3165 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3165 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines routines for folding instructions into constants.
 | |
| //
 | |
| // Also, to supplement the basic IR ConstantExpr simplifications,
 | |
| // this file defines some additional folding routines that can make use of
 | |
| // DataLayout information. These functions cannot go in IR due to library
 | |
| // dependency issues.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/TargetFolder.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicsAMDGPU.h"
 | |
| #include "llvm/IR/IntrinsicsARM.h"
 | |
| #include "llvm/IR/IntrinsicsWebAssembly.h"
 | |
| #include "llvm/IR/IntrinsicsX86.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cassert>
 | |
| #include <cerrno>
 | |
| #include <cfenv>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding internal helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
 | |
|                                         Constant *C, Type *SrcEltTy,
 | |
|                                         unsigned NumSrcElts,
 | |
|                                         const DataLayout &DL) {
 | |
|   // Now that we know that the input value is a vector of integers, just shift
 | |
|   // and insert them into our result.
 | |
|   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
 | |
|   for (unsigned i = 0; i != NumSrcElts; ++i) {
 | |
|     Constant *Element;
 | |
|     if (DL.isLittleEndian())
 | |
|       Element = C->getAggregateElement(NumSrcElts - i - 1);
 | |
|     else
 | |
|       Element = C->getAggregateElement(i);
 | |
| 
 | |
|     if (Element && isa<UndefValue>(Element)) {
 | |
|       Result <<= BitShift;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
 | |
|     if (!ElementCI)
 | |
|       return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|     Result <<= BitShift;
 | |
|     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Constant fold bitcast, symbolically evaluating it with DataLayout.
 | |
| /// This always returns a non-null constant, but it may be a
 | |
| /// ConstantExpr if unfoldable.
 | |
| Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
 | |
|   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
 | |
|          "Invalid constantexpr bitcast!");
 | |
| 
 | |
|   // Catch the obvious splat cases.
 | |
|   if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
 | |
|     return Constant::getNullValue(DestTy);
 | |
|   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
 | |
|       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
 | |
|     return Constant::getAllOnesValue(DestTy);
 | |
| 
 | |
|   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
 | |
|     // Handle a vector->scalar integer/fp cast.
 | |
|     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
 | |
|       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
 | |
|       Type *SrcEltTy = VTy->getElementType();
 | |
| 
 | |
|       // If the vector is a vector of floating point, convert it to vector of int
 | |
|       // to simplify things.
 | |
|       if (SrcEltTy->isFloatingPointTy()) {
 | |
|         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | |
|         auto *SrcIVTy = FixedVectorType::get(
 | |
|             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
 | |
|         // Ask IR to do the conversion now that #elts line up.
 | |
|         C = ConstantExpr::getBitCast(C, SrcIVTy);
 | |
|       }
 | |
| 
 | |
|       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
 | |
|       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
 | |
|                                                 SrcEltTy, NumSrcElts, DL))
 | |
|         return CE;
 | |
| 
 | |
|       if (isa<IntegerType>(DestTy))
 | |
|         return ConstantInt::get(DestTy, Result);
 | |
| 
 | |
|       APFloat FP(DestTy->getFltSemantics(), Result);
 | |
|       return ConstantFP::get(DestTy->getContext(), FP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The code below only handles casts to vectors currently.
 | |
|   auto *DestVTy = dyn_cast<VectorType>(DestTy);
 | |
|   if (!DestVTy)
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
 | |
|   // vector so the code below can handle it uniformly.
 | |
|   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
 | |
|     Constant *Ops = C; // don't take the address of C!
 | |
|     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
 | |
|   }
 | |
| 
 | |
|   // If this is a bitcast from constant vector -> vector, fold it.
 | |
|   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|   // If the element types match, IR can fold it.
 | |
|   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
 | |
|   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
 | |
|   if (NumDstElt == NumSrcElt)
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
 | |
|   Type *DstEltTy = DestVTy->getElementType();
 | |
| 
 | |
|   // Otherwise, we're changing the number of elements in a vector, which
 | |
|   // requires endianness information to do the right thing.  For example,
 | |
|   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|   // folds to (little endian):
 | |
|   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | |
|   // and to (big endian):
 | |
|   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | |
| 
 | |
|   // First thing is first.  We only want to think about integer here, so if
 | |
|   // we have something in FP form, recast it as integer.
 | |
|   if (DstEltTy->isFloatingPointTy()) {
 | |
|     // Fold to an vector of integers with same size as our FP type.
 | |
|     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | |
|     auto *DestIVTy = FixedVectorType::get(
 | |
|         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
 | |
|     // Recursively handle this integer conversion, if possible.
 | |
|     C = FoldBitCast(C, DestIVTy, DL);
 | |
| 
 | |
|     // Finally, IR can handle this now that #elts line up.
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
|   }
 | |
| 
 | |
|   // Okay, we know the destination is integer, if the input is FP, convert
 | |
|   // it to integer first.
 | |
|   if (SrcEltTy->isFloatingPointTy()) {
 | |
|     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | |
|     auto *SrcIVTy = FixedVectorType::get(
 | |
|         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
 | |
|     // Ask IR to do the conversion now that #elts line up.
 | |
|     C = ConstantExpr::getBitCast(C, SrcIVTy);
 | |
|     // If IR wasn't able to fold it, bail out.
 | |
|     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
 | |
|         !isa<ConstantDataVector>(C))
 | |
|       return C;
 | |
|   }
 | |
| 
 | |
|   // Now we know that the input and output vectors are both integer vectors
 | |
|   // of the same size, and that their #elements is not the same.  Do the
 | |
|   // conversion here, which depends on whether the input or output has
 | |
|   // more elements.
 | |
|   bool isLittleEndian = DL.isLittleEndian();
 | |
| 
 | |
|   SmallVector<Constant*, 32> Result;
 | |
|   if (NumDstElt < NumSrcElt) {
 | |
|     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | |
|     Constant *Zero = Constant::getNullValue(DstEltTy);
 | |
|     unsigned Ratio = NumSrcElt/NumDstElt;
 | |
|     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | |
|     unsigned SrcElt = 0;
 | |
|     for (unsigned i = 0; i != NumDstElt; ++i) {
 | |
|       // Build each element of the result.
 | |
|       Constant *Elt = Zero;
 | |
|       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | |
|       for (unsigned j = 0; j != Ratio; ++j) {
 | |
|         Constant *Src = C->getAggregateElement(SrcElt++);
 | |
|         if (Src && isa<UndefValue>(Src))
 | |
|           Src = Constant::getNullValue(
 | |
|               cast<VectorType>(C->getType())->getElementType());
 | |
|         else
 | |
|           Src = dyn_cast_or_null<ConstantInt>(Src);
 | |
|         if (!Src)  // Reject constantexpr elements.
 | |
|           return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|         // Zero extend the element to the right size.
 | |
|         Src = ConstantExpr::getZExt(Src, Elt->getType());
 | |
| 
 | |
|         // Shift it to the right place, depending on endianness.
 | |
|         Src = ConstantExpr::getShl(Src,
 | |
|                                    ConstantInt::get(Src->getType(), ShiftAmt));
 | |
|         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | |
| 
 | |
|         // Mix it in.
 | |
|         Elt = ConstantExpr::getOr(Elt, Src);
 | |
|       }
 | |
|       Result.push_back(Elt);
 | |
|     }
 | |
|     return ConstantVector::get(Result);
 | |
|   }
 | |
| 
 | |
|   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|   unsigned Ratio = NumDstElt/NumSrcElt;
 | |
|   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
 | |
| 
 | |
|   // Loop over each source value, expanding into multiple results.
 | |
|   for (unsigned i = 0; i != NumSrcElt; ++i) {
 | |
|     auto *Element = C->getAggregateElement(i);
 | |
| 
 | |
|     if (!Element) // Reject constantexpr elements.
 | |
|       return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|     if (isa<UndefValue>(Element)) {
 | |
|       // Correctly Propagate undef values.
 | |
|       Result.append(Ratio, UndefValue::get(DstEltTy));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *Src = dyn_cast<ConstantInt>(Element);
 | |
|     if (!Src)
 | |
|       return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | |
|     for (unsigned j = 0; j != Ratio; ++j) {
 | |
|       // Shift the piece of the value into the right place, depending on
 | |
|       // endianness.
 | |
|       Constant *Elt = ConstantExpr::getLShr(Src,
 | |
|                                   ConstantInt::get(Src->getType(), ShiftAmt));
 | |
|       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | |
| 
 | |
|       // Truncate the element to an integer with the same pointer size and
 | |
|       // convert the element back to a pointer using a inttoptr.
 | |
|       if (DstEltTy->isPointerTy()) {
 | |
|         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
 | |
|         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
 | |
|         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Truncate and remember this piece.
 | |
|       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// If this constant is a constant offset from a global, return the global and
 | |
| /// the constant. Because of constantexprs, this function is recursive.
 | |
| bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | |
|                                       APInt &Offset, const DataLayout &DL,
 | |
|                                       DSOLocalEquivalent **DSOEquiv) {
 | |
|   if (DSOEquiv)
 | |
|     *DSOEquiv = nullptr;
 | |
| 
 | |
|   // Trivial case, constant is the global.
 | |
|   if ((GV = dyn_cast<GlobalValue>(C))) {
 | |
|     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
 | |
|     Offset = APInt(BitWidth, 0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
 | |
|     if (DSOEquiv)
 | |
|       *DSOEquiv = FoundDSOEquiv;
 | |
|     GV = FoundDSOEquiv->getGlobalValue();
 | |
|     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
 | |
|     Offset = APInt(BitWidth, 0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this isn't a constant expr, bail out.
 | |
|   auto *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE) return false;
 | |
| 
 | |
|   // Look through ptr->int and ptr->ptr casts.
 | |
|   if (CE->getOpcode() == Instruction::PtrToInt ||
 | |
|       CE->getOpcode() == Instruction::BitCast)
 | |
|     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
 | |
|                                       DSOEquiv);
 | |
| 
 | |
|   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
 | |
|   auto *GEP = dyn_cast<GEPOperator>(CE);
 | |
|   if (!GEP)
 | |
|     return false;
 | |
| 
 | |
|   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
 | |
|   APInt TmpOffset(BitWidth, 0);
 | |
| 
 | |
|   // If the base isn't a global+constant, we aren't either.
 | |
|   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
 | |
|                                   DSOEquiv))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, add any offset that our operands provide.
 | |
|   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
 | |
|     return false;
 | |
| 
 | |
|   Offset = TmpOffset;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
 | |
|                                          const DataLayout &DL) {
 | |
|   do {
 | |
|     Type *SrcTy = C->getType();
 | |
|     uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
 | |
|     uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
 | |
|     if (SrcSize < DestSize)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Catch the obvious splat cases (since all-zeros can coerce non-integral
 | |
|     // pointers legally).
 | |
|     if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
 | |
|       return Constant::getNullValue(DestTy);
 | |
|     if (C->isAllOnesValue() &&
 | |
|         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
 | |
|          DestTy->isVectorTy()) &&
 | |
|         !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
 | |
|         !DestTy->isPtrOrPtrVectorTy())
 | |
|       // Get ones when the input is trivial, but
 | |
|       // only for supported types inside getAllOnesValue.
 | |
|       return Constant::getAllOnesValue(DestTy);
 | |
| 
 | |
|     // If the type sizes are the same and a cast is legal, just directly
 | |
|     // cast the constant.
 | |
|     // But be careful not to coerce non-integral pointers illegally.
 | |
|     if (SrcSize == DestSize &&
 | |
|         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
 | |
|             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
 | |
|       Instruction::CastOps Cast = Instruction::BitCast;
 | |
|       // If we are going from a pointer to int or vice versa, we spell the cast
 | |
|       // differently.
 | |
|       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
 | |
|         Cast = Instruction::IntToPtr;
 | |
|       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
 | |
|         Cast = Instruction::PtrToInt;
 | |
| 
 | |
|       if (CastInst::castIsValid(Cast, C, DestTy))
 | |
|         return ConstantExpr::getCast(Cast, C, DestTy);
 | |
|     }
 | |
| 
 | |
|     // If this isn't an aggregate type, there is nothing we can do to drill down
 | |
|     // and find a bitcastable constant.
 | |
|     if (!SrcTy->isAggregateType())
 | |
|       return nullptr;
 | |
| 
 | |
|     // We're simulating a load through a pointer that was bitcast to point to
 | |
|     // a different type, so we can try to walk down through the initial
 | |
|     // elements of an aggregate to see if some part of the aggregate is
 | |
|     // castable to implement the "load" semantic model.
 | |
|     if (SrcTy->isStructTy()) {
 | |
|       // Struct types might have leading zero-length elements like [0 x i32],
 | |
|       // which are certainly not what we are looking for, so skip them.
 | |
|       unsigned Elem = 0;
 | |
|       Constant *ElemC;
 | |
|       do {
 | |
|         ElemC = C->getAggregateElement(Elem++);
 | |
|       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
 | |
|       C = ElemC;
 | |
|     } else {
 | |
|       C = C->getAggregateElement(0u);
 | |
|     }
 | |
|   } while (C);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Recursive helper to read bits out of global. C is the constant being copied
 | |
| /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
 | |
| /// results into and BytesLeft is the number of bytes left in
 | |
| /// the CurPtr buffer. DL is the DataLayout.
 | |
| bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
 | |
|                         unsigned BytesLeft, const DataLayout &DL) {
 | |
|   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
 | |
|          "Out of range access");
 | |
| 
 | |
|   // If this element is zero or undefined, we can just return since *CurPtr is
 | |
|   // zero initialized.
 | |
|   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
 | |
|     return true;
 | |
| 
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(C)) {
 | |
|     if (CI->getBitWidth() > 64 ||
 | |
|         (CI->getBitWidth() & 7) != 0)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t Val = CI->getZExtValue();
 | |
|     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
 | |
| 
 | |
|     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
 | |
|       int n = ByteOffset;
 | |
|       if (!DL.isLittleEndian())
 | |
|         n = IntBytes - n - 1;
 | |
|       CurPtr[i] = (unsigned char)(Val >> (n * 8));
 | |
|       ++ByteOffset;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     if (CFP->getType()->isDoubleTy()) {
 | |
|       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
 | |
|       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | |
|     }
 | |
|     if (CFP->getType()->isFloatTy()){
 | |
|       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
 | |
|       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | |
|     }
 | |
|     if (CFP->getType()->isHalfTy()){
 | |
|       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
 | |
|       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
 | |
|     const StructLayout *SL = DL.getStructLayout(CS->getType());
 | |
|     unsigned Index = SL->getElementContainingOffset(ByteOffset);
 | |
|     uint64_t CurEltOffset = SL->getElementOffset(Index);
 | |
|     ByteOffset -= CurEltOffset;
 | |
| 
 | |
|     while (true) {
 | |
|       // If the element access is to the element itself and not to tail padding,
 | |
|       // read the bytes from the element.
 | |
|       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
 | |
| 
 | |
|       if (ByteOffset < EltSize &&
 | |
|           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
 | |
|                               BytesLeft, DL))
 | |
|         return false;
 | |
| 
 | |
|       ++Index;
 | |
| 
 | |
|       // Check to see if we read from the last struct element, if so we're done.
 | |
|       if (Index == CS->getType()->getNumElements())
 | |
|         return true;
 | |
| 
 | |
|       // If we read all of the bytes we needed from this element we're done.
 | |
|       uint64_t NextEltOffset = SL->getElementOffset(Index);
 | |
| 
 | |
|       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
 | |
|         return true;
 | |
| 
 | |
|       // Move to the next element of the struct.
 | |
|       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
 | |
|       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
 | |
|       ByteOffset = 0;
 | |
|       CurEltOffset = NextEltOffset;
 | |
|     }
 | |
|     // not reached.
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
 | |
|       isa<ConstantDataSequential>(C)) {
 | |
|     uint64_t NumElts;
 | |
|     Type *EltTy;
 | |
|     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
 | |
|       NumElts = AT->getNumElements();
 | |
|       EltTy = AT->getElementType();
 | |
|     } else {
 | |
|       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
 | |
|       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
 | |
|     }
 | |
|     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
 | |
|     uint64_t Index = ByteOffset / EltSize;
 | |
|     uint64_t Offset = ByteOffset - Index * EltSize;
 | |
| 
 | |
|     for (; Index != NumElts; ++Index) {
 | |
|       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
 | |
|                               BytesLeft, DL))
 | |
|         return false;
 | |
| 
 | |
|       uint64_t BytesWritten = EltSize - Offset;
 | |
|       assert(BytesWritten <= EltSize && "Not indexing into this element?");
 | |
|       if (BytesWritten >= BytesLeft)
 | |
|         return true;
 | |
| 
 | |
|       Offset = 0;
 | |
|       BytesLeft -= BytesWritten;
 | |
|       CurPtr += BytesWritten;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr &&
 | |
|         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
 | |
|       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
 | |
|                                 BytesLeft, DL);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, unknown initializer type.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
 | |
|                                           const DataLayout &DL) {
 | |
|   // Bail out early. Not expect to load from scalable global variable.
 | |
|   if (isa<ScalableVectorType>(LoadTy))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *PTy = cast<PointerType>(C->getType());
 | |
|   auto *IntType = dyn_cast<IntegerType>(LoadTy);
 | |
| 
 | |
|   // If this isn't an integer load we can't fold it directly.
 | |
|   if (!IntType) {
 | |
|     unsigned AS = PTy->getAddressSpace();
 | |
| 
 | |
|     // If this is a float/double load, we can try folding it as an int32/64 load
 | |
|     // and then bitcast the result.  This can be useful for union cases.  Note
 | |
|     // that address spaces don't matter here since we're not going to result in
 | |
|     // an actual new load.
 | |
|     Type *MapTy;
 | |
|     if (LoadTy->isHalfTy())
 | |
|       MapTy = Type::getInt16Ty(C->getContext());
 | |
|     else if (LoadTy->isFloatTy())
 | |
|       MapTy = Type::getInt32Ty(C->getContext());
 | |
|     else if (LoadTy->isDoubleTy())
 | |
|       MapTy = Type::getInt64Ty(C->getContext());
 | |
|     else if (LoadTy->isVectorTy()) {
 | |
|       MapTy = PointerType::getIntNTy(
 | |
|           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
 | |
|     } else
 | |
|       return nullptr;
 | |
| 
 | |
|     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
 | |
|     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
 | |
|       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
 | |
|           !LoadTy->isX86_AMXTy())
 | |
|         // Materializing a zero can be done trivially without a bitcast
 | |
|         return Constant::getNullValue(LoadTy);
 | |
|       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
 | |
|       Res = FoldBitCast(Res, CastTy, DL);
 | |
|       if (LoadTy->isPtrOrPtrVectorTy()) {
 | |
|         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
 | |
|         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
 | |
|             !LoadTy->isX86_AMXTy())
 | |
|           return Constant::getNullValue(LoadTy);
 | |
|         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
 | |
|           // Be careful not to replace a load of an addrspace value with an inttoptr here
 | |
|           return nullptr;
 | |
|         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
 | |
|       }
 | |
|       return Res;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
 | |
|   if (BytesLoaded > 32 || BytesLoaded == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   GlobalValue *GVal;
 | |
|   APInt OffsetAI;
 | |
|   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *GV = dyn_cast<GlobalVariable>(GVal);
 | |
|   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | |
|       !GV->getInitializer()->getType()->isSized())
 | |
|     return nullptr;
 | |
| 
 | |
|   int64_t Offset = OffsetAI.getSExtValue();
 | |
|   int64_t InitializerSize =
 | |
|       DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
 | |
| 
 | |
|   // If we're not accessing anything in this constant, the result is undefined.
 | |
|   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
 | |
|     return UndefValue::get(IntType);
 | |
| 
 | |
|   // If we're not accessing anything in this constant, the result is undefined.
 | |
|   if (Offset >= InitializerSize)
 | |
|     return UndefValue::get(IntType);
 | |
| 
 | |
|   unsigned char RawBytes[32] = {0};
 | |
|   unsigned char *CurPtr = RawBytes;
 | |
|   unsigned BytesLeft = BytesLoaded;
 | |
| 
 | |
|   // If we're loading off the beginning of the global, some bytes may be valid.
 | |
|   if (Offset < 0) {
 | |
|     CurPtr += -Offset;
 | |
|     BytesLeft += Offset;
 | |
|     Offset = 0;
 | |
|   }
 | |
| 
 | |
|   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
 | |
|     return nullptr;
 | |
| 
 | |
|   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
 | |
|   if (DL.isLittleEndian()) {
 | |
|     ResultVal = RawBytes[BytesLoaded - 1];
 | |
|     for (unsigned i = 1; i != BytesLoaded; ++i) {
 | |
|       ResultVal <<= 8;
 | |
|       ResultVal |= RawBytes[BytesLoaded - 1 - i];
 | |
|     }
 | |
|   } else {
 | |
|     ResultVal = RawBytes[0];
 | |
|     for (unsigned i = 1; i != BytesLoaded; ++i) {
 | |
|       ResultVal <<= 8;
 | |
|       ResultVal |= RawBytes[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstantInt::get(IntType->getContext(), ResultVal);
 | |
| }
 | |
| 
 | |
| Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
 | |
|                                              const DataLayout &DL) {
 | |
|   auto *SrcPtr = CE->getOperand(0);
 | |
|   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
 | |
|   if (!SrcPtrTy)
 | |
|     return nullptr;
 | |
|   Type *SrcTy = SrcPtrTy->getPointerElementType();
 | |
| 
 | |
|   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
| 
 | |
|   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
 | |
|                                              const DataLayout &DL) {
 | |
|   // First, try the easy cases:
 | |
|   if (auto *GV = dyn_cast<GlobalVariable>(C))
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|       return GV->getInitializer();
 | |
| 
 | |
|   if (auto *GA = dyn_cast<GlobalAlias>(C))
 | |
|     if (GA->getAliasee() && !GA->isInterposable())
 | |
|       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
 | |
| 
 | |
|   // If the loaded value isn't a constant expr, we can't handle it.
 | |
|   auto *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
 | |
|       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | |
|         if (Constant *V =
 | |
|              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | |
|           return V;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::BitCast)
 | |
|     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
 | |
|       return LoadedC;
 | |
| 
 | |
|   // Instead of loading constant c string, use corresponding integer value
 | |
|   // directly if string length is small enough.
 | |
|   StringRef Str;
 | |
|   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
 | |
|     size_t StrLen = Str.size();
 | |
|     unsigned NumBits = Ty->getPrimitiveSizeInBits();
 | |
|     // Replace load with immediate integer if the result is an integer or fp
 | |
|     // value.
 | |
|     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
 | |
|         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
 | |
|       APInt StrVal(NumBits, 0);
 | |
|       APInt SingleChar(NumBits, 0);
 | |
|       if (DL.isLittleEndian()) {
 | |
|         for (unsigned char C : reverse(Str.bytes())) {
 | |
|           SingleChar = static_cast<uint64_t>(C);
 | |
|           StrVal = (StrVal << 8) | SingleChar;
 | |
|         }
 | |
|       } else {
 | |
|         for (unsigned char C : Str.bytes()) {
 | |
|           SingleChar = static_cast<uint64_t>(C);
 | |
|           StrVal = (StrVal << 8) | SingleChar;
 | |
|         }
 | |
|         // Append NULL at the end.
 | |
|         SingleChar = 0;
 | |
|         StrVal = (StrVal << 8) | SingleChar;
 | |
|       }
 | |
| 
 | |
|       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
 | |
|       if (Ty->isFloatingPointTy())
 | |
|         Res = ConstantExpr::getBitCast(Res, Ty);
 | |
|       return Res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this load comes from anywhere in a constant global, and if the global
 | |
|   // is all undef or zero, we know what it loads.
 | |
|   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | |
|       if (GV->getInitializer()->isNullValue())
 | |
|         return Constant::getNullValue(Ty);
 | |
|       if (isa<UndefValue>(GV->getInitializer()))
 | |
|         return UndefValue::get(Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try hard to fold loads from bitcasted strange and non-type-safe things.
 | |
|   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
 | |
|   if (LI->isVolatile()) return nullptr;
 | |
| 
 | |
|   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
 | |
|     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// One of Op0/Op1 is a constant expression.
 | |
| /// Attempt to symbolically evaluate the result of a binary operator merging
 | |
| /// these together.  If target data info is available, it is provided as DL,
 | |
| /// otherwise DL is null.
 | |
| Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
 | |
|                                     const DataLayout &DL) {
 | |
|   // SROA
 | |
| 
 | |
|   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | |
|   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | |
|   // bits.
 | |
| 
 | |
|   if (Opc == Instruction::And) {
 | |
|     KnownBits Known0 = computeKnownBits(Op0, DL);
 | |
|     KnownBits Known1 = computeKnownBits(Op1, DL);
 | |
|     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
 | |
|       // All the bits of Op0 that the 'and' could be masking are already zero.
 | |
|       return Op0;
 | |
|     }
 | |
|     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
 | |
|       // All the bits of Op1 that the 'and' could be masking are already zero.
 | |
|       return Op1;
 | |
|     }
 | |
| 
 | |
|     Known0 &= Known1;
 | |
|     if (Known0.isConstant())
 | |
|       return ConstantInt::get(Op0->getType(), Known0.getConstant());
 | |
|   }
 | |
| 
 | |
|   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | |
|   // constant.  This happens frequently when iterating over a global array.
 | |
|   if (Opc == Instruction::Sub) {
 | |
|     GlobalValue *GV1, *GV2;
 | |
|     APInt Offs1, Offs2;
 | |
| 
 | |
|     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
 | |
|       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
 | |
|         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
 | |
| 
 | |
|         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | |
|         // PtrToInt may change the bitwidth so we have convert to the right size
 | |
|         // first.
 | |
|         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
 | |
|                                                 Offs2.zextOrTrunc(OpSize));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If array indices are not pointer-sized integers, explicitly cast them so
 | |
| /// that they aren't implicitly casted by the getelementptr.
 | |
| Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
 | |
|                          Type *ResultTy, Optional<unsigned> InRangeIndex,
 | |
|                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
 | |
|   Type *IntIdxTy = DL.getIndexType(ResultTy);
 | |
|   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
 | |
| 
 | |
|   bool Any = false;
 | |
|   SmallVector<Constant*, 32> NewIdxs;
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
 | |
|     if ((i == 1 ||
 | |
|          !isa<StructType>(GetElementPtrInst::getIndexedType(
 | |
|              SrcElemTy, Ops.slice(1, i - 1)))) &&
 | |
|         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
 | |
|       Any = true;
 | |
|       Type *NewType = Ops[i]->getType()->isVectorTy()
 | |
|                           ? IntIdxTy
 | |
|                           : IntIdxScalarTy;
 | |
|       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
 | |
|                                                                       true,
 | |
|                                                                       NewType,
 | |
|                                                                       true),
 | |
|                                               Ops[i], NewType));
 | |
|     } else
 | |
|       NewIdxs.push_back(Ops[i]);
 | |
|   }
 | |
| 
 | |
|   if (!Any)
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *C = ConstantExpr::getGetElementPtr(
 | |
|       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
 | |
|   return ConstantFoldConstant(C, DL, TLI);
 | |
| }
 | |
| 
 | |
| /// Strip the pointer casts, but preserve the address space information.
 | |
| Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
 | |
|   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
 | |
|   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
 | |
|   Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | |
|   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
 | |
| 
 | |
|   ElemTy = NewPtrTy->getPointerElementType();
 | |
| 
 | |
|   // Preserve the address space number of the pointer.
 | |
|   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
 | |
|     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
 | |
|     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
 | |
|   }
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| /// If we can symbolically evaluate the GEP constant expression, do so.
 | |
| Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
 | |
|                                   ArrayRef<Constant *> Ops,
 | |
|                                   const DataLayout &DL,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   const GEPOperator *InnermostGEP = GEP;
 | |
|   bool InBounds = GEP->isInBounds();
 | |
| 
 | |
|   Type *SrcElemTy = GEP->getSourceElementType();
 | |
|   Type *ResElemTy = GEP->getResultElementType();
 | |
|   Type *ResTy = GEP->getType();
 | |
|   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
 | |
|                                    GEP->getInRangeIndex(), DL, TLI))
 | |
|     return C;
 | |
| 
 | |
|   Constant *Ptr = Ops[0];
 | |
|   if (!Ptr->getType()->isPointerTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
 | |
| 
 | |
|   // If this is a constant expr gep that is effectively computing an
 | |
|   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|       if (!isa<ConstantInt>(Ops[i])) {
 | |
| 
 | |
|         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
 | |
|         // "inttoptr (sub (ptrtoint Ptr), V)"
 | |
|         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
 | |
|           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
 | |
|           assert((!CE || CE->getType() == IntIdxTy) &&
 | |
|                  "CastGEPIndices didn't canonicalize index types!");
 | |
|           if (CE && CE->getOpcode() == Instruction::Sub &&
 | |
|               CE->getOperand(0)->isNullValue()) {
 | |
|             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
 | |
|             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
 | |
|             Res = ConstantExpr::getIntToPtr(Res, ResTy);
 | |
|             return ConstantFoldConstant(Res, DL, TLI);
 | |
|           }
 | |
|         }
 | |
|         return nullptr;
 | |
|       }
 | |
| 
 | |
|   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
 | |
|   APInt Offset =
 | |
|       APInt(BitWidth,
 | |
|             DL.getIndexedOffsetInType(
 | |
|                 SrcElemTy,
 | |
|                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
 | |
|   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
 | |
| 
 | |
|   // If this is a GEP of a GEP, fold it all into a single GEP.
 | |
|   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | |
|     InnermostGEP = GEP;
 | |
|     InBounds &= GEP->isInBounds();
 | |
| 
 | |
|     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
 | |
| 
 | |
|     // Do not try the incorporate the sub-GEP if some index is not a number.
 | |
|     bool AllConstantInt = true;
 | |
|     for (Value *NestedOp : NestedOps)
 | |
|       if (!isa<ConstantInt>(NestedOp)) {
 | |
|         AllConstantInt = false;
 | |
|         break;
 | |
|       }
 | |
|     if (!AllConstantInt)
 | |
|       break;
 | |
| 
 | |
|     Ptr = cast<Constant>(GEP->getOperand(0));
 | |
|     SrcElemTy = GEP->getSourceElementType();
 | |
|     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
 | |
|     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
 | |
|   }
 | |
| 
 | |
|   // If the base value for this address is a literal integer value, fold the
 | |
|   // getelementptr to the resulting integer value casted to the pointer type.
 | |
|   APInt BasePtr(BitWidth, 0);
 | |
|   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr) {
 | |
|       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | |
|         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto *PTy = cast<PointerType>(Ptr->getType());
 | |
|   if ((Ptr->isNullValue() || BasePtr != 0) &&
 | |
|       !DL.isNonIntegralPointerType(PTy)) {
 | |
|     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
 | |
|     return ConstantExpr::getIntToPtr(C, ResTy);
 | |
|   }
 | |
| 
 | |
|   // Otherwise form a regular getelementptr. Recompute the indices so that
 | |
|   // we eliminate over-indexing of the notional static type array bounds.
 | |
|   // This makes it easy to determine if the getelementptr is "inbounds".
 | |
|   // Also, this helps GlobalOpt do SROA on GlobalVariables.
 | |
|   Type *Ty = PTy;
 | |
|   SmallVector<Constant *, 32> NewIdxs;
 | |
| 
 | |
|   do {
 | |
|     if (!Ty->isStructTy()) {
 | |
|       if (Ty->isPointerTy()) {
 | |
|         // The only pointer indexing we'll do is on the first index of the GEP.
 | |
|         if (!NewIdxs.empty())
 | |
|           break;
 | |
| 
 | |
|         Ty = SrcElemTy;
 | |
| 
 | |
|         // Only handle pointers to sized types, not pointers to functions.
 | |
|         if (!Ty->isSized())
 | |
|           return nullptr;
 | |
|       } else {
 | |
|         Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
 | |
|         if (!NextTy)
 | |
|           break;
 | |
|         Ty = NextTy;
 | |
|       }
 | |
| 
 | |
|       // Determine which element of the array the offset points into.
 | |
|       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
 | |
|       if (ElemSize == 0) {
 | |
|         // The element size is 0. This may be [0 x Ty]*, so just use a zero
 | |
|         // index for this level and proceed to the next level to see if it can
 | |
|         // accommodate the offset.
 | |
|         NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
 | |
|       } else {
 | |
|         // The element size is non-zero divide the offset by the element
 | |
|         // size (rounding down), to compute the index at this level.
 | |
|         bool Overflow;
 | |
|         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
 | |
|         if (Overflow)
 | |
|           break;
 | |
|         Offset -= NewIdx * ElemSize;
 | |
|         NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
 | |
|       }
 | |
|     } else {
 | |
|       auto *STy = cast<StructType>(Ty);
 | |
|       // If we end up with an offset that isn't valid for this struct type, we
 | |
|       // can't re-form this GEP in a regular form, so bail out. The pointer
 | |
|       // operand likely went through casts that are necessary to make the GEP
 | |
|       // sensible.
 | |
|       const StructLayout &SL = *DL.getStructLayout(STy);
 | |
|       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
 | |
|         break;
 | |
| 
 | |
|       // Determine which field of the struct the offset points into. The
 | |
|       // getZExtValue is fine as we've already ensured that the offset is
 | |
|       // within the range representable by the StructLayout API.
 | |
|       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
 | |
|       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | |
|                                          ElIdx));
 | |
|       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
 | |
|       Ty = STy->getTypeAtIndex(ElIdx);
 | |
|     }
 | |
|   } while (Ty != ResElemTy);
 | |
| 
 | |
|   // If we haven't used up the entire offset by descending the static
 | |
|   // type, then the offset is pointing into the middle of an indivisible
 | |
|   // member, so we can't simplify it.
 | |
|   if (Offset != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Preserve the inrange index from the innermost GEP if possible. We must
 | |
|   // have calculated the same indices up to and including the inrange index.
 | |
|   Optional<unsigned> InRangeIndex;
 | |
|   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
 | |
|     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
 | |
|         NewIdxs.size() > *LastIRIndex) {
 | |
|       InRangeIndex = LastIRIndex;
 | |
|       for (unsigned I = 0; I <= *LastIRIndex; ++I)
 | |
|         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
 | |
|           return nullptr;
 | |
|     }
 | |
| 
 | |
|   // Create a GEP.
 | |
|   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
 | |
|                                                InBounds, InRangeIndex);
 | |
|   assert(C->getType()->getPointerElementType() == Ty &&
 | |
|          "Computed GetElementPtr has unexpected type!");
 | |
| 
 | |
|   // If we ended up indexing a member with a type that doesn't match
 | |
|   // the type of what the original indices indexed, add a cast.
 | |
|   if (Ty != ResElemTy)
 | |
|     C = FoldBitCast(C, ResTy, DL);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// Attempt to constant fold an instruction with the
 | |
| /// specified opcode and operands.  If successful, the constant result is
 | |
| /// returned, if not, null is returned.  Note that this function can fail when
 | |
| /// attempting to fold instructions like loads and stores, which have no
 | |
| /// constant expression form.
 | |
| Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
 | |
|                                        ArrayRef<Constant *> Ops,
 | |
|                                        const DataLayout &DL,
 | |
|                                        const TargetLibraryInfo *TLI) {
 | |
|   Type *DestTy = InstOrCE->getType();
 | |
| 
 | |
|   if (Instruction::isUnaryOp(Opcode))
 | |
|     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
 | |
| 
 | |
|   if (Instruction::isBinaryOp(Opcode))
 | |
|     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
 | |
| 
 | |
|   if (Instruction::isCast(Opcode))
 | |
|     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
 | |
| 
 | |
|   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
 | |
|     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
 | |
|       return C;
 | |
| 
 | |
|     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
 | |
|                                           Ops.slice(1), GEP->isInBounds(),
 | |
|                                           GEP->getInRangeIndex());
 | |
|   }
 | |
| 
 | |
|   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
 | |
|     return CE->getWithOperands(Ops);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: return nullptr;
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
 | |
|   case Instruction::Freeze:
 | |
|     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
 | |
|   case Instruction::Call:
 | |
|     if (auto *F = dyn_cast<Function>(Ops.back())) {
 | |
|       const auto *Call = cast<CallBase>(InstOrCE);
 | |
|       if (canConstantFoldCallTo(Call, F))
 | |
|         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | |
|   case Instruction::ExtractValue:
 | |
|     return ConstantExpr::getExtractValue(
 | |
|         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
 | |
|   case Instruction::InsertElement:
 | |
|     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return ConstantExpr::getShuffleVector(
 | |
|         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding public APIs
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| Constant *
 | |
| ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
 | |
|                          const TargetLibraryInfo *TLI,
 | |
|                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
 | |
|   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
 | |
|     return const_cast<Constant *>(C);
 | |
| 
 | |
|   SmallVector<Constant *, 8> Ops;
 | |
|   for (const Use &OldU : C->operands()) {
 | |
|     Constant *OldC = cast<Constant>(&OldU);
 | |
|     Constant *NewC = OldC;
 | |
|     // Recursively fold the ConstantExpr's operands. If we have already folded
 | |
|     // a ConstantExpr, we don't have to process it again.
 | |
|     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
 | |
|       auto It = FoldedOps.find(OldC);
 | |
|       if (It == FoldedOps.end()) {
 | |
|         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
 | |
|         FoldedOps.insert({OldC, NewC});
 | |
|       } else {
 | |
|         NewC = It->second;
 | |
|       }
 | |
|     }
 | |
|     Ops.push_back(NewC);
 | |
|   }
 | |
| 
 | |
|   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     if (CE->isCompare())
 | |
|       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
 | |
|                                              DL, TLI);
 | |
| 
 | |
|     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   assert(isa<ConstantVector>(C));
 | |
|   return ConstantVector::get(Ops);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   // Handle PHI nodes quickly here...
 | |
|   if (auto *PN = dyn_cast<PHINode>(I)) {
 | |
|     Constant *CommonValue = nullptr;
 | |
| 
 | |
|     SmallDenseMap<Constant *, Constant *> FoldedOps;
 | |
|     for (Value *Incoming : PN->incoming_values()) {
 | |
|       // If the incoming value is undef then skip it.  Note that while we could
 | |
|       // skip the value if it is equal to the phi node itself we choose not to
 | |
|       // because that would break the rule that constant folding only applies if
 | |
|       // all operands are constants.
 | |
|       if (isa<UndefValue>(Incoming))
 | |
|         continue;
 | |
|       // If the incoming value is not a constant, then give up.
 | |
|       auto *C = dyn_cast<Constant>(Incoming);
 | |
|       if (!C)
 | |
|         return nullptr;
 | |
|       // Fold the PHI's operands.
 | |
|       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
 | |
|       // If the incoming value is a different constant to
 | |
|       // the one we saw previously, then give up.
 | |
|       if (CommonValue && C != CommonValue)
 | |
|         return nullptr;
 | |
|       CommonValue = C;
 | |
|     }
 | |
| 
 | |
|     // If we reach here, all incoming values are the same constant or undef.
 | |
|     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
 | |
|   }
 | |
| 
 | |
|   // Scan the operand list, checking to see if they are all constants, if so,
 | |
|   // hand off to ConstantFoldInstOperandsImpl.
 | |
|   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallDenseMap<Constant *, Constant *> FoldedOps;
 | |
|   SmallVector<Constant *, 8> Ops;
 | |
|   for (const Use &OpU : I->operands()) {
 | |
|     auto *Op = cast<Constant>(&OpU);
 | |
|     // Fold the Instruction's operands.
 | |
|     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
 | |
|     Ops.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   if (const auto *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
 | |
|                                            DL, TLI);
 | |
| 
 | |
|   if (const auto *LI = dyn_cast<LoadInst>(I))
 | |
|     return ConstantFoldLoadInst(LI, DL);
 | |
| 
 | |
|   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
 | |
|     return ConstantExpr::getInsertValue(
 | |
|                                 cast<Constant>(IVI->getAggregateOperand()),
 | |
|                                 cast<Constant>(IVI->getInsertedValueOperand()),
 | |
|                                 IVI->getIndices());
 | |
|   }
 | |
| 
 | |
|   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
 | |
|     return ConstantExpr::getExtractValue(
 | |
|                                     cast<Constant>(EVI->getAggregateOperand()),
 | |
|                                     EVI->getIndices());
 | |
|   }
 | |
| 
 | |
|   return ConstantFoldInstOperands(I, Ops, DL, TLI);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
 | |
|                                      const TargetLibraryInfo *TLI) {
 | |
|   SmallDenseMap<Constant *, Constant *> FoldedOps;
 | |
|   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldInstOperands(Instruction *I,
 | |
|                                          ArrayRef<Constant *> Ops,
 | |
|                                          const DataLayout &DL,
 | |
|                                          const TargetLibraryInfo *TLI) {
 | |
|   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | |
|                                                 Constant *Ops0, Constant *Ops1,
 | |
|                                                 const DataLayout &DL,
 | |
|                                                 const TargetLibraryInfo *TLI) {
 | |
|   // fold: icmp (inttoptr x), null         -> icmp x, 0
 | |
|   // fold: icmp null, (inttoptr x)         -> icmp 0, x
 | |
|   // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | |
|   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
 | |
|   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | |
|   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | |
|   //
 | |
|   // FIXME: The following comment is out of data and the DataLayout is here now.
 | |
|   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
 | |
|   // around to know if bit truncation is happening.
 | |
|   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
 | |
|     if (Ops1->isNullValue()) {
 | |
|       if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
 | |
|         // Convert the integer value to the right size to ensure we get the
 | |
|         // proper extension or truncation.
 | |
|         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | |
|                                                    IntPtrTy, false);
 | |
|         Constant *Null = Constant::getNullValue(C->getType());
 | |
|         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
 | |
|       }
 | |
| 
 | |
|       // Only do this transformation if the int is intptrty in size, otherwise
 | |
|       // there is a truncation or extension that we aren't modeling.
 | |
|       if (CE0->getOpcode() == Instruction::PtrToInt) {
 | |
|         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
 | |
|         if (CE0->getType() == IntPtrTy) {
 | |
|           Constant *C = CE0->getOperand(0);
 | |
|           Constant *Null = Constant::getNullValue(C->getType());
 | |
|           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
 | |
|       if (CE0->getOpcode() == CE1->getOpcode()) {
 | |
|         if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
 | |
| 
 | |
|           // Convert the integer value to the right size to ensure we get the
 | |
|           // proper extension or truncation.
 | |
|           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
 | |
|         }
 | |
| 
 | |
|         // Only do this transformation if the int is intptrty in size, otherwise
 | |
|         // there is a truncation or extension that we aren't modeling.
 | |
|         if (CE0->getOpcode() == Instruction::PtrToInt) {
 | |
|           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
 | |
|           if (CE0->getType() == IntPtrTy &&
 | |
|               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
 | |
|             return ConstantFoldCompareInstOperands(
 | |
|                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
 | |
|     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
 | |
|     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
 | |
|         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
 | |
|       Constant *LHS = ConstantFoldCompareInstOperands(
 | |
|           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
 | |
|       Constant *RHS = ConstantFoldCompareInstOperands(
 | |
|           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
 | |
|       unsigned OpC =
 | |
|         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | |
|       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
 | |
|     }
 | |
|   } else if (isa<ConstantExpr>(Ops1)) {
 | |
|     // If RHS is a constant expression, but the left side isn't, swap the
 | |
|     // operands and try again.
 | |
|     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
 | |
|     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
 | |
|                                            const DataLayout &DL) {
 | |
|   assert(Instruction::isUnaryOp(Opcode));
 | |
| 
 | |
|   return ConstantExpr::get(Opcode, Op);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
 | |
|                                              Constant *RHS,
 | |
|                                              const DataLayout &DL) {
 | |
|   assert(Instruction::isBinaryOp(Opcode));
 | |
|   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
 | |
|     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
 | |
|       return C;
 | |
| 
 | |
|   return ConstantExpr::get(Opcode, LHS, RHS);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
 | |
|                                         Type *DestTy, const DataLayout &DL) {
 | |
|   assert(Instruction::isCast(Opcode));
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Missing case");
 | |
|   case Instruction::PtrToInt:
 | |
|     // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | |
|     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | |
|     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       if (CE->getOpcode() == Instruction::IntToPtr) {
 | |
|         Constant *Input = CE->getOperand(0);
 | |
|         unsigned InWidth = Input->getType()->getScalarSizeInBits();
 | |
|         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
 | |
|         if (PtrWidth < InWidth) {
 | |
|           Constant *Mask =
 | |
|             ConstantInt::get(CE->getContext(),
 | |
|                              APInt::getLowBitsSet(InWidth, PtrWidth));
 | |
|           Input = ConstantExpr::getAnd(Input, Mask);
 | |
|         }
 | |
|         // Do a zext or trunc to get to the dest size.
 | |
|         return ConstantExpr::getIntegerCast(Input, DestTy, false);
 | |
|       }
 | |
|     }
 | |
|     return ConstantExpr::getCast(Opcode, C, DestTy);
 | |
|   case Instruction::IntToPtr:
 | |
|     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | |
|     // the int size is >= the ptr size and the address spaces are the same.
 | |
|     // This requires knowing the width of a pointer, so it can't be done in
 | |
|     // ConstantExpr::getCast.
 | |
|     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       if (CE->getOpcode() == Instruction::PtrToInt) {
 | |
|         Constant *SrcPtr = CE->getOperand(0);
 | |
|         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
 | |
|         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
 | |
| 
 | |
|         if (MidIntSize >= SrcPtrSize) {
 | |
|           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
 | |
|           if (SrcAS == DestTy->getPointerAddressSpace())
 | |
|             return FoldBitCast(CE->getOperand(0), DestTy, DL);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return ConstantExpr::getCast(Opcode, C, DestTy);
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|       return ConstantExpr::getCast(Opcode, C, DestTy);
 | |
|   case Instruction::BitCast:
 | |
|     return FoldBitCast(C, DestTy, DL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
 | |
|                                                        ConstantExpr *CE) {
 | |
|   if (!CE->getOperand(1)->isNullValue())
 | |
|     return nullptr;  // Do not allow stepping over the value!
 | |
| 
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing.
 | |
|   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
 | |
|     C = C->getAggregateElement(CE->getOperand(i));
 | |
|     if (!C)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
 | |
|                                         ArrayRef<Constant *> Indices) {
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing.
 | |
|   for (Constant *Index : Indices) {
 | |
|     C = C->getAggregateElement(Index);
 | |
|     if (!C)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Constant Folding for Calls
 | |
| //
 | |
| 
 | |
| bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
 | |
|   if (Call->isNoBuiltin())
 | |
|     return false;
 | |
|   switch (F->getIntrinsicID()) {
 | |
|   // Operations that do not operate floating-point numbers and do not depend on
 | |
|   // FP environment can be folded even in strictfp functions.
 | |
|   case Intrinsic::bswap:
 | |
|   case Intrinsic::ctpop:
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::fshl:
 | |
|   case Intrinsic::fshr:
 | |
|   case Intrinsic::launder_invariant_group:
 | |
|   case Intrinsic::strip_invariant_group:
 | |
|   case Intrinsic::masked_load:
 | |
|   case Intrinsic::get_active_lane_mask:
 | |
|   case Intrinsic::abs:
 | |
|   case Intrinsic::smax:
 | |
|   case Intrinsic::smin:
 | |
|   case Intrinsic::umax:
 | |
|   case Intrinsic::umin:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::sadd_sat:
 | |
|   case Intrinsic::uadd_sat:
 | |
|   case Intrinsic::ssub_sat:
 | |
|   case Intrinsic::usub_sat:
 | |
|   case Intrinsic::smul_fix:
 | |
|   case Intrinsic::smul_fix_sat:
 | |
|   case Intrinsic::bitreverse:
 | |
|   case Intrinsic::is_constant:
 | |
|   case Intrinsic::vector_reduce_add:
 | |
|   case Intrinsic::vector_reduce_mul:
 | |
|   case Intrinsic::vector_reduce_and:
 | |
|   case Intrinsic::vector_reduce_or:
 | |
|   case Intrinsic::vector_reduce_xor:
 | |
|   case Intrinsic::vector_reduce_smin:
 | |
|   case Intrinsic::vector_reduce_smax:
 | |
|   case Intrinsic::vector_reduce_umin:
 | |
|   case Intrinsic::vector_reduce_umax:
 | |
|   // Target intrinsics
 | |
|   case Intrinsic::arm_mve_vctp8:
 | |
|   case Intrinsic::arm_mve_vctp16:
 | |
|   case Intrinsic::arm_mve_vctp32:
 | |
|   case Intrinsic::arm_mve_vctp64:
 | |
|   // WebAssembly float semantics are always known
 | |
|   case Intrinsic::wasm_trunc_signed:
 | |
|   case Intrinsic::wasm_trunc_unsigned:
 | |
|   case Intrinsic::wasm_trunc_saturate_signed:
 | |
|   case Intrinsic::wasm_trunc_saturate_unsigned:
 | |
|     return true;
 | |
| 
 | |
|   // Floating point operations cannot be folded in strictfp functions in
 | |
|   // general case. They can be folded if FP environment is known to compiler.
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maxnum:
 | |
|   case Intrinsic::minimum:
 | |
|   case Intrinsic::maximum:
 | |
|   case Intrinsic::log:
 | |
|   case Intrinsic::log2:
 | |
|   case Intrinsic::log10:
 | |
|   case Intrinsic::exp:
 | |
|   case Intrinsic::exp2:
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::sin:
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::pow:
 | |
|   case Intrinsic::powi:
 | |
|   case Intrinsic::fma:
 | |
|   case Intrinsic::fmuladd:
 | |
|   case Intrinsic::fptoui_sat:
 | |
|   case Intrinsic::fptosi_sat:
 | |
|   case Intrinsic::convert_from_fp16:
 | |
|   case Intrinsic::convert_to_fp16:
 | |
|   case Intrinsic::amdgcn_cos:
 | |
|   case Intrinsic::amdgcn_cubeid:
 | |
|   case Intrinsic::amdgcn_cubema:
 | |
|   case Intrinsic::amdgcn_cubesc:
 | |
|   case Intrinsic::amdgcn_cubetc:
 | |
|   case Intrinsic::amdgcn_fmul_legacy:
 | |
|   case Intrinsic::amdgcn_fma_legacy:
 | |
|   case Intrinsic::amdgcn_fract:
 | |
|   case Intrinsic::amdgcn_ldexp:
 | |
|   case Intrinsic::amdgcn_sin:
 | |
|   // The intrinsics below depend on rounding mode in MXCSR.
 | |
|   case Intrinsic::x86_sse_cvtss2si:
 | |
|   case Intrinsic::x86_sse_cvtss2si64:
 | |
|   case Intrinsic::x86_sse_cvttss2si:
 | |
|   case Intrinsic::x86_sse_cvttss2si64:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtss2si32:
 | |
|   case Intrinsic::x86_avx512_vcvtss2si64:
 | |
|   case Intrinsic::x86_avx512_cvttss2si:
 | |
|   case Intrinsic::x86_avx512_cvttss2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2si32:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2si64:
 | |
|   case Intrinsic::x86_avx512_cvttsd2si:
 | |
|   case Intrinsic::x86_avx512_cvttsd2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtss2usi32:
 | |
|   case Intrinsic::x86_avx512_vcvtss2usi64:
 | |
|   case Intrinsic::x86_avx512_cvttss2usi:
 | |
|   case Intrinsic::x86_avx512_cvttss2usi64:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2usi32:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2usi64:
 | |
|   case Intrinsic::x86_avx512_cvttsd2usi:
 | |
|   case Intrinsic::x86_avx512_cvttsd2usi64:
 | |
|     return !Call->isStrictFP();
 | |
| 
 | |
|   // Sign operations are actually bitwise operations, they do not raise
 | |
|   // exceptions even for SNANs.
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::copysign:
 | |
|   // Non-constrained variants of rounding operations means default FP
 | |
|   // environment, they can be folded in any case.
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::roundeven:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::rint:
 | |
|   // Constrained intrinsics can be folded if FP environment is known
 | |
|   // to compiler.
 | |
|   case Intrinsic::experimental_constrained_ceil:
 | |
|   case Intrinsic::experimental_constrained_floor:
 | |
|   case Intrinsic::experimental_constrained_round:
 | |
|   case Intrinsic::experimental_constrained_roundeven:
 | |
|   case Intrinsic::experimental_constrained_trunc:
 | |
|   case Intrinsic::experimental_constrained_nearbyint:
 | |
|   case Intrinsic::experimental_constrained_rint:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   case Intrinsic::not_intrinsic: break;
 | |
|   }
 | |
| 
 | |
|   if (!F->hasName() || Call->isStrictFP())
 | |
|     return false;
 | |
| 
 | |
|   // In these cases, the check of the length is required.  We don't want to
 | |
|   // return true for a name like "cos\0blah" which strcmp would return equal to
 | |
|   // "cos", but has length 8.
 | |
|   StringRef Name = F->getName();
 | |
|   switch (Name[0]) {
 | |
|   default:
 | |
|     return false;
 | |
|   case 'a':
 | |
|     return Name == "acos" || Name == "acosf" ||
 | |
|            Name == "asin" || Name == "asinf" ||
 | |
|            Name == "atan" || Name == "atanf" ||
 | |
|            Name == "atan2" || Name == "atan2f";
 | |
|   case 'c':
 | |
|     return Name == "ceil" || Name == "ceilf" ||
 | |
|            Name == "cos" || Name == "cosf" ||
 | |
|            Name == "cosh" || Name == "coshf";
 | |
|   case 'e':
 | |
|     return Name == "exp" || Name == "expf" ||
 | |
|            Name == "exp2" || Name == "exp2f";
 | |
|   case 'f':
 | |
|     return Name == "fabs" || Name == "fabsf" ||
 | |
|            Name == "floor" || Name == "floorf" ||
 | |
|            Name == "fmod" || Name == "fmodf";
 | |
|   case 'l':
 | |
|     return Name == "log" || Name == "logf" ||
 | |
|            Name == "log2" || Name == "log2f" ||
 | |
|            Name == "log10" || Name == "log10f";
 | |
|   case 'n':
 | |
|     return Name == "nearbyint" || Name == "nearbyintf";
 | |
|   case 'p':
 | |
|     return Name == "pow" || Name == "powf";
 | |
|   case 'r':
 | |
|     return Name == "remainder" || Name == "remainderf" ||
 | |
|            Name == "rint" || Name == "rintf" ||
 | |
|            Name == "round" || Name == "roundf";
 | |
|   case 's':
 | |
|     return Name == "sin" || Name == "sinf" ||
 | |
|            Name == "sinh" || Name == "sinhf" ||
 | |
|            Name == "sqrt" || Name == "sqrtf";
 | |
|   case 't':
 | |
|     return Name == "tan" || Name == "tanf" ||
 | |
|            Name == "tanh" || Name == "tanhf" ||
 | |
|            Name == "trunc" || Name == "truncf";
 | |
|   case '_':
 | |
|     // Check for various function names that get used for the math functions
 | |
|     // when the header files are preprocessed with the macro
 | |
|     // __FINITE_MATH_ONLY__ enabled.
 | |
|     // The '12' here is the length of the shortest name that can match.
 | |
|     // We need to check the size before looking at Name[1] and Name[2]
 | |
|     // so we may as well check a limit that will eliminate mismatches.
 | |
|     if (Name.size() < 12 || Name[1] != '_')
 | |
|       return false;
 | |
|     switch (Name[2]) {
 | |
|     default:
 | |
|       return false;
 | |
|     case 'a':
 | |
|       return Name == "__acos_finite" || Name == "__acosf_finite" ||
 | |
|              Name == "__asin_finite" || Name == "__asinf_finite" ||
 | |
|              Name == "__atan2_finite" || Name == "__atan2f_finite";
 | |
|     case 'c':
 | |
|       return Name == "__cosh_finite" || Name == "__coshf_finite";
 | |
|     case 'e':
 | |
|       return Name == "__exp_finite" || Name == "__expf_finite" ||
 | |
|              Name == "__exp2_finite" || Name == "__exp2f_finite";
 | |
|     case 'l':
 | |
|       return Name == "__log_finite" || Name == "__logf_finite" ||
 | |
|              Name == "__log10_finite" || Name == "__log10f_finite";
 | |
|     case 'p':
 | |
|       return Name == "__pow_finite" || Name == "__powf_finite";
 | |
|     case 's':
 | |
|       return Name == "__sinh_finite" || Name == "__sinhf_finite";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| Constant *GetConstantFoldFPValue(double V, Type *Ty) {
 | |
|   if (Ty->isHalfTy() || Ty->isFloatTy()) {
 | |
|     APFloat APF(V);
 | |
|     bool unused;
 | |
|     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
 | |
|     return ConstantFP::get(Ty->getContext(), APF);
 | |
|   }
 | |
|   if (Ty->isDoubleTy())
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(V));
 | |
|   llvm_unreachable("Can only constant fold half/float/double");
 | |
| }
 | |
| 
 | |
| /// Clear the floating-point exception state.
 | |
| inline void llvm_fenv_clearexcept() {
 | |
| #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
 | |
|   feclearexcept(FE_ALL_EXCEPT);
 | |
| #endif
 | |
|   errno = 0;
 | |
| }
 | |
| 
 | |
| /// Test if a floating-point exception was raised.
 | |
| inline bool llvm_fenv_testexcept() {
 | |
|   int errno_val = errno;
 | |
|   if (errno_val == ERANGE || errno_val == EDOM)
 | |
|     return true;
 | |
| #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
 | |
|   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
 | |
|     return true;
 | |
| #endif
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
 | |
|   llvm_fenv_clearexcept();
 | |
|   V = NativeFP(V);
 | |
|   if (llvm_fenv_testexcept()) {
 | |
|     llvm_fenv_clearexcept();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return GetConstantFoldFPValue(V, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
 | |
|                                double W, Type *Ty) {
 | |
|   llvm_fenv_clearexcept();
 | |
|   V = NativeFP(V, W);
 | |
|   if (llvm_fenv_testexcept()) {
 | |
|     llvm_fenv_clearexcept();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return GetConstantFoldFPValue(V, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
 | |
|   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
 | |
|   if (!VT)
 | |
|     return nullptr;
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
 | |
|   if (!CI)
 | |
|     return nullptr;
 | |
|   APInt Acc = CI->getValue();
 | |
| 
 | |
|   for (unsigned I = 1; I < VT->getNumElements(); I++) {
 | |
|     if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
 | |
|       return nullptr;
 | |
|     const APInt &X = CI->getValue();
 | |
|     switch (IID) {
 | |
|     case Intrinsic::vector_reduce_add:
 | |
|       Acc = Acc + X;
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_mul:
 | |
|       Acc = Acc * X;
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_and:
 | |
|       Acc = Acc & X;
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_or:
 | |
|       Acc = Acc | X;
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_xor:
 | |
|       Acc = Acc ^ X;
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_smin:
 | |
|       Acc = APIntOps::smin(Acc, X);
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_smax:
 | |
|       Acc = APIntOps::smax(Acc, X);
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_umin:
 | |
|       Acc = APIntOps::umin(Acc, X);
 | |
|       break;
 | |
|     case Intrinsic::vector_reduce_umax:
 | |
|       Acc = APIntOps::umax(Acc, X);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstantInt::get(Op->getContext(), Acc);
 | |
| }
 | |
| 
 | |
| /// Attempt to fold an SSE floating point to integer conversion of a constant
 | |
| /// floating point. If roundTowardZero is false, the default IEEE rounding is
 | |
| /// used (toward nearest, ties to even). This matches the behavior of the
 | |
| /// non-truncating SSE instructions in the default rounding mode. The desired
 | |
| /// integer type Ty is used to select how many bits are available for the
 | |
| /// result. Returns null if the conversion cannot be performed, otherwise
 | |
| /// returns the Constant value resulting from the conversion.
 | |
| Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
 | |
|                                       Type *Ty, bool IsSigned) {
 | |
|   // All of these conversion intrinsics form an integer of at most 64bits.
 | |
|   unsigned ResultWidth = Ty->getIntegerBitWidth();
 | |
|   assert(ResultWidth <= 64 &&
 | |
|          "Can only constant fold conversions to 64 and 32 bit ints");
 | |
| 
 | |
|   uint64_t UIntVal;
 | |
|   bool isExact = false;
 | |
|   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
 | |
|                                               : APFloat::rmNearestTiesToEven;
 | |
|   APFloat::opStatus status =
 | |
|       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
 | |
|                            IsSigned, mode, &isExact);
 | |
|   if (status != APFloat::opOK &&
 | |
|       (!roundTowardZero || status != APFloat::opInexact))
 | |
|     return nullptr;
 | |
|   return ConstantInt::get(Ty, UIntVal, IsSigned);
 | |
| }
 | |
| 
 | |
| double getValueAsDouble(ConstantFP *Op) {
 | |
|   Type *Ty = Op->getType();
 | |
| 
 | |
|   if (Ty->isFloatTy())
 | |
|     return Op->getValueAPF().convertToFloat();
 | |
| 
 | |
|   if (Ty->isDoubleTy())
 | |
|     return Op->getValueAPF().convertToDouble();
 | |
| 
 | |
|   bool unused;
 | |
|   APFloat APF = Op->getValueAPF();
 | |
|   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
 | |
|   return APF.convertToDouble();
 | |
| }
 | |
| 
 | |
| static bool isManifestConstant(const Constant *c) {
 | |
|   if (isa<ConstantData>(c)) {
 | |
|     return true;
 | |
|   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
 | |
|     for (const Value *subc : c->operand_values()) {
 | |
|       if (!isManifestConstant(cast<Constant>(subc)))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|     C = &CI->getValue();
 | |
|     return true;
 | |
|   }
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     C = nullptr;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldScalarCall1(StringRef Name,
 | |
|                                          Intrinsic::ID IntrinsicID,
 | |
|                                          Type *Ty,
 | |
|                                          ArrayRef<Constant *> Operands,
 | |
|                                          const TargetLibraryInfo *TLI,
 | |
|                                          const CallBase *Call) {
 | |
|   assert(Operands.size() == 1 && "Wrong number of operands.");
 | |
| 
 | |
|   if (IntrinsicID == Intrinsic::is_constant) {
 | |
|     // We know we have a "Constant" argument. But we want to only
 | |
|     // return true for manifest constants, not those that depend on
 | |
|     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
 | |
|     if (isManifestConstant(Operands[0]))
 | |
|       return ConstantInt::getTrue(Ty->getContext());
 | |
|     return nullptr;
 | |
|   }
 | |
|   if (isa<UndefValue>(Operands[0])) {
 | |
|     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
 | |
|     // ctpop() is between 0 and bitwidth, pick 0 for undef.
 | |
|     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
 | |
|     if (IntrinsicID == Intrinsic::cos ||
 | |
|         IntrinsicID == Intrinsic::ctpop ||
 | |
|         IntrinsicID == Intrinsic::fptoui_sat ||
 | |
|         IntrinsicID == Intrinsic::fptosi_sat)
 | |
|       return Constant::getNullValue(Ty);
 | |
|     if (IntrinsicID == Intrinsic::bswap ||
 | |
|         IntrinsicID == Intrinsic::bitreverse ||
 | |
|         IntrinsicID == Intrinsic::launder_invariant_group ||
 | |
|         IntrinsicID == Intrinsic::strip_invariant_group)
 | |
|       return Operands[0];
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Operands[0])) {
 | |
|     // launder(null) == null == strip(null) iff in addrspace 0
 | |
|     if (IntrinsicID == Intrinsic::launder_invariant_group ||
 | |
|         IntrinsicID == Intrinsic::strip_invariant_group) {
 | |
|       // If instruction is not yet put in a basic block (e.g. when cloning
 | |
|       // a function during inlining), Call's caller may not be available.
 | |
|       // So check Call's BB first before querying Call->getCaller.
 | |
|       const Function *Caller =
 | |
|           Call->getParent() ? Call->getCaller() : nullptr;
 | |
|       if (Caller &&
 | |
|           !NullPointerIsDefined(
 | |
|               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
 | |
|         return Operands[0];
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|     if (IntrinsicID == Intrinsic::convert_to_fp16) {
 | |
|       APFloat Val(Op->getValueAPF());
 | |
| 
 | |
|       bool lost = false;
 | |
|       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
 | |
| 
 | |
|       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
 | |
|     }
 | |
| 
 | |
|     APFloat U = Op->getValueAPF();
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
 | |
|         IntrinsicID == Intrinsic::wasm_trunc_unsigned ||
 | |
|         IntrinsicID == Intrinsic::wasm_trunc_saturate_signed ||
 | |
|         IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned) {
 | |
| 
 | |
|       bool Saturating = IntrinsicID == Intrinsic::wasm_trunc_saturate_signed ||
 | |
|                         IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned;
 | |
|       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed ||
 | |
|                     IntrinsicID == Intrinsic::wasm_trunc_saturate_signed;
 | |
| 
 | |
|       if (U.isNaN())
 | |
|         return Saturating ? ConstantInt::get(Ty, 0) : nullptr;
 | |
| 
 | |
|       unsigned Width = Ty->getIntegerBitWidth();
 | |
|       APSInt Int(Width, !Signed);
 | |
|       bool IsExact = false;
 | |
|       APFloat::opStatus Status =
 | |
|           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
 | |
| 
 | |
|       if (Status == APFloat::opOK || Status == APFloat::opInexact)
 | |
|         return ConstantInt::get(Ty, Int);
 | |
| 
 | |
|       if (!Saturating)
 | |
|         return nullptr;
 | |
| 
 | |
|       if (U.isNegative())
 | |
|         return Signed ? ConstantInt::get(Ty, APInt::getSignedMinValue(Width))
 | |
|                       : ConstantInt::get(Ty, APInt::getMinValue(Width));
 | |
|       else
 | |
|         return Signed ? ConstantInt::get(Ty, APInt::getSignedMaxValue(Width))
 | |
|                       : ConstantInt::get(Ty, APInt::getMaxValue(Width));
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::fptoui_sat ||
 | |
|         IntrinsicID == Intrinsic::fptosi_sat) {
 | |
|       // convertToInteger() already has the desired saturation semantics.
 | |
|       APSInt Int(Ty->getIntegerBitWidth(),
 | |
|                  IntrinsicID == Intrinsic::fptoui_sat);
 | |
|       bool IsExact;
 | |
|       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
 | |
|       return ConstantInt::get(Ty, Int);
 | |
|     }
 | |
| 
 | |
|     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Use internal versions of these intrinsics.
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
 | |
|       U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::round) {
 | |
|       U.roundToIntegral(APFloat::rmNearestTiesToAway);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::roundeven) {
 | |
|       U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::ceil) {
 | |
|       U.roundToIntegral(APFloat::rmTowardPositive);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::floor) {
 | |
|       U.roundToIntegral(APFloat::rmTowardNegative);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::trunc) {
 | |
|       U.roundToIntegral(APFloat::rmTowardZero);
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::fabs) {
 | |
|       U.clearSign();
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicID == Intrinsic::amdgcn_fract) {
 | |
|       // The v_fract instruction behaves like the OpenCL spec, which defines
 | |
|       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
 | |
|       //   there to prevent fract(-small) from returning 1.0. It returns the
 | |
|       //   largest positive floating-point number less than 1.0."
 | |
|       APFloat FloorU(U);
 | |
|       FloorU.roundToIntegral(APFloat::rmTowardNegative);
 | |
|       APFloat FractU(U - FloorU);
 | |
|       APFloat AlmostOne(U.getSemantics(), 1);
 | |
|       AlmostOne.next(/*nextDown*/ true);
 | |
|       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
 | |
|     }
 | |
| 
 | |
|     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
 | |
|     // raise FP exceptions, unless the argument is signaling NaN.
 | |
| 
 | |
|     Optional<APFloat::roundingMode> RM;
 | |
|     switch (IntrinsicID) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::experimental_constrained_nearbyint:
 | |
|     case Intrinsic::experimental_constrained_rint: {
 | |
|       auto CI = cast<ConstrainedFPIntrinsic>(Call);
 | |
|       RM = CI->getRoundingMode();
 | |
|       if (!RM || RM.getValue() == RoundingMode::Dynamic)
 | |
|         return nullptr;
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::experimental_constrained_round:
 | |
|       RM = APFloat::rmNearestTiesToAway;
 | |
|       break;
 | |
|     case Intrinsic::experimental_constrained_ceil:
 | |
|       RM = APFloat::rmTowardPositive;
 | |
|       break;
 | |
|     case Intrinsic::experimental_constrained_floor:
 | |
|       RM = APFloat::rmTowardNegative;
 | |
|       break;
 | |
|     case Intrinsic::experimental_constrained_trunc:
 | |
|       RM = APFloat::rmTowardZero;
 | |
|       break;
 | |
|     }
 | |
|     if (RM) {
 | |
|       auto CI = cast<ConstrainedFPIntrinsic>(Call);
 | |
|       if (U.isFinite()) {
 | |
|         APFloat::opStatus St = U.roundToIntegral(*RM);
 | |
|         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
 | |
|             St == APFloat::opInexact) {
 | |
|           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
 | |
|           if (EB && *EB == fp::ebStrict)
 | |
|             return nullptr;
 | |
|         }
 | |
|       } else if (U.isSignaling()) {
 | |
|         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
 | |
|         if (EB && *EB != fp::ebIgnore)
 | |
|           return nullptr;
 | |
|         U = APFloat::getQNaN(U.getSemantics());
 | |
|       }
 | |
|       return ConstantFP::get(Ty->getContext(), U);
 | |
|     }
 | |
| 
 | |
|     /// We only fold functions with finite arguments. Folding NaN and inf is
 | |
|     /// likely to be aborted with an exception anyway, and some host libms
 | |
|     /// have known errors raising exceptions.
 | |
|     if (!U.isFinite())
 | |
|       return nullptr;
 | |
| 
 | |
|     /// Currently APFloat versions of these functions do not exist, so we use
 | |
|     /// the host native double versions.  Float versions are not called
 | |
|     /// directly but for all these it is true (float)(f((double)arg)) ==
 | |
|     /// f(arg).  Long double not supported yet.
 | |
|     double V = getValueAsDouble(Op);
 | |
| 
 | |
|     switch (IntrinsicID) {
 | |
|       default: break;
 | |
|       case Intrinsic::log:
 | |
|         return ConstantFoldFP(log, V, Ty);
 | |
|       case Intrinsic::log2:
 | |
|         // TODO: What about hosts that lack a C99 library?
 | |
|         return ConstantFoldFP(Log2, V, Ty);
 | |
|       case Intrinsic::log10:
 | |
|         // TODO: What about hosts that lack a C99 library?
 | |
|         return ConstantFoldFP(log10, V, Ty);
 | |
|       case Intrinsic::exp:
 | |
|         return ConstantFoldFP(exp, V, Ty);
 | |
|       case Intrinsic::exp2:
 | |
|         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
 | |
|         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
 | |
|       case Intrinsic::sin:
 | |
|         return ConstantFoldFP(sin, V, Ty);
 | |
|       case Intrinsic::cos:
 | |
|         return ConstantFoldFP(cos, V, Ty);
 | |
|       case Intrinsic::sqrt:
 | |
|         return ConstantFoldFP(sqrt, V, Ty);
 | |
|       case Intrinsic::amdgcn_cos:
 | |
|       case Intrinsic::amdgcn_sin:
 | |
|         if (V < -256.0 || V > 256.0)
 | |
|           // The gfx8 and gfx9 architectures handle arguments outside the range
 | |
|           // [-256, 256] differently. This should be a rare case so bail out
 | |
|           // rather than trying to handle the difference.
 | |
|           return nullptr;
 | |
|         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
 | |
|         double V4 = V * 4.0;
 | |
|         if (V4 == floor(V4)) {
 | |
|           // Force exact results for quarter-integer inputs.
 | |
|           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
 | |
|           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
 | |
|         } else {
 | |
|           if (IsCos)
 | |
|             V = cos(V * 2.0 * numbers::pi);
 | |
|           else
 | |
|             V = sin(V * 2.0 * numbers::pi);
 | |
|         }
 | |
|         return GetConstantFoldFPValue(V, Ty);
 | |
|     }
 | |
| 
 | |
|     if (!TLI)
 | |
|       return nullptr;
 | |
| 
 | |
|     LibFunc Func = NotLibFunc;
 | |
|     TLI->getLibFunc(Name, Func);
 | |
|     switch (Func) {
 | |
|     default:
 | |
|       break;
 | |
|     case LibFunc_acos:
 | |
|     case LibFunc_acosf:
 | |
|     case LibFunc_acos_finite:
 | |
|     case LibFunc_acosf_finite:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(acos, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_asin:
 | |
|     case LibFunc_asinf:
 | |
|     case LibFunc_asin_finite:
 | |
|     case LibFunc_asinf_finite:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(asin, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_atan:
 | |
|     case LibFunc_atanf:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(atan, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_ceil:
 | |
|     case LibFunc_ceilf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.roundToIntegral(APFloat::rmTowardPositive);
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     case LibFunc_cos:
 | |
|     case LibFunc_cosf:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(cos, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_cosh:
 | |
|     case LibFunc_coshf:
 | |
|     case LibFunc_cosh_finite:
 | |
|     case LibFunc_coshf_finite:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(cosh, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_exp:
 | |
|     case LibFunc_expf:
 | |
|     case LibFunc_exp_finite:
 | |
|     case LibFunc_expf_finite:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(exp, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_exp2:
 | |
|     case LibFunc_exp2f:
 | |
|     case LibFunc_exp2_finite:
 | |
|     case LibFunc_exp2f_finite:
 | |
|       if (TLI->has(Func))
 | |
|         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
 | |
|         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_fabs:
 | |
|     case LibFunc_fabsf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.clearSign();
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     case LibFunc_floor:
 | |
|     case LibFunc_floorf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.roundToIntegral(APFloat::rmTowardNegative);
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     case LibFunc_log:
 | |
|     case LibFunc_logf:
 | |
|     case LibFunc_log_finite:
 | |
|     case LibFunc_logf_finite:
 | |
|       if (V > 0.0 && TLI->has(Func))
 | |
|         return ConstantFoldFP(log, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_log2:
 | |
|     case LibFunc_log2f:
 | |
|     case LibFunc_log2_finite:
 | |
|     case LibFunc_log2f_finite:
 | |
|       if (V > 0.0 && TLI->has(Func))
 | |
|         // TODO: What about hosts that lack a C99 library?
 | |
|         return ConstantFoldFP(Log2, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_log10:
 | |
|     case LibFunc_log10f:
 | |
|     case LibFunc_log10_finite:
 | |
|     case LibFunc_log10f_finite:
 | |
|       if (V > 0.0 && TLI->has(Func))
 | |
|         // TODO: What about hosts that lack a C99 library?
 | |
|         return ConstantFoldFP(log10, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_nearbyint:
 | |
|     case LibFunc_nearbyintf:
 | |
|     case LibFunc_rint:
 | |
|     case LibFunc_rintf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     case LibFunc_round:
 | |
|     case LibFunc_roundf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.roundToIntegral(APFloat::rmNearestTiesToAway);
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     case LibFunc_sin:
 | |
|     case LibFunc_sinf:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(sin, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_sinh:
 | |
|     case LibFunc_sinhf:
 | |
|     case LibFunc_sinh_finite:
 | |
|     case LibFunc_sinhf_finite:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(sinh, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_sqrt:
 | |
|     case LibFunc_sqrtf:
 | |
|       if (V >= 0.0 && TLI->has(Func))
 | |
|         return ConstantFoldFP(sqrt, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_tan:
 | |
|     case LibFunc_tanf:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(tan, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_tanh:
 | |
|     case LibFunc_tanhf:
 | |
|       if (TLI->has(Func))
 | |
|         return ConstantFoldFP(tanh, V, Ty);
 | |
|       break;
 | |
|     case LibFunc_trunc:
 | |
|     case LibFunc_truncf:
 | |
|       if (TLI->has(Func)) {
 | |
|         U.roundToIntegral(APFloat::rmTowardZero);
 | |
|         return ConstantFP::get(Ty->getContext(), U);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|     switch (IntrinsicID) {
 | |
|     case Intrinsic::bswap:
 | |
|       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
 | |
|     case Intrinsic::ctpop:
 | |
|       return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | |
|     case Intrinsic::bitreverse:
 | |
|       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
 | |
|     case Intrinsic::convert_from_fp16: {
 | |
|       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
 | |
| 
 | |
|       bool lost = false;
 | |
|       APFloat::opStatus status = Val.convert(
 | |
|           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
 | |
| 
 | |
|       // Conversion is always precise.
 | |
|       (void)status;
 | |
|       assert(status == APFloat::opOK && !lost &&
 | |
|              "Precision lost during fp16 constfolding");
 | |
| 
 | |
|       return ConstantFP::get(Ty->getContext(), Val);
 | |
|     }
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantAggregateZero>(Operands[0])) {
 | |
|     switch (IntrinsicID) {
 | |
|     default: break;
 | |
|     case Intrinsic::vector_reduce_add:
 | |
|     case Intrinsic::vector_reduce_mul:
 | |
|     case Intrinsic::vector_reduce_and:
 | |
|     case Intrinsic::vector_reduce_or:
 | |
|     case Intrinsic::vector_reduce_xor:
 | |
|     case Intrinsic::vector_reduce_smin:
 | |
|     case Intrinsic::vector_reduce_smax:
 | |
|     case Intrinsic::vector_reduce_umin:
 | |
|     case Intrinsic::vector_reduce_umax:
 | |
|       return ConstantInt::get(Ty, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Support ConstantVector in case we have an Undef in the top.
 | |
|   if (isa<ConstantVector>(Operands[0]) ||
 | |
|       isa<ConstantDataVector>(Operands[0])) {
 | |
|     auto *Op = cast<Constant>(Operands[0]);
 | |
|     switch (IntrinsicID) {
 | |
|     default: break;
 | |
|     case Intrinsic::vector_reduce_add:
 | |
|     case Intrinsic::vector_reduce_mul:
 | |
|     case Intrinsic::vector_reduce_and:
 | |
|     case Intrinsic::vector_reduce_or:
 | |
|     case Intrinsic::vector_reduce_xor:
 | |
|     case Intrinsic::vector_reduce_smin:
 | |
|     case Intrinsic::vector_reduce_smax:
 | |
|     case Intrinsic::vector_reduce_umin:
 | |
|     case Intrinsic::vector_reduce_umax:
 | |
|       if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op))
 | |
|         return C;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_cvtss2si:
 | |
|     case Intrinsic::x86_sse_cvtss2si64:
 | |
|     case Intrinsic::x86_sse2_cvtsd2si:
 | |
|     case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/false, Ty,
 | |
|                                            /*IsSigned*/true);
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_cvttss2si:
 | |
|     case Intrinsic::x86_sse_cvttss2si64:
 | |
|     case Intrinsic::x86_sse2_cvttsd2si:
 | |
|     case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/true, Ty,
 | |
|                                            /*IsSigned*/true);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldScalarCall2(StringRef Name,
 | |
|                                          Intrinsic::ID IntrinsicID,
 | |
|                                          Type *Ty,
 | |
|                                          ArrayRef<Constant *> Operands,
 | |
|                                          const TargetLibraryInfo *TLI,
 | |
|                                          const CallBase *Call) {
 | |
|   assert(Operands.size() == 2 && "Wrong number of operands.");
 | |
| 
 | |
|   if (Ty->isFloatingPointTy()) {
 | |
|     // TODO: We should have undef handling for all of the FP intrinsics that
 | |
|     //       are attempted to be folded in this function.
 | |
|     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
 | |
|     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
 | |
|     switch (IntrinsicID) {
 | |
|     case Intrinsic::maxnum:
 | |
|     case Intrinsic::minnum:
 | |
|     case Intrinsic::maximum:
 | |
|     case Intrinsic::minimum:
 | |
|       // If one argument is undef, return the other argument.
 | |
|       if (IsOp0Undef)
 | |
|         return Operands[1];
 | |
|       if (IsOp1Undef)
 | |
|         return Operands[0];
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | |
|       return nullptr;
 | |
|     double Op1V = getValueAsDouble(Op1);
 | |
| 
 | |
|     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | |
|       if (Op2->getType() != Op1->getType())
 | |
|         return nullptr;
 | |
| 
 | |
|       double Op2V = getValueAsDouble(Op2);
 | |
|       if (IntrinsicID == Intrinsic::pow) {
 | |
|         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | |
|       }
 | |
|       if (IntrinsicID == Intrinsic::copysign) {
 | |
|         APFloat V1 = Op1->getValueAPF();
 | |
|         const APFloat &V2 = Op2->getValueAPF();
 | |
|         V1.copySign(V2);
 | |
|         return ConstantFP::get(Ty->getContext(), V1);
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::minnum) {
 | |
|         const APFloat &C1 = Op1->getValueAPF();
 | |
|         const APFloat &C2 = Op2->getValueAPF();
 | |
|         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::maxnum) {
 | |
|         const APFloat &C1 = Op1->getValueAPF();
 | |
|         const APFloat &C2 = Op2->getValueAPF();
 | |
|         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::minimum) {
 | |
|         const APFloat &C1 = Op1->getValueAPF();
 | |
|         const APFloat &C2 = Op2->getValueAPF();
 | |
|         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::maximum) {
 | |
|         const APFloat &C1 = Op1->getValueAPF();
 | |
|         const APFloat &C2 = Op2->getValueAPF();
 | |
|         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
 | |
|         const APFloat &C1 = Op1->getValueAPF();
 | |
|         const APFloat &C2 = Op2->getValueAPF();
 | |
|         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
 | |
|         // NaN or infinity, gives +0.0.
 | |
|         if (C1.isZero() || C2.isZero())
 | |
|           return ConstantFP::getNullValue(Ty);
 | |
|         return ConstantFP::get(Ty->getContext(), C1 * C2);
 | |
|       }
 | |
| 
 | |
|       if (!TLI)
 | |
|         return nullptr;
 | |
| 
 | |
|       LibFunc Func = NotLibFunc;
 | |
|       TLI->getLibFunc(Name, Func);
 | |
|       switch (Func) {
 | |
|       default:
 | |
|         break;
 | |
|       case LibFunc_pow:
 | |
|       case LibFunc_powf:
 | |
|       case LibFunc_pow_finite:
 | |
|       case LibFunc_powf_finite:
 | |
|         if (TLI->has(Func))
 | |
|           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | |
|         break;
 | |
|       case LibFunc_fmod:
 | |
|       case LibFunc_fmodf:
 | |
|         if (TLI->has(Func)) {
 | |
|           APFloat V = Op1->getValueAPF();
 | |
|           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
 | |
|             return ConstantFP::get(Ty->getContext(), V);
 | |
|         }
 | |
|         break;
 | |
|       case LibFunc_remainder:
 | |
|       case LibFunc_remainderf:
 | |
|         if (TLI->has(Func)) {
 | |
|           APFloat V = Op1->getValueAPF();
 | |
|           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
 | |
|             return ConstantFP::get(Ty->getContext(), V);
 | |
|         }
 | |
|         break;
 | |
|       case LibFunc_atan2:
 | |
|       case LibFunc_atan2f:
 | |
|       case LibFunc_atan2_finite:
 | |
|       case LibFunc_atan2f_finite:
 | |
|         if (TLI->has(Func))
 | |
|           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | |
|         break;
 | |
|       }
 | |
|     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | |
|       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
 | |
|         return ConstantFP::get(Ty->getContext(),
 | |
|                                APFloat((float)std::pow((float)Op1V,
 | |
|                                                (int)Op2C->getZExtValue())));
 | |
|       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
 | |
|         return ConstantFP::get(Ty->getContext(),
 | |
|                                APFloat((float)std::pow((float)Op1V,
 | |
|                                                (int)Op2C->getZExtValue())));
 | |
|       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
 | |
|         return ConstantFP::get(Ty->getContext(),
 | |
|                                APFloat((double)std::pow((double)Op1V,
 | |
|                                                  (int)Op2C->getZExtValue())));
 | |
| 
 | |
|       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
 | |
|         // FIXME: Should flush denorms depending on FP mode, but that's ignored
 | |
|         // everywhere else.
 | |
| 
 | |
|         // scalbn is equivalent to ldexp with float radix 2
 | |
|         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
 | |
|                                 APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(Ty->getContext(), Result);
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (Operands[0]->getType()->isIntegerTy() &&
 | |
|       Operands[1]->getType()->isIntegerTy()) {
 | |
|     const APInt *C0, *C1;
 | |
|     if (!getConstIntOrUndef(Operands[0], C0) ||
 | |
|         !getConstIntOrUndef(Operands[1], C1))
 | |
|       return nullptr;
 | |
| 
 | |
|     unsigned BitWidth = Ty->getScalarSizeInBits();
 | |
|     switch (IntrinsicID) {
 | |
|     default: break;
 | |
|     case Intrinsic::smax:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
 | |
|       return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
 | |
| 
 | |
|     case Intrinsic::smin:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
 | |
|       return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
 | |
| 
 | |
|     case Intrinsic::umax:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
 | |
|       return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
 | |
| 
 | |
|     case Intrinsic::umin:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
 | |
|       return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
 | |
| 
 | |
|     case Intrinsic::usub_with_overflow:
 | |
|     case Intrinsic::ssub_with_overflow:
 | |
|     case Intrinsic::uadd_with_overflow:
 | |
|     case Intrinsic::sadd_with_overflow:
 | |
|       // X - undef -> { undef, false }
 | |
|       // undef - X -> { undef, false }
 | |
|       // X + undef -> { undef, false }
 | |
|       // undef + x -> { undef, false }
 | |
|       if (!C0 || !C1) {
 | |
|         return ConstantStruct::get(
 | |
|             cast<StructType>(Ty),
 | |
|             {UndefValue::get(Ty->getStructElementType(0)),
 | |
|              Constant::getNullValue(Ty->getStructElementType(1))});
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Intrinsic::smul_with_overflow:
 | |
|     case Intrinsic::umul_with_overflow: {
 | |
|       // undef * X -> { 0, false }
 | |
|       // X * undef -> { 0, false }
 | |
|       if (!C0 || !C1)
 | |
|         return Constant::getNullValue(Ty);
 | |
| 
 | |
|       APInt Res;
 | |
|       bool Overflow;
 | |
|       switch (IntrinsicID) {
 | |
|       default: llvm_unreachable("Invalid case");
 | |
|       case Intrinsic::sadd_with_overflow:
 | |
|         Res = C0->sadd_ov(*C1, Overflow);
 | |
|         break;
 | |
|       case Intrinsic::uadd_with_overflow:
 | |
|         Res = C0->uadd_ov(*C1, Overflow);
 | |
|         break;
 | |
|       case Intrinsic::ssub_with_overflow:
 | |
|         Res = C0->ssub_ov(*C1, Overflow);
 | |
|         break;
 | |
|       case Intrinsic::usub_with_overflow:
 | |
|         Res = C0->usub_ov(*C1, Overflow);
 | |
|         break;
 | |
|       case Intrinsic::smul_with_overflow:
 | |
|         Res = C0->smul_ov(*C1, Overflow);
 | |
|         break;
 | |
|       case Intrinsic::umul_with_overflow:
 | |
|         Res = C0->umul_ov(*C1, Overflow);
 | |
|         break;
 | |
|       }
 | |
|       Constant *Ops[] = {
 | |
|         ConstantInt::get(Ty->getContext(), Res),
 | |
|         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
 | |
|       };
 | |
|       return ConstantStruct::get(cast<StructType>(Ty), Ops);
 | |
|     }
 | |
|     case Intrinsic::uadd_sat:
 | |
|     case Intrinsic::sadd_sat:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return Constant::getAllOnesValue(Ty);
 | |
|       if (IntrinsicID == Intrinsic::uadd_sat)
 | |
|         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
 | |
|       else
 | |
|         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
 | |
|     case Intrinsic::usub_sat:
 | |
|     case Intrinsic::ssub_sat:
 | |
|       if (!C0 && !C1)
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0 || !C1)
 | |
|         return Constant::getNullValue(Ty);
 | |
|       if (IntrinsicID == Intrinsic::usub_sat)
 | |
|         return ConstantInt::get(Ty, C0->usub_sat(*C1));
 | |
|       else
 | |
|         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
 | |
|     case Intrinsic::cttz:
 | |
|     case Intrinsic::ctlz:
 | |
|       assert(C1 && "Must be constant int");
 | |
| 
 | |
|       // cttz(0, 1) and ctlz(0, 1) are undef.
 | |
|       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
 | |
|         return UndefValue::get(Ty);
 | |
|       if (!C0)
 | |
|         return Constant::getNullValue(Ty);
 | |
|       if (IntrinsicID == Intrinsic::cttz)
 | |
|         return ConstantInt::get(Ty, C0->countTrailingZeros());
 | |
|       else
 | |
|         return ConstantInt::get(Ty, C0->countLeadingZeros());
 | |
| 
 | |
|     case Intrinsic::abs:
 | |
|       // Undef or minimum val operand with poison min --> undef
 | |
|       assert(C1 && "Must be constant int");
 | |
|       if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
 | |
|         return UndefValue::get(Ty);
 | |
| 
 | |
|       // Undef operand with no poison min --> 0 (sign bit must be clear)
 | |
|       if (C1->isNullValue() && !C0)
 | |
|         return Constant::getNullValue(Ty);
 | |
| 
 | |
|       return ConstantInt::get(Ty, C0->abs());
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Support ConstantVector in case we have an Undef in the top.
 | |
|   if ((isa<ConstantVector>(Operands[0]) ||
 | |
|        isa<ConstantDataVector>(Operands[0])) &&
 | |
|       // Check for default rounding mode.
 | |
|       // FIXME: Support other rounding modes?
 | |
|       isa<ConstantInt>(Operands[1]) &&
 | |
|       cast<ConstantInt>(Operands[1])->getValue() == 4) {
 | |
|     auto *Op = cast<Constant>(Operands[0]);
 | |
|     switch (IntrinsicID) {
 | |
|     default: break;
 | |
|     case Intrinsic::x86_avx512_vcvtss2si32:
 | |
|     case Intrinsic::x86_avx512_vcvtss2si64:
 | |
|     case Intrinsic::x86_avx512_vcvtsd2si32:
 | |
|     case Intrinsic::x86_avx512_vcvtsd2si64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/false, Ty,
 | |
|                                            /*IsSigned*/true);
 | |
|       break;
 | |
|     case Intrinsic::x86_avx512_vcvtss2usi32:
 | |
|     case Intrinsic::x86_avx512_vcvtss2usi64:
 | |
|     case Intrinsic::x86_avx512_vcvtsd2usi32:
 | |
|     case Intrinsic::x86_avx512_vcvtsd2usi64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/false, Ty,
 | |
|                                            /*IsSigned*/false);
 | |
|       break;
 | |
|     case Intrinsic::x86_avx512_cvttss2si:
 | |
|     case Intrinsic::x86_avx512_cvttss2si64:
 | |
|     case Intrinsic::x86_avx512_cvttsd2si:
 | |
|     case Intrinsic::x86_avx512_cvttsd2si64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/true, Ty,
 | |
|                                            /*IsSigned*/true);
 | |
|       break;
 | |
|     case Intrinsic::x86_avx512_cvttss2usi:
 | |
|     case Intrinsic::x86_avx512_cvttss2usi64:
 | |
|     case Intrinsic::x86_avx512_cvttsd2usi:
 | |
|     case Intrinsic::x86_avx512_cvttsd2usi64:
 | |
|       if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | |
|                                            /*roundTowardZero=*/true, Ty,
 | |
|                                            /*IsSigned*/false);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
 | |
|                                                const APFloat &S0,
 | |
|                                                const APFloat &S1,
 | |
|                                                const APFloat &S2) {
 | |
|   unsigned ID;
 | |
|   const fltSemantics &Sem = S0.getSemantics();
 | |
|   APFloat MA(Sem), SC(Sem), TC(Sem);
 | |
|   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
 | |
|     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
 | |
|       // S2 < 0
 | |
|       ID = 5;
 | |
|       SC = -S0;
 | |
|     } else {
 | |
|       ID = 4;
 | |
|       SC = S0;
 | |
|     }
 | |
|     MA = S2;
 | |
|     TC = -S1;
 | |
|   } else if (abs(S1) >= abs(S0)) {
 | |
|     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
 | |
|       // S1 < 0
 | |
|       ID = 3;
 | |
|       TC = -S2;
 | |
|     } else {
 | |
|       ID = 2;
 | |
|       TC = S2;
 | |
|     }
 | |
|     MA = S1;
 | |
|     SC = S0;
 | |
|   } else {
 | |
|     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
 | |
|       // S0 < 0
 | |
|       ID = 1;
 | |
|       SC = S2;
 | |
|     } else {
 | |
|       ID = 0;
 | |
|       SC = -S2;
 | |
|     }
 | |
|     MA = S0;
 | |
|     TC = -S1;
 | |
|   }
 | |
|   switch (IntrinsicID) {
 | |
|   default:
 | |
|     llvm_unreachable("unhandled amdgcn cube intrinsic");
 | |
|   case Intrinsic::amdgcn_cubeid:
 | |
|     return APFloat(Sem, ID);
 | |
|   case Intrinsic::amdgcn_cubema:
 | |
|     return MA + MA;
 | |
|   case Intrinsic::amdgcn_cubesc:
 | |
|     return SC;
 | |
|   case Intrinsic::amdgcn_cubetc:
 | |
|     return TC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldScalarCall3(StringRef Name,
 | |
|                                          Intrinsic::ID IntrinsicID,
 | |
|                                          Type *Ty,
 | |
|                                          ArrayRef<Constant *> Operands,
 | |
|                                          const TargetLibraryInfo *TLI,
 | |
|                                          const CallBase *Call) {
 | |
|   assert(Operands.size() == 3 && "Wrong number of operands.");
 | |
| 
 | |
|   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | |
|       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
 | |
|         switch (IntrinsicID) {
 | |
|         default: break;
 | |
|         case Intrinsic::amdgcn_fma_legacy: {
 | |
|           const APFloat &C1 = Op1->getValueAPF();
 | |
|           const APFloat &C2 = Op2->getValueAPF();
 | |
|           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
 | |
|           // NaN or infinity, gives +0.0.
 | |
|           if (C1.isZero() || C2.isZero()) {
 | |
|             const APFloat &C3 = Op3->getValueAPF();
 | |
|             // It's tempting to just return C3 here, but that would give the
 | |
|             // wrong result if C3 was -0.0.
 | |
|             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
 | |
|           }
 | |
|           LLVM_FALLTHROUGH;
 | |
|         }
 | |
|         case Intrinsic::fma:
 | |
|         case Intrinsic::fmuladd: {
 | |
|           APFloat V = Op1->getValueAPF();
 | |
|           V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
 | |
|                              APFloat::rmNearestTiesToEven);
 | |
|           return ConstantFP::get(Ty->getContext(), V);
 | |
|         }
 | |
|         case Intrinsic::amdgcn_cubeid:
 | |
|         case Intrinsic::amdgcn_cubema:
 | |
|         case Intrinsic::amdgcn_cubesc:
 | |
|         case Intrinsic::amdgcn_cubetc: {
 | |
|           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(
 | |
|               IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(),
 | |
|               Op3->getValueAPF());
 | |
|           return ConstantFP::get(Ty->getContext(), V);
 | |
|         }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
 | |
|       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
 | |
|         switch (IntrinsicID) {
 | |
|         default: break;
 | |
|         case Intrinsic::smul_fix:
 | |
|         case Intrinsic::smul_fix_sat: {
 | |
|           // This code performs rounding towards negative infinity in case the
 | |
|           // result cannot be represented exactly for the given scale. Targets
 | |
|           // that do care about rounding should use a target hook for specifying
 | |
|           // how rounding should be done, and provide their own folding to be
 | |
|           // consistent with rounding. This is the same approach as used by
 | |
|           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
 | |
|           const APInt &Lhs = Op1->getValue();
 | |
|           const APInt &Rhs = Op2->getValue();
 | |
|           unsigned Scale = Op3->getValue().getZExtValue();
 | |
|           unsigned Width = Lhs.getBitWidth();
 | |
|           assert(Scale < Width && "Illegal scale.");
 | |
|           unsigned ExtendedWidth = Width * 2;
 | |
|           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
 | |
|                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
 | |
|           if (IntrinsicID == Intrinsic::smul_fix_sat) {
 | |
|             APInt MaxValue =
 | |
|               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
 | |
|             APInt MinValue =
 | |
|               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
 | |
|             Product = APIntOps::smin(Product, MaxValue);
 | |
|             Product = APIntOps::smax(Product, MinValue);
 | |
|           }
 | |
|           return ConstantInt::get(Ty->getContext(),
 | |
|                                   Product.sextOrTrunc(Width));
 | |
|         }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
 | |
|     const APInt *C0, *C1, *C2;
 | |
|     if (!getConstIntOrUndef(Operands[0], C0) ||
 | |
|         !getConstIntOrUndef(Operands[1], C1) ||
 | |
|         !getConstIntOrUndef(Operands[2], C2))
 | |
|       return nullptr;
 | |
| 
 | |
|     bool IsRight = IntrinsicID == Intrinsic::fshr;
 | |
|     if (!C2)
 | |
|       return Operands[IsRight ? 1 : 0];
 | |
|     if (!C0 && !C1)
 | |
|       return UndefValue::get(Ty);
 | |
| 
 | |
|     // The shift amount is interpreted as modulo the bitwidth. If the shift
 | |
|     // amount is effectively 0, avoid UB due to oversized inverse shift below.
 | |
|     unsigned BitWidth = C2->getBitWidth();
 | |
|     unsigned ShAmt = C2->urem(BitWidth);
 | |
|     if (!ShAmt)
 | |
|       return Operands[IsRight ? 1 : 0];
 | |
| 
 | |
|     // (C0 << ShlAmt) | (C1 >> LshrAmt)
 | |
|     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
 | |
|     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
 | |
|     if (!C0)
 | |
|       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
 | |
|     if (!C1)
 | |
|       return ConstantInt::get(Ty, C0->shl(ShlAmt));
 | |
|     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldScalarCall(StringRef Name,
 | |
|                                         Intrinsic::ID IntrinsicID,
 | |
|                                         Type *Ty,
 | |
|                                         ArrayRef<Constant *> Operands,
 | |
|                                         const TargetLibraryInfo *TLI,
 | |
|                                         const CallBase *Call) {
 | |
|   if (Operands.size() == 1)
 | |
|     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | |
| 
 | |
|   if (Operands.size() == 2)
 | |
|     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | |
| 
 | |
|   if (Operands.size() == 3)
 | |
|     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldVectorCall(StringRef Name,
 | |
|                                         Intrinsic::ID IntrinsicID,
 | |
|                                         VectorType *VTy,
 | |
|                                         ArrayRef<Constant *> Operands,
 | |
|                                         const DataLayout &DL,
 | |
|                                         const TargetLibraryInfo *TLI,
 | |
|                                         const CallBase *Call) {
 | |
|   // Do not iterate on scalable vector. The number of elements is unknown at
 | |
|   // compile-time.
 | |
|   if (isa<ScalableVectorType>(VTy))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *FVTy = cast<FixedVectorType>(VTy);
 | |
| 
 | |
|   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
 | |
|   SmallVector<Constant *, 4> Lane(Operands.size());
 | |
|   Type *Ty = FVTy->getElementType();
 | |
| 
 | |
|   switch (IntrinsicID) {
 | |
|   case Intrinsic::masked_load: {
 | |
|     auto *SrcPtr = Operands[0];
 | |
|     auto *Mask = Operands[2];
 | |
|     auto *Passthru = Operands[3];
 | |
| 
 | |
|     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
 | |
| 
 | |
|     SmallVector<Constant *, 32> NewElements;
 | |
|     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
 | |
|       auto *MaskElt = Mask->getAggregateElement(I);
 | |
|       if (!MaskElt)
 | |
|         break;
 | |
|       auto *PassthruElt = Passthru->getAggregateElement(I);
 | |
|       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
 | |
|       if (isa<UndefValue>(MaskElt)) {
 | |
|         if (PassthruElt)
 | |
|           NewElements.push_back(PassthruElt);
 | |
|         else if (VecElt)
 | |
|           NewElements.push_back(VecElt);
 | |
|         else
 | |
|           return nullptr;
 | |
|       }
 | |
|       if (MaskElt->isNullValue()) {
 | |
|         if (!PassthruElt)
 | |
|           return nullptr;
 | |
|         NewElements.push_back(PassthruElt);
 | |
|       } else if (MaskElt->isOneValue()) {
 | |
|         if (!VecElt)
 | |
|           return nullptr;
 | |
|         NewElements.push_back(VecElt);
 | |
|       } else {
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
|     if (NewElements.size() != FVTy->getNumElements())
 | |
|       return nullptr;
 | |
|     return ConstantVector::get(NewElements);
 | |
|   }
 | |
|   case Intrinsic::arm_mve_vctp8:
 | |
|   case Intrinsic::arm_mve_vctp16:
 | |
|   case Intrinsic::arm_mve_vctp32:
 | |
|   case Intrinsic::arm_mve_vctp64: {
 | |
|     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|       unsigned Lanes = FVTy->getNumElements();
 | |
|       uint64_t Limit = Op->getZExtValue();
 | |
|       // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
 | |
|       // sure we get the limit right in that case and set all relevant lanes.
 | |
|       if (IntrinsicID == Intrinsic::arm_mve_vctp64)
 | |
|         Limit *= 2;
 | |
| 
 | |
|       SmallVector<Constant *, 16> NCs;
 | |
|       for (unsigned i = 0; i < Lanes; i++) {
 | |
|         if (i < Limit)
 | |
|           NCs.push_back(ConstantInt::getTrue(Ty));
 | |
|         else
 | |
|           NCs.push_back(ConstantInt::getFalse(Ty));
 | |
|       }
 | |
|       return ConstantVector::get(NCs);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::get_active_lane_mask: {
 | |
|     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
 | |
|     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
 | |
|     if (Op0 && Op1) {
 | |
|       unsigned Lanes = FVTy->getNumElements();
 | |
|       uint64_t Base = Op0->getZExtValue();
 | |
|       uint64_t Limit = Op1->getZExtValue();
 | |
| 
 | |
|       SmallVector<Constant *, 16> NCs;
 | |
|       for (unsigned i = 0; i < Lanes; i++) {
 | |
|         if (Base + i < Limit)
 | |
|           NCs.push_back(ConstantInt::getTrue(Ty));
 | |
|         else
 | |
|           NCs.push_back(ConstantInt::getFalse(Ty));
 | |
|       }
 | |
|       return ConstantVector::get(NCs);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
 | |
|     // Gather a column of constants.
 | |
|     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
 | |
|       // Some intrinsics use a scalar type for certain arguments.
 | |
|       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
 | |
|         Lane[J] = Operands[J];
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Constant *Agg = Operands[J]->getAggregateElement(I);
 | |
|       if (!Agg)
 | |
|         return nullptr;
 | |
| 
 | |
|       Lane[J] = Agg;
 | |
|     }
 | |
| 
 | |
|     // Use the regular scalar folding to simplify this column.
 | |
|     Constant *Folded =
 | |
|         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
 | |
|     if (!Folded)
 | |
|       return nullptr;
 | |
|     Result[I] = Folded;
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
 | |
|                                  ArrayRef<Constant *> Operands,
 | |
|                                  const TargetLibraryInfo *TLI) {
 | |
|   if (Call->isNoBuiltin())
 | |
|     return nullptr;
 | |
|   if (!F->hasName())
 | |
|     return nullptr;
 | |
|   StringRef Name = F->getName();
 | |
| 
 | |
|   Type *Ty = F->getReturnType();
 | |
| 
 | |
|   if (auto *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
 | |
|                                   F->getParent()->getDataLayout(), TLI, Call);
 | |
| 
 | |
|   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
 | |
|                                 Call);
 | |
| }
 | |
| 
 | |
| bool llvm::isMathLibCallNoop(const CallBase *Call,
 | |
|                              const TargetLibraryInfo *TLI) {
 | |
|   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
 | |
|   // (and to some extent ConstantFoldScalarCall).
 | |
|   if (Call->isNoBuiltin() || Call->isStrictFP())
 | |
|     return false;
 | |
|   Function *F = Call->getCalledFunction();
 | |
|   if (!F)
 | |
|     return false;
 | |
| 
 | |
|   LibFunc Func;
 | |
|   if (!TLI || !TLI->getLibFunc(*F, Func))
 | |
|     return false;
 | |
| 
 | |
|   if (Call->getNumArgOperands() == 1) {
 | |
|     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
 | |
|       const APFloat &Op = OpC->getValueAPF();
 | |
|       switch (Func) {
 | |
|       case LibFunc_logl:
 | |
|       case LibFunc_log:
 | |
|       case LibFunc_logf:
 | |
|       case LibFunc_log2l:
 | |
|       case LibFunc_log2:
 | |
|       case LibFunc_log2f:
 | |
|       case LibFunc_log10l:
 | |
|       case LibFunc_log10:
 | |
|       case LibFunc_log10f:
 | |
|         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
 | |
| 
 | |
|       case LibFunc_expl:
 | |
|       case LibFunc_exp:
 | |
|       case LibFunc_expf:
 | |
|         // FIXME: These boundaries are slightly conservative.
 | |
|         if (OpC->getType()->isDoubleTy())
 | |
|           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
 | |
|         if (OpC->getType()->isFloatTy())
 | |
|           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
 | |
|         break;
 | |
| 
 | |
|       case LibFunc_exp2l:
 | |
|       case LibFunc_exp2:
 | |
|       case LibFunc_exp2f:
 | |
|         // FIXME: These boundaries are slightly conservative.
 | |
|         if (OpC->getType()->isDoubleTy())
 | |
|           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
 | |
|         if (OpC->getType()->isFloatTy())
 | |
|           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
 | |
|         break;
 | |
| 
 | |
|       case LibFunc_sinl:
 | |
|       case LibFunc_sin:
 | |
|       case LibFunc_sinf:
 | |
|       case LibFunc_cosl:
 | |
|       case LibFunc_cos:
 | |
|       case LibFunc_cosf:
 | |
|         return !Op.isInfinity();
 | |
| 
 | |
|       case LibFunc_tanl:
 | |
|       case LibFunc_tan:
 | |
|       case LibFunc_tanf: {
 | |
|         // FIXME: Stop using the host math library.
 | |
|         // FIXME: The computation isn't done in the right precision.
 | |
|         Type *Ty = OpC->getType();
 | |
|         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
 | |
|           double OpV = getValueAsDouble(OpC);
 | |
|           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case LibFunc_asinl:
 | |
|       case LibFunc_asin:
 | |
|       case LibFunc_asinf:
 | |
|       case LibFunc_acosl:
 | |
|       case LibFunc_acos:
 | |
|       case LibFunc_acosf:
 | |
|         return !(Op < APFloat(Op.getSemantics(), "-1") ||
 | |
|                  Op > APFloat(Op.getSemantics(), "1"));
 | |
| 
 | |
|       case LibFunc_sinh:
 | |
|       case LibFunc_cosh:
 | |
|       case LibFunc_sinhf:
 | |
|       case LibFunc_coshf:
 | |
|       case LibFunc_sinhl:
 | |
|       case LibFunc_coshl:
 | |
|         // FIXME: These boundaries are slightly conservative.
 | |
|         if (OpC->getType()->isDoubleTy())
 | |
|           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
 | |
|         if (OpC->getType()->isFloatTy())
 | |
|           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
 | |
|         break;
 | |
| 
 | |
|       case LibFunc_sqrtl:
 | |
|       case LibFunc_sqrt:
 | |
|       case LibFunc_sqrtf:
 | |
|         return Op.isNaN() || Op.isZero() || !Op.isNegative();
 | |
| 
 | |
|       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
 | |
|       // maybe others?
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Call->getNumArgOperands() == 2) {
 | |
|     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
 | |
|     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
 | |
|     if (Op0C && Op1C) {
 | |
|       const APFloat &Op0 = Op0C->getValueAPF();
 | |
|       const APFloat &Op1 = Op1C->getValueAPF();
 | |
| 
 | |
|       switch (Func) {
 | |
|       case LibFunc_powl:
 | |
|       case LibFunc_pow:
 | |
|       case LibFunc_powf: {
 | |
|         // FIXME: Stop using the host math library.
 | |
|         // FIXME: The computation isn't done in the right precision.
 | |
|         Type *Ty = Op0C->getType();
 | |
|         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
 | |
|           if (Ty == Op1C->getType()) {
 | |
|             double Op0V = getValueAsDouble(Op0C);
 | |
|             double Op1V = getValueAsDouble(Op1C);
 | |
|             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case LibFunc_fmodl:
 | |
|       case LibFunc_fmod:
 | |
|       case LibFunc_fmodf:
 | |
|       case LibFunc_remainderl:
 | |
|       case LibFunc_remainder:
 | |
|       case LibFunc_remainderf:
 | |
|         return Op0.isNaN() || Op1.isNaN() ||
 | |
|                (!Op0.isInfinity() && !Op1.isZero());
 | |
| 
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void TargetFolder::anchor() {}
 |