1235 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1235 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/CGSCCPassManager.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/PassManagerImpl.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TimeProfiler.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| 
 | |
| #define DEBUG_TYPE "cgscc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Explicit template instantiations and specialization definitions for core
 | |
| // template typedefs.
 | |
| namespace llvm {
 | |
| 
 | |
| static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
 | |
|     "abort-on-max-devirt-iterations-reached",
 | |
|     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
 | |
|              "pass is reached"));
 | |
| 
 | |
| // Explicit instantiations for the core proxy templates.
 | |
| template class AllAnalysesOn<LazyCallGraph::SCC>;
 | |
| template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
 | |
| template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
 | |
|                            LazyCallGraph &, CGSCCUpdateResult &>;
 | |
| template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
 | |
| template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
 | |
|                                          LazyCallGraph::SCC, LazyCallGraph &>;
 | |
| template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
 | |
| 
 | |
| /// Explicitly specialize the pass manager run method to handle call graph
 | |
| /// updates.
 | |
| template <>
 | |
| PreservedAnalyses
 | |
| PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
 | |
|             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
 | |
|                                       CGSCCAnalysisManager &AM,
 | |
|                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
 | |
|   // Request PassInstrumentation from analysis manager, will use it to run
 | |
|   // instrumenting callbacks for the passes later.
 | |
|   PassInstrumentation PI =
 | |
|       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
 | |
| 
 | |
|   PreservedAnalyses PA = PreservedAnalyses::all();
 | |
| 
 | |
|   if (DebugLogging)
 | |
|     dbgs() << "Starting CGSCC pass manager run.\n";
 | |
| 
 | |
|   // The SCC may be refined while we are running passes over it, so set up
 | |
|   // a pointer that we can update.
 | |
|   LazyCallGraph::SCC *C = &InitialC;
 | |
| 
 | |
|   // Get Function analysis manager from its proxy.
 | |
|   FunctionAnalysisManager &FAM =
 | |
|       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
 | |
| 
 | |
|   for (auto &Pass : Passes) {
 | |
|     // Check the PassInstrumentation's BeforePass callbacks before running the
 | |
|     // pass, skip its execution completely if asked to (callback returns false).
 | |
|     if (!PI.runBeforePass(*Pass, *C))
 | |
|       continue;
 | |
| 
 | |
|     PreservedAnalyses PassPA;
 | |
|     {
 | |
|       TimeTraceScope TimeScope(Pass->name());
 | |
|       PassPA = Pass->run(*C, AM, G, UR);
 | |
|     }
 | |
| 
 | |
|     if (UR.InvalidatedSCCs.count(C))
 | |
|       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
 | |
|     else
 | |
|       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
 | |
| 
 | |
|     // Update the SCC if necessary.
 | |
|     C = UR.UpdatedC ? UR.UpdatedC : C;
 | |
|     if (UR.UpdatedC) {
 | |
|       // If C is updated, also create a proxy and update FAM inside the result.
 | |
|       auto *ResultFAMCP =
 | |
|           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
 | |
|       ResultFAMCP->updateFAM(FAM);
 | |
|     }
 | |
| 
 | |
|     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
 | |
|     // current SCC may simply need to be skipped if invalid.
 | |
|     if (UR.InvalidatedSCCs.count(C)) {
 | |
|       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
 | |
|       break;
 | |
|     }
 | |
|     // Check that we didn't miss any update scenario.
 | |
|     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | |
| 
 | |
|     // Update the analysis manager as each pass runs and potentially
 | |
|     // invalidates analyses.
 | |
|     AM.invalidate(*C, PassPA);
 | |
| 
 | |
|     // Finally, we intersect the final preserved analyses to compute the
 | |
|     // aggregate preserved set for this pass manager.
 | |
|     PA.intersect(std::move(PassPA));
 | |
| 
 | |
|     // FIXME: Historically, the pass managers all called the LLVM context's
 | |
|     // yield function here. We don't have a generic way to acquire the
 | |
|     // context and it isn't yet clear what the right pattern is for yielding
 | |
|     // in the new pass manager so it is currently omitted.
 | |
|     // ...getContext().yield();
 | |
|   }
 | |
| 
 | |
|   // Before we mark all of *this* SCC's analyses as preserved below, intersect
 | |
|   // this with the cross-SCC preserved analysis set. This is used to allow
 | |
|   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
 | |
|   // for them.
 | |
|   UR.CrossSCCPA.intersect(PA);
 | |
| 
 | |
|   // Invalidation was handled after each pass in the above loop for the current
 | |
|   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
 | |
|   // preserved. We mark this with a set so that we don't need to inspect each
 | |
|   // one individually.
 | |
|   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
 | |
| 
 | |
|   if (DebugLogging)
 | |
|     dbgs() << "Finished CGSCC pass manager run.\n";
 | |
| 
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   // Setup the CGSCC analysis manager from its proxy.
 | |
|   CGSCCAnalysisManager &CGAM =
 | |
|       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
 | |
| 
 | |
|   // Get the call graph for this module.
 | |
|   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
 | |
| 
 | |
|   // Get Function analysis manager from its proxy.
 | |
|   FunctionAnalysisManager &FAM =
 | |
|       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
 | |
| 
 | |
|   // We keep worklists to allow us to push more work onto the pass manager as
 | |
|   // the passes are run.
 | |
|   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
 | |
|   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
 | |
| 
 | |
|   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
 | |
|   // iterating off the worklists.
 | |
|   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
 | |
|   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
 | |
| 
 | |
|   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
 | |
|       InlinedInternalEdges;
 | |
| 
 | |
|   CGSCCUpdateResult UR = {
 | |
|       RCWorklist, CWorklist, InvalidRefSCCSet,         InvalidSCCSet,
 | |
|       nullptr,    nullptr,   PreservedAnalyses::all(), InlinedInternalEdges,
 | |
|       {}};
 | |
| 
 | |
|   // Request PassInstrumentation from analysis manager, will use it to run
 | |
|   // instrumenting callbacks for the passes later.
 | |
|   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
 | |
| 
 | |
|   PreservedAnalyses PA = PreservedAnalyses::all();
 | |
|   CG.buildRefSCCs();
 | |
|   for (auto RCI = CG.postorder_ref_scc_begin(),
 | |
|             RCE = CG.postorder_ref_scc_end();
 | |
|        RCI != RCE;) {
 | |
|     assert(RCWorklist.empty() &&
 | |
|            "Should always start with an empty RefSCC worklist");
 | |
|     // The postorder_ref_sccs range we are walking is lazily constructed, so
 | |
|     // we only push the first one onto the worklist. The worklist allows us
 | |
|     // to capture *new* RefSCCs created during transformations.
 | |
|     //
 | |
|     // We really want to form RefSCCs lazily because that makes them cheaper
 | |
|     // to update as the program is simplified and allows us to have greater
 | |
|     // cache locality as forming a RefSCC touches all the parts of all the
 | |
|     // functions within that RefSCC.
 | |
|     //
 | |
|     // We also eagerly increment the iterator to the next position because
 | |
|     // the CGSCC passes below may delete the current RefSCC.
 | |
|     RCWorklist.insert(&*RCI++);
 | |
| 
 | |
|     do {
 | |
|       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
 | |
|       if (InvalidRefSCCSet.count(RC)) {
 | |
|         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(CWorklist.empty() &&
 | |
|              "Should always start with an empty SCC worklist");
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
 | |
|                         << "\n");
 | |
| 
 | |
|       // The top of the worklist may *also* be the same SCC we just ran over
 | |
|       // (and invalidated for). Keep track of that last SCC we processed due
 | |
|       // to SCC update to avoid redundant processing when an SCC is both just
 | |
|       // updated itself and at the top of the worklist.
 | |
|       LazyCallGraph::SCC *LastUpdatedC = nullptr;
 | |
| 
 | |
|       // Push the initial SCCs in reverse post-order as we'll pop off the
 | |
|       // back and so see this in post-order.
 | |
|       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
 | |
|         CWorklist.insert(&C);
 | |
| 
 | |
|       do {
 | |
|         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
 | |
|         // Due to call graph mutations, we may have invalid SCCs or SCCs from
 | |
|         // other RefSCCs in the worklist. The invalid ones are dead and the
 | |
|         // other RefSCCs should be queued above, so we just need to skip both
 | |
|         // scenarios here.
 | |
|         if (InvalidSCCSet.count(C)) {
 | |
|           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (LastUpdatedC == C) {
 | |
|           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (&C->getOuterRefSCC() != RC) {
 | |
|           LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
 | |
|                                "RefSCC...\n");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Ensure we can proxy analysis updates from the CGSCC analysis manager
 | |
|         // into the the Function analysis manager by getting a proxy here.
 | |
|         // This also needs to update the FunctionAnalysisManager, as this may be
 | |
|         // the first time we see this SCC.
 | |
|         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
 | |
|             FAM);
 | |
| 
 | |
|         // Each time we visit a new SCC pulled off the worklist,
 | |
|         // a transformation of a child SCC may have also modified this parent
 | |
|         // and invalidated analyses. So we invalidate using the update record's
 | |
|         // cross-SCC preserved set. This preserved set is intersected by any
 | |
|         // CGSCC pass that handles invalidation (primarily pass managers) prior
 | |
|         // to marking its SCC as preserved. That lets us track everything that
 | |
|         // might need invalidation across SCCs without excessive invalidations
 | |
|         // on a single SCC.
 | |
|         //
 | |
|         // This essentially allows SCC passes to freely invalidate analyses
 | |
|         // of any ancestor SCC. If this becomes detrimental to successfully
 | |
|         // caching analyses, we could force each SCC pass to manually
 | |
|         // invalidate the analyses for any SCCs other than themselves which
 | |
|         // are mutated. However, that seems to lose the robustness of the
 | |
|         // pass-manager driven invalidation scheme.
 | |
|         CGAM.invalidate(*C, UR.CrossSCCPA);
 | |
| 
 | |
|         do {
 | |
|           // Check that we didn't miss any update scenario.
 | |
|           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
 | |
|           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | |
|           assert(&C->getOuterRefSCC() == RC &&
 | |
|                  "Processing an SCC in a different RefSCC!");
 | |
| 
 | |
|           LastUpdatedC = UR.UpdatedC;
 | |
|           UR.UpdatedRC = nullptr;
 | |
|           UR.UpdatedC = nullptr;
 | |
| 
 | |
|           // Check the PassInstrumentation's BeforePass callbacks before
 | |
|           // running the pass, skip its execution completely if asked to
 | |
|           // (callback returns false).
 | |
|           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
 | |
|             continue;
 | |
| 
 | |
|           PreservedAnalyses PassPA;
 | |
|           {
 | |
|             TimeTraceScope TimeScope(Pass->name());
 | |
|             PassPA = Pass->run(*C, CGAM, CG, UR);
 | |
|           }
 | |
| 
 | |
|           if (UR.InvalidatedSCCs.count(C))
 | |
|             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
 | |
|           else
 | |
|             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
 | |
| 
 | |
|           // Update the SCC and RefSCC if necessary.
 | |
|           C = UR.UpdatedC ? UR.UpdatedC : C;
 | |
|           RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
 | |
| 
 | |
|           if (UR.UpdatedC) {
 | |
|             // If we're updating the SCC, also update the FAM inside the proxy's
 | |
|             // result.
 | |
|             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
 | |
|                 FAM);
 | |
|           }
 | |
| 
 | |
|           // If the CGSCC pass wasn't able to provide a valid updated SCC,
 | |
|           // the current SCC may simply need to be skipped if invalid.
 | |
|           if (UR.InvalidatedSCCs.count(C)) {
 | |
|             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
 | |
|             break;
 | |
|           }
 | |
|           // Check that we didn't miss any update scenario.
 | |
|           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | |
| 
 | |
|           // We handle invalidating the CGSCC analysis manager's information
 | |
|           // for the (potentially updated) SCC here. Note that any other SCCs
 | |
|           // whose structure has changed should have been invalidated by
 | |
|           // whatever was updating the call graph. This SCC gets invalidated
 | |
|           // late as it contains the nodes that were actively being
 | |
|           // processed.
 | |
|           CGAM.invalidate(*C, PassPA);
 | |
| 
 | |
|           // Then intersect the preserved set so that invalidation of module
 | |
|           // analyses will eventually occur when the module pass completes.
 | |
|           // Also intersect with the cross-SCC preserved set to capture any
 | |
|           // cross-SCC invalidation.
 | |
|           UR.CrossSCCPA.intersect(PassPA);
 | |
|           PA.intersect(std::move(PassPA));
 | |
| 
 | |
|           // The pass may have restructured the call graph and refined the
 | |
|           // current SCC and/or RefSCC. We need to update our current SCC and
 | |
|           // RefSCC pointers to follow these. Also, when the current SCC is
 | |
|           // refined, re-run the SCC pass over the newly refined SCC in order
 | |
|           // to observe the most precise SCC model available. This inherently
 | |
|           // cannot cycle excessively as it only happens when we split SCCs
 | |
|           // apart, at most converging on a DAG of single nodes.
 | |
|           // FIXME: If we ever start having RefSCC passes, we'll want to
 | |
|           // iterate there too.
 | |
|           if (UR.UpdatedC)
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "Re-running SCC passes after a refinement of the "
 | |
|                           "current SCC: "
 | |
|                        << *UR.UpdatedC << "\n");
 | |
| 
 | |
|           // Note that both `C` and `RC` may at this point refer to deleted,
 | |
|           // invalid SCC and RefSCCs respectively. But we will short circuit
 | |
|           // the processing when we check them in the loop above.
 | |
|         } while (UR.UpdatedC);
 | |
|       } while (!CWorklist.empty());
 | |
| 
 | |
|       // We only need to keep internal inlined edge information within
 | |
|       // a RefSCC, clear it to save on space and let the next time we visit
 | |
|       // any of these functions have a fresh start.
 | |
|       InlinedInternalEdges.clear();
 | |
|     } while (!RCWorklist.empty());
 | |
|   }
 | |
| 
 | |
|   // By definition we preserve the call garph, all SCC analyses, and the
 | |
|   // analysis proxies by handling them above and in any nested pass managers.
 | |
|   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
 | |
|   PA.preserve<LazyCallGraphAnalysis>();
 | |
|   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
 | |
|   PA.preserve<FunctionAnalysisManagerModuleProxy>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
 | |
|                                              CGSCCAnalysisManager &AM,
 | |
|                                              LazyCallGraph &CG,
 | |
|                                              CGSCCUpdateResult &UR) {
 | |
|   PreservedAnalyses PA = PreservedAnalyses::all();
 | |
|   PassInstrumentation PI =
 | |
|       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
 | |
| 
 | |
|   // The SCC may be refined while we are running passes over it, so set up
 | |
|   // a pointer that we can update.
 | |
|   LazyCallGraph::SCC *C = &InitialC;
 | |
| 
 | |
|   // Struct to track the counts of direct and indirect calls in each function
 | |
|   // of the SCC.
 | |
|   struct CallCount {
 | |
|     int Direct;
 | |
|     int Indirect;
 | |
|   };
 | |
| 
 | |
|   // Put value handles on all of the indirect calls and return the number of
 | |
|   // direct calls for each function in the SCC.
 | |
|   auto ScanSCC = [](LazyCallGraph::SCC &C,
 | |
|                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
 | |
|     assert(CallHandles.empty() && "Must start with a clear set of handles.");
 | |
| 
 | |
|     SmallDenseMap<Function *, CallCount> CallCounts;
 | |
|     CallCount CountLocal = {0, 0};
 | |
|     for (LazyCallGraph::Node &N : C) {
 | |
|       CallCount &Count =
 | |
|           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
 | |
|               .first->second;
 | |
|       for (Instruction &I : instructions(N.getFunction()))
 | |
|         if (auto *CB = dyn_cast<CallBase>(&I)) {
 | |
|           if (CB->getCalledFunction()) {
 | |
|             ++Count.Direct;
 | |
|           } else {
 | |
|             ++Count.Indirect;
 | |
|             CallHandles.insert({CB, WeakTrackingVH(CB)});
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return CallCounts;
 | |
|   };
 | |
| 
 | |
|   UR.IndirectVHs.clear();
 | |
|   // Populate the initial call handles and get the initial call counts.
 | |
|   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
 | |
| 
 | |
|   for (int Iteration = 0;; ++Iteration) {
 | |
|     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
 | |
|       continue;
 | |
| 
 | |
|     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
 | |
| 
 | |
|     if (UR.InvalidatedSCCs.count(C))
 | |
|       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
 | |
|     else
 | |
|       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
 | |
| 
 | |
|     // If the SCC structure has changed, bail immediately and let the outer
 | |
|     // CGSCC layer handle any iteration to reflect the refined structure.
 | |
|     if (UR.UpdatedC && UR.UpdatedC != C) {
 | |
|       PA.intersect(std::move(PassPA));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Check that we didn't miss any update scenario.
 | |
|     assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
 | |
|     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | |
| 
 | |
|     // Check whether any of the handles were devirtualized.
 | |
|     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
 | |
|       if (P.second) {
 | |
|         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
 | |
|           if (CB->getCalledFunction()) {
 | |
|             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     });
 | |
| 
 | |
|     // Rescan to build up a new set of handles and count how many direct
 | |
|     // calls remain. If we decide to iterate, this also sets up the input to
 | |
|     // the next iteration.
 | |
|     UR.IndirectVHs.clear();
 | |
|     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
 | |
| 
 | |
|     // If we haven't found an explicit devirtualization already see if we
 | |
|     // have decreased the number of indirect calls and increased the number
 | |
|     // of direct calls for any function in the SCC. This can be fooled by all
 | |
|     // manner of transformations such as DCE and other things, but seems to
 | |
|     // work well in practice.
 | |
|     if (!Devirt)
 | |
|       // Iterate over the keys in NewCallCounts, if Function also exists in
 | |
|       // CallCounts, make the check below.
 | |
|       for (auto &Pair : NewCallCounts) {
 | |
|         auto &CallCountNew = Pair.second;
 | |
|         auto CountIt = CallCounts.find(Pair.first);
 | |
|         if (CountIt != CallCounts.end()) {
 | |
|           const auto &CallCountOld = CountIt->second;
 | |
|           if (CallCountOld.Indirect > CallCountNew.Indirect &&
 | |
|               CallCountOld.Direct < CallCountNew.Direct) {
 | |
|             Devirt = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     if (!Devirt) {
 | |
|       PA.intersect(std::move(PassPA));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if we've already hit our max, we're done.
 | |
|     if (Iteration >= MaxIterations) {
 | |
|       if (AbortOnMaxDevirtIterationsReached)
 | |
|         report_fatal_error("Max devirtualization iterations reached");
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "Found another devirtualization after hitting the max "
 | |
|                     "number of repetitions ("
 | |
|                  << MaxIterations << ") on SCC: " << *C << "\n");
 | |
|       PA.intersect(std::move(PassPA));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
 | |
|                << *C << "\n");
 | |
| 
 | |
|     // Move over the new call counts in preparation for iterating.
 | |
|     CallCounts = std::move(NewCallCounts);
 | |
| 
 | |
|     // Update the analysis manager with each run and intersect the total set
 | |
|     // of preserved analyses so we're ready to iterate.
 | |
|     AM.invalidate(*C, PassPA);
 | |
| 
 | |
|     PA.intersect(std::move(PassPA));
 | |
|   }
 | |
| 
 | |
|   // Note that we don't add any preserved entries here unlike a more normal
 | |
|   // "pass manager" because we only handle invalidation *between* iterations,
 | |
|   // not after the last iteration.
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
 | |
|                                                   CGSCCAnalysisManager &AM,
 | |
|                                                   LazyCallGraph &CG,
 | |
|                                                   CGSCCUpdateResult &UR) {
 | |
|   // Setup the function analysis manager from its proxy.
 | |
|   FunctionAnalysisManager &FAM =
 | |
|       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
 | |
| 
 | |
|   SmallVector<LazyCallGraph::Node *, 4> Nodes;
 | |
|   for (LazyCallGraph::Node &N : C)
 | |
|     Nodes.push_back(&N);
 | |
| 
 | |
|   // The SCC may get split while we are optimizing functions due to deleting
 | |
|   // edges. If this happens, the current SCC can shift, so keep track of
 | |
|   // a pointer we can overwrite.
 | |
|   LazyCallGraph::SCC *CurrentC = &C;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
 | |
| 
 | |
|   PreservedAnalyses PA = PreservedAnalyses::all();
 | |
|   for (LazyCallGraph::Node *N : Nodes) {
 | |
|     // Skip nodes from other SCCs. These may have been split out during
 | |
|     // processing. We'll eventually visit those SCCs and pick up the nodes
 | |
|     // there.
 | |
|     if (CG.lookupSCC(*N) != CurrentC)
 | |
|       continue;
 | |
| 
 | |
|     Function &F = N->getFunction();
 | |
| 
 | |
|     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
 | |
|     if (!PI.runBeforePass<Function>(*Pass, F))
 | |
|       continue;
 | |
| 
 | |
|     PreservedAnalyses PassPA;
 | |
|     {
 | |
|       TimeTraceScope TimeScope(Pass->name());
 | |
|       PassPA = Pass->run(F, FAM);
 | |
|     }
 | |
| 
 | |
|     PI.runAfterPass<Function>(*Pass, F, PassPA);
 | |
| 
 | |
|     // We know that the function pass couldn't have invalidated any other
 | |
|     // function's analyses (that's the contract of a function pass), so
 | |
|     // directly handle the function analysis manager's invalidation here.
 | |
|     FAM.invalidate(F, PassPA);
 | |
| 
 | |
|     // Then intersect the preserved set so that invalidation of module
 | |
|     // analyses will eventually occur when the module pass completes.
 | |
|     PA.intersect(std::move(PassPA));
 | |
| 
 | |
|     // If the call graph hasn't been preserved, update it based on this
 | |
|     // function pass. This may also update the current SCC to point to
 | |
|     // a smaller, more refined SCC.
 | |
|     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
 | |
|     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
 | |
|       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
 | |
|                                                             AM, UR, FAM);
 | |
|       assert(CG.lookupSCC(*N) == CurrentC &&
 | |
|              "Current SCC not updated to the SCC containing the current node!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // By definition we preserve the proxy. And we preserve all analyses on
 | |
|   // Functions. This precludes *any* invalidation of function analyses by the
 | |
|   // proxy, but that's OK because we've taken care to invalidate analyses in
 | |
|   // the function analysis manager incrementally above.
 | |
|   PA.preserveSet<AllAnalysesOn<Function>>();
 | |
|   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
| 
 | |
|   // We've also ensured that we updated the call graph along the way.
 | |
|   PA.preserve<LazyCallGraphAnalysis>();
 | |
| 
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
 | |
|     Module &M, const PreservedAnalyses &PA,
 | |
|     ModuleAnalysisManager::Invalidator &Inv) {
 | |
|   // If literally everything is preserved, we're done.
 | |
|   if (PA.areAllPreserved())
 | |
|     return false; // This is still a valid proxy.
 | |
| 
 | |
|   // If this proxy or the call graph is going to be invalidated, we also need
 | |
|   // to clear all the keys coming from that analysis.
 | |
|   //
 | |
|   // We also directly invalidate the FAM's module proxy if necessary, and if
 | |
|   // that proxy isn't preserved we can't preserve this proxy either. We rely on
 | |
|   // it to handle module -> function analysis invalidation in the face of
 | |
|   // structural changes and so if it's unavailable we conservatively clear the
 | |
|   // entire SCC layer as well rather than trying to do invalidation ourselves.
 | |
|   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
 | |
|   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
 | |
|       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
 | |
|       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
 | |
|     InnerAM->clear();
 | |
| 
 | |
|     // And the proxy itself should be marked as invalid so that we can observe
 | |
|     // the new call graph. This isn't strictly necessary because we cheat
 | |
|     // above, but is still useful.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Directly check if the relevant set is preserved so we can short circuit
 | |
|   // invalidating SCCs below.
 | |
|   bool AreSCCAnalysesPreserved =
 | |
|       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
 | |
| 
 | |
|   // Ok, we have a graph, so we can propagate the invalidation down into it.
 | |
|   G->buildRefSCCs();
 | |
|   for (auto &RC : G->postorder_ref_sccs())
 | |
|     for (auto &C : RC) {
 | |
|       Optional<PreservedAnalyses> InnerPA;
 | |
| 
 | |
|       // Check to see whether the preserved set needs to be adjusted based on
 | |
|       // module-level analysis invalidation triggering deferred invalidation
 | |
|       // for this SCC.
 | |
|       if (auto *OuterProxy =
 | |
|               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
 | |
|         for (const auto &OuterInvalidationPair :
 | |
|              OuterProxy->getOuterInvalidations()) {
 | |
|           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | |
|           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
 | |
|             if (!InnerPA)
 | |
|               InnerPA = PA;
 | |
|             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|               InnerPA->abandon(InnerAnalysisID);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // Check if we needed a custom PA set. If so we'll need to run the inner
 | |
|       // invalidation.
 | |
|       if (InnerPA) {
 | |
|         InnerAM->invalidate(C, *InnerPA);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise we only need to do invalidation if the original PA set didn't
 | |
|       // preserve all SCC analyses.
 | |
|       if (!AreSCCAnalysesPreserved)
 | |
|         InnerAM->invalidate(C, PA);
 | |
|     }
 | |
| 
 | |
|   // Return false to indicate that this result is still a valid proxy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| CGSCCAnalysisManagerModuleProxy::Result
 | |
| CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   // Force the Function analysis manager to also be available so that it can
 | |
|   // be accessed in an SCC analysis and proxied onward to function passes.
 | |
|   // FIXME: It is pretty awkward to just drop the result here and assert that
 | |
|   // we can find it again later.
 | |
|   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
 | |
| 
 | |
|   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
 | |
| }
 | |
| 
 | |
| AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
 | |
| 
 | |
| FunctionAnalysisManagerCGSCCProxy::Result
 | |
| FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
 | |
|                                        CGSCCAnalysisManager &AM,
 | |
|                                        LazyCallGraph &CG) {
 | |
|   // Note: unconditionally getting checking that the proxy exists may get it at
 | |
|   // this point. There are cases when this is being run unnecessarily, but
 | |
|   // it is cheap and having the assertion in place is more valuable.
 | |
|   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
 | |
|   Module &M = *C.begin()->getFunction().getParent();
 | |
|   bool ProxyExists =
 | |
|       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
 | |
|   assert(ProxyExists &&
 | |
|          "The CGSCC pass manager requires that the FAM module proxy is run "
 | |
|          "on the module prior to entering the CGSCC walk");
 | |
|   (void)ProxyExists;
 | |
| 
 | |
|   // We just return an empty result. The caller will use the updateFAM interface
 | |
|   // to correctly register the relevant FunctionAnalysisManager based on the
 | |
|   // context in which this proxy is run.
 | |
|   return Result();
 | |
| }
 | |
| 
 | |
| bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
 | |
|     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
 | |
|     CGSCCAnalysisManager::Invalidator &Inv) {
 | |
|   // If literally everything is preserved, we're done.
 | |
|   if (PA.areAllPreserved())
 | |
|     return false; // This is still a valid proxy.
 | |
| 
 | |
|   // All updates to preserve valid results are done below, so we don't need to
 | |
|   // invalidate this proxy.
 | |
|   //
 | |
|   // Note that in order to preserve this proxy, a module pass must ensure that
 | |
|   // the FAM has been completely updated to handle the deletion of functions.
 | |
|   // Specifically, any FAM-cached results for those functions need to have been
 | |
|   // forcibly cleared. When preserved, this proxy will only invalidate results
 | |
|   // cached on functions *still in the module* at the end of the module pass.
 | |
|   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
 | |
|   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
 | |
|     for (LazyCallGraph::Node &N : C)
 | |
|       FAM->clear(N.getFunction(), N.getFunction().getName());
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Directly check if the relevant set is preserved.
 | |
|   bool AreFunctionAnalysesPreserved =
 | |
|       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
 | |
| 
 | |
|   // Now walk all the functions to see if any inner analysis invalidation is
 | |
|   // necessary.
 | |
|   for (LazyCallGraph::Node &N : C) {
 | |
|     Function &F = N.getFunction();
 | |
|     Optional<PreservedAnalyses> FunctionPA;
 | |
| 
 | |
|     // Check to see whether the preserved set needs to be pruned based on
 | |
|     // SCC-level analysis invalidation that triggers deferred invalidation
 | |
|     // registered with the outer analysis manager proxy for this function.
 | |
|     if (auto *OuterProxy =
 | |
|             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
 | |
|       for (const auto &OuterInvalidationPair :
 | |
|            OuterProxy->getOuterInvalidations()) {
 | |
|         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | |
|         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
 | |
|           if (!FunctionPA)
 | |
|             FunctionPA = PA;
 | |
|           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|             FunctionPA->abandon(InnerAnalysisID);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Check if we needed a custom PA set, and if so we'll need to run the
 | |
|     // inner invalidation.
 | |
|     if (FunctionPA) {
 | |
|       FAM->invalidate(F, *FunctionPA);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we only need to do invalidation if the original PA set didn't
 | |
|     // preserve all function analyses.
 | |
|     if (!AreFunctionAnalysesPreserved)
 | |
|       FAM->invalidate(F, PA);
 | |
|   }
 | |
| 
 | |
|   // Return false to indicate that this result is still a valid proxy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// When a new SCC is created for the graph we first update the
 | |
| /// FunctionAnalysisManager in the Proxy's result.
 | |
| /// As there might be function analysis results cached for the functions now in
 | |
| /// that SCC, two forms of  updates are required.
 | |
| ///
 | |
| /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
 | |
| /// created so that any subsequent invalidation events to the SCC are
 | |
| /// propagated to the function analysis results cached for functions within it.
 | |
| ///
 | |
| /// Second, if any of the functions within the SCC have analysis results with
 | |
| /// outer analysis dependencies, then those dependencies would point to the
 | |
| /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
 | |
| /// function analyses so that they don't retain stale handles.
 | |
| static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
 | |
|                                          LazyCallGraph &G,
 | |
|                                          CGSCCAnalysisManager &AM,
 | |
|                                          FunctionAnalysisManager &FAM) {
 | |
|   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
 | |
| 
 | |
|   // Now walk the functions in this SCC and invalidate any function analysis
 | |
|   // results that might have outer dependencies on an SCC analysis.
 | |
|   for (LazyCallGraph::Node &N : C) {
 | |
|     Function &F = N.getFunction();
 | |
| 
 | |
|     auto *OuterProxy =
 | |
|         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
 | |
|     if (!OuterProxy)
 | |
|       // No outer analyses were queried, nothing to do.
 | |
|       continue;
 | |
| 
 | |
|     // Forcibly abandon all the inner analyses with dependencies, but
 | |
|     // invalidate nothing else.
 | |
|     auto PA = PreservedAnalyses::all();
 | |
|     for (const auto &OuterInvalidationPair :
 | |
|          OuterProxy->getOuterInvalidations()) {
 | |
|       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|         PA.abandon(InnerAnalysisID);
 | |
|     }
 | |
| 
 | |
|     // Now invalidate anything we found.
 | |
|     FAM.invalidate(F, PA);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
 | |
| /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
 | |
| /// added SCCs.
 | |
| ///
 | |
| /// The range of new SCCs must be in postorder already. The SCC they were split
 | |
| /// out of must be provided as \p C. The current node being mutated and
 | |
| /// triggering updates must be passed as \p N.
 | |
| ///
 | |
| /// This function returns the SCC containing \p N. This will be either \p C if
 | |
| /// no new SCCs have been split out, or it will be the new SCC containing \p N.
 | |
| template <typename SCCRangeT>
 | |
| static LazyCallGraph::SCC *
 | |
| incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
 | |
|                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
 | |
|                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | |
|   using SCC = LazyCallGraph::SCC;
 | |
| 
 | |
|   if (NewSCCRange.empty())
 | |
|     return C;
 | |
| 
 | |
|   // Add the current SCC to the worklist as its shape has changed.
 | |
|   UR.CWorklist.insert(C);
 | |
|   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
 | |
|                     << "\n");
 | |
| 
 | |
|   SCC *OldC = C;
 | |
| 
 | |
|   // Update the current SCC. Note that if we have new SCCs, this must actually
 | |
|   // change the SCC.
 | |
|   assert(C != &*NewSCCRange.begin() &&
 | |
|          "Cannot insert new SCCs without changing current SCC!");
 | |
|   C = &*NewSCCRange.begin();
 | |
|   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | |
| 
 | |
|   // If we had a cached FAM proxy originally, we will want to create more of
 | |
|   // them for each SCC that was split off.
 | |
|   FunctionAnalysisManager *FAM = nullptr;
 | |
|   if (auto *FAMProxy =
 | |
|           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
 | |
|     FAM = &FAMProxy->getManager();
 | |
| 
 | |
|   // We need to propagate an invalidation call to all but the newly current SCC
 | |
|   // because the outer pass manager won't do that for us after splitting them.
 | |
|   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
 | |
|   // there are preserved analysis we can avoid invalidating them here for
 | |
|   // split-off SCCs.
 | |
|   // We know however that this will preserve any FAM proxy so go ahead and mark
 | |
|   // that.
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|   AM.invalidate(*OldC, PA);
 | |
| 
 | |
|   // Ensure the now-current SCC's function analyses are updated.
 | |
|   if (FAM)
 | |
|     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
 | |
| 
 | |
|   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
 | |
|                                             NewSCCRange.end()))) {
 | |
|     assert(C != &NewC && "No need to re-visit the current SCC!");
 | |
|     assert(OldC != &NewC && "Already handled the original SCC!");
 | |
|     UR.CWorklist.insert(&NewC);
 | |
|     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
 | |
| 
 | |
|     // Ensure new SCCs' function analyses are updated.
 | |
|     if (FAM)
 | |
|       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
 | |
| 
 | |
|     // Also propagate a normal invalidation to the new SCC as only the current
 | |
|     // will get one from the pass manager infrastructure.
 | |
|     AM.invalidate(NewC, PA);
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
 | |
|     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | |
|     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
 | |
|     FunctionAnalysisManager &FAM, bool FunctionPass) {
 | |
|   using Node = LazyCallGraph::Node;
 | |
|   using Edge = LazyCallGraph::Edge;
 | |
|   using SCC = LazyCallGraph::SCC;
 | |
|   using RefSCC = LazyCallGraph::RefSCC;
 | |
| 
 | |
|   RefSCC &InitialRC = InitialC.getOuterRefSCC();
 | |
|   SCC *C = &InitialC;
 | |
|   RefSCC *RC = &InitialRC;
 | |
|   Function &F = N.getFunction();
 | |
| 
 | |
|   // Walk the function body and build up the set of retained, promoted, and
 | |
|   // demoted edges.
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
|   SmallPtrSet<Node *, 16> RetainedEdges;
 | |
|   SmallSetVector<Node *, 4> PromotedRefTargets;
 | |
|   SmallSetVector<Node *, 4> DemotedCallTargets;
 | |
|   SmallSetVector<Node *, 4> NewCallEdges;
 | |
|   SmallSetVector<Node *, 4> NewRefEdges;
 | |
| 
 | |
|   // First walk the function and handle all called functions. We do this first
 | |
|   // because if there is a single call edge, whether there are ref edges is
 | |
|   // irrelevant.
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     if (auto *CB = dyn_cast<CallBase>(&I)) {
 | |
|       if (Function *Callee = CB->getCalledFunction()) {
 | |
|         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
 | |
|           Node *CalleeN = G.lookup(*Callee);
 | |
|           assert(CalleeN &&
 | |
|                  "Visited function should already have an associated node");
 | |
|           Edge *E = N->lookup(*CalleeN);
 | |
|           assert((E || !FunctionPass) &&
 | |
|                  "No function transformations should introduce *new* "
 | |
|                  "call edges! Any new calls should be modeled as "
 | |
|                  "promoted existing ref edges!");
 | |
|           bool Inserted = RetainedEdges.insert(CalleeN).second;
 | |
|           (void)Inserted;
 | |
|           assert(Inserted && "We should never visit a function twice.");
 | |
|           if (!E)
 | |
|             NewCallEdges.insert(CalleeN);
 | |
|           else if (!E->isCall())
 | |
|             PromotedRefTargets.insert(CalleeN);
 | |
|         }
 | |
|       } else {
 | |
|         // We can miss devirtualization if an indirect call is created then
 | |
|         // promoted before updateCGAndAnalysisManagerForPass runs.
 | |
|         auto *Entry = UR.IndirectVHs.find(CB);
 | |
|         if (Entry == UR.IndirectVHs.end())
 | |
|           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
 | |
|         else if (!Entry->second)
 | |
|           Entry->second = WeakTrackingVH(CB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now walk all references.
 | |
|   for (Instruction &I : instructions(F))
 | |
|     for (Value *Op : I.operand_values())
 | |
|       if (auto *OpC = dyn_cast<Constant>(Op))
 | |
|         if (Visited.insert(OpC).second)
 | |
|           Worklist.push_back(OpC);
 | |
| 
 | |
|   auto VisitRef = [&](Function &Referee) {
 | |
|     Node *RefereeN = G.lookup(Referee);
 | |
|     assert(RefereeN &&
 | |
|            "Visited function should already have an associated node");
 | |
|     Edge *E = N->lookup(*RefereeN);
 | |
|     assert((E || !FunctionPass) &&
 | |
|            "No function transformations should introduce *new* ref "
 | |
|            "edges! Any new ref edges would require IPO which "
 | |
|            "function passes aren't allowed to do!");
 | |
|     bool Inserted = RetainedEdges.insert(RefereeN).second;
 | |
|     (void)Inserted;
 | |
|     assert(Inserted && "We should never visit a function twice.");
 | |
|     if (!E)
 | |
|       NewRefEdges.insert(RefereeN);
 | |
|     else if (E->isCall())
 | |
|       DemotedCallTargets.insert(RefereeN);
 | |
|   };
 | |
|   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
 | |
| 
 | |
|   // Handle new ref edges.
 | |
|   for (Node *RefTarget : NewRefEdges) {
 | |
|     SCC &TargetC = *G.lookupSCC(*RefTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
|     (void)TargetRC;
 | |
|     // TODO: This only allows trivial edges to be added for now.
 | |
|     assert((RC == &TargetRC ||
 | |
|            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
 | |
|     RC->insertTrivialRefEdge(N, *RefTarget);
 | |
|   }
 | |
| 
 | |
|   // Handle new call edges.
 | |
|   for (Node *CallTarget : NewCallEdges) {
 | |
|     SCC &TargetC = *G.lookupSCC(*CallTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
|     (void)TargetRC;
 | |
|     // TODO: This only allows trivial edges to be added for now.
 | |
|     assert((RC == &TargetRC ||
 | |
|            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
 | |
|     // Add a trivial ref edge to be promoted later on alongside
 | |
|     // PromotedRefTargets.
 | |
|     RC->insertTrivialRefEdge(N, *CallTarget);
 | |
|   }
 | |
| 
 | |
|   // Include synthetic reference edges to known, defined lib functions.
 | |
|   for (auto *LibFn : G.getLibFunctions())
 | |
|     // While the list of lib functions doesn't have repeats, don't re-visit
 | |
|     // anything handled above.
 | |
|     if (!Visited.count(LibFn))
 | |
|       VisitRef(*LibFn);
 | |
| 
 | |
|   // First remove all of the edges that are no longer present in this function.
 | |
|   // The first step makes these edges uniformly ref edges and accumulates them
 | |
|   // into a separate data structure so removal doesn't invalidate anything.
 | |
|   SmallVector<Node *, 4> DeadTargets;
 | |
|   for (Edge &E : *N) {
 | |
|     if (RetainedEdges.count(&E.getNode()))
 | |
|       continue;
 | |
| 
 | |
|     SCC &TargetC = *G.lookupSCC(E.getNode());
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
|     if (&TargetRC == RC && E.isCall()) {
 | |
|       if (C != &TargetC) {
 | |
|         // For separate SCCs this is trivial.
 | |
|         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
 | |
|       } else {
 | |
|         // Now update the call graph.
 | |
|         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
 | |
|                                    G, N, C, AM, UR);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that this is ready for actual removal, put it into our list.
 | |
|     DeadTargets.push_back(&E.getNode());
 | |
|   }
 | |
|   // Remove the easy cases quickly and actually pull them out of our list.
 | |
|   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
 | |
|     SCC &TargetC = *G.lookupSCC(*TargetN);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|     // We can't trivially remove internal targets, so skip
 | |
|     // those.
 | |
|     if (&TargetRC == RC)
 | |
|       return false;
 | |
| 
 | |
|     RC->removeOutgoingEdge(N, *TargetN);
 | |
|     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
 | |
|                       << TargetN << "'\n");
 | |
|     return true;
 | |
|   });
 | |
| 
 | |
|   // Now do a batch removal of the internal ref edges left.
 | |
|   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
 | |
|   if (!NewRefSCCs.empty()) {
 | |
|     // The old RefSCC is dead, mark it as such.
 | |
|     UR.InvalidatedRefSCCs.insert(RC);
 | |
| 
 | |
|     // Note that we don't bother to invalidate analyses as ref-edge
 | |
|     // connectivity is not really observable in any way and is intended
 | |
|     // exclusively to be used for ordering of transforms rather than for
 | |
|     // analysis conclusions.
 | |
| 
 | |
|     // Update RC to the "bottom".
 | |
|     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
 | |
|     RC = &C->getOuterRefSCC();
 | |
|     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
 | |
| 
 | |
|     // The RC worklist is in reverse postorder, so we enqueue the new ones in
 | |
|     // RPO except for the one which contains the source node as that is the
 | |
|     // "bottom" we will continue processing in the bottom-up walk.
 | |
|     assert(NewRefSCCs.front() == RC &&
 | |
|            "New current RefSCC not first in the returned list!");
 | |
|     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
 | |
|                                                   NewRefSCCs.end()))) {
 | |
|       assert(NewRC != RC && "Should not encounter the current RefSCC further "
 | |
|                             "in the postorder list of new RefSCCs.");
 | |
|       UR.RCWorklist.insert(NewRC);
 | |
|       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
 | |
|                         << *NewRC << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Next demote all the call edges that are now ref edges. This helps make
 | |
|   // the SCCs small which should minimize the work below as we don't want to
 | |
|   // form cycles that this would break.
 | |
|   for (Node *RefTarget : DemotedCallTargets) {
 | |
|     SCC &TargetC = *G.lookupSCC(*RefTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|     // The easy case is when the target RefSCC is not this RefSCC. This is
 | |
|     // only supported when the target RefSCC is a child of this RefSCC.
 | |
|     if (&TargetRC != RC) {
 | |
|       assert(RC->isAncestorOf(TargetRC) &&
 | |
|              "Cannot potentially form RefSCC cycles here!");
 | |
|       RC->switchOutgoingEdgeToRef(N, *RefTarget);
 | |
|       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
 | |
|                         << "' to '" << *RefTarget << "'\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We are switching an internal call edge to a ref edge. This may split up
 | |
|     // some SCCs.
 | |
|     if (C != &TargetC) {
 | |
|       // For separate SCCs this is trivial.
 | |
|       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Now update the call graph.
 | |
|     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
 | |
|                                C, AM, UR);
 | |
|   }
 | |
| 
 | |
|   // We added a ref edge earlier for new call edges, promote those to call edges
 | |
|   // alongside PromotedRefTargets.
 | |
|   for (Node *E : NewCallEdges)
 | |
|     PromotedRefTargets.insert(E);
 | |
| 
 | |
|   // Now promote ref edges into call edges.
 | |
|   for (Node *CallTarget : PromotedRefTargets) {
 | |
|     SCC &TargetC = *G.lookupSCC(*CallTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|     // The easy case is when the target RefSCC is not this RefSCC. This is
 | |
|     // only supported when the target RefSCC is a child of this RefSCC.
 | |
|     if (&TargetRC != RC) {
 | |
|       assert(RC->isAncestorOf(TargetRC) &&
 | |
|              "Cannot potentially form RefSCC cycles here!");
 | |
|       RC->switchOutgoingEdgeToCall(N, *CallTarget);
 | |
|       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
 | |
|                         << "' to '" << *CallTarget << "'\n");
 | |
|       continue;
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
 | |
|                       << N << "' to '" << *CallTarget << "'\n");
 | |
| 
 | |
|     // Otherwise we are switching an internal ref edge to a call edge. This
 | |
|     // may merge away some SCCs, and we add those to the UpdateResult. We also
 | |
|     // need to make sure to update the worklist in the event SCCs have moved
 | |
|     // before the current one in the post-order sequence
 | |
|     bool HasFunctionAnalysisProxy = false;
 | |
|     auto InitialSCCIndex = RC->find(*C) - RC->begin();
 | |
|     bool FormedCycle = RC->switchInternalEdgeToCall(
 | |
|         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
 | |
|           for (SCC *MergedC : MergedSCCs) {
 | |
|             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
 | |
| 
 | |
|             HasFunctionAnalysisProxy |=
 | |
|                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
 | |
|                     *MergedC) != nullptr;
 | |
| 
 | |
|             // Mark that this SCC will no longer be valid.
 | |
|             UR.InvalidatedSCCs.insert(MergedC);
 | |
| 
 | |
|             // FIXME: We should really do a 'clear' here to forcibly release
 | |
|             // memory, but we don't have a good way of doing that and
 | |
|             // preserving the function analyses.
 | |
|             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | |
|             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|             AM.invalidate(*MergedC, PA);
 | |
|           }
 | |
|         });
 | |
| 
 | |
|     // If we formed a cycle by creating this call, we need to update more data
 | |
|     // structures.
 | |
|     if (FormedCycle) {
 | |
|       C = &TargetC;
 | |
|       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | |
| 
 | |
|       // If one of the invalidated SCCs had a cached proxy to a function
 | |
|       // analysis manager, we need to create a proxy in the new current SCC as
 | |
|       // the invalidated SCCs had their functions moved.
 | |
|       if (HasFunctionAnalysisProxy)
 | |
|         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
 | |
| 
 | |
|       // Any analyses cached for this SCC are no longer precise as the shape
 | |
|       // has changed by introducing this cycle. However, we have taken care to
 | |
|       // update the proxies so it remains valide.
 | |
|       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | |
|       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|       AM.invalidate(*C, PA);
 | |
|     }
 | |
|     auto NewSCCIndex = RC->find(*C) - RC->begin();
 | |
|     // If we have actually moved an SCC to be topologically "below" the current
 | |
|     // one due to merging, we will need to revisit the current SCC after
 | |
|     // visiting those moved SCCs.
 | |
|     //
 | |
|     // It is critical that we *do not* revisit the current SCC unless we
 | |
|     // actually move SCCs in the process of merging because otherwise we may
 | |
|     // form a cycle where an SCC is split apart, merged, split, merged and so
 | |
|     // on infinitely.
 | |
|     if (InitialSCCIndex < NewSCCIndex) {
 | |
|       // Put our current SCC back onto the worklist as we'll visit other SCCs
 | |
|       // that are now definitively ordered prior to the current one in the
 | |
|       // post-order sequence, and may end up observing more precise context to
 | |
|       // optimize the current SCC.
 | |
|       UR.CWorklist.insert(C);
 | |
|       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
 | |
|                         << "\n");
 | |
|       // Enqueue in reverse order as we pop off the back of the worklist.
 | |
|       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
 | |
|                                                   RC->begin() + NewSCCIndex))) {
 | |
|         UR.CWorklist.insert(&MovedC);
 | |
|         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
 | |
|                           << MovedC << "\n");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
 | |
|   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
 | |
|   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
 | |
| 
 | |
|   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
 | |
|   // manager now that all the updates have been applied.
 | |
|   if (RC != &InitialRC)
 | |
|     UR.UpdatedRC = RC;
 | |
|   if (C != &InitialC)
 | |
|     UR.UpdatedC = C;
 | |
| 
 | |
|   return *C;
 | |
| }
 | |
| 
 | |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
 | |
|     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | |
|     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
 | |
|     FunctionAnalysisManager &FAM) {
 | |
|   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
 | |
|                                            /* FunctionPass */ true);
 | |
| }
 | |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
 | |
|     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | |
|     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
 | |
|     FunctionAnalysisManager &FAM) {
 | |
|   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
 | |
|                                            /* FunctionPass */ false);
 | |
| }
 |