981 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			981 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the generic AliasAnalysis interface which is used as the
 | |
| // common interface used by all clients and implementations of alias analysis.
 | |
| //
 | |
| // This file also implements the default version of the AliasAnalysis interface
 | |
| // that is to be used when no other implementation is specified.  This does some
 | |
| // simple tests that detect obvious cases: two different global pointers cannot
 | |
| // alias, a global cannot alias a malloc, two different mallocs cannot alias,
 | |
| // etc.
 | |
| //
 | |
| // This alias analysis implementation really isn't very good for anything, but
 | |
| // it is very fast, and makes a nice clean default implementation.  Because it
 | |
| // handles lots of little corner cases, other, more complex, alias analysis
 | |
| // implementations may choose to rely on this pass to resolve these simple and
 | |
| // easy cases.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScopedNoAliasAA.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| 
 | |
| #define DEBUG_TYPE "aa"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumNoAlias,   "Number of NoAlias results");
 | |
| STATISTIC(NumMayAlias,  "Number of MayAlias results");
 | |
| STATISTIC(NumMustAlias, "Number of MustAlias results");
 | |
| 
 | |
| /// Allow disabling BasicAA from the AA results. This is particularly useful
 | |
| /// when testing to isolate a single AA implementation.
 | |
| cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
 | |
| 
 | |
| AAResults::AAResults(AAResults &&Arg)
 | |
|     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
 | |
|   for (auto &AA : AAs)
 | |
|     AA->setAAResults(this);
 | |
| }
 | |
| 
 | |
| AAResults::~AAResults() {
 | |
| // FIXME; It would be nice to at least clear out the pointers back to this
 | |
| // aggregation here, but we end up with non-nesting lifetimes in the legacy
 | |
| // pass manager that prevent this from working. In the legacy pass manager
 | |
| // we'll end up with dangling references here in some cases.
 | |
| #if 0
 | |
|   for (auto &AA : AAs)
 | |
|     AA->setAAResults(nullptr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
 | |
|                            FunctionAnalysisManager::Invalidator &Inv) {
 | |
|   // AAResults preserves the AAManager by default, due to the stateless nature
 | |
|   // of AliasAnalysis. There is no need to check whether it has been preserved
 | |
|   // explicitly. Check if any module dependency was invalidated and caused the
 | |
|   // AAManager to be invalidated. Invalidate ourselves in that case.
 | |
|   auto PAC = PA.getChecker<AAManager>();
 | |
|   if (!PAC.preservedWhenStateless())
 | |
|     return true;
 | |
| 
 | |
|   // Check if any of the function dependencies were invalidated, and invalidate
 | |
|   // ourselves in that case.
 | |
|   for (AnalysisKey *ID : AADeps)
 | |
|     if (Inv.invalidate(ID, F, PA))
 | |
|       return true;
 | |
| 
 | |
|   // Everything we depend on is still fine, so are we. Nothing to invalidate.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Default chaining methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasResult AAResults::alias(const MemoryLocation &LocA,
 | |
|                              const MemoryLocation &LocB) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return alias(LocA, LocB, AAQIP);
 | |
| }
 | |
| 
 | |
| AliasResult AAResults::alias(const MemoryLocation &LocA,
 | |
|                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
 | |
|   AliasResult Result = MayAlias;
 | |
| 
 | |
|   Depth++;
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = AA->alias(LocA, LocB, AAQI);
 | |
|     if (Result != MayAlias)
 | |
|       break;
 | |
|   }
 | |
|   Depth--;
 | |
| 
 | |
|   if (Depth == 0) {
 | |
|     if (Result == NoAlias)
 | |
|       ++NumNoAlias;
 | |
|     else if (Result == MustAlias)
 | |
|       ++NumMustAlias;
 | |
|     else
 | |
|       ++NumMayAlias;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
 | |
|                                        bool OrLocal) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
 | |
| }
 | |
| 
 | |
| bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
 | |
|                                        AAQueryInfo &AAQI, bool OrLocal) {
 | |
|   for (const auto &AA : AAs)
 | |
|     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
 | |
|   ModRefInfo Result = ModRefInfo::ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (isNoModRef(Result))
 | |
|       return ModRefInfo::NoModRef;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(I, Call2, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // We may have two calls.
 | |
|   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
 | |
|     // Check if the two calls modify the same memory.
 | |
|     return getModRefInfo(Call1, Call2, AAQI);
 | |
|   } else if (I->isFenceLike()) {
 | |
|     // If this is a fence, just return ModRef.
 | |
|     return ModRefInfo::ModRef;
 | |
|   } else {
 | |
|     // Otherwise, check if the call modifies or references the
 | |
|     // location this memory access defines.  The best we can say
 | |
|     // is that if the call references what this instruction
 | |
|     // defines, it must be clobbered by this location.
 | |
|     const MemoryLocation DefLoc = MemoryLocation::get(I);
 | |
|     ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
 | |
|     if (isModOrRefSet(MR))
 | |
|       return setModAndRef(MR);
 | |
|   }
 | |
|   return ModRefInfo::NoModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(Call, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   ModRefInfo Result = ModRefInfo::ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (isNoModRef(Result))
 | |
|       return ModRefInfo::NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Try to refine the mod-ref info further using other API entry points to the
 | |
|   // aggregate set of AA results.
 | |
|   auto MRB = getModRefBehavior(Call);
 | |
|   if (onlyAccessesInaccessibleMem(MRB))
 | |
|     return ModRefInfo::NoModRef;
 | |
| 
 | |
|   if (onlyReadsMemory(MRB))
 | |
|     Result = clearMod(Result);
 | |
|   else if (doesNotReadMemory(MRB))
 | |
|     Result = clearRef(Result);
 | |
| 
 | |
|   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
 | |
|     bool IsMustAlias = true;
 | |
|     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
 | |
|     if (doesAccessArgPointees(MRB)) {
 | |
|       for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
 | |
|         const Value *Arg = *AI;
 | |
|         if (!Arg->getType()->isPointerTy())
 | |
|           continue;
 | |
|         unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
 | |
|         MemoryLocation ArgLoc =
 | |
|             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
 | |
|         AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI);
 | |
|         if (ArgAlias != NoAlias) {
 | |
|           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
 | |
|           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
 | |
|         }
 | |
|         // Conservatively clear IsMustAlias unless only MustAlias is found.
 | |
|         IsMustAlias &= (ArgAlias == MustAlias);
 | |
|       }
 | |
|     }
 | |
|     // Return NoModRef if no alias found with any argument.
 | |
|     if (isNoModRef(AllArgsMask))
 | |
|       return ModRefInfo::NoModRef;
 | |
|     // Logical & between other AA analyses and argument analysis.
 | |
|     Result = intersectModRef(Result, AllArgsMask);
 | |
|     // If only MustAlias found above, set Must bit.
 | |
|     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
 | |
|   }
 | |
| 
 | |
|   // If Loc is a constant memory location, the call definitely could not
 | |
|   // modify the memory location.
 | |
|   if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
 | |
|     Result = clearMod(Result);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
 | |
|                                     const CallBase *Call2) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(Call1, Call2, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
 | |
|                                     const CallBase *Call2, AAQueryInfo &AAQI) {
 | |
|   ModRefInfo Result = ModRefInfo::ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (isNoModRef(Result))
 | |
|       return ModRefInfo::NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Try to refine the mod-ref info further using other API entry points to the
 | |
|   // aggregate set of AA results.
 | |
| 
 | |
|   // If Call1 or Call2 are readnone, they don't interact.
 | |
|   auto Call1B = getModRefBehavior(Call1);
 | |
|   if (Call1B == FMRB_DoesNotAccessMemory)
 | |
|     return ModRefInfo::NoModRef;
 | |
| 
 | |
|   auto Call2B = getModRefBehavior(Call2);
 | |
|   if (Call2B == FMRB_DoesNotAccessMemory)
 | |
|     return ModRefInfo::NoModRef;
 | |
| 
 | |
|   // If they both only read from memory, there is no dependence.
 | |
|   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
 | |
|     return ModRefInfo::NoModRef;
 | |
| 
 | |
|   // If Call1 only reads memory, the only dependence on Call2 can be
 | |
|   // from Call1 reading memory written by Call2.
 | |
|   if (onlyReadsMemory(Call1B))
 | |
|     Result = clearMod(Result);
 | |
|   else if (doesNotReadMemory(Call1B))
 | |
|     Result = clearRef(Result);
 | |
| 
 | |
|   // If Call2 only access memory through arguments, accumulate the mod/ref
 | |
|   // information from Call1's references to the memory referenced by
 | |
|   // Call2's arguments.
 | |
|   if (onlyAccessesArgPointees(Call2B)) {
 | |
|     if (!doesAccessArgPointees(Call2B))
 | |
|       return ModRefInfo::NoModRef;
 | |
|     ModRefInfo R = ModRefInfo::NoModRef;
 | |
|     bool IsMustAlias = true;
 | |
|     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
 | |
|       const Value *Arg = *I;
 | |
|       if (!Arg->getType()->isPointerTy())
 | |
|         continue;
 | |
|       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
 | |
|       auto Call2ArgLoc =
 | |
|           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
 | |
| 
 | |
|       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
 | |
|       // dependence of Call1 on that location is the inverse:
 | |
|       // - If Call2 modifies location, dependence exists if Call1 reads or
 | |
|       //   writes.
 | |
|       // - If Call2 only reads location, dependence exists if Call1 writes.
 | |
|       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
 | |
|       ModRefInfo ArgMask = ModRefInfo::NoModRef;
 | |
|       if (isModSet(ArgModRefC2))
 | |
|         ArgMask = ModRefInfo::ModRef;
 | |
|       else if (isRefSet(ArgModRefC2))
 | |
|         ArgMask = ModRefInfo::Mod;
 | |
| 
 | |
|       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
 | |
|       // above ArgMask to update dependence info.
 | |
|       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
 | |
|       ArgMask = intersectModRef(ArgMask, ModRefC1);
 | |
| 
 | |
|       // Conservatively clear IsMustAlias unless only MustAlias is found.
 | |
|       IsMustAlias &= isMustSet(ModRefC1);
 | |
| 
 | |
|       R = intersectModRef(unionModRef(R, ArgMask), Result);
 | |
|       if (R == Result) {
 | |
|         // On early exit, not all args were checked, cannot set Must.
 | |
|         if (I + 1 != E)
 | |
|           IsMustAlias = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isNoModRef(R))
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If MustAlias found above, set Must bit.
 | |
|     return IsMustAlias ? setMust(R) : clearMust(R);
 | |
|   }
 | |
| 
 | |
|   // If Call1 only accesses memory through arguments, check if Call2 references
 | |
|   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
 | |
|   if (onlyAccessesArgPointees(Call1B)) {
 | |
|     if (!doesAccessArgPointees(Call1B))
 | |
|       return ModRefInfo::NoModRef;
 | |
|     ModRefInfo R = ModRefInfo::NoModRef;
 | |
|     bool IsMustAlias = true;
 | |
|     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
 | |
|       const Value *Arg = *I;
 | |
|       if (!Arg->getType()->isPointerTy())
 | |
|         continue;
 | |
|       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
 | |
|       auto Call1ArgLoc =
 | |
|           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
 | |
| 
 | |
|       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
 | |
|       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
 | |
|       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
 | |
|       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
 | |
|       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
 | |
|       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
 | |
|           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
 | |
|         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
 | |
| 
 | |
|       // Conservatively clear IsMustAlias unless only MustAlias is found.
 | |
|       IsMustAlias &= isMustSet(ModRefC2);
 | |
| 
 | |
|       if (R == Result) {
 | |
|         // On early exit, not all args were checked, cannot set Must.
 | |
|         if (I + 1 != E)
 | |
|           IsMustAlias = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isNoModRef(R))
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If MustAlias found above, set Must bit.
 | |
|     return IsMustAlias ? setMust(R) : clearMust(R);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
 | |
|   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == FMRB_DoesNotAccessMemory)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
 | |
|   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == FMRB_DoesNotAccessMemory)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
 | |
|   switch (AR) {
 | |
|   case NoAlias:
 | |
|     OS << "NoAlias";
 | |
|     break;
 | |
|   case MustAlias:
 | |
|     OS << "MustAlias";
 | |
|     break;
 | |
|   case MayAlias:
 | |
|     OS << "MayAlias";
 | |
|     break;
 | |
|   case PartialAlias:
 | |
|     OS << "PartialAlias";
 | |
|     break;
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper method implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(L, Loc, AAQIP);
 | |
| }
 | |
| ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // Be conservative in the face of atomic.
 | |
|   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   // If the load address doesn't alias the given address, it doesn't read
 | |
|   // or write the specified memory.
 | |
|   if (Loc.Ptr) {
 | |
|     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
 | |
|     if (AR == NoAlias)
 | |
|       return ModRefInfo::NoModRef;
 | |
|     if (AR == MustAlias)
 | |
|       return ModRefInfo::MustRef;
 | |
|   }
 | |
|   // Otherwise, a load just reads.
 | |
|   return ModRefInfo::Ref;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(S, Loc, AAQIP);
 | |
| }
 | |
| ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // Be conservative in the face of atomic.
 | |
|   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   if (Loc.Ptr) {
 | |
|     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
 | |
|     // If the store address cannot alias the pointer in question, then the
 | |
|     // specified memory cannot be modified by the store.
 | |
|     if (AR == NoAlias)
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the pointer is a pointer to constant memory, then it could not have
 | |
|     // been modified by this store.
 | |
|     if (pointsToConstantMemory(Loc, AAQI))
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the store address aliases the pointer as must alias, set Must.
 | |
|     if (AR == MustAlias)
 | |
|       return ModRefInfo::MustMod;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a store just writes.
 | |
|   return ModRefInfo::Mod;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(S, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // If we know that the location is a constant memory location, the fence
 | |
|   // cannot modify this location.
 | |
|   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
 | |
|     return ModRefInfo::Ref;
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(V, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   if (Loc.Ptr) {
 | |
|     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
 | |
|     // If the va_arg address cannot alias the pointer in question, then the
 | |
|     // specified memory cannot be accessed by the va_arg.
 | |
|     if (AR == NoAlias)
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the pointer is a pointer to constant memory, then it could not have
 | |
|     // been modified by this va_arg.
 | |
|     if (pointsToConstantMemory(Loc, AAQI))
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the va_arg aliases the pointer as must alias, set Must.
 | |
|     if (AR == MustAlias)
 | |
|       return ModRefInfo::MustModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a va_arg reads and writes.
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(CatchPad, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   if (Loc.Ptr) {
 | |
|     // If the pointer is a pointer to constant memory,
 | |
|     // then it could not have been modified by this catchpad.
 | |
|     if (pointsToConstantMemory(Loc, AAQI))
 | |
|       return ModRefInfo::NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a catchpad reads and writes.
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(CatchRet, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   if (Loc.Ptr) {
 | |
|     // If the pointer is a pointer to constant memory,
 | |
|     // then it could not have been modified by this catchpad.
 | |
|     if (pointsToConstantMemory(Loc, AAQI))
 | |
|       return ModRefInfo::NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a catchret reads and writes.
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(CX, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
 | |
|   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   if (Loc.Ptr) {
 | |
|     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
 | |
|     // If the cmpxchg address does not alias the location, it does not access
 | |
|     // it.
 | |
|     if (AR == NoAlias)
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the cmpxchg address aliases the pointer as must alias, set Must.
 | |
|     if (AR == MustAlias)
 | |
|       return ModRefInfo::MustModRef;
 | |
|   }
 | |
| 
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   AAQueryInfo AAQIP;
 | |
|   return getModRefInfo(RMW, Loc, AAQIP);
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
 | |
|                                     const MemoryLocation &Loc,
 | |
|                                     AAQueryInfo &AAQI) {
 | |
|   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
 | |
|   if (isStrongerThanMonotonic(RMW->getOrdering()))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   if (Loc.Ptr) {
 | |
|     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
 | |
|     // If the atomicrmw address does not alias the location, it does not access
 | |
|     // it.
 | |
|     if (AR == NoAlias)
 | |
|       return ModRefInfo::NoModRef;
 | |
| 
 | |
|     // If the atomicrmw address aliases the pointer as must alias, set Must.
 | |
|     if (AR == MustAlias)
 | |
|       return ModRefInfo::MustModRef;
 | |
|   }
 | |
| 
 | |
|   return ModRefInfo::ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const Instruction *I,
 | |
|                                     const Optional<MemoryLocation> &OptLoc,
 | |
|                                     AAQueryInfo &AAQIP) {
 | |
|   if (OptLoc == None) {
 | |
|     if (const auto *Call = dyn_cast<CallBase>(I)) {
 | |
|       return createModRefInfo(getModRefBehavior(Call));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::VAArg:
 | |
|     return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
 | |
|   case Instruction::Load:
 | |
|     return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
 | |
|   case Instruction::Store:
 | |
|     return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
 | |
|   case Instruction::Fence:
 | |
|     return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
 | |
|   case Instruction::AtomicCmpXchg:
 | |
|     return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
 | |
|   case Instruction::AtomicRMW:
 | |
|     return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
 | |
|   case Instruction::Call:
 | |
|     return getModRefInfo((const CallInst *)I, Loc, AAQIP);
 | |
|   case Instruction::Invoke:
 | |
|     return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
 | |
|   case Instruction::CatchPad:
 | |
|     return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
 | |
|   case Instruction::CatchRet:
 | |
|     return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
 | |
|   default:
 | |
|     return ModRefInfo::NoModRef;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return information about whether a particular call site modifies
 | |
| /// or reads the specified memory location \p MemLoc before instruction \p I
 | |
| /// in a BasicBlock.
 | |
| /// FIXME: this is really just shoring-up a deficiency in alias analysis.
 | |
| /// BasicAA isn't willing to spend linear time determining whether an alloca
 | |
| /// was captured before or after this particular call, while we are. However,
 | |
| /// with a smarter AA in place, this test is just wasting compile time.
 | |
| ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
 | |
|                                          const MemoryLocation &MemLoc,
 | |
|                                          DominatorTree *DT) {
 | |
|   if (!DT)
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
 | |
|   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
 | |
|       isa<Constant>(Object))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   const auto *Call = dyn_cast<CallBase>(I);
 | |
|   if (!Call || Call == Object)
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
 | |
|                                  /* StoreCaptures */ true, I, DT,
 | |
|                                  /* include Object */ true))
 | |
|     return ModRefInfo::ModRef;
 | |
| 
 | |
|   unsigned ArgNo = 0;
 | |
|   ModRefInfo R = ModRefInfo::NoModRef;
 | |
|   bool IsMustAlias = true;
 | |
|   // Set flag only if no May found and all operands processed.
 | |
|   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
 | |
|        CI != CE; ++CI, ++ArgNo) {
 | |
|     // Only look at the no-capture or byval pointer arguments.  If this
 | |
|     // pointer were passed to arguments that were neither of these, then it
 | |
|     // couldn't be no-capture.
 | |
|     if (!(*CI)->getType()->isPointerTy() ||
 | |
|         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
 | |
|          !Call->isByValArgument(ArgNo)))
 | |
|       continue;
 | |
| 
 | |
|     AliasResult AR = alias(*CI, Object);
 | |
|     // If this is a no-capture pointer argument, see if we can tell that it
 | |
|     // is impossible to alias the pointer we're checking.  If not, we have to
 | |
|     // assume that the call could touch the pointer, even though it doesn't
 | |
|     // escape.
 | |
|     if (AR != MustAlias)
 | |
|       IsMustAlias = false;
 | |
|     if (AR == NoAlias)
 | |
|       continue;
 | |
|     if (Call->doesNotAccessMemory(ArgNo))
 | |
|       continue;
 | |
|     if (Call->onlyReadsMemory(ArgNo)) {
 | |
|       R = ModRefInfo::Ref;
 | |
|       continue;
 | |
|     }
 | |
|     // Not returning MustModRef since we have not seen all the arguments.
 | |
|     return ModRefInfo::ModRef;
 | |
|   }
 | |
|   return IsMustAlias ? setMust(R) : clearMust(R);
 | |
| }
 | |
| 
 | |
| /// canBasicBlockModify - Return true if it is possible for execution of the
 | |
| /// specified basic block to modify the location Loc.
 | |
| ///
 | |
| bool AAResults::canBasicBlockModify(const BasicBlock &BB,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
 | |
| }
 | |
| 
 | |
| /// canInstructionRangeModRef - Return true if it is possible for the
 | |
| /// execution of the specified instructions to mod\ref (according to the
 | |
| /// mode) the location Loc. The instructions to consider are all
 | |
| /// of the instructions in the range of [I1,I2] INCLUSIVE.
 | |
| /// I1 and I2 must be in the same basic block.
 | |
| bool AAResults::canInstructionRangeModRef(const Instruction &I1,
 | |
|                                           const Instruction &I2,
 | |
|                                           const MemoryLocation &Loc,
 | |
|                                           const ModRefInfo Mode) {
 | |
|   assert(I1.getParent() == I2.getParent() &&
 | |
|          "Instructions not in same basic block!");
 | |
|   BasicBlock::const_iterator I = I1.getIterator();
 | |
|   BasicBlock::const_iterator E = I2.getIterator();
 | |
|   ++E;  // Convert from inclusive to exclusive range.
 | |
| 
 | |
|   for (; I != E; ++I) // Check every instruction in range
 | |
|     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Provide a definition for the root virtual destructor.
 | |
| AAResults::Concept::~Concept() = default;
 | |
| 
 | |
| // Provide a definition for the static object used to identify passes.
 | |
| AnalysisKey AAManager::Key;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
 | |
|   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
 | |
|     : ImmutablePass(ID), CB(std::move(CB)) {
 | |
|   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| char ExternalAAWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
 | |
|                 false, true)
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
 | |
|   return new ExternalAAWrapperPass(std::move(Callback));
 | |
| }
 | |
| 
 | |
| AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
 | |
|   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| char AAResultsWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
 | |
|                       "Function Alias Analysis Results", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
 | |
| INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
 | |
|                     "Function Alias Analysis Results", false, true)
 | |
| 
 | |
| FunctionPass *llvm::createAAResultsWrapperPass() {
 | |
|   return new AAResultsWrapperPass();
 | |
| }
 | |
| 
 | |
| /// Run the wrapper pass to rebuild an aggregation over known AA passes.
 | |
| ///
 | |
| /// This is the legacy pass manager's interface to the new-style AA results
 | |
| /// aggregation object. Because this is somewhat shoe-horned into the legacy
 | |
| /// pass manager, we hard code all the specific alias analyses available into
 | |
| /// it. While the particular set enabled is configured via commandline flags,
 | |
| /// adding a new alias analysis to LLVM will require adding support for it to
 | |
| /// this list.
 | |
| bool AAResultsWrapperPass::runOnFunction(Function &F) {
 | |
|   // NB! This *must* be reset before adding new AA results to the new
 | |
|   // AAResults object because in the legacy pass manager, each instance
 | |
|   // of these will refer to the *same* immutable analyses, registering and
 | |
|   // unregistering themselves with them. We need to carefully tear down the
 | |
|   // previous object first, in this case replacing it with an empty one, before
 | |
|   // registering new results.
 | |
|   AAR.reset(
 | |
|       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
 | |
| 
 | |
|   // BasicAA is always available for function analyses. Also, we add it first
 | |
|   // so that it can trump TBAA results when it proves MustAlias.
 | |
|   // FIXME: TBAA should have an explicit mode to support this and then we
 | |
|   // should reconsider the ordering here.
 | |
|   if (!DisableBasicAA)
 | |
|     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
 | |
| 
 | |
|   // Populate the results with the currently available AAs.
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass =
 | |
|           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
| 
 | |
|   // If available, run an external AA providing callback over the results as
 | |
|   // well.
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
 | |
|     if (WrapperPass->CB)
 | |
|       WrapperPass->CB(*this, F, *AAR);
 | |
| 
 | |
|   // Analyses don't mutate the IR, so return false.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<BasicAAWrapperPass>();
 | |
|   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
 | |
| 
 | |
|   // We also need to mark all the alias analysis passes we will potentially
 | |
|   // probe in runOnFunction as used here to ensure the legacy pass manager
 | |
|   // preserves them. This hard coding of lists of alias analyses is specific to
 | |
|   // the legacy pass manager.
 | |
|   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
 | |
| }
 | |
| 
 | |
| AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   Result R(AM.getResult<TargetLibraryAnalysis>(F));
 | |
|   for (auto &Getter : ResultGetters)
 | |
|     (*Getter)(F, AM, R);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
 | |
|                                         BasicAAResult &BAR) {
 | |
|   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
 | |
| 
 | |
|   // Add in our explicitly constructed BasicAA results.
 | |
|   if (!DisableBasicAA)
 | |
|     AAR.addAAResult(BAR);
 | |
| 
 | |
|   // Populate the results with the other currently available AAs.
 | |
|   if (auto *WrapperPass =
 | |
|           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass =
 | |
|           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
 | |
|     if (WrapperPass->CB)
 | |
|       WrapperPass->CB(P, F, AAR);
 | |
| 
 | |
|   return AAR;
 | |
| }
 | |
| 
 | |
| bool llvm::isNoAliasCall(const Value *V) {
 | |
|   if (const auto *Call = dyn_cast<CallBase>(V))
 | |
|     return Call->hasRetAttr(Attribute::NoAlias);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isNoAliasOrByValArgument(const Value *V) {
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasNoAliasAttr() || A->hasByValAttr();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::isIdentifiedObject(const Value *V) {
 | |
|   if (isa<AllocaInst>(V))
 | |
|     return true;
 | |
|   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
 | |
|     return true;
 | |
|   if (isNoAliasCall(V))
 | |
|     return true;
 | |
|   if (isNoAliasOrByValArgument(V))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::isIdentifiedFunctionLocal(const Value *V) {
 | |
|   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
 | |
| }
 | |
| 
 | |
| void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
 | |
|   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
 | |
|   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
 | |
|   // to be added here also.
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
 | |
| }
 |