point or debug info.
 | 
						|
  if (EmitSimpleStmt(S))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if we are generating unreachable code.
 | 
						|
  if (!HaveInsertPoint()) {
 | 
						|
    // If so, and the statement doesn't contain a label, then we do not need to
 | 
						|
    // generate actual code. This is safe because (1) the current point is
 | 
						|
    // unreachable, so we don't need to execute the code, and (2) we've already
 | 
						|
    // handled the statements which update internal data structures (like the
 | 
						|
    // local variable map) which could be used by subsequent statements.
 | 
						|
    if (!ContainsLabel(S)) {
 | 
						|
      // Verify that any decl statements were handled as simple, they may be in
 | 
						|
      // scope of subsequent reachable statements.
 | 
						|
      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, make a new block to hold the code.
 | 
						|
    EnsureInsertPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate a stoppoint if we are emitting debug info.
 | 
						|
  EmitStopPoint(S);
 | 
						|
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    // Must be an expression in a stmt context.  Emit the value (to get
 | 
						|
    // side-effects) and ignore the result.
 | 
						|
    if (!isa<Expr>(S))
 | 
						|
      ErrorUnsupported(S, "statement");
 | 
						|
 | 
						|
    EmitAnyExpr(cast<Expr>(S), 0, false, true);
 | 
						|
 | 
						|
    // Expression emitters don't handle unreachable blocks yet, so look for one
 | 
						|
    // explicitly here. This handles the common case of a call to a noreturn
 | 
						|
    // function.
 | 
						|
    if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
 | 
						|
      if (CurBB->empty() && CurBB->use_empty()) {
 | 
						|
        CurBB->eraseFromParent();
 | 
						|
        Builder.ClearInsertionPoint();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Stmt::IndirectGotoStmtClass:
 | 
						|
    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
 | 
						|
 | 
						|
  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
 | 
						|
  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
 | 
						|
  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
 | 
						|
  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
 | 
						|
 | 
						|
  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
 | 
						|
 | 
						|
  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
 | 
						|
  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
 | 
						|
 | 
						|
  case Stmt::ObjCAtTryStmtClass:
 | 
						|
    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
 | 
						|
    break;
 | 
						|
  case Stmt::ObjCAtCatchStmtClass:
 | 
						|
    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
 | 
						|
    break;
 | 
						|
  case Stmt::ObjCAtFinallyStmtClass:
 | 
						|
    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
 | 
						|
    break;
 | 
						|
  case Stmt::ObjCAtThrowStmtClass:
 | 
						|
    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
 | 
						|
    break;
 | 
						|
  case Stmt::ObjCAtSynchronizedStmtClass:
 | 
						|
    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
 | 
						|
    break;
 | 
						|
  case Stmt::ObjCForCollectionStmtClass:
 | 
						|
    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case Stmt::CXXTryStmtClass:
 | 
						|
    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
  default: return false;
 | 
						|
  case Stmt::NullStmtClass: break;
 | 
						|
  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
 | 
						|
  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
 | 
						|
  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
 | 
						|
  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
 | 
						|
  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
 | 
						|
  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
 | 
						|
  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
 | 
						|
  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
 | 
						|
/// this captures the expression result of the last sub-statement and returns it
 | 
						|
/// (for use by the statement expression extension).
 | 
						|
RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
 | 
						|
                                         llvm::Value *AggLoc, bool isAggVol) {
 | 
						|
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
 | 
						|
                             "LLVM IR generation of compound statement ('{}')");
 | 
						|
 | 
						|
  CGDebugInfo *DI = getDebugInfo();
 | 
						|
  if (DI) {
 | 
						|
    DI->setLocation(S.getLBracLoc());
 | 
						|
    DI->EmitRegionStart(CurFn, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep track of the current cleanup stack depth.
 | 
						|
  CleanupScope Scope(*this);
 | 
						|
 | 
						|
  for (CompoundStmt::const_body_iterator I = S.body_begin(),
 | 
						|
       E = S.body_end()-GetLast; I != E; ++I)
 | 
						|
    EmitStmt(*I);
 | 
						|
 | 
						|
  if (DI) {
 | 
						|
    DI->setLocation(S.getLBracLoc());
 | 
						|
    DI->EmitRegionEnd(CurFn, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  RValue RV;
 | 
						|
  if (!GetLast)
 | 
						|
    RV = RValue::get(0);
 | 
						|
  else {
 | 
						|
    // We have to special case labels here.  They are statements, but when put
 | 
						|
    // at the end of a statement expression, they yield the value of their
 | 
						|
    // subexpression.  Handle this by walking through all labels we encounter,
 | 
						|
    // emitting them before we evaluate the subexpr.
 | 
						|
    const Stmt *LastStmt = S.body_back();
 | 
						|
    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
 | 
						|
      EmitLabel(*LS);
 | 
						|
      LastStmt = LS->getSubStmt();
 | 
						|
    }
 | 
						|
 | 
						|
    EnsureInsertPoint();
 | 
						|
 | 
						|
    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return RV;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
 | 
						|
  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
 | 
						|
 | 
						|
  // If there is a cleanup stack, then we it isn't worth trying to
 | 
						|
  // simplify this block (we would need to remove it from the scope map
 | 
						|
  // and cleanup entry).
 | 
						|
  if (!CleanupEntries.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Can only simplify direct branches.
 | 
						|
  if (!BI || !BI->isUnconditional())
 | 
						|
    return;
 | 
						|
 | 
						|
  BB->replaceAllUsesWith(BI->getSuccessor(0));
 | 
						|
  BI->eraseFromParent();
 | 
						|
  BB->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
 | 
						|
  // Fall out of the current block (if necessary).
 | 
						|
  EmitBranch(BB);
 | 
						|
 | 
						|
  if (IsFinished && BB->use_empty()) {
 | 
						|
    delete BB;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If necessary, associate the block with the cleanup stack size.
 | 
						|
  if (!CleanupEntries.empty()) {
 | 
						|
    // Check if the basic block has already been inserted.
 | 
						|
    BlockScopeMap::iterator I = BlockScopes.find(BB);
 | 
						|
    if (I != BlockScopes.end()) {
 | 
						|
      assert(I->second == CleanupEntries.size() - 1);
 | 
						|
    } else {
 | 
						|
      BlockScopes[BB] = CleanupEntries.size() - 1;
 | 
						|
      CleanupEntries.back().Blocks.push_back(BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CurFn->getBasicBlockList().push_back(BB);
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
 | 
						|
  // Emit a branch from the current block to the target one if this
 | 
						|
  // was a real block.  If this was just a fall-through block after a
 | 
						|
  // terminator, don't emit it.
 | 
						|
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  if (!CurBB || CurBB->getTerminator()) {
 | 
						|
    // If there is no insert point or the previous block is already
 | 
						|
    // terminated, don't touch it.
 | 
						|
  } else {
 | 
						|
    // Otherwise, create a fall-through branch.
 | 
						|
    Builder.CreateBr(Target);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitLabel(const LabelStmt &S) {
 | 
						|
  EmitBlock(getBasicBlockForLabel(&S));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
 | 
						|
  EmitLabel(S);
 | 
						|
  EmitStmt(S.getSubStmt());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
 | 
						|
  // If this code is reachable then emit a stop point (if generating
 | 
						|
  // debug info). We have to do this ourselves because we are on the
 | 
						|
  // "simple" statement path.
 | 
						|
  if (HaveInsertPoint())
 | 
						|
    EmitStopPoint(&S);
 | 
						|
 | 
						|
  EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
 | 
						|
  // Ensure that we have an i8* for our PHI node.
 | 
						|
  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
 | 
						|
                                         llvm::Type::getInt8PtrTy(VMContext),
 | 
						|
                                          "addr");
 | 
						|
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
 | 
						|
  // Get the basic block for the indirect goto.
 | 
						|
  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
 | 
						|
  
 | 
						|
  // The first instruction in the block has to be the PHI for the switch dest,
 | 
						|
  // add an entry for this branch.
 | 
						|
  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
 | 
						|
  
 | 
						|
  EmitBranch(IndGotoBB);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
 | 
						|
  // C99 6.8.4.1: The first substatement is executed if the expression compares
 | 
						|
  // unequal to 0.  The condition must be a scalar type.
 | 
						|
  CleanupScope ConditionScope(*this);
 | 
						|
 | 
						|
  if (S.getConditionVariable())
 | 
						|
    EmitLocalBlockVarDecl(*S.getConditionVariable());
 | 
						|
 | 
						|
  // If the condition constant folds and can be elided, try to avoid emitting
 | 
						|
  // the condition and the dead arm of the if/else.
 | 
						|
  if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
 | 
						|
    // Figure out which block (then or else) is executed.
 | 
						|
    const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
 | 
						|
    if (Cond == -1)  // Condition false?
 | 
						|
      std::swap(Executed, Skipped);
 | 
						|
 | 
						|
    // If the skipped block has no labels in it, just emit the executed block.
 | 
						|
    // This avoids emitting dead code and simplifies the CFG substantially.
 | 
						|
    if (!ContainsLabel(Skipped)) {
 | 
						|
      if (Executed) {
 | 
						|
        CleanupScope ExecutedScope(*this);
 | 
						|
        EmitStmt(Executed);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
 | 
						|
  // the conditional branch.
 | 
						|
  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
 | 
						|
  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
 | 
						|
  llvm::BasicBlock *ElseBlock = ContBlock;
 | 
						|
  if (S.getElse())
 | 
						|
    ElseBlock = createBasicBlock("if.else");
 | 
						|
  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
 | 
						|
 | 
						|
  // Emit the 'then' code.
 | 
						|
  EmitBlock(ThenBlock); 
 | 
						|
  {
 | 
						|
    CleanupScope ThenScope(*this);
 | 
						|
    EmitStmt(S.getThen());
 | 
						|
  }
 | 
						|
  EmitBranch(ContBlock);
 | 
						|
 | 
						|
  // Emit the 'else' code if present.
 | 
						|
  if (const Stmt *Else = S.getElse()) {
 | 
						|
    EmitBlock(ElseBlock);
 | 
						|
    {
 | 
						|
      CleanupScope ElseScope(*this);
 | 
						|
      EmitStmt(Else);
 | 
						|
    }
 | 
						|
    EmitBranch(ContBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the continuation block for code after the if.
 | 
						|
  EmitBlock(ContBlock, true);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
 | 
						|
  // Emit the header for the loop, insert it, which will create an uncond br to
 | 
						|
  // it.
 | 
						|
  llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
 | 
						|
  EmitBlock(LoopHeader);
 | 
						|
 | 
						|
  // Create an exit block for when the condition fails, create a block for the
 | 
						|
  // body of the loop.
 | 
						|
  llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
 | 
						|
  llvm::BasicBlock *LoopBody  = createBasicBlock("while.body");
 | 
						|
  llvm::BasicBlock *CleanupBlock = 0;
 | 
						|
  llvm::BasicBlock *EffectiveExitBlock = ExitBlock;
 | 
						|
 | 
						|
  // Store the blocks to use for break and continue.
 | 
						|
  BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
 | 
						|
 | 
						|
  // C++ [stmt.while]p2:
 | 
						|
  //   When the condition of a while statement is a declaration, the
 | 
						|
  //   scope of the variable that is declared extends from its point
 | 
						|
  //   of declaration (3.3.2) to the end of the while statement.
 | 
						|
  //   [...]
 | 
						|
  //   The object created in a condition is destroyed and created
 | 
						|
  //   with each iteration of the loop.
 | 
						|
  CleanupScope ConditionScope(*this);
 | 
						|
 | 
						|
  if (S.getConditionVariable()) {
 | 
						|
    EmitLocalBlockVarDecl(*S.getConditionVariable());
 | 
						|
 | 
						|
    // If this condition variable requires cleanups, create a basic
 | 
						|
    // block to handle those cleanups.
 | 
						|
    if (ConditionScope.requiresCleanups()) {
 | 
						|
      CleanupBlock = createBasicBlock("while.cleanup");
 | 
						|
      EffectiveExitBlock = CleanupBlock;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
 | 
						|
  // evaluation of the controlling expression takes place before each
 | 
						|
  // execution of the loop body.
 | 
						|
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | 
						|
   
 | 
						|
  // while(1) is common, avoid extra exit blocks.  Be sure
 | 
						|
  // to correctly handle break/continue though.
 | 
						|
  bool EmitBoolCondBranch = true;
 | 
						|
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | 
						|
    if (C->isOne())
 | 
						|
      EmitBoolCondBranch = false;
 | 
						|
 | 
						|
  // As long as the condition is true, go to the loop body.
 | 
						|
  if (EmitBoolCondBranch)
 | 
						|
    Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock);
 | 
						|
 
 | 
						|
  // Emit the loop body.
 | 
						|
  {
 | 
						|
    CleanupScope BodyScope(*this);
 | 
						|
    EmitBlock(LoopBody);
 | 
						|
    EmitStmt(S.getBody());
 | 
						|
  }
 | 
						|
 | 
						|
  BreakContinueStack.pop_back();
 | 
						|
 | 
						|
  if (CleanupBlock) {
 | 
						|
    // If we have a cleanup block, jump there to perform cleanups
 | 
						|
    // before looping.
 | 
						|
    EmitBranch(CleanupBlock);
 | 
						|
 | 
						|
    // Emit the cleanup block, performing cleanups for the condition
 | 
						|
    // and then jumping to either the loop header or the exit block.
 | 
						|
    EmitBlock(CleanupBlock);
 | 
						|
    ConditionScope.ForceCleanup();
 | 
						|
    Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock);
 | 
						|
  } else {
 | 
						|
    // Cycle to the condition.
 | 
						|
    EmitBranch(LoopHeader);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the exit block.
 | 
						|
  EmitBlock(ExitBlock, true);
 | 
						|
 | 
						|
 | 
						|
  // The LoopHeader typically is just a branch if we skipped emitting
 | 
						|
  // a branch, try to erase it.
 | 
						|
  if (!EmitBoolCondBranch && !CleanupBlock)
 | 
						|
    SimplifyForwardingBlocks(LoopHeader);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
 | 
						|
  // Emit the body for the loop, insert it, which will create an uncond br to
 | 
						|
  // it.
 | 
						|
  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
 | 
						|
  llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
 | 
						|
  EmitBlock(LoopBody);
 | 
						|
 | 
						|
  llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
 | 
						|
 | 
						|
  // Store the blocks to use for break and continue.
 | 
						|
  BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
 | 
						|
 | 
						|
  // Emit the body of the loop into the block.
 | 
						|
  EmitStmt(S.getBody());
 | 
						|
 | 
						|
  BreakContinueStack.pop_back();
 | 
						|
 | 
						|
  EmitBlock(DoCond);
 | 
						|
 | 
						|
  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
 | 
						|
  // after each execution of the loop body."
 | 
						|
 | 
						|
  // Evaluate the conditional in the while header.
 | 
						|
  // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | 
						|
  // compares unequal to 0.  The condition must be a scalar type.
 | 
						|
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | 
						|
 | 
						|
  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
 | 
						|
  // to correctly handle break/continue though.
 | 
						|
  bool EmitBoolCondBranch = true;
 | 
						|
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | 
						|
    if (C->isZero())
 | 
						|
      EmitBoolCondBranch = false;
 | 
						|
 | 
						|
  // As long as the condition is true, iterate the loop.
 | 
						|
  if (EmitBoolCondBranch)
 | 
						|
    Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
 | 
						|
 | 
						|
  // Emit the exit block.
 | 
						|
  EmitBlock(AfterDo);
 | 
						|
 | 
						|
  // The DoCond block typically is just a branch if we skipped
 | 
						|
  // emitting a branch, try to erase it.
 | 
						|
  if (!EmitBoolCondBranch)
 | 
						|
    SimplifyForwardingBlocks(DoCond);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitForStmt(const ForStmt &S) {
 | 
						|
  // FIXME: What do we do if the increment (f.e.) contains a stmt expression,
 | 
						|
  // which contains a continue/break?
 | 
						|
  CleanupScope ForScope(*this);
 | 
						|
 | 
						|
  // Evaluate the first part before the loop.
 | 
						|
  if (S.getInit())
 | 
						|
    EmitStmt(S.getInit());
 | 
						|
 | 
						|
  // Start the loop with a block that tests the condition.
 | 
						|
  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
 | 
						|
  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
 | 
						|
  llvm::BasicBlock *IncBlock = 0;
 | 
						|
  llvm::BasicBlock *CondCleanup = 0;
 | 
						|
  llvm::BasicBlock *EffectiveExitBlock = AfterFor;
 | 
						|
  EmitBlock(CondBlock);
 | 
						|
 | 
						|
  // Create a cleanup scope for the condition variable cleanups.
 | 
						|
  CleanupScope ConditionScope(*this);
 | 
						|
  
 | 
						|
  llvm::Value *BoolCondVal = 0;
 | 
						|
  if (S.getCond()) {
 | 
						|
    // If the for statement has a condition scope, emit the local variable
 | 
						|
    // declaration.
 | 
						|
    if (S.getConditionVariable()) {
 | 
						|
      EmitLocalBlockVarDecl(*S.getConditionVariable());
 | 
						|
      
 | 
						|
      if (ConditionScope.requiresCleanups()) {
 | 
						|
        CondCleanup = createBasicBlock("for.cond.cleanup");
 | 
						|
        EffectiveExitBlock = CondCleanup;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // As long as the condition is true, iterate the loop.
 | 
						|
    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
 | 
						|
 | 
						|
    // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | 
						|
    // compares unequal to 0.  The condition must be a scalar type.
 | 
						|
    BoolCondVal = EvaluateExprAsBool(S.getCond());
 | 
						|
    Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock);
 | 
						|
 | 
						|
    EmitBlock(ForBody);
 | 
						|
  } else {
 | 
						|
    // Treat it as a non-zero constant.  Don't even create a new block for the
 | 
						|
    // body, just fall into it.
 | 
						|
  }
 | 
						|
 | 
						|
  // If the for loop doesn't have an increment we can just use the
 | 
						|
  // condition as the continue block.
 | 
						|
  llvm::BasicBlock *ContinueBlock;
 | 
						|
  if (S.getInc())
 | 
						|
    ContinueBlock = IncBlock = createBasicBlock("for.inc");
 | 
						|
  else
 | 
						|
    ContinueBlock = CondBlock;
 | 
						|
 | 
						|
  // Store the blocks to use for break and continue.
 | 
						|
  BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
 | 
						|
 | 
						|
  // If the condition is true, execute the body of the for stmt.
 | 
						|
  CGDebugInfo *DI = getDebugInfo();
 | 
						|
  if (DI) {
 | 
						|
    DI->setLocation(S.getSourceRange().getBegin());
 | 
						|
    DI->EmitRegionStart(CurFn, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    // Create a separate cleanup scope for the body, in case it is not
 | 
						|
    // a compound statement.
 | 
						|
    CleanupScope BodyScope(*this);
 | 
						|
    EmitStmt(S.getBody());
 | 
						|
  }
 | 
						|
 | 
						|
  BreakContinueStack.pop_back();
 | 
						|
 | 
						|
  // If there is an increment, emit it next.
 | 
						|
  if (S.getInc()) {
 | 
						|
    EmitBlock(IncBlock);
 | 
						|
    EmitStmt(S.getInc());
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, branch back up to the condition for the next iteration.
 | 
						|
  if (CondCleanup) {
 | 
						|
    // Branch to the cleanup block.
 | 
						|
    EmitBranch(CondCleanup);
 | 
						|
 | 
						|
    // Emit the cleanup block, which branches back to the loop body or
 | 
						|
    // outside of the for statement once it is done.
 | 
						|
    EmitBlock(CondCleanup);
 | 
						|
    ConditionScope.ForceCleanup();
 | 
						|
    Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor);
 | 
						|
  } else
 | 
						|
    EmitBranch(CondBlock);
 | 
						|
  if (DI) {
 | 
						|
    DI->setLocation(S.getSourceRange().getEnd());
 | 
						|
    DI->EmitRegionEnd(CurFn, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the fall-through block.
 | 
						|
  EmitBlock(AfterFor, true);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
 | 
						|
  if (RV.isScalar()) {
 | 
						|
    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
 | 
						|
  } else if (RV.isAggregate()) {
 | 
						|
    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
 | 
						|
  } else {
 | 
						|
    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
 | 
						|
  }
 | 
						|
  EmitBranchThroughCleanup(ReturnBlock);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
 | 
						|
/// if the function returns void, or may be missing one if the function returns
 | 
						|
/// non-void.  Fun stuff :).
 | 
						|
void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
 | 
						|
  // Emit the result value, even if unused, to evalute the side effects.
 | 
						|
  const Expr *RV = S.getRetValue();
 | 
						|
 | 
						|
  // FIXME: Clean this up by using an LValue for ReturnTemp,
 | 
						|
  // EmitStoreThroughLValue, and EmitAnyExpr.
 | 
						|
  if (!ReturnValue) {
 | 
						|
    // Make sure not to return anything, but evaluate the expression
 | 
						|
    // for side effects.
 | 
						|
    if (RV)
 | 
						|
      EmitAnyExpr(RV);
 | 
						|
  } else if (RV == 0) {
 | 
						|
    // Do nothing (return value is left uninitialized)
 | 
						|
  } else if (FnRetTy->isReferenceType()) {
 | 
						|
    // If this function returns a reference, take the address of the expression
 | 
						|
    // rather than the value.
 | 
						|
    Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue);
 | 
						|
  } else if (!hasAggregateLLVMType(RV->getType())) {
 | 
						|
    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
 | 
						|
  } else if (RV->getType()->isAnyComplexType()) {
 | 
						|
    EmitComplexExprIntoAddr(RV, ReturnValue, false);
 | 
						|
  } else {
 | 
						|
    EmitAggExpr(RV, ReturnValue, false);
 | 
						|
  }
 | 
						|
 | 
						|
  EmitBranchThroughCleanup(ReturnBlock);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
 | 
						|
  // As long as debug info is modeled with instructions, we have to ensure we
 | 
						|
  // have a place to insert here and write the stop point here.
 | 
						|
  if (getDebugInfo()) {
 | 
						|
    EnsureInsertPoint();
 | 
						|
    EmitStopPoint(&S);
 | 
						|
  }
 | 
						|
 | 
						|
  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
 | 
						|
       I != E; ++I)
 | 
						|
    EmitDecl(**I);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
 | 
						|
  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
 | 
						|
 | 
						|
  // If this code is reachable then emit a stop point (if generating
 | 
						|
  // debug info). We have to do this ourselves because we are on the
 | 
						|
  // "simple" statement path.
 | 
						|
  if (HaveInsertPoint())
 | 
						|
    EmitStopPoint(&S);
 | 
						|
 | 
						|
  llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
 | 
						|
  EmitBranchThroughCleanup(Block);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
 | 
						|
  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
 | 
						|
 | 
						|
  // If this code is reachable then emit a stop point (if generating
 | 
						|
  // debug info). We have to do this ourselves because we are on the
 | 
						|
  // "simple" statement path.
 | 
						|
  if (HaveInsertPoint())
 | 
						|
    EmitStopPoint(&S);
 | 
						|
 | 
						|
  llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
 | 
						|
  EmitBranchThroughCleanup(Block);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitCaseStmtRange - If case statement range is not too big then
 | 
						|
/// add multiple cases to switch instruction, one for each value within
 | 
						|
/// the range. If range is too big then emit "if" condition check.
 | 
						|
void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
 | 
						|
  assert(S.getRHS() && "Expected RHS value in CaseStmt");
 | 
						|
 | 
						|
  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
 | 
						|
  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
 | 
						|
 | 
						|
  // Emit the code for this case. We do this first to make sure it is
 | 
						|
  // properly chained from our predecessor before generating the
 | 
						|
  // switch machinery to enter this block.
 | 
						|
  EmitBlock(createBasicBlock("sw.bb"));
 | 
						|
  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
 | 
						|
  EmitStmt(S.getSubStmt());
 | 
						|
 | 
						|
  // If range is empty, do nothing.
 | 
						|
  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::APInt Range = RHS - LHS;
 | 
						|
  // FIXME: parameters such as this should not be hardcoded.
 | 
						|
  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
 | 
						|
    // Range is small enough to add multiple switch instruction cases.
 | 
						|
    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
 | 
						|
      SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
 | 
						|
      LHS++;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The range is too big. Emit "if" condition into a new block,
 | 
						|
  // making sure to save and restore the current insertion point.
 | 
						|
  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  // Push this test onto the chain of range checks (which terminates
 | 
						|
  // in the default basic block). The switch's default will be changed
 | 
						|
  // to the top of this chain after switch emission is complete.
 | 
						|
  llvm::BasicBlock *FalseDest = CaseRangeBlock;
 | 
						|
  CaseRangeBlock = createBasicBlock("sw.caserange");
 | 
						|
 | 
						|
  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
 | 
						|
  Builder.SetInsertPoint(CaseRangeBlock);
 | 
						|
 | 
						|
  // Emit range check.
 | 
						|
  llvm::Value *Diff =
 | 
						|
    Builder.CreateSub(SwitchInsn->getCondition(),
 | 
						|
                      llvm::ConstantInt::get(VMContext, LHS),  "tmp");
 | 
						|
  llvm::Value *Cond =
 | 
						|
    Builder.CreateICmpULE(Diff,
 | 
						|
                          llvm::ConstantInt::get(VMContext, Range), "tmp");
 | 
						|
  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
 | 
						|
 | 
						|
  // Restore the appropriate insertion point.
 | 
						|
  if (RestoreBB)
 | 
						|
    Builder.SetInsertPoint(RestoreBB);
 | 
						|
  else
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
 | 
						|
  if (S.getRHS()) {
 | 
						|
    EmitCaseStmtRange(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitBlock(createBasicBlock("sw.bb"));
 | 
						|
  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
 | 
						|
  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
 | 
						|
  SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
 | 
						|
 | 
						|
  // Recursively emitting the statement is acceptable, but is not wonderful for
 | 
						|
  // code where we have many case statements nested together, i.e.:
 | 
						|
  //  case 1:
 | 
						|
  //    case 2:
 | 
						|
  //      case 3: etc.
 | 
						|
  // Handling this recursively will create a new block for each case statement
 | 
						|
  // that falls through to the next case which is IR intensive.  It also causes
 | 
						|
  // deep recursion which can run into stack depth limitations.  Handle
 | 
						|
  // sequential non-range case statements specially.
 | 
						|
  const CaseStmt *CurCase = &S;
 | 
						|
  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
 | 
						|
 | 
						|
  // Otherwise, iteratively add consequtive cases to this switch stmt.
 | 
						|
  while (NextCase && NextCase->getRHS() == 0) {
 | 
						|
    CurCase = NextCase;
 | 
						|
    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
 | 
						|
    SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
 | 
						|
 | 
						|
    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
 | 
						|
  }
 | 
						|
 | 
						|
  // Normal default recursion for non-cases.
 | 
						|
  EmitStmt(CurCase->getSubStmt());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
 | 
						|
  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
 | 
						|
  assert(DefaultBlock->empty() &&
 | 
						|
         "EmitDefaultStmt: Default block already defined?");
 | 
						|
  EmitBlock(DefaultBlock);
 | 
						|
  EmitStmt(S.getSubStmt());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
 | 
						|
  CleanupScope ConditionScope(*this);
 | 
						|
 | 
						|
  if (S.getConditionVariable())
 | 
						|
    EmitLocalBlockVarDecl(*S.getConditionVariable());
 | 
						|
 | 
						|
  llvm::Value *CondV = EmitScalarExpr(S.getCond());
 | 
						|
 | 
						|
  // Handle nested switch statements.
 | 
						|
  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
 | 
						|
  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
 | 
						|
 | 
						|
  // Create basic block to hold stuff that comes after switch
 | 
						|
  // statement. We also need to create a default block now so that
 | 
						|
  // explicit case ranges tests can have a place to jump to on
 | 
						|
  // failure.
 | 
						|
  llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
 | 
						|
  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
 | 
						|
  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
 | 
						|
  CaseRangeBlock = DefaultBlock;
 | 
						|
 | 
						|
  // Clear the insertion point to indicate we are in unreachable code.
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
 | 
						|
  // All break statements jump to NextBlock. If BreakContinueStack is non empty
 | 
						|
  // then reuse last ContinueBlock.
 | 
						|
  llvm::BasicBlock *ContinueBlock = 0;
 | 
						|
  if (!BreakContinueStack.empty())
 | 
						|
    ContinueBlock = BreakContinueStack.back().ContinueBlock;
 | 
						|
 | 
						|
  // Ensure any vlas created between there and here, are undone
 | 
						|
  BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
 | 
						|
 | 
						|
  // Emit switch body.
 | 
						|
  EmitStmt(S.getBody());
 | 
						|
 | 
						|
  BreakContinueStack.pop_back();
 | 
						|
 | 
						|
  // Update the default block in case explicit case range tests have
 | 
						|
  // been chained on top.
 | 
						|
  SwitchInsn->setSuccessor(0, CaseRangeBlock);
 | 
						|
 | 
						|
  // If a default was never emitted then reroute any jumps to it and
 | 
						|
  // discard.
 | 
						|
  if (!DefaultBlock->getParent()) {
 | 
						|
    DefaultBlock->replaceAllUsesWith(NextBlock);
 | 
						|
    delete DefaultBlock;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit continuation.
 | 
						|
  EmitBlock(NextBlock, true);
 | 
						|
 | 
						|
  SwitchInsn = SavedSwitchInsn;
 | 
						|
  CaseRangeBlock = SavedCRBlock;
 | 
						|
}
 | 
						|
 | 
						|
static std::string
 | 
						|
SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
 | 
						|
                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
 | 
						|
  std::string Result;
 | 
						|
 | 
						|
  while (*Constraint) {
 | 
						|
    switch (*Constraint) {
 | 
						|
    default:
 | 
						|
      Result += Target.convertConstraint(*Constraint);
 | 
						|
      break;
 | 
						|
    // Ignore these
 | 
						|
    case '*':
 | 
						|
    case '?':
 | 
						|
    case '!':
 | 
						|
      break;
 | 
						|
    case 'g':
 | 
						|
      Result += "imr";
 | 
						|
      break;
 | 
						|
    case '[': {
 | 
						|
      assert(OutCons &&
 | 
						|
             "Must pass output names to constraints with a symbolic name");
 | 
						|
      unsigned Index;
 | 
						|
      bool result = Target.resolveSymbolicName(Constraint,
 | 
						|
                                               &(*OutCons)[0],
 | 
						|
                                               OutCons->size(), Index);
 | 
						|
      assert(result && "Could not resolve symbolic name"); result=result;
 | 
						|
      Result += llvm::utostr(Index);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    Constraint++;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
 | 
						|
                                         const TargetInfo::ConstraintInfo &Info,
 | 
						|
                                           const Expr *InputExpr,
 | 
						|
                                           std::string &ConstraintStr) {
 | 
						|
  llvm::Value *Arg;
 | 
						|
  if (Info.allowsRegister() || !Info.allowsMemory()) {
 | 
						|
    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) {
 | 
						|
      Arg = EmitScalarExpr(InputExpr);
 | 
						|
    } else {
 | 
						|
      InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
 | 
						|
      LValue Dest = EmitLValue(InputExpr);
 | 
						|
 | 
						|
      const llvm::Type *Ty = ConvertType(InputExpr->getType());
 | 
						|
      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
 | 
						|
      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
 | 
						|
        Ty = llvm::IntegerType::get(VMContext, Size);
 | 
						|
        Ty = llvm::PointerType::getUnqual(Ty);
 | 
						|
 | 
						|
        Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
 | 
						|
      } else {
 | 
						|
        Arg = Dest.getAddress();
 | 
						|
        ConstraintStr += '*';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
 | 
						|
    LValue Dest = EmitLValue(InputExpr);
 | 
						|
    Arg = Dest.getAddress();
 | 
						|
    ConstraintStr += '*';
 | 
						|
  }
 | 
						|
 | 
						|
  return Arg;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
 | 
						|
  // Analyze the asm string to decompose it into its pieces.  We know that Sema
 | 
						|
  // has already done this, so it is guaranteed to be successful.
 | 
						|
  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
 | 
						|
  unsigned DiagOffs;
 | 
						|
  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
 | 
						|
 | 
						|
  // Assemble the pieces into the final asm string.
 | 
						|
  std::string AsmString;
 | 
						|
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
 | 
						|
    if (Pieces[i].isString())
 | 
						|
      AsmString += Pieces[i].getString();
 | 
						|
    else if (Pieces[i].getModifier() == '\0')
 | 
						|
      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
 | 
						|
    else
 | 
						|
      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
 | 
						|
                   Pieces[i].getModifier() + '}';
 | 
						|
  }
 | 
						|
 | 
						|
  // Get all the output and input constraints together.
 | 
						|
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | 
						|
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | 
						|
    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
 | 
						|
                                    S.getOutputName(i));
 | 
						|
    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
 | 
						|
    assert(IsValid && "Failed to parse output constraint"); 
 | 
						|
    OutputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | 
						|
    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
 | 
						|
                                    S.getInputName(i));
 | 
						|
    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
 | 
						|
                                                  S.getNumOutputs(), Info);
 | 
						|
    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
 | 
						|
    InputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  std::string Constraints;
 | 
						|
 | 
						|
  std::vector<LValue> ResultRegDests;
 | 
						|
  std::vector<QualType> ResultRegQualTys;
 | 
						|
  std::vector<const llvm::Type *> ResultRegTypes;
 | 
						|
  std::vector<const llvm::Type *> ResultTruncRegTypes;
 | 
						|
  std::vector<const llvm::Type*> ArgTypes;
 | 
						|
  std::vector<llvm::Value*> Args;
 | 
						|
 | 
						|
  // Keep track of inout constraints.
 | 
						|
  std::string InOutConstraints;
 | 
						|
  std::vector<llvm::Value*> InOutArgs;
 | 
						|
  std::vector<const llvm::Type*> InOutArgTypes;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | 
						|
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
 | 
						|
 | 
						|
    // Simplify the output constraint.
 | 
						|
    std::string OutputConstraint(S.getOutputConstraint(i));
 | 
						|
    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
 | 
						|
 | 
						|
    const Expr *OutExpr = S.getOutputExpr(i);
 | 
						|
    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
 | 
						|
 | 
						|
    LValue Dest = EmitLValue(OutExpr);
 | 
						|
    if (!Constraints.empty())
 | 
						|
      Constraints += ',';
 | 
						|
 | 
						|
    // If this is a register output, then make the inline asm return it
 | 
						|
    // by-value.  If this is a memory result, return the value by-reference.
 | 
						|
    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
 | 
						|
      Constraints += "=" + OutputConstraint;
 | 
						|
      ResultRegQualTys.push_back(OutExpr->getType());
 | 
						|
      ResultRegDests.push_back(Dest);
 | 
						|
      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
 | 
						|
      ResultTruncRegTypes.push_back(ResultRegTypes.back());
 | 
						|
 | 
						|
      // If this output is tied to an input, and if the input is larger, then
 | 
						|
      // we need to set the actual result type of the inline asm node to be the
 | 
						|
      // same as the input type.
 | 
						|
      if (Info.hasMatchingInput()) {
 | 
						|
        unsigned InputNo;
 | 
						|
        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
 | 
						|
          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
 | 
						|
          if (Input.hasTiedOperand() &&
 | 
						|
              Input.getTiedOperand() == i)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
 | 
						|
 | 
						|
        QualType InputTy = S.getInputExpr(InputNo)->getType();
 | 
						|
        QualType OutputTy = OutExpr->getType();
 | 
						|
 | 
						|
        uint64_t InputSize = getContext().getTypeSize(InputTy);
 | 
						|
        if (getContext().getTypeSize(OutputTy) < InputSize) {
 | 
						|
          // Form the asm to return the value as a larger integer type.
 | 
						|
          ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ArgTypes.push_back(Dest.getAddress()->getType());
 | 
						|
      Args.push_back(Dest.getAddress());
 | 
						|
      Constraints += "=*";
 | 
						|
      Constraints += OutputConstraint;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Info.isReadWrite()) {
 | 
						|
      InOutConstraints += ',';
 | 
						|
 | 
						|
      const Expr *InputExpr = S.getOutputExpr(i);
 | 
						|
      llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
 | 
						|
 | 
						|
      if (Info.allowsRegister())
 | 
						|
        InOutConstraints += llvm::utostr(i);
 | 
						|
      else
 | 
						|
        InOutConstraints += OutputConstraint;
 | 
						|
 | 
						|
      InOutArgTypes.push_back(Arg->getType());
 | 
						|
      InOutArgs.push_back(Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | 
						|
    const Expr *InputExpr = S.getInputExpr(i);
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | 
						|
 | 
						|
    if (!Constraints.empty())
 | 
						|
      Constraints += ',';
 | 
						|
 | 
						|
    // Simplify the input constraint.
 | 
						|
    std::string InputConstraint(S.getInputConstraint(i));
 | 
						|
    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
 | 
						|
                                         &OutputConstraintInfos);
 | 
						|
 | 
						|
    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
 | 
						|
 | 
						|
    // If this input argument is tied to a larger output result, extend the
 | 
						|
    // input to be the same size as the output.  The LLVM backend wants to see
 | 
						|
    // the input and output of a matching constraint be the same size.  Note
 | 
						|
    // that GCC does not define what the top bits are here.  We use zext because
 | 
						|
    // that is usually cheaper, but LLVM IR should really get an anyext someday.
 | 
						|
    if (Info.hasTiedOperand()) {
 | 
						|
      unsigned Output = Info.getTiedOperand();
 | 
						|
      QualType OutputTy = S.getOutputExpr(Output)->getType();
 | 
						|
      QualType InputTy = InputExpr->getType();
 | 
						|
 | 
						|
      if (getContext().getTypeSize(OutputTy) >
 | 
						|
          getContext().getTypeSize(InputTy)) {
 | 
						|
        // Use ptrtoint as appropriate so that we can do our extension.
 | 
						|
        if (isa<llvm::PointerType>(Arg->getType()))
 | 
						|
          Arg = Builder.CreatePtrToInt(Arg,
 | 
						|
                                      llvm::IntegerType::get(VMContext, LLVMPointerWidth));
 | 
						|
        unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy);
 | 
						|
        Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    ArgTypes.push_back(Arg->getType());
 | 
						|
    Args.push_back(Arg);
 | 
						|
    Constraints += InputConstraint;
 | 
						|
  }
 | 
						|
 | 
						|
  // Append the "input" part of inout constraints last.
 | 
						|
  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
 | 
						|
    ArgTypes.push_back(InOutArgTypes[i]);
 | 
						|
    Args.push_back(InOutArgs[i]);
 | 
						|
  }
 | 
						|
  Constraints += InOutConstraints;
 | 
						|
 | 
						|
  // Clobbers
 | 
						|
  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
 | 
						|
    llvm::StringRef Clobber = S.getClobber(i)->getString();
 | 
						|
 | 
						|
    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
 | 
						|
 | 
						|
    if (i != 0 || NumConstraints != 0)
 | 
						|
      Constraints += ',';
 | 
						|
 | 
						|
    Constraints += "~{";
 | 
						|
    Constraints += Clobber;
 | 
						|
    Constraints += '}';
 | 
						|
  }
 | 
						|
 | 
						|
  // Add machine specific clobbers
 | 
						|
  std::string MachineClobbers = Target.getClobbers();
 | 
						|
  if (!MachineClobbers.empty()) {
 | 
						|
    if (!Constraints.empty())
 | 
						|
      Constraints += ',';
 | 
						|
    Constraints += MachineClobbers;
 | 
						|
  }
 | 
						|
 | 
						|
  const llvm::Type *ResultType;
 | 
						|
  if (ResultRegTypes.empty())
 | 
						|
    ResultType = llvm::Type::getVoidTy(VMContext);
 | 
						|
  else if (ResultRegTypes.size() == 1)
 | 
						|
    ResultType = ResultRegTypes[0];
 | 
						|
  else
 | 
						|
    ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
 | 
						|
 | 
						|
  const llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(ResultType, ArgTypes, false);
 | 
						|
 | 
						|
  llvm::InlineAsm *IA =
 | 
						|
    llvm::InlineAsm::get(FTy, AsmString, Constraints,
 | 
						|
                         S.isVolatile() || S.getNumOutputs() == 0);
 | 
						|
  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
 | 
						|
  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
 | 
						|
 | 
						|
 | 
						|
  // Extract all of the register value results from the asm.
 | 
						|
  std::vector<llvm::Value*> RegResults;
 | 
						|
  if (ResultRegTypes.size() == 1) {
 | 
						|
    RegResults.push_back(Result);
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
 | 
						|
      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
 | 
						|
      RegResults.push_back(Tmp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
 | 
						|
    llvm::Value *Tmp = RegResults[i];
 | 
						|
 | 
						|
    // If the result type of the LLVM IR asm doesn't match the result type of
 | 
						|
    // the expression, do the conversion.
 | 
						|
    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
 | 
						|
      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
 | 
						|
      // Truncate the integer result to the right size, note that
 | 
						|
      // ResultTruncRegTypes can be a pointer.
 | 
						|
      uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
 | 
						|
      Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize));
 | 
						|
 | 
						|
      if (Tmp->getType() != TruncTy) {
 | 
						|
        assert(isa<llvm::PointerType>(TruncTy));
 | 
						|
        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
 | 
						|
                           ResultRegQualTys[i]);
 | 
						|
  }
 | 
						|
}
 |