1220 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1220 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file "describes" induction and recurrence variables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/IVDescriptors.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/DemandedBits.h"
 | |
| #include "llvm/Analysis/DomTreeUpdater.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MustExecute.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "iv-descriptors"
 | |
| 
 | |
| bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
 | |
|                                         SmallPtrSetImpl<Instruction *> &Set) {
 | |
|   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | |
|     if (!Set.count(dyn_cast<Instruction>(*Use)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
 | |
|   switch (Kind) {
 | |
|   default:
 | |
|     break;
 | |
|   case RecurKind::Add:
 | |
|   case RecurKind::Mul:
 | |
|   case RecurKind::Or:
 | |
|   case RecurKind::And:
 | |
|   case RecurKind::Xor:
 | |
|   case RecurKind::SMax:
 | |
|   case RecurKind::SMin:
 | |
|   case RecurKind::UMax:
 | |
|   case RecurKind::UMin:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
 | |
|   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
 | |
|   switch (Kind) {
 | |
|   default:
 | |
|     break;
 | |
|   case RecurKind::Add:
 | |
|   case RecurKind::Mul:
 | |
|   case RecurKind::FAdd:
 | |
|   case RecurKind::FMul:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determines if Phi may have been type-promoted. If Phi has a single user
 | |
| /// that ANDs the Phi with a type mask, return the user. RT is updated to
 | |
| /// account for the narrower bit width represented by the mask, and the AND
 | |
| /// instruction is added to CI.
 | |
| static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
 | |
|                                    SmallPtrSetImpl<Instruction *> &Visited,
 | |
|                                    SmallPtrSetImpl<Instruction *> &CI) {
 | |
|   if (!Phi->hasOneUse())
 | |
|     return Phi;
 | |
| 
 | |
|   const APInt *M = nullptr;
 | |
|   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
 | |
| 
 | |
|   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
 | |
|   // with a new integer type of the corresponding bit width.
 | |
|   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
 | |
|     int32_t Bits = (*M + 1).exactLogBase2();
 | |
|     if (Bits > 0) {
 | |
|       RT = IntegerType::get(Phi->getContext(), Bits);
 | |
|       Visited.insert(Phi);
 | |
|       CI.insert(J);
 | |
|       return J;
 | |
|     }
 | |
|   }
 | |
|   return Phi;
 | |
| }
 | |
| 
 | |
| /// Compute the minimal bit width needed to represent a reduction whose exit
 | |
| /// instruction is given by Exit.
 | |
| static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
 | |
|                                                      DemandedBits *DB,
 | |
|                                                      AssumptionCache *AC,
 | |
|                                                      DominatorTree *DT) {
 | |
|   bool IsSigned = false;
 | |
|   const DataLayout &DL = Exit->getModule()->getDataLayout();
 | |
|   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
 | |
| 
 | |
|   if (DB) {
 | |
|     // Use the demanded bits analysis to determine the bits that are live out
 | |
|     // of the exit instruction, rounding up to the nearest power of two. If the
 | |
|     // use of demanded bits results in a smaller bit width, we know the value
 | |
|     // must be positive (i.e., IsSigned = false), because if this were not the
 | |
|     // case, the sign bit would have been demanded.
 | |
|     auto Mask = DB->getDemandedBits(Exit);
 | |
|     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
 | |
|     // If demanded bits wasn't able to limit the bit width, we can try to use
 | |
|     // value tracking instead. This can be the case, for example, if the value
 | |
|     // may be negative.
 | |
|     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
 | |
|     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
 | |
|     MaxBitWidth = NumTypeBits - NumSignBits;
 | |
|     KnownBits Bits = computeKnownBits(Exit, DL);
 | |
|     if (!Bits.isNonNegative()) {
 | |
|       // If the value is not known to be non-negative, we set IsSigned to true,
 | |
|       // meaning that we will use sext instructions instead of zext
 | |
|       // instructions to restore the original type.
 | |
|       IsSigned = true;
 | |
|       if (!Bits.isNegative())
 | |
|         // If the value is not known to be negative, we don't known what the
 | |
|         // upper bit is, and therefore, we don't know what kind of extend we
 | |
|         // will need. In this case, just increase the bit width by one bit and
 | |
|         // use sext.
 | |
|         ++MaxBitWidth;
 | |
|     }
 | |
|   }
 | |
|   if (!isPowerOf2_64(MaxBitWidth))
 | |
|     MaxBitWidth = NextPowerOf2(MaxBitWidth);
 | |
| 
 | |
|   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| /// Collect cast instructions that can be ignored in the vectorizer's cost
 | |
| /// model, given a reduction exit value and the minimal type in which the
 | |
| /// reduction can be represented.
 | |
| static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
 | |
|                                  Type *RecurrenceType,
 | |
|                                  SmallPtrSetImpl<Instruction *> &Casts) {
 | |
| 
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   Worklist.push_back(Exit);
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *Val = Worklist.pop_back_val();
 | |
|     Visited.insert(Val);
 | |
|     if (auto *Cast = dyn_cast<CastInst>(Val))
 | |
|       if (Cast->getSrcTy() == RecurrenceType) {
 | |
|         // If the source type of a cast instruction is equal to the recurrence
 | |
|         // type, it will be eliminated, and should be ignored in the vectorizer
 | |
|         // cost model.
 | |
|         Casts.insert(Cast);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Add all operands to the work list if they are loop-varying values that
 | |
|     // we haven't yet visited.
 | |
|     for (Value *O : cast<User>(Val)->operands())
 | |
|       if (auto *I = dyn_cast<Instruction>(O))
 | |
|         if (TheLoop->contains(I) && !Visited.count(I))
 | |
|           Worklist.push_back(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
 | |
|                                            Loop *TheLoop, bool HasFunNoNaNAttr,
 | |
|                                            RecurrenceDescriptor &RedDes,
 | |
|                                            DemandedBits *DB,
 | |
|                                            AssumptionCache *AC,
 | |
|                                            DominatorTree *DT) {
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Reduction variables are only found in the loop header block.
 | |
|   if (Phi->getParent() != TheLoop->getHeader())
 | |
|     return false;
 | |
| 
 | |
|   // Obtain the reduction start value from the value that comes from the loop
 | |
|   // preheader.
 | |
|   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | |
| 
 | |
|   // ExitInstruction is the single value which is used outside the loop.
 | |
|   // We only allow for a single reduction value to be used outside the loop.
 | |
|   // This includes users of the reduction, variables (which form a cycle
 | |
|   // which ends in the phi node).
 | |
|   Instruction *ExitInstruction = nullptr;
 | |
|   // Indicates that we found a reduction operation in our scan.
 | |
|   bool FoundReduxOp = false;
 | |
| 
 | |
|   // We start with the PHI node and scan for all of the users of this
 | |
|   // instruction. All users must be instructions that can be used as reduction
 | |
|   // variables (such as ADD). We must have a single out-of-block user. The cycle
 | |
|   // must include the original PHI.
 | |
|   bool FoundStartPHI = false;
 | |
| 
 | |
|   // To recognize min/max patterns formed by a icmp select sequence, we store
 | |
|   // the number of instruction we saw from the recognized min/max pattern,
 | |
|   //  to make sure we only see exactly the two instructions.
 | |
|   unsigned NumCmpSelectPatternInst = 0;
 | |
|   InstDesc ReduxDesc(false, nullptr);
 | |
| 
 | |
|   // Data used for determining if the recurrence has been type-promoted.
 | |
|   Type *RecurrenceType = Phi->getType();
 | |
|   SmallPtrSet<Instruction *, 4> CastInsts;
 | |
|   Instruction *Start = Phi;
 | |
|   bool IsSigned = false;
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> VisitedInsts;
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // Return early if the recurrence kind does not match the type of Phi. If the
 | |
|   // recurrence kind is arithmetic, we attempt to look through AND operations
 | |
|   // resulting from the type promotion performed by InstCombine.  Vector
 | |
|   // operations are not limited to the legal integer widths, so we may be able
 | |
|   // to evaluate the reduction in the narrower width.
 | |
|   if (RecurrenceType->isFloatingPointTy()) {
 | |
|     if (!isFloatingPointRecurrenceKind(Kind))
 | |
|       return false;
 | |
|   } else {
 | |
|     if (!isIntegerRecurrenceKind(Kind))
 | |
|       return false;
 | |
|     if (isArithmeticRecurrenceKind(Kind))
 | |
|       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
 | |
|   }
 | |
| 
 | |
|   Worklist.push_back(Start);
 | |
|   VisitedInsts.insert(Start);
 | |
| 
 | |
|   // Start with all flags set because we will intersect this with the reduction
 | |
|   // flags from all the reduction operations.
 | |
|   FastMathFlags FMF = FastMathFlags::getFast();
 | |
| 
 | |
|   // A value in the reduction can be used:
 | |
|   //  - By the reduction:
 | |
|   //      - Reduction operation:
 | |
|   //        - One use of reduction value (safe).
 | |
|   //        - Multiple use of reduction value (not safe).
 | |
|   //      - PHI:
 | |
|   //        - All uses of the PHI must be the reduction (safe).
 | |
|   //        - Otherwise, not safe.
 | |
|   //  - By instructions outside of the loop (safe).
 | |
|   //      * One value may have several outside users, but all outside
 | |
|   //        uses must be of the same value.
 | |
|   //  - By an instruction that is not part of the reduction (not safe).
 | |
|   //    This is either:
 | |
|   //      * An instruction type other than PHI or the reduction operation.
 | |
|   //      * A PHI in the header other than the initial PHI.
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *Cur = Worklist.pop_back_val();
 | |
| 
 | |
|     // No Users.
 | |
|     // If the instruction has no users then this is a broken chain and can't be
 | |
|     // a reduction variable.
 | |
|     if (Cur->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     bool IsAPhi = isa<PHINode>(Cur);
 | |
| 
 | |
|     // A header PHI use other than the original PHI.
 | |
|     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | |
|       return false;
 | |
| 
 | |
|     // Reductions of instructions such as Div, and Sub is only possible if the
 | |
|     // LHS is the reduction variable.
 | |
|     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | |
|         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | |
|         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | |
|       return false;
 | |
| 
 | |
|     // Any reduction instruction must be of one of the allowed kinds. We ignore
 | |
|     // the starting value (the Phi or an AND instruction if the Phi has been
 | |
|     // type-promoted).
 | |
|     if (Cur != Start) {
 | |
|       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
 | |
|       if (!ReduxDesc.isRecurrence())
 | |
|         return false;
 | |
|       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
 | |
|       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
 | |
|         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
 | |
|       // Update this reduction kind if we matched a new instruction.
 | |
|       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
 | |
|       //       state accurate while processing the worklist?
 | |
|       if (ReduxDesc.getRecKind() != RecurKind::None)
 | |
|         Kind = ReduxDesc.getRecKind();
 | |
|     }
 | |
| 
 | |
|     bool IsASelect = isa<SelectInst>(Cur);
 | |
| 
 | |
|     // A conditional reduction operation must only have 2 or less uses in
 | |
|     // VisitedInsts.
 | |
|     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
 | |
|         hasMultipleUsesOf(Cur, VisitedInsts, 2))
 | |
|       return false;
 | |
| 
 | |
|     // A reduction operation must only have one use of the reduction value.
 | |
|     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
 | |
|         hasMultipleUsesOf(Cur, VisitedInsts, 1))
 | |
|       return false;
 | |
| 
 | |
|     // All inputs to a PHI node must be a reduction value.
 | |
|     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | |
|       return false;
 | |
| 
 | |
|     if (isIntMinMaxRecurrenceKind(Kind) &&
 | |
|         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
|     if (isFPMinMaxRecurrenceKind(Kind) &&
 | |
|         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
| 
 | |
|     // Check  whether we found a reduction operator.
 | |
|     FoundReduxOp |= !IsAPhi && Cur != Start;
 | |
| 
 | |
|     // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | |
|     // onto the stack. This way we are going to have seen all inputs to PHI
 | |
|     // nodes once we get to them.
 | |
|     SmallVector<Instruction *, 8> NonPHIs;
 | |
|     SmallVector<Instruction *, 8> PHIs;
 | |
|     for (User *U : Cur->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|       // Check if we found the exit user.
 | |
|       BasicBlock *Parent = UI->getParent();
 | |
|       if (!TheLoop->contains(Parent)) {
 | |
|         // If we already know this instruction is used externally, move on to
 | |
|         // the next user.
 | |
|         if (ExitInstruction == Cur)
 | |
|           continue;
 | |
| 
 | |
|         // Exit if you find multiple values used outside or if the header phi
 | |
|         // node is being used. In this case the user uses the value of the
 | |
|         // previous iteration, in which case we would loose "VF-1" iterations of
 | |
|         // the reduction operation if we vectorize.
 | |
|         if (ExitInstruction != nullptr || Cur == Phi)
 | |
|           return false;
 | |
| 
 | |
|         // The instruction used by an outside user must be the last instruction
 | |
|         // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | |
|         // operations on the value.
 | |
|         if (!is_contained(Phi->operands(), Cur))
 | |
|           return false;
 | |
| 
 | |
|         ExitInstruction = Cur;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Process instructions only once (termination). Each reduction cycle
 | |
|       // value must only be used once, except by phi nodes and min/max
 | |
|       // reductions which are represented as a cmp followed by a select.
 | |
|       InstDesc IgnoredVal(false, nullptr);
 | |
|       if (VisitedInsts.insert(UI).second) {
 | |
|         if (isa<PHINode>(UI))
 | |
|           PHIs.push_back(UI);
 | |
|         else
 | |
|           NonPHIs.push_back(UI);
 | |
|       } else if (!isa<PHINode>(UI) &&
 | |
|                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
 | |
|                    !isa<SelectInst>(UI)) ||
 | |
|                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
 | |
|                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
 | |
|         return false;
 | |
| 
 | |
|       // Remember that we completed the cycle.
 | |
|       if (UI == Phi)
 | |
|         FoundStartPHI = true;
 | |
|     }
 | |
|     Worklist.append(PHIs.begin(), PHIs.end());
 | |
|     Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | |
|   }
 | |
| 
 | |
|   // This means we have seen one but not the other instruction of the
 | |
|   // pattern or more than just a select and cmp.
 | |
|   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | |
|     return false;
 | |
| 
 | |
|   if (Start != Phi) {
 | |
|     // If the starting value is not the same as the phi node, we speculatively
 | |
|     // looked through an 'and' instruction when evaluating a potential
 | |
|     // arithmetic reduction to determine if it may have been type-promoted.
 | |
|     //
 | |
|     // We now compute the minimal bit width that is required to represent the
 | |
|     // reduction. If this is the same width that was indicated by the 'and', we
 | |
|     // can represent the reduction in the smaller type. The 'and' instruction
 | |
|     // will be eliminated since it will essentially be a cast instruction that
 | |
|     // can be ignore in the cost model. If we compute a different type than we
 | |
|     // did when evaluating the 'and', the 'and' will not be eliminated, and we
 | |
|     // will end up with different kinds of operations in the recurrence
 | |
|     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
 | |
|     // the case.
 | |
|     //
 | |
|     // The vectorizer relies on InstCombine to perform the actual
 | |
|     // type-shrinking. It does this by inserting instructions to truncate the
 | |
|     // exit value of the reduction to the width indicated by RecurrenceType and
 | |
|     // then extend this value back to the original width. If IsSigned is false,
 | |
|     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
 | |
|     // used.
 | |
|     //
 | |
|     // TODO: We should not rely on InstCombine to rewrite the reduction in the
 | |
|     //       smaller type. We should just generate a correctly typed expression
 | |
|     //       to begin with.
 | |
|     Type *ComputedType;
 | |
|     std::tie(ComputedType, IsSigned) =
 | |
|         computeRecurrenceType(ExitInstruction, DB, AC, DT);
 | |
|     if (ComputedType != RecurrenceType)
 | |
|       return false;
 | |
| 
 | |
|     // The recurrence expression will be represented in a narrower type. If
 | |
|     // there are any cast instructions that will be unnecessary, collect them
 | |
|     // in CastInsts. Note that the 'and' instruction was already included in
 | |
|     // this list.
 | |
|     //
 | |
|     // TODO: A better way to represent this may be to tag in some way all the
 | |
|     //       instructions that are a part of the reduction. The vectorizer cost
 | |
|     //       model could then apply the recurrence type to these instructions,
 | |
|     //       without needing a white list of instructions to ignore.
 | |
|     //       This may also be useful for the inloop reductions, if it can be
 | |
|     //       kept simple enough.
 | |
|     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
 | |
|   }
 | |
| 
 | |
|   // We found a reduction var if we have reached the original phi node and we
 | |
|   // only have a single instruction with out-of-loop users.
 | |
| 
 | |
|   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
 | |
|   // is saved as part of the RecurrenceDescriptor.
 | |
| 
 | |
|   // Save the description of this reduction variable.
 | |
|   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
 | |
|                           ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType,
 | |
|                           IsSigned, CastInsts);
 | |
|   RedDes = RD;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| RecurrenceDescriptor::InstDesc
 | |
| RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
 | |
|                                                const InstDesc &Prev) {
 | |
|   assert((isa<CmpInst>(I) || isa<SelectInst>(I)) &&
 | |
|          "Expected a cmp or select instruction");
 | |
| 
 | |
|   // We must handle the select(cmp()) as a single instruction. Advance to the
 | |
|   // select.
 | |
|   CmpInst::Predicate Pred;
 | |
|   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
 | |
|     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
 | |
|       return InstDesc(Select, Prev.getRecKind());
 | |
|   }
 | |
| 
 | |
|   // Only match select with single use cmp condition.
 | |
|   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
 | |
|                          m_Value())))
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   // Look for a min/max pattern.
 | |
|   if (match(I, m_UMin(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::UMin);
 | |
|   if (match(I, m_UMax(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::UMax);
 | |
|   if (match(I, m_SMax(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::SMax);
 | |
|   if (match(I, m_SMin(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::SMin);
 | |
|   if (match(I, m_OrdFMin(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::FMin);
 | |
|   if (match(I, m_OrdFMax(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::FMax);
 | |
|   if (match(I, m_UnordFMin(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::FMin);
 | |
|   if (match(I, m_UnordFMax(m_Value(), m_Value())))
 | |
|     return InstDesc(I, RecurKind::FMax);
 | |
| 
 | |
|   return InstDesc(false, I);
 | |
| }
 | |
| 
 | |
| /// Returns true if the select instruction has users in the compare-and-add
 | |
| /// reduction pattern below. The select instruction argument is the last one
 | |
| /// in the sequence.
 | |
| ///
 | |
| /// %sum.1 = phi ...
 | |
| /// ...
 | |
| /// %cmp = fcmp pred %0, %CFP
 | |
| /// %add = fadd %0, %sum.1
 | |
| /// %sum.2 = select %cmp, %add, %sum.1
 | |
| RecurrenceDescriptor::InstDesc
 | |
| RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(I);
 | |
|   if (!SI)
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
 | |
|   // Only handle single use cases for now.
 | |
|   if (!CI || !CI->hasOneUse())
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   Value *TrueVal = SI->getTrueValue();
 | |
|   Value *FalseVal = SI->getFalseValue();
 | |
|   // Handle only when either of operands of select instruction is a PHI
 | |
|   // node for now.
 | |
|   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
 | |
|       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   Instruction *I1 =
 | |
|       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
 | |
|                              : dyn_cast<Instruction>(TrueVal);
 | |
|   if (!I1 || !I1->isBinaryOp())
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   Value *Op1, *Op2;
 | |
|   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
 | |
|        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
 | |
|       I1->isFast())
 | |
|     return InstDesc(Kind == RecurKind::FAdd, SI);
 | |
| 
 | |
|   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
 | |
|     return InstDesc(Kind == RecurKind::FMul, SI);
 | |
| 
 | |
|   return InstDesc(false, I);
 | |
| }
 | |
| 
 | |
| RecurrenceDescriptor::InstDesc
 | |
| RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind,
 | |
|                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
 | |
|   Instruction *UAI = Prev.getUnsafeAlgebraInst();
 | |
|   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
 | |
|     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     return InstDesc(false, I);
 | |
|   case Instruction::PHI:
 | |
|     return InstDesc(I, Prev.getRecKind(), Prev.getUnsafeAlgebraInst());
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Add:
 | |
|     return InstDesc(Kind == RecurKind::Add, I);
 | |
|   case Instruction::Mul:
 | |
|     return InstDesc(Kind == RecurKind::Mul, I);
 | |
|   case Instruction::And:
 | |
|     return InstDesc(Kind == RecurKind::And, I);
 | |
|   case Instruction::Or:
 | |
|     return InstDesc(Kind == RecurKind::Or, I);
 | |
|   case Instruction::Xor:
 | |
|     return InstDesc(Kind == RecurKind::Xor, I);
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FMul:
 | |
|     return InstDesc(Kind == RecurKind::FMul, I, UAI);
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FAdd:
 | |
|     return InstDesc(Kind == RecurKind::FAdd, I, UAI);
 | |
|   case Instruction::Select:
 | |
|     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
 | |
|       return isConditionalRdxPattern(Kind, I);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp:
 | |
|     if (!isIntMinMaxRecurrenceKind(Kind) &&
 | |
|         (!HasFunNoNaNAttr || !isFPMinMaxRecurrenceKind(Kind)))
 | |
|       return InstDesc(false, I);
 | |
|     return isMinMaxSelectCmpPattern(I, Prev);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::hasMultipleUsesOf(
 | |
|     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
 | |
|     unsigned MaxNumUses) {
 | |
|   unsigned NumUses = 0;
 | |
|   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
 | |
|        ++Use) {
 | |
|     if (Insts.count(dyn_cast<Instruction>(*Use)))
 | |
|       ++NumUses;
 | |
|     if (NumUses > MaxNumUses)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
 | |
|                                           RecurrenceDescriptor &RedDes,
 | |
|                                           DemandedBits *DB, AssumptionCache *AC,
 | |
|                                           DominatorTree *DT) {
 | |
| 
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
|   Function &F = *Header->getParent();
 | |
|   bool HasFunNoNaNAttr =
 | |
|       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | |
| 
 | |
|   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | |
|                       AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | |
|                       AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | |
|                       AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::And, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | |
|                       AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | |
|                       AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, HasFunNoNaNAttr, RedDes,
 | |
|                       DB, AC, DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   // Not a reduction of known type.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isFirstOrderRecurrence(
 | |
|     PHINode *Phi, Loop *TheLoop,
 | |
|     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
 | |
| 
 | |
|   // Ensure the phi node is in the loop header and has two incoming values.
 | |
|   if (Phi->getParent() != TheLoop->getHeader() ||
 | |
|       Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the loop has a preheader and a single latch block. The loop
 | |
|   // vectorizer will need the latch to set up the next iteration of the loop.
 | |
|   auto *Preheader = TheLoop->getLoopPreheader();
 | |
|   auto *Latch = TheLoop->getLoopLatch();
 | |
|   if (!Preheader || !Latch)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the phi node's incoming blocks are the loop preheader and latch.
 | |
|   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
 | |
|       Phi->getBasicBlockIndex(Latch) < 0)
 | |
|     return false;
 | |
| 
 | |
|   // Get the previous value. The previous value comes from the latch edge while
 | |
|   // the initial value comes form the preheader edge.
 | |
|   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
 | |
|   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
 | |
|       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
 | |
|     return false;
 | |
| 
 | |
|   // Ensure every user of the phi node is dominated by the previous value.
 | |
|   // The dominance requirement ensures the loop vectorizer will not need to
 | |
|   // vectorize the initial value prior to the first iteration of the loop.
 | |
|   // TODO: Consider extending this sinking to handle memory instructions and
 | |
|   // phis with multiple users.
 | |
| 
 | |
|   // Returns true, if all users of I are dominated by DominatedBy.
 | |
|   auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
 | |
|     return all_of(I->uses(), [DT, DominatedBy](Use &U) {
 | |
|       return DT->dominates(DominatedBy, U);
 | |
|     });
 | |
|   };
 | |
| 
 | |
|   if (Phi->hasOneUse()) {
 | |
|     Instruction *I = Phi->user_back();
 | |
| 
 | |
|     // If the user of the PHI is also the incoming value, we potentially have a
 | |
|     // reduction and which cannot be handled by sinking.
 | |
|     if (Previous == I)
 | |
|       return false;
 | |
| 
 | |
|     // We cannot sink terminator instructions.
 | |
|     if (I->getParent()->getTerminator() == I)
 | |
|       return false;
 | |
| 
 | |
|     // Do not try to sink an instruction multiple times (if multiple operands
 | |
|     // are first order recurrences).
 | |
|     // TODO: We can support this case, by sinking the instruction after the
 | |
|     // 'deepest' previous instruction.
 | |
|     if (SinkAfter.find(I) != SinkAfter.end())
 | |
|       return false;
 | |
| 
 | |
|     if (DT->dominates(Previous, I)) // We already are good w/o sinking.
 | |
|       return true;
 | |
| 
 | |
|     // We can sink any instruction without side effects, as long as all users
 | |
|     // are dominated by the instruction we are sinking after.
 | |
|     if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
 | |
|         allUsesDominatedBy(I, Previous)) {
 | |
|       SinkAfter[I] = Previous;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return allUsesDominatedBy(Phi, Previous);
 | |
| }
 | |
| 
 | |
| /// This function returns the identity element (or neutral element) for
 | |
| /// the operation K.
 | |
| Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp) {
 | |
|   switch (K) {
 | |
|   case RecurKind::Xor:
 | |
|   case RecurKind::Add:
 | |
|   case RecurKind::Or:
 | |
|     // Adding, Xoring, Oring zero to a number does not change it.
 | |
|     return ConstantInt::get(Tp, 0);
 | |
|   case RecurKind::Mul:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantInt::get(Tp, 1);
 | |
|   case RecurKind::And:
 | |
|     // AND-ing a number with an all-1 value does not change it.
 | |
|     return ConstantInt::get(Tp, -1, true);
 | |
|   case RecurKind::FMul:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantFP::get(Tp, 1.0L);
 | |
|   case RecurKind::FAdd:
 | |
|     // Adding zero to a number does not change it.
 | |
|     return ConstantFP::get(Tp, 0.0L);
 | |
|   case RecurKind::UMin:
 | |
|     return ConstantInt::get(Tp, -1);
 | |
|   case RecurKind::UMax:
 | |
|     return ConstantInt::get(Tp, 0);
 | |
|   case RecurKind::SMin:
 | |
|     return ConstantInt::get(Tp,
 | |
|                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
 | |
|   case RecurKind::SMax:
 | |
|     return ConstantInt::get(Tp,
 | |
|                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
 | |
|   case RecurKind::FMin:
 | |
|     return ConstantFP::getInfinity(Tp, true);
 | |
|   case RecurKind::FMax:
 | |
|     return ConstantFP::getInfinity(Tp, false);
 | |
|   default:
 | |
|     llvm_unreachable("Unknown recurrence kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case RecurKind::Add:
 | |
|     return Instruction::Add;
 | |
|   case RecurKind::Mul:
 | |
|     return Instruction::Mul;
 | |
|   case RecurKind::Or:
 | |
|     return Instruction::Or;
 | |
|   case RecurKind::And:
 | |
|     return Instruction::And;
 | |
|   case RecurKind::Xor:
 | |
|     return Instruction::Xor;
 | |
|   case RecurKind::FMul:
 | |
|     return Instruction::FMul;
 | |
|   case RecurKind::FAdd:
 | |
|     return Instruction::FAdd;
 | |
|   case RecurKind::SMax:
 | |
|   case RecurKind::SMin:
 | |
|   case RecurKind::UMax:
 | |
|   case RecurKind::UMin:
 | |
|     return Instruction::ICmp;
 | |
|   case RecurKind::FMax:
 | |
|   case RecurKind::FMin:
 | |
|     return Instruction::FCmp;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown recurrence operation");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SmallVector<Instruction *, 4>
 | |
| RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
 | |
|   SmallVector<Instruction *, 4> ReductionOperations;
 | |
|   unsigned RedOp = getOpcode(Kind);
 | |
| 
 | |
|   // Search down from the Phi to the LoopExitInstr, looking for instructions
 | |
|   // with a single user of the correct type for the reduction.
 | |
| 
 | |
|   // Note that we check that the type of the operand is correct for each item in
 | |
|   // the chain, including the last (the loop exit value). This can come up from
 | |
|   // sub, which would otherwise be treated as an add reduction. MinMax also need
 | |
|   // to check for a pair of icmp/select, for which we use getNextInstruction and
 | |
|   // isCorrectOpcode functions to step the right number of instruction, and
 | |
|   // check the icmp/select pair.
 | |
|   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
 | |
|   // be part of the reduction chain, or attempt to looks through And's to find a
 | |
|   // smaller bitwidth. Subs are also currently not allowed (which are usually
 | |
|   // treated as part of a add reduction) as they are expected to generally be
 | |
|   // more expensive than out-of-loop reductions, and need to be costed more
 | |
|   // carefully.
 | |
|   unsigned ExpectedUses = 1;
 | |
|   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
 | |
|     ExpectedUses = 2;
 | |
| 
 | |
|   auto getNextInstruction = [&](Instruction *Cur) {
 | |
|     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
 | |
|       // We are expecting a icmp/select pair, which we go to the next select
 | |
|       // instruction if we can. We already know that Cur has 2 uses.
 | |
|       if (isa<SelectInst>(*Cur->user_begin()))
 | |
|         return cast<Instruction>(*Cur->user_begin());
 | |
|       else
 | |
|         return cast<Instruction>(*std::next(Cur->user_begin()));
 | |
|     }
 | |
|     return cast<Instruction>(*Cur->user_begin());
 | |
|   };
 | |
|   auto isCorrectOpcode = [&](Instruction *Cur) {
 | |
|     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
 | |
|       Value *LHS, *RHS;
 | |
|       return SelectPatternResult::isMinOrMax(
 | |
|           matchSelectPattern(Cur, LHS, RHS).Flavor);
 | |
|     }
 | |
|     return Cur->getOpcode() == RedOp;
 | |
|   };
 | |
| 
 | |
|   // The loop exit instruction we check first (as a quick test) but add last. We
 | |
|   // check the opcode is correct (and dont allow them to be Subs) and that they
 | |
|   // have expected to have the expected number of uses. They will have one use
 | |
|   // from the phi and one from a LCSSA value, no matter the type.
 | |
|   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
 | |
|     return {};
 | |
| 
 | |
|   // Check that the Phi has one (or two for min/max) uses.
 | |
|   if (!Phi->hasNUses(ExpectedUses))
 | |
|     return {};
 | |
|   Instruction *Cur = getNextInstruction(Phi);
 | |
| 
 | |
|   // Each other instruction in the chain should have the expected number of uses
 | |
|   // and be the correct opcode.
 | |
|   while (Cur != LoopExitInstr) {
 | |
|     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
 | |
|       return {};
 | |
| 
 | |
|     ReductionOperations.push_back(Cur);
 | |
|     Cur = getNextInstruction(Cur);
 | |
|   }
 | |
| 
 | |
|   ReductionOperations.push_back(Cur);
 | |
|   return ReductionOperations;
 | |
| }
 | |
| 
 | |
| InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
 | |
|                                          const SCEV *Step, BinaryOperator *BOp,
 | |
|                                          SmallVectorImpl<Instruction *> *Casts)
 | |
|     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
 | |
|   assert(IK != IK_NoInduction && "Not an induction");
 | |
| 
 | |
|   // Start value type should match the induction kind and the value
 | |
|   // itself should not be null.
 | |
|   assert(StartValue && "StartValue is null");
 | |
|   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
 | |
|          "StartValue is not a pointer for pointer induction");
 | |
|   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
 | |
|          "StartValue is not an integer for integer induction");
 | |
| 
 | |
|   // Check the Step Value. It should be non-zero integer value.
 | |
|   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
 | |
|          "Step value is zero");
 | |
| 
 | |
|   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
 | |
|          "Step value should be constant for pointer induction");
 | |
|   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
 | |
|          "StepValue is not an integer");
 | |
| 
 | |
|   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
 | |
|          "StepValue is not FP for FpInduction");
 | |
|   assert((IK != IK_FpInduction ||
 | |
|           (InductionBinOp &&
 | |
|            (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | |
|             InductionBinOp->getOpcode() == Instruction::FSub))) &&
 | |
|          "Binary opcode should be specified for FP induction");
 | |
| 
 | |
|   if (Casts) {
 | |
|     for (auto &Inst : *Casts) {
 | |
|       RedundantCasts.push_back(Inst);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantInt *InductionDescriptor::getConstIntStepValue() const {
 | |
|   if (isa<SCEVConstant>(Step))
 | |
|     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | |
|                                            ScalarEvolution *SE,
 | |
|                                            InductionDescriptor &D) {
 | |
| 
 | |
|   // Here we only handle FP induction variables.
 | |
|   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
 | |
| 
 | |
|   if (TheLoop->getHeader() != Phi->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // The loop may have multiple entrances or multiple exits; we can analyze
 | |
|   // this phi if it has a unique entry value and a unique backedge value.
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
|   Value *BEValue = nullptr, *StartValue = nullptr;
 | |
|   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
 | |
|     BEValue = Phi->getIncomingValue(0);
 | |
|     StartValue = Phi->getIncomingValue(1);
 | |
|   } else {
 | |
|     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
 | |
|            "Unexpected Phi node in the loop");
 | |
|     BEValue = Phi->getIncomingValue(1);
 | |
|     StartValue = Phi->getIncomingValue(0);
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
 | |
|   if (!BOp)
 | |
|     return false;
 | |
| 
 | |
|   Value *Addend = nullptr;
 | |
|   if (BOp->getOpcode() == Instruction::FAdd) {
 | |
|     if (BOp->getOperand(0) == Phi)
 | |
|       Addend = BOp->getOperand(1);
 | |
|     else if (BOp->getOperand(1) == Phi)
 | |
|       Addend = BOp->getOperand(0);
 | |
|   } else if (BOp->getOpcode() == Instruction::FSub)
 | |
|     if (BOp->getOperand(0) == Phi)
 | |
|       Addend = BOp->getOperand(1);
 | |
| 
 | |
|   if (!Addend)
 | |
|     return false;
 | |
| 
 | |
|   // The addend should be loop invariant
 | |
|   if (auto *I = dyn_cast<Instruction>(Addend))
 | |
|     if (TheLoop->contains(I))
 | |
|       return false;
 | |
| 
 | |
|   // FP Step has unknown SCEV
 | |
|   const SCEV *Step = SE->getUnknown(Addend);
 | |
|   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This function is called when we suspect that the update-chain of a phi node
 | |
| /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
 | |
| /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
 | |
| /// predicate P under which the SCEV expression for the phi can be the
 | |
| /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
 | |
| /// cast instructions that are involved in the update-chain of this induction.
 | |
| /// A caller that adds the required runtime predicate can be free to drop these
 | |
| /// cast instructions, and compute the phi using \p AR (instead of some scev
 | |
| /// expression with casts).
 | |
| ///
 | |
| /// For example, without a predicate the scev expression can take the following
 | |
| /// form:
 | |
| ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
 | |
| ///
 | |
| /// It corresponds to the following IR sequence:
 | |
| /// %for.body:
 | |
| ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
 | |
| ///   %casted_phi = "ExtTrunc i64 %x"
 | |
| ///   %add = add i64 %casted_phi, %step
 | |
| ///
 | |
| /// where %x is given in \p PN,
 | |
| /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
 | |
| /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
 | |
| /// several forms, for example, such as:
 | |
| ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
 | |
| /// or:
 | |
| ///   ExtTrunc2:    %t = shl %x, m
 | |
| ///                 %casted_phi = ashr %t, m
 | |
| ///
 | |
| /// If we are able to find such sequence, we return the instructions
 | |
| /// we found, namely %casted_phi and the instructions on its use-def chain up
 | |
| /// to the phi (not including the phi).
 | |
| static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
 | |
|                                     const SCEVUnknown *PhiScev,
 | |
|                                     const SCEVAddRecExpr *AR,
 | |
|                                     SmallVectorImpl<Instruction *> &CastInsts) {
 | |
| 
 | |
|   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
 | |
|   auto *PN = cast<PHINode>(PhiScev->getValue());
 | |
|   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
 | |
|   const Loop *L = AR->getLoop();
 | |
| 
 | |
|   // Find any cast instructions that participate in the def-use chain of
 | |
|   // PhiScev in the loop.
 | |
|   // FORNOW/TODO: We currently expect the def-use chain to include only
 | |
|   // two-operand instructions, where one of the operands is an invariant.
 | |
|   // createAddRecFromPHIWithCasts() currently does not support anything more
 | |
|   // involved than that, so we keep the search simple. This can be
 | |
|   // extended/generalized as needed.
 | |
| 
 | |
|   auto getDef = [&](const Value *Val) -> Value * {
 | |
|     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
 | |
|     if (!BinOp)
 | |
|       return nullptr;
 | |
|     Value *Op0 = BinOp->getOperand(0);
 | |
|     Value *Op1 = BinOp->getOperand(1);
 | |
|     Value *Def = nullptr;
 | |
|     if (L->isLoopInvariant(Op0))
 | |
|       Def = Op1;
 | |
|     else if (L->isLoopInvariant(Op1))
 | |
|       Def = Op0;
 | |
|     return Def;
 | |
|   };
 | |
| 
 | |
|   // Look for the instruction that defines the induction via the
 | |
|   // loop backedge.
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return false;
 | |
|   Value *Val = PN->getIncomingValueForBlock(Latch);
 | |
|   if (!Val)
 | |
|     return false;
 | |
| 
 | |
|   // Follow the def-use chain until the induction phi is reached.
 | |
|   // If on the way we encounter a Value that has the same SCEV Expr as the
 | |
|   // phi node, we can consider the instructions we visit from that point
 | |
|   // as part of the cast-sequence that can be ignored.
 | |
|   bool InCastSequence = false;
 | |
|   auto *Inst = dyn_cast<Instruction>(Val);
 | |
|   while (Val != PN) {
 | |
|     // If we encountered a phi node other than PN, or if we left the loop,
 | |
|     // we bail out.
 | |
|     if (!Inst || !L->contains(Inst)) {
 | |
|       return false;
 | |
|     }
 | |
|     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
 | |
|     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
 | |
|       InCastSequence = true;
 | |
|     if (InCastSequence) {
 | |
|       // Only the last instruction in the cast sequence is expected to have
 | |
|       // uses outside the induction def-use chain.
 | |
|       if (!CastInsts.empty())
 | |
|         if (!Inst->hasOneUse())
 | |
|           return false;
 | |
|       CastInsts.push_back(Inst);
 | |
|     }
 | |
|     Val = getDef(Val);
 | |
|     if (!Val)
 | |
|       return false;
 | |
|     Inst = dyn_cast<Instruction>(Val);
 | |
|   }
 | |
| 
 | |
|   return InCastSequence;
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | |
|                                          PredicatedScalarEvolution &PSE,
 | |
|                                          InductionDescriptor &D, bool Assume) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
| 
 | |
|   // Handle integer and pointer inductions variables.
 | |
|   // Now we handle also FP induction but not trying to make a
 | |
|   // recurrent expression from the PHI node in-place.
 | |
| 
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
 | |
|       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
 | |
|     return false;
 | |
| 
 | |
|   if (PhiTy->isFloatingPointTy())
 | |
|     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
 | |
| 
 | |
|   const SCEV *PhiScev = PSE.getSCEV(Phi);
 | |
|   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
| 
 | |
|   // We need this expression to be an AddRecExpr.
 | |
|   if (Assume && !AR)
 | |
|     AR = PSE.getAsAddRec(Phi);
 | |
| 
 | |
|   if (!AR) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Record any Cast instructions that participate in the induction update
 | |
|   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
 | |
|   // If we started from an UnknownSCEV, and managed to build an addRecurrence
 | |
|   // only after enabling Assume with PSCEV, this means we may have encountered
 | |
|   // cast instructions that required adding a runtime check in order to
 | |
|   // guarantee the correctness of the AddRecurrence respresentation of the
 | |
|   // induction.
 | |
|   if (PhiScev != AR && SymbolicPhi) {
 | |
|     SmallVector<Instruction *, 2> Casts;
 | |
|     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
 | |
|       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
 | |
|   }
 | |
| 
 | |
|   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isInductionPHI(
 | |
|     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
 | |
|     InductionDescriptor &D, const SCEV *Expr,
 | |
|     SmallVectorImpl<Instruction *> *CastsToIgnore) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   // We only handle integer and pointer inductions variables.
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the PHI is consecutive.
 | |
|   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
| 
 | |
|   if (!AR) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (AR->getLoop() != TheLoop) {
 | |
|     // FIXME: We should treat this as a uniform. Unfortunately, we
 | |
|     // don't currently know how to handled uniform PHIs.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Value *StartValue =
 | |
|       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
 | |
| 
 | |
|   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return false;
 | |
|   BinaryOperator *BOp =
 | |
|       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
 | |
| 
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   // The stride may be a constant or a loop invariant integer value.
 | |
|   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
 | |
|     return false;
 | |
| 
 | |
|   if (PhiTy->isIntegerTy()) {
 | |
|     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
 | |
|                             CastsToIgnore);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | |
|   // Pointer induction should be a constant.
 | |
|   if (!ConstStep)
 | |
|     return false;
 | |
| 
 | |
|   ConstantInt *CV = ConstStep->getValue();
 | |
|   Type *PointerElementType = PhiTy->getPointerElementType();
 | |
|   // The pointer stride cannot be determined if the pointer element type is not
 | |
|   // sized.
 | |
|   if (!PointerElementType->isSized())
 | |
|     return false;
 | |
| 
 | |
|   const DataLayout &DL = Phi->getModule()->getDataLayout();
 | |
|   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
 | |
|   if (!Size)
 | |
|     return false;
 | |
| 
 | |
|   int64_t CVSize = CV->getSExtValue();
 | |
|   if (CVSize % Size)
 | |
|     return false;
 | |
|   auto *StepValue =
 | |
|       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
 | |
|   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
 | |
|   return true;
 | |
| }
 |