1578 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1578 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the pass that transforms the ARM machine instructions into
 | 
						|
// relocatable machine code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jit"
 | 
						|
#include "ARM.h"
 | 
						|
#include "ARMAddressingModes.h"
 | 
						|
#include "ARMConstantPoolValue.h"
 | 
						|
#include "ARMInstrInfo.h"
 | 
						|
#include "ARMRelocations.h"
 | 
						|
#include "ARMSubtarget.h"
 | 
						|
#include "ARMTargetMachine.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/CodeGen/JITCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#ifndef NDEBUG
 | 
						|
#include <iomanip>
 | 
						|
#endif
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class ARMCodeEmitter : public MachineFunctionPass {
 | 
						|
    ARMJITInfo                *JTI;
 | 
						|
    const ARMInstrInfo        *II;
 | 
						|
    const TargetData          *TD;
 | 
						|
    const ARMSubtarget        *Subtarget;
 | 
						|
    TargetMachine             &TM;
 | 
						|
    JITCodeEmitter            &MCE;
 | 
						|
    MachineModuleInfo *MMI;
 | 
						|
    const std::vector<MachineConstantPoolEntry> *MCPEs;
 | 
						|
    const std::vector<MachineJumpTableEntry> *MJTEs;
 | 
						|
    bool IsPIC;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<MachineModuleInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    static char ID;
 | 
						|
  public:
 | 
						|
    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
 | 
						|
      : MachineFunctionPass(&ID), JTI(0),
 | 
						|
        II((const ARMInstrInfo *)tm.getInstrInfo()),
 | 
						|
        TD(tm.getTargetData()), TM(tm),
 | 
						|
    MCE(mce), MCPEs(0), MJTEs(0),
 | 
						|
    IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
 | 
						|
 | 
						|
    /// getBinaryCodeForInstr - This function, generated by the
 | 
						|
    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
 | 
						|
    /// machine instructions.
 | 
						|
    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "ARM Machine Code Emitter";
 | 
						|
    }
 | 
						|
 | 
						|
    void emitInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    void emitWordLE(unsigned Binary);
 | 
						|
    void emitDWordLE(uint64_t Binary);
 | 
						|
    void emitConstPoolInstruction(const MachineInstr &MI);
 | 
						|
    void emitMOVi32immInstruction(const MachineInstr &MI);
 | 
						|
    void emitMOVi2piecesInstruction(const MachineInstr &MI);
 | 
						|
    void emitLEApcrelJTInstruction(const MachineInstr &MI);
 | 
						|
    void emitPseudoMoveInstruction(const MachineInstr &MI);
 | 
						|
    void addPCLabel(unsigned LabelID);
 | 
						|
    void emitPseudoInstruction(const MachineInstr &MI);
 | 
						|
    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
 | 
						|
                                    const TargetInstrDesc &TID,
 | 
						|
                                    const MachineOperand &MO,
 | 
						|
                                    unsigned OpIdx);
 | 
						|
 | 
						|
    unsigned getMachineSoImmOpValue(unsigned SoImm);
 | 
						|
 | 
						|
    unsigned getAddrModeSBit(const MachineInstr &MI,
 | 
						|
                             const TargetInstrDesc &TID) const;
 | 
						|
 | 
						|
    void emitDataProcessingInstruction(const MachineInstr &MI,
 | 
						|
                                       unsigned ImplicitRd = 0,
 | 
						|
                                       unsigned ImplicitRn = 0);
 | 
						|
 | 
						|
    void emitLoadStoreInstruction(const MachineInstr &MI,
 | 
						|
                                  unsigned ImplicitRd = 0,
 | 
						|
                                  unsigned ImplicitRn = 0);
 | 
						|
 | 
						|
    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
 | 
						|
                                      unsigned ImplicitRn = 0);
 | 
						|
 | 
						|
    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitMulFrmInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitExtendInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitMiscArithInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitBranchInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitInlineJumpTable(unsigned JTIndex);
 | 
						|
 | 
						|
    void emitMiscBranchInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitVFPArithInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitVFPConversionInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitMiscInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
    void emitNEON1RegModImm(const MachineInstr &MI);
 | 
						|
 | 
						|
    /// getMachineOpValue - Return binary encoding of operand. If the machine
 | 
						|
    /// operand requires relocation, record the relocation and return zero.
 | 
						|
    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
 | 
						|
    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
 | 
						|
      return getMachineOpValue(MI, MI.getOperand(OpIdx));
 | 
						|
    }
 | 
						|
 | 
						|
    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
 | 
						|
    /// machine operand requires relocation, record the relocation and return
 | 
						|
    /// zero.
 | 
						|
    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
 | 
						|
                            unsigned Reloc);
 | 
						|
    unsigned getMovi32Value(const MachineInstr &MI, unsigned OpIdx,
 | 
						|
                            unsigned Reloc) {
 | 
						|
      return getMovi32Value(MI, MI.getOperand(OpIdx), Reloc);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
 | 
						|
    ///
 | 
						|
    unsigned getShiftOp(unsigned Imm) const ;
 | 
						|
 | 
						|
    /// Routines that handle operands which add machine relocations which are
 | 
						|
    /// fixed up by the relocation stage.
 | 
						|
    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
 | 
						|
                           bool MayNeedFarStub,  bool Indirect,
 | 
						|
                           intptr_t ACPV = 0);
 | 
						|
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | 
						|
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
 | 
						|
    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
 | 
						|
    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
 | 
						|
                               intptr_t JTBase = 0);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ARMCodeEmitter::ID = 0;
 | 
						|
 | 
						|
/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
 | 
						|
/// code to the specified MCE object.
 | 
						|
FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
 | 
						|
                                                JITCodeEmitter &JCE) {
 | 
						|
  return new ARMCodeEmitter(TM, JCE);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | 
						|
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | 
						|
         "JIT relocation model must be set to static or default!");
 | 
						|
  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
 | 
						|
  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
 | 
						|
  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
 | 
						|
  Subtarget = &TM.getSubtarget<ARMSubtarget>();
 | 
						|
  MCPEs = &MF.getConstantPool()->getConstants();
 | 
						|
  MJTEs = 0;
 | 
						|
  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
 | 
						|
  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
 | 
						|
  JTI->Initialize(MF, IsPIC);
 | 
						|
  MMI = &getAnalysis<MachineModuleInfo>();
 | 
						|
  MCE.setModuleInfo(MMI);
 | 
						|
 | 
						|
  do {
 | 
						|
    DEBUG(errs() << "JITTing function '"
 | 
						|
          << MF.getFunction()->getName() << "'\n");
 | 
						|
    MCE.startFunction(MF);
 | 
						|
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
 | 
						|
         MBB != E; ++MBB) {
 | 
						|
      MCE.StartMachineBasicBlock(MBB);
 | 
						|
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | 
						|
           I != E; ++I)
 | 
						|
        emitInstruction(*I);
 | 
						|
    }
 | 
						|
  } while (MCE.finishFunction(MF));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
 | 
						|
///
 | 
						|
unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
 | 
						|
  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
 | 
						|
  default: llvm_unreachable("Unknown shift opc!");
 | 
						|
  case ARM_AM::asr: return 2;
 | 
						|
  case ARM_AM::lsl: return 0;
 | 
						|
  case ARM_AM::lsr: return 1;
 | 
						|
  case ARM_AM::ror:
 | 
						|
  case ARM_AM::rrx: return 3;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
 | 
						|
/// machine operand requires relocation, record the relocation and return zero.
 | 
						|
unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
 | 
						|
                                        const MachineOperand &MO,
 | 
						|
                                        unsigned Reloc) {
 | 
						|
  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
 | 
						|
      && "Relocation to this function should be for movt or movw");
 | 
						|
 | 
						|
  if (MO.isImm())
 | 
						|
    return static_cast<unsigned>(MO.getImm());
 | 
						|
  else if (MO.isGlobal())
 | 
						|
    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
 | 
						|
  else if (MO.isSymbol())
 | 
						|
    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
 | 
						|
  else if (MO.isMBB())
 | 
						|
    emitMachineBasicBlock(MO.getMBB(), Reloc);
 | 
						|
  else {
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << MO;
 | 
						|
#endif
 | 
						|
    llvm_unreachable("Unsupported operand type for movw/movt");
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getMachineOpValue - Return binary encoding of operand. If the machine
 | 
						|
/// operand requires relocation, record the relocation and return zero.
 | 
						|
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
 | 
						|
                                           const MachineOperand &MO) {
 | 
						|
  if (MO.isReg())
 | 
						|
    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
 | 
						|
  else if (MO.isImm())
 | 
						|
    return static_cast<unsigned>(MO.getImm());
 | 
						|
  else if (MO.isGlobal())
 | 
						|
    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
 | 
						|
  else if (MO.isSymbol())
 | 
						|
    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
 | 
						|
  else if (MO.isCPI()) {
 | 
						|
    const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
    // For VFP load, the immediate offset is multiplied by 4.
 | 
						|
    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
 | 
						|
      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
 | 
						|
    emitConstPoolAddress(MO.getIndex(), Reloc);
 | 
						|
  } else if (MO.isJTI())
 | 
						|
    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
 | 
						|
  else if (MO.isMBB())
 | 
						|
    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
 | 
						|
  else {
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << MO;
 | 
						|
#endif
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddress - Emit the specified address to the code stream.
 | 
						|
///
 | 
						|
void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
 | 
						|
                                       bool MayNeedFarStub, bool Indirect,
 | 
						|
                                       intptr_t ACPV) {
 | 
						|
  MachineRelocation MR = Indirect
 | 
						|
    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
 | 
						|
                                           const_cast<GlobalValue *>(GV),
 | 
						|
                                           ACPV, MayNeedFarStub)
 | 
						|
    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | 
						|
                               const_cast<GlobalValue *>(GV), ACPV,
 | 
						|
                               MayNeedFarStub);
 | 
						|
  MCE.addRelocation(MR);
 | 
						|
}
 | 
						|
 | 
						|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | 
						|
                                                 Reloc, ES));
 | 
						|
}
 | 
						|
 | 
						|
/// emitConstPoolAddress - Arrange for the address of an constant pool
 | 
						|
/// to be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
 | 
						|
  // Tell JIT emitter we'll resolve the address.
 | 
						|
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, CPI, 0, true));
 | 
						|
}
 | 
						|
 | 
						|
/// emitJumpTableAddress - Arrange for the address of a jump table to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, JTIndex, 0, true));
 | 
						|
}
 | 
						|
 | 
						|
/// emitMachineBasicBlock - Emit the specified address basic block.
 | 
						|
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
 | 
						|
                                           unsigned Reloc, intptr_t JTBase) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | 
						|
                                             Reloc, BB, JTBase));
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitWordLE(unsigned Binary) {
 | 
						|
  DEBUG(errs() << "  0x";
 | 
						|
        errs().write_hex(Binary) << "\n");
 | 
						|
  MCE.emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
 | 
						|
  DEBUG(errs() << "  0x";
 | 
						|
        errs().write_hex(Binary) << "\n");
 | 
						|
  MCE.emitDWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
 | 
						|
  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
 | 
						|
 | 
						|
  MCE.processDebugLoc(MI.getDebugLoc(), true);
 | 
						|
 | 
						|
  NumEmitted++;  // Keep track of the # of mi's emitted
 | 
						|
  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
 | 
						|
  default: {
 | 
						|
    llvm_unreachable("Unhandled instruction encoding format!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMII::Pseudo:
 | 
						|
    emitPseudoInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::DPFrm:
 | 
						|
  case ARMII::DPSoRegFrm:
 | 
						|
    emitDataProcessingInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::LdFrm:
 | 
						|
  case ARMII::StFrm:
 | 
						|
    emitLoadStoreInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::LdMiscFrm:
 | 
						|
  case ARMII::StMiscFrm:
 | 
						|
    emitMiscLoadStoreInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::LdStMulFrm:
 | 
						|
    emitLoadStoreMultipleInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::MulFrm:
 | 
						|
    emitMulFrmInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::ExtFrm:
 | 
						|
    emitExtendInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::ArithMiscFrm:
 | 
						|
    emitMiscArithInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::BrFrm:
 | 
						|
    emitBranchInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::BrMiscFrm:
 | 
						|
    emitMiscBranchInstruction(MI);
 | 
						|
    break;
 | 
						|
  // VFP instructions.
 | 
						|
  case ARMII::VFPUnaryFrm:
 | 
						|
  case ARMII::VFPBinaryFrm:
 | 
						|
    emitVFPArithInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPConv1Frm:
 | 
						|
  case ARMII::VFPConv2Frm:
 | 
						|
  case ARMII::VFPConv3Frm:
 | 
						|
  case ARMII::VFPConv4Frm:
 | 
						|
  case ARMII::VFPConv5Frm:
 | 
						|
    emitVFPConversionInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPLdStFrm:
 | 
						|
    emitVFPLoadStoreInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPLdStMulFrm:
 | 
						|
    emitVFPLoadStoreMultipleInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPMiscFrm:
 | 
						|
    emitMiscInstruction(MI);
 | 
						|
    break;
 | 
						|
  // NEON instructions.
 | 
						|
  case ARMII::N1RegModImmFrm:
 | 
						|
    emitNEON1RegModImm(MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  MCE.processDebugLoc(MI.getDebugLoc(), false);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
 | 
						|
  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
 | 
						|
  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
 | 
						|
  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
 | 
						|
 | 
						|
  // Remember the CONSTPOOL_ENTRY address for later relocation.
 | 
						|
  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
 | 
						|
 | 
						|
  // Emit constpool island entry. In most cases, the actual values will be
 | 
						|
  // resolved and relocated after code emission.
 | 
						|
  if (MCPE.isMachineConstantPoolEntry()) {
 | 
						|
    ARMConstantPoolValue *ACPV =
 | 
						|
      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
 | 
						|
 | 
						|
    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
 | 
						|
          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
 | 
						|
 | 
						|
    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
 | 
						|
    const GlobalValue *GV = ACPV->getGV();
 | 
						|
    if (GV) {
 | 
						|
      Reloc::Model RelocM = TM.getRelocationModel();
 | 
						|
      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
 | 
						|
                        isa<Function>(GV),
 | 
						|
                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
 | 
						|
                        (intptr_t)ACPV);
 | 
						|
     } else  {
 | 
						|
      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
 | 
						|
    }
 | 
						|
    emitWordLE(0);
 | 
						|
  } else {
 | 
						|
    const Constant *CV = MCPE.Val.ConstVal;
 | 
						|
 | 
						|
    DEBUG({
 | 
						|
        errs() << "  ** Constant pool #" << CPI << " @ "
 | 
						|
               << (void*)MCE.getCurrentPCValue() << " ";
 | 
						|
        if (const Function *F = dyn_cast<Function>(CV))
 | 
						|
          errs() << F->getName();
 | 
						|
        else
 | 
						|
          errs() << *CV;
 | 
						|
        errs() << '\n';
 | 
						|
      });
 | 
						|
 | 
						|
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
 | 
						|
      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
 | 
						|
      emitWordLE(0);
 | 
						|
    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | 
						|
      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
 | 
						|
      emitWordLE(Val);
 | 
						|
    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | 
						|
      if (CFP->getType()->isFloatTy())
 | 
						|
        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | 
						|
      else if (CFP->getType()->isDoubleTy())
 | 
						|
        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | 
						|
      else {
 | 
						|
        llvm_unreachable("Unable to handle this constantpool entry!");
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unable to handle this constantpool entry!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
 | 
						|
  const MachineOperand &MO0 = MI.getOperand(0);
 | 
						|
  const MachineOperand &MO1 = MI.getOperand(1);
 | 
						|
 | 
						|
  // Emit the 'movw' instruction.
 | 
						|
  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
 | 
						|
 | 
						|
  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
 | 
						|
 | 
						|
  // Set the conditional execution predicate.
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode Rd.
 | 
						|
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode imm16 as imm4:imm12
 | 
						|
  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
 | 
						|
  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
 | 
						|
  emitWordLE(Binary);
 | 
						|
 | 
						|
  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
 | 
						|
  // Emit the 'movt' instruction.
 | 
						|
  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
 | 
						|
 | 
						|
  // Set the conditional execution predicate.
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode Rd.
 | 
						|
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode imm16 as imm4:imm1, same as movw above.
 | 
						|
  Binary |= Hi16 & 0xFFF;
 | 
						|
  Binary |= ((Hi16 >> 12) & 0xF) << 16;
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
 | 
						|
  const MachineOperand &MO0 = MI.getOperand(0);
 | 
						|
  const MachineOperand &MO1 = MI.getOperand(1);
 | 
						|
  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
 | 
						|
                                                  "Not a valid so_imm value!");
 | 
						|
  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
 | 
						|
  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
 | 
						|
 | 
						|
  // Emit the 'mov' instruction.
 | 
						|
  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
 | 
						|
 | 
						|
  // Set the conditional execution predicate.
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode Rd.
 | 
						|
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode so_imm.
 | 
						|
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
 | 
						|
  Binary |= 1 << ARMII::I_BitShift;
 | 
						|
  Binary |= getMachineSoImmOpValue(V1);
 | 
						|
  emitWordLE(Binary);
 | 
						|
 | 
						|
  // Now the 'orr' instruction.
 | 
						|
  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
 | 
						|
 | 
						|
  // Set the conditional execution predicate.
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode Rd.
 | 
						|
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode Rn.
 | 
						|
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // Encode so_imm.
 | 
						|
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
 | 
						|
  Binary |= 1 << ARMII::I_BitShift;
 | 
						|
  Binary |= getMachineSoImmOpValue(V2);
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
 | 
						|
  // It's basically add r, pc, (LJTI - $+8)
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Emit the 'add' instruction.
 | 
						|
  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode S bit if MI modifies CPSR.
 | 
						|
  Binary |= getAddrModeSBit(MI, TID);
 | 
						|
 | 
						|
  // Encode Rd.
 | 
						|
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode Rn which is PC.
 | 
						|
  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // Encode the displacement.
 | 
						|
  Binary |= 1 << ARMII::I_BitShift;
 | 
						|
  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
 | 
						|
  unsigned Opcode = MI.getDesc().Opcode;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode S bit if MI modifies CPSR.
 | 
						|
  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
 | 
						|
    Binary |= 1 << ARMII::S_BitShift;
 | 
						|
 | 
						|
  // Encode register def if there is one.
 | 
						|
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Encode the shift operation.
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case ARM::MOVrx:
 | 
						|
    // rrx
 | 
						|
    Binary |= 0x6 << 4;
 | 
						|
    break;
 | 
						|
  case ARM::MOVsrl_flag:
 | 
						|
    // lsr #1
 | 
						|
    Binary |= (0x2 << 4) | (1 << 7);
 | 
						|
    break;
 | 
						|
  case ARM::MOVsra_flag:
 | 
						|
    // asr #1
 | 
						|
    Binary |= (0x4 << 4) | (1 << 7);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode register Rm.
 | 
						|
  Binary |= getMachineOpValue(MI, 1);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
 | 
						|
  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
 | 
						|
        << (void*)MCE.getCurrentPCValue() << '\n');
 | 
						|
  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
 | 
						|
  unsigned Opcode = MI.getDesc().Opcode;
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
 | 
						|
  case TargetOpcode::INLINEASM: {
 | 
						|
    // We allow inline assembler nodes with empty bodies - they can
 | 
						|
    // implicitly define registers, which is ok for JIT.
 | 
						|
    if (MI.getOperand(0).getSymbolName()[0]) {
 | 
						|
      report_fatal_error("JIT does not support inline asm!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::DBG_LABEL:
 | 
						|
  case TargetOpcode::EH_LABEL:
 | 
						|
    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
 | 
						|
    break;
 | 
						|
  case TargetOpcode::IMPLICIT_DEF:
 | 
						|
  case TargetOpcode::KILL:
 | 
						|
    // Do nothing.
 | 
						|
    break;
 | 
						|
  case ARM::CONSTPOOL_ENTRY:
 | 
						|
    emitConstPoolInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARM::PICADD: {
 | 
						|
    // Remember of the address of the PC label for relocation later.
 | 
						|
    addPCLabel(MI.getOperand(2).getImm());
 | 
						|
    // PICADD is just an add instruction that implicitly read pc.
 | 
						|
    emitDataProcessingInstruction(MI, 0, ARM::PC);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARM::PICLDR:
 | 
						|
  case ARM::PICLDRB:
 | 
						|
  case ARM::PICSTR:
 | 
						|
  case ARM::PICSTRB: {
 | 
						|
    // Remember of the address of the PC label for relocation later.
 | 
						|
    addPCLabel(MI.getOperand(2).getImm());
 | 
						|
    // These are just load / store instructions that implicitly read pc.
 | 
						|
    emitLoadStoreInstruction(MI, 0, ARM::PC);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARM::PICLDRH:
 | 
						|
  case ARM::PICLDRSH:
 | 
						|
  case ARM::PICLDRSB:
 | 
						|
  case ARM::PICSTRH: {
 | 
						|
    // Remember of the address of the PC label for relocation later.
 | 
						|
    addPCLabel(MI.getOperand(2).getImm());
 | 
						|
    // These are just load / store instructions that implicitly read pc.
 | 
						|
    emitMiscLoadStoreInstruction(MI, ARM::PC);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARM::MOVi32imm:
 | 
						|
    emitMOVi32immInstruction(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ARM::MOVi2pieces:
 | 
						|
    // Two instructions to materialize a constant.
 | 
						|
    emitMOVi2piecesInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARM::LEApcrelJT:
 | 
						|
    // Materialize jumptable address.
 | 
						|
    emitLEApcrelJTInstruction(MI);
 | 
						|
    break;
 | 
						|
  case ARM::MOVrx:
 | 
						|
  case ARM::MOVsrl_flag:
 | 
						|
  case ARM::MOVsra_flag:
 | 
						|
    emitPseudoMoveInstruction(MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
 | 
						|
                                                const TargetInstrDesc &TID,
 | 
						|
                                                const MachineOperand &MO,
 | 
						|
                                                unsigned OpIdx) {
 | 
						|
  unsigned Binary = getMachineOpValue(MI, MO);
 | 
						|
 | 
						|
  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
 | 
						|
  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
 | 
						|
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
 | 
						|
 | 
						|
  // Encode the shift opcode.
 | 
						|
  unsigned SBits = 0;
 | 
						|
  unsigned Rs = MO1.getReg();
 | 
						|
  if (Rs) {
 | 
						|
    // Set shift operand (bit[7:4]).
 | 
						|
    // LSL - 0001
 | 
						|
    // LSR - 0011
 | 
						|
    // ASR - 0101
 | 
						|
    // ROR - 0111
 | 
						|
    // RRX - 0110 and bit[11:8] clear.
 | 
						|
    switch (SOpc) {
 | 
						|
    default: llvm_unreachable("Unknown shift opc!");
 | 
						|
    case ARM_AM::lsl: SBits = 0x1; break;
 | 
						|
    case ARM_AM::lsr: SBits = 0x3; break;
 | 
						|
    case ARM_AM::asr: SBits = 0x5; break;
 | 
						|
    case ARM_AM::ror: SBits = 0x7; break;
 | 
						|
    case ARM_AM::rrx: SBits = 0x6; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Set shift operand (bit[6:4]).
 | 
						|
    // LSL - 000
 | 
						|
    // LSR - 010
 | 
						|
    // ASR - 100
 | 
						|
    // ROR - 110
 | 
						|
    switch (SOpc) {
 | 
						|
    default: llvm_unreachable("Unknown shift opc!");
 | 
						|
    case ARM_AM::lsl: SBits = 0x0; break;
 | 
						|
    case ARM_AM::lsr: SBits = 0x2; break;
 | 
						|
    case ARM_AM::asr: SBits = 0x4; break;
 | 
						|
    case ARM_AM::ror: SBits = 0x6; break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Binary |= SBits << 4;
 | 
						|
  if (SOpc == ARM_AM::rrx)
 | 
						|
    return Binary;
 | 
						|
 | 
						|
  // Encode the shift operation Rs or shift_imm (except rrx).
 | 
						|
  if (Rs) {
 | 
						|
    // Encode Rs bit[11:8].
 | 
						|
    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
 | 
						|
    return Binary |
 | 
						|
      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode shift_imm bit[11:7].
 | 
						|
  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
 | 
						|
  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
 | 
						|
  assert(SoImmVal != -1 && "Not a valid so_imm value!");
 | 
						|
 | 
						|
  // Encode rotate_imm.
 | 
						|
  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
 | 
						|
    << ARMII::SoRotImmShift;
 | 
						|
 | 
						|
  // Encode immed_8.
 | 
						|
  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
 | 
						|
                                         const TargetInstrDesc &TID) const {
 | 
						|
  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
 | 
						|
    const MachineOperand &MO = MI.getOperand(i-1);
 | 
						|
    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
 | 
						|
      return 1 << ARMII::S_BitShift;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
 | 
						|
                                                   unsigned ImplicitRd,
 | 
						|
                                                   unsigned ImplicitRn) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode S bit if MI modifies CPSR.
 | 
						|
  Binary |= getAddrModeSBit(MI, TID);
 | 
						|
 | 
						|
  // Encode register def if there is one.
 | 
						|
  unsigned NumDefs = TID.getNumDefs();
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
  if (NumDefs)
 | 
						|
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | 
						|
  else if (ImplicitRd)
 | 
						|
    // Special handling for implicit use (e.g. PC).
 | 
						|
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
 | 
						|
               << ARMII::RegRdShift);
 | 
						|
 | 
						|
  if (TID.Opcode == ARM::MOVi16) {
 | 
						|
      // Get immediate from MI.
 | 
						|
      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
 | 
						|
                      ARM::reloc_arm_movw);
 | 
						|
      // Encode imm which is the same as in emitMOVi32immInstruction().
 | 
						|
      Binary |= Lo16 & 0xFFF;
 | 
						|
      Binary |= ((Lo16 >> 12) & 0xF) << 16;
 | 
						|
      emitWordLE(Binary);
 | 
						|
      return;
 | 
						|
  } else if(TID.Opcode == ARM::MOVTi16) {
 | 
						|
      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
 | 
						|
                       ARM::reloc_arm_movt) >> 16);
 | 
						|
      Binary |= Hi16 & 0xFFF;
 | 
						|
      Binary |= ((Hi16 >> 12) & 0xF) << 16;
 | 
						|
      emitWordLE(Binary);
 | 
						|
      return;
 | 
						|
  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
 | 
						|
      uint32_t v = ~MI.getOperand(2).getImm();
 | 
						|
      int32_t lsb = CountTrailingZeros_32(v);
 | 
						|
      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
 | 
						|
      // Instr{20-16} = msb, Instr{11-7} = lsb
 | 
						|
      Binary |= (msb & 0x1F) << 16;
 | 
						|
      Binary |= (lsb & 0x1F) << 7;
 | 
						|
      emitWordLE(Binary);
 | 
						|
      return;
 | 
						|
  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
 | 
						|
      // Encode Rn in Instr{0-3}
 | 
						|
      Binary |= getMachineOpValue(MI, OpIdx++);
 | 
						|
 | 
						|
      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
 | 
						|
      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
 | 
						|
 | 
						|
      // Instr{20-16} = widthm1, Instr{11-7} = lsb
 | 
						|
      Binary |= (widthm1 & 0x1F) << 16;
 | 
						|
      Binary |= (lsb & 0x1F) << 7;
 | 
						|
      emitWordLE(Binary);
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  // Encode first non-shifter register operand if there is one.
 | 
						|
  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
 | 
						|
  if (!isUnary) {
 | 
						|
    if (ImplicitRn)
 | 
						|
      // Special handling for implicit use (e.g. PC).
 | 
						|
      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
 | 
						|
                 << ARMII::RegRnShift);
 | 
						|
    else {
 | 
						|
      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
 | 
						|
      ++OpIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode shifter operand.
 | 
						|
  const MachineOperand &MO = MI.getOperand(OpIdx);
 | 
						|
  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
 | 
						|
    // Encode SoReg.
 | 
						|
    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MO.isReg()) {
 | 
						|
    // Encode register Rm.
 | 
						|
    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode so_imm.
 | 
						|
  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
 | 
						|
                                              unsigned ImplicitRd,
 | 
						|
                                              unsigned ImplicitRn) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  unsigned Form = TID.TSFlags & ARMII::FormMask;
 | 
						|
  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
 | 
						|
  // Operand 0 of a pre- and post-indexed store is the address base
 | 
						|
  // writeback. Skip it.
 | 
						|
  bool Skipped = false;
 | 
						|
  if (IsPrePost && Form == ARMII::StFrm) {
 | 
						|
    ++OpIdx;
 | 
						|
    Skipped = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set first operand
 | 
						|
  if (ImplicitRd)
 | 
						|
    // Special handling for implicit use (e.g. PC).
 | 
						|
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
 | 
						|
               << ARMII::RegRdShift);
 | 
						|
  else
 | 
						|
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Set second operand
 | 
						|
  if (ImplicitRn)
 | 
						|
    // Special handling for implicit use (e.g. PC).
 | 
						|
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
 | 
						|
               << ARMII::RegRnShift);
 | 
						|
  else
 | 
						|
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it. e.g. LDR_PRE.
 | 
						|
  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | 
						|
  unsigned AM2Opc = (ImplicitRn == ARM::PC)
 | 
						|
    ? 0 : MI.getOperand(OpIdx+1).getImm();
 | 
						|
 | 
						|
  // Set bit U(23) according to sign of immed value (positive or negative).
 | 
						|
  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
 | 
						|
             ARMII::U_BitShift);
 | 
						|
  if (!MO2.getReg()) { // is immediate
 | 
						|
    if (ARM_AM::getAM2Offset(AM2Opc))
 | 
						|
      // Set the value of offset_12 field
 | 
						|
      Binary |= ARM_AM::getAM2Offset(AM2Opc);
 | 
						|
    emitWordLE(Binary);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set bit I(25), because this is not in immediate enconding.
 | 
						|
  Binary |= 1 << ARMII::I_BitShift;
 | 
						|
  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
 | 
						|
  // Set bit[3:0] to the corresponding Rm register
 | 
						|
  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
 | 
						|
 | 
						|
  // If this instr is in scaled register offset/index instruction, set
 | 
						|
  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
 | 
						|
  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
 | 
						|
    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
 | 
						|
    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
 | 
						|
  }
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
 | 
						|
                                                  unsigned ImplicitRn) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  unsigned Form = TID.TSFlags & ARMII::FormMask;
 | 
						|
  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
 | 
						|
  // Operand 0 of a pre- and post-indexed store is the address base
 | 
						|
  // writeback. Skip it.
 | 
						|
  bool Skipped = false;
 | 
						|
  if (IsPrePost && Form == ARMII::StMiscFrm) {
 | 
						|
    ++OpIdx;
 | 
						|
    Skipped = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set first operand
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  // Skip LDRD and STRD's second operand.
 | 
						|
  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  // Set second operand
 | 
						|
  if (ImplicitRn)
 | 
						|
    // Special handling for implicit use (e.g. PC).
 | 
						|
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
 | 
						|
               << ARMII::RegRnShift);
 | 
						|
  else
 | 
						|
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it. e.g. LDRH_POST.
 | 
						|
  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | 
						|
  unsigned AM3Opc = (ImplicitRn == ARM::PC)
 | 
						|
    ? 0 : MI.getOperand(OpIdx+1).getImm();
 | 
						|
 | 
						|
  // Set bit U(23) according to sign of immed value (positive or negative)
 | 
						|
  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
 | 
						|
             ARMII::U_BitShift);
 | 
						|
 | 
						|
  // If this instr is in register offset/index encoding, set bit[3:0]
 | 
						|
  // to the corresponding Rm register.
 | 
						|
  if (MO2.getReg()) {
 | 
						|
    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
 | 
						|
    emitWordLE(Binary);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This instr is in immediate offset/index encoding, set bit 22 to 1.
 | 
						|
  Binary |= 1 << ARMII::AM3_I_BitShift;
 | 
						|
  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
 | 
						|
    // Set operands
 | 
						|
    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
 | 
						|
    Binary |= (ImmOffs & 0xF);                      // immedL
 | 
						|
  }
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getAddrModeUPBits(unsigned Mode) {
 | 
						|
  unsigned Binary = 0;
 | 
						|
 | 
						|
  // Set addressing mode by modifying bits U(23) and P(24)
 | 
						|
  // IA - Increment after  - bit U = 1 and bit P = 0
 | 
						|
  // IB - Increment before - bit U = 1 and bit P = 1
 | 
						|
  // DA - Decrement after  - bit U = 0 and bit P = 0
 | 
						|
  // DB - Decrement before - bit U = 0 and bit P = 1
 | 
						|
  switch (Mode) {
 | 
						|
  default: llvm_unreachable("Unknown addressing sub-mode!");
 | 
						|
  case ARM_AM::da:                                     break;
 | 
						|
  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
 | 
						|
  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
 | 
						|
  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Skip operand 0 of an instruction with base register update.
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
  if (IsUpdating)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  // Set base address operand
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // Set addressing mode by modifying bits U(23) and P(24)
 | 
						|
  const MachineOperand &MO = MI.getOperand(OpIdx++);
 | 
						|
  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
 | 
						|
 | 
						|
  // Set bit W(21)
 | 
						|
  if (IsUpdating)
 | 
						|
    Binary |= 0x1 << ARMII::W_BitShift;
 | 
						|
 | 
						|
  // Set registers
 | 
						|
  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.isImplicit())
 | 
						|
      break;
 | 
						|
    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
 | 
						|
    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
 | 
						|
           RegNum < 16);
 | 
						|
    Binary |= 0x1 << RegNum;
 | 
						|
  }
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Encode S bit if MI modifies CPSR.
 | 
						|
  Binary |= getAddrModeSBit(MI, TID);
 | 
						|
 | 
						|
  // 32x32->64bit operations have two destination registers. The number
 | 
						|
  // of register definitions will tell us if that's what we're dealing with.
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
  if (TID.getNumDefs() == 2)
 | 
						|
    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
 | 
						|
 | 
						|
  // Encode Rd
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
 | 
						|
 | 
						|
  // Encode Rm
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++);
 | 
						|
 | 
						|
  // Encode Rs
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
 | 
						|
 | 
						|
  // Many multiple instructions (e.g. MLA) have three src operands. Encode
 | 
						|
  // it as Rn (for multiply, that's in the same offset as RdLo.
 | 
						|
  if (TID.getNumOperands() > OpIdx &&
 | 
						|
      !TID.OpInfo[OpIdx].isPredicate() &&
 | 
						|
      !TID.OpInfo[OpIdx].isOptionalDef())
 | 
						|
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
 | 
						|
  // Encode Rd
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
 | 
						|
  const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | 
						|
  if (MO2.isReg()) {
 | 
						|
    // Two register operand form.
 | 
						|
    // Encode Rn.
 | 
						|
    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
 | 
						|
 | 
						|
    // Encode Rm.
 | 
						|
    Binary |= getMachineOpValue(MI, MO2);
 | 
						|
    ++OpIdx;
 | 
						|
  } else {
 | 
						|
    Binary |= getMachineOpValue(MI, MO1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
 | 
						|
  if (MI.getOperand(OpIdx).isImm() &&
 | 
						|
      !TID.OpInfo[OpIdx].isPredicate() &&
 | 
						|
      !TID.OpInfo[OpIdx].isOptionalDef())
 | 
						|
    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
 | 
						|
  // Encode Rd
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | 
						|
 | 
						|
  const MachineOperand &MO = MI.getOperand(OpIdx++);
 | 
						|
  if (OpIdx == TID.getNumOperands() ||
 | 
						|
      TID.OpInfo[OpIdx].isPredicate() ||
 | 
						|
      TID.OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // Encode Rm and it's done.
 | 
						|
    Binary |= getMachineOpValue(MI, MO);
 | 
						|
    emitWordLE(Binary);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode Rn.
 | 
						|
  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // Encode Rm.
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++);
 | 
						|
 | 
						|
  // Encode shift_imm.
 | 
						|
  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
 | 
						|
  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
 | 
						|
  Binary |= ShiftAmt << ARMII::ShiftShift;
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  if (TID.Opcode == ARM::TPsoft) {
 | 
						|
    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
 | 
						|
  }
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Set signed_immed_24 field
 | 
						|
  Binary |= getMachineOpValue(MI, 0);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
 | 
						|
  // Remember the base address of the inline jump table.
 | 
						|
  uintptr_t JTBase = MCE.getCurrentPCValue();
 | 
						|
  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
 | 
						|
  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  // Now emit the jump table entries.
 | 
						|
  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
 | 
						|
  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
 | 
						|
    if (IsPIC)
 | 
						|
      // DestBB address - JT base.
 | 
						|
      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
 | 
						|
    else
 | 
						|
      // Absolute DestBB address.
 | 
						|
      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
 | 
						|
    emitWordLE(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Handle jump tables.
 | 
						|
  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
 | 
						|
    // First emit a ldr pc, [] instruction.
 | 
						|
    emitDataProcessingInstruction(MI, ARM::PC);
 | 
						|
 | 
						|
    // Then emit the inline jump table.
 | 
						|
    unsigned JTIndex =
 | 
						|
      (TID.Opcode == ARM::BR_JTr)
 | 
						|
      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
 | 
						|
    emitInlineJumpTable(JTIndex);
 | 
						|
    return;
 | 
						|
  } else if (TID.Opcode == ARM::BR_JTm) {
 | 
						|
    // First emit a ldr pc, [] instruction.
 | 
						|
    emitLoadStoreInstruction(MI, ARM::PC);
 | 
						|
 | 
						|
    // Then emit the inline jump table.
 | 
						|
    emitInlineJumpTable(MI.getOperand(3).getIndex());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
 | 
						|
    // The return register is LR.
 | 
						|
    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
 | 
						|
  else
 | 
						|
    // otherwise, set the return register
 | 
						|
    Binary |= getMachineOpValue(MI, 0);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
 | 
						|
  unsigned RegD = MI.getOperand(OpIdx).getReg();
 | 
						|
  unsigned Binary = 0;
 | 
						|
  bool isSPVFP = false;
 | 
						|
  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
 | 
						|
  if (!isSPVFP)
 | 
						|
    Binary |=   RegD               << ARMII::RegRdShift;
 | 
						|
  else {
 | 
						|
    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
 | 
						|
    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
 | 
						|
  }
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
 | 
						|
  unsigned RegN = MI.getOperand(OpIdx).getReg();
 | 
						|
  unsigned Binary = 0;
 | 
						|
  bool isSPVFP = false;
 | 
						|
  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
 | 
						|
  if (!isSPVFP)
 | 
						|
    Binary |=   RegN               << ARMII::RegRnShift;
 | 
						|
  else {
 | 
						|
    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
 | 
						|
    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
 | 
						|
  }
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
 | 
						|
  unsigned RegM = MI.getOperand(OpIdx).getReg();
 | 
						|
  unsigned Binary = 0;
 | 
						|
  bool isSPVFP = false;
 | 
						|
  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
 | 
						|
  if (!isSPVFP)
 | 
						|
    Binary |=   RegM;
 | 
						|
  else {
 | 
						|
    Binary |= ((RegM & 0x1E) >> 1);
 | 
						|
    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
 | 
						|
  }
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
  assert((Binary & ARMII::D_BitShift) == 0 &&
 | 
						|
         (Binary & ARMII::N_BitShift) == 0 &&
 | 
						|
         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
 | 
						|
 | 
						|
  // Encode Dd / Sd.
 | 
						|
  Binary |= encodeVFPRd(MI, OpIdx++);
 | 
						|
 | 
						|
  // If this is a two-address operand, skip it, e.g. FMACD.
 | 
						|
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  // Encode Dn / Sn.
 | 
						|
  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
 | 
						|
    Binary |= encodeVFPRn(MI, OpIdx++);
 | 
						|
 | 
						|
  if (OpIdx == TID.getNumOperands() ||
 | 
						|
      TID.OpInfo[OpIdx].isPredicate() ||
 | 
						|
      TID.OpInfo[OpIdx].isOptionalDef()) {
 | 
						|
    // FCMPEZD etc. has only one operand.
 | 
						|
    emitWordLE(Binary);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Encode Dm / Sm.
 | 
						|
  Binary |= encodeVFPRm(MI, OpIdx);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  unsigned Form = TID.TSFlags & ARMII::FormMask;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  switch (Form) {
 | 
						|
  default: break;
 | 
						|
  case ARMII::VFPConv1Frm:
 | 
						|
  case ARMII::VFPConv2Frm:
 | 
						|
  case ARMII::VFPConv3Frm:
 | 
						|
    // Encode Dd / Sd.
 | 
						|
    Binary |= encodeVFPRd(MI, 0);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPConv4Frm:
 | 
						|
    // Encode Dn / Sn.
 | 
						|
    Binary |= encodeVFPRn(MI, 0);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPConv5Frm:
 | 
						|
    // Encode Dm / Sm.
 | 
						|
    Binary |= encodeVFPRm(MI, 0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Form) {
 | 
						|
  default: break;
 | 
						|
  case ARMII::VFPConv1Frm:
 | 
						|
    // Encode Dm / Sm.
 | 
						|
    Binary |= encodeVFPRm(MI, 1);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPConv2Frm:
 | 
						|
  case ARMII::VFPConv3Frm:
 | 
						|
    // Encode Dn / Sn.
 | 
						|
    Binary |= encodeVFPRn(MI, 1);
 | 
						|
    break;
 | 
						|
  case ARMII::VFPConv4Frm:
 | 
						|
  case ARMII::VFPConv5Frm:
 | 
						|
    // Encode Dd / Sd.
 | 
						|
    Binary |= encodeVFPRd(MI, 1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Form == ARMII::VFPConv5Frm)
 | 
						|
    // Encode Dn / Sn.
 | 
						|
    Binary |= encodeVFPRn(MI, 2);
 | 
						|
  else if (Form == ARMII::VFPConv3Frm)
 | 
						|
    // Encode Dm / Sm.
 | 
						|
    Binary |= encodeVFPRm(MI, 2);
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
 | 
						|
  // Encode Dd / Sd.
 | 
						|
  Binary |= encodeVFPRd(MI, OpIdx++);
 | 
						|
 | 
						|
  // Encode address base.
 | 
						|
  const MachineOperand &Base = MI.getOperand(OpIdx++);
 | 
						|
  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // If there is a non-zero immediate offset, encode it.
 | 
						|
  if (Base.isReg()) {
 | 
						|
    const MachineOperand &Offset = MI.getOperand(OpIdx);
 | 
						|
    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
 | 
						|
      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
 | 
						|
        Binary |= 1 << ARMII::U_BitShift;
 | 
						|
      Binary |= ImmOffs;
 | 
						|
      emitWordLE(Binary);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If immediate offset is omitted, default to +0.
 | 
						|
  Binary |= 1 << ARMII::U_BitShift;
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
 | 
						|
  const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
 | 
						|
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  // Skip operand 0 of an instruction with base register update.
 | 
						|
  unsigned OpIdx = 0;
 | 
						|
  if (IsUpdating)
 | 
						|
    ++OpIdx;
 | 
						|
 | 
						|
  // Set base address operand
 | 
						|
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | 
						|
 | 
						|
  // Set addressing mode by modifying bits U(23) and P(24)
 | 
						|
  const MachineOperand &MO = MI.getOperand(OpIdx++);
 | 
						|
  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
 | 
						|
 | 
						|
  // Set bit W(21)
 | 
						|
  if (IsUpdating)
 | 
						|
    Binary |= 0x1 << ARMII::W_BitShift;
 | 
						|
 | 
						|
  // First register is encoded in Dd.
 | 
						|
  Binary |= encodeVFPRd(MI, OpIdx+2);
 | 
						|
 | 
						|
  // Number of registers are encoded in offset field.
 | 
						|
  unsigned NumRegs = 1;
 | 
						|
  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.isImplicit())
 | 
						|
      break;
 | 
						|
    ++NumRegs;
 | 
						|
  }
 | 
						|
  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
 | 
						|
  // Otherwise, it will be 0, in the case of 32-bit registers.
 | 
						|
  if(Binary & 0x100)
 | 
						|
    Binary |= NumRegs * 2;
 | 
						|
  else
 | 
						|
    Binary |= NumRegs;
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
 | 
						|
  unsigned Opcode = MI.getDesc().Opcode;
 | 
						|
  // Part of binary is determined by TableGn.
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
 | 
						|
  // Set the conditional execution predicate
 | 
						|
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | 
						|
 | 
						|
  switch(Opcode) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("ARMCodeEmitter::emitMiscInstruction");
 | 
						|
 | 
						|
  case ARM::FMSTAT:
 | 
						|
    // No further encoding needed.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ARM::VMRS:
 | 
						|
  case ARM::VMSR: {
 | 
						|
    const MachineOperand &MO0 = MI.getOperand(0);
 | 
						|
    // Encode Rt.
 | 
						|
    Binary |= ARMRegisterInfo::getRegisterNumbering(MO0.getReg())
 | 
						|
                << ARMII::RegRdShift;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARM::FCONSTD:
 | 
						|
  case ARM::FCONSTS: {
 | 
						|
    // Encode Dd / Sd.
 | 
						|
    Binary |= encodeVFPRd(MI, 0);
 | 
						|
 | 
						|
    // Encode imm., Table A7-18 VFP modified immediate constants
 | 
						|
    const MachineOperand &MO1 = MI.getOperand(1);
 | 
						|
    unsigned Imm = static_cast<unsigned>(MO1.getFPImm()->getValueAPF()
 | 
						|
                      .bitcastToAPInt().getHiBits(32).getLimitedValue());
 | 
						|
    unsigned ModifiedImm;
 | 
						|
 | 
						|
    if(Opcode == ARM::FCONSTS)
 | 
						|
      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
 | 
						|
                    (Imm & 0x03F80000) >> 19;  // bcdefgh
 | 
						|
    else // Opcode == ARM::FCONSTD
 | 
						|
      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
 | 
						|
                    (Imm & 0x007F0000) >> 16;  // bcdefgh
 | 
						|
 | 
						|
    // Insts{19-16} = abcd, Insts{3-0} = efgh
 | 
						|
    Binary |= ((ModifiedImm & 0xF0) >> 4) << 16;
 | 
						|
    Binary |= (ModifiedImm & 0xF);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
 | 
						|
  unsigned RegD = MI.getOperand(OpIdx).getReg();
 | 
						|
  unsigned Binary = 0;
 | 
						|
  RegD = ARMRegisterInfo::getRegisterNumbering(RegD);
 | 
						|
  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
 | 
						|
  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
 | 
						|
  return Binary;
 | 
						|
}
 | 
						|
 | 
						|
void ARMCodeEmitter::emitNEON1RegModImm(const MachineInstr &MI) {
 | 
						|
  unsigned Binary = getBinaryCodeForInstr(MI);
 | 
						|
  // Destination register is encoded in Dd.
 | 
						|
  Binary |= encodeNEONRd(MI, 0);
 | 
						|
  // Immediate fields: Op, Cmode, I, Imm3, Imm4
 | 
						|
  unsigned Imm = MI.getOperand(1).getImm();
 | 
						|
  unsigned Op = (Imm >> 12) & 1;
 | 
						|
  Binary |= (Op << 5);
 | 
						|
  unsigned Cmode = (Imm >> 8) & 0xf;
 | 
						|
  Binary |= (Cmode << 8);
 | 
						|
  unsigned I = (Imm >> 7) & 1;
 | 
						|
  Binary |= (I << 24);
 | 
						|
  unsigned Imm3 = (Imm >> 4) & 0x7;
 | 
						|
  Binary |= (Imm3 << 16);
 | 
						|
  unsigned Imm4 = Imm & 0xf;
 | 
						|
  Binary |= Imm4;
 | 
						|
  emitWordLE(Binary);
 | 
						|
}
 | 
						|
 | 
						|
#include "ARMGenCodeEmitter.inc"
 |