6064 lines
		
	
	
		
			227 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6064 lines
		
	
	
		
			227 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements routines for folding instructions into simpler forms
 | |
| // that do not require creating new instructions.  This does constant folding
 | |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
 | |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
 | |
| // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
 | |
| // simplified: This is usually true and assuming it simplifies the logic (if
 | |
| // they have not been simplified then results are correct but maybe suboptimal).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/CmpInstAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instsimplify"
 | |
| 
 | |
| enum { RecursionLimit = 3 };
 | |
| 
 | |
| STATISTIC(NumExpand,  "Number of expansions");
 | |
| STATISTIC(NumReassoc, "Number of reassociations");
 | |
| 
 | |
| static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
 | |
|                              const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
 | |
|                             unsigned);
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
 | |
|                             const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
 | |
|                               unsigned);
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse);
 | |
| static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyCastInst(unsigned, Value *, Type *,
 | |
|                                const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
 | |
|                               unsigned);
 | |
| 
 | |
| static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
 | |
|                                      Value *FalseVal) {
 | |
|   BinaryOperator::BinaryOps BinOpCode;
 | |
|   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
 | |
|     BinOpCode = BO->getOpcode();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
 | |
|   if (BinOpCode == BinaryOperator::Or) {
 | |
|     ExpectedPred = ICmpInst::ICMP_NE;
 | |
|   } else if (BinOpCode == BinaryOperator::And) {
 | |
|     ExpectedPred = ICmpInst::ICMP_EQ;
 | |
|   } else
 | |
|     return nullptr;
 | |
| 
 | |
|   // %A = icmp eq %TV, %FV
 | |
|   // %B = icmp eq %X, %Y (and one of these is a select operand)
 | |
|   // %C = and %A, %B
 | |
|   // %D = select %C, %TV, %FV
 | |
|   // -->
 | |
|   // %FV
 | |
| 
 | |
|   // %A = icmp ne %TV, %FV
 | |
|   // %B = icmp ne %X, %Y (and one of these is a select operand)
 | |
|   // %C = or %A, %B
 | |
|   // %D = select %C, %TV, %FV
 | |
|   // -->
 | |
|   // %TV
 | |
|   Value *X, *Y;
 | |
|   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
 | |
|                                       m_Specific(FalseVal)),
 | |
|                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
 | |
|       Pred1 != Pred2 || Pred1 != ExpectedPred)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
 | |
|     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// For a boolean type or a vector of boolean type, return false or a vector
 | |
| /// with every element false.
 | |
| static Constant *getFalse(Type *Ty) {
 | |
|   return ConstantInt::getFalse(Ty);
 | |
| }
 | |
| 
 | |
| /// For a boolean type or a vector of boolean type, return true or a vector
 | |
| /// with every element true.
 | |
| static Constant *getTrue(Type *Ty) {
 | |
|   return ConstantInt::getTrue(Ty);
 | |
| }
 | |
| 
 | |
| /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
 | |
| static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
 | |
|                           Value *RHS) {
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(V);
 | |
|   if (!Cmp)
 | |
|     return false;
 | |
|   CmpInst::Predicate CPred = Cmp->getPredicate();
 | |
|   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
 | |
|   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
 | |
|     return true;
 | |
|   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
 | |
|     CRHS == LHS;
 | |
| }
 | |
| 
 | |
| /// Simplify comparison with true or false branch of select:
 | |
| ///  %sel = select i1 %cond, i32 %tv, i32 %fv
 | |
| ///  %cmp = icmp sle i32 %sel, %rhs
 | |
| /// Compose new comparison by substituting %sel with either %tv or %fv
 | |
| /// and see if it simplifies.
 | |
| static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                  Value *RHS, Value *Cond,
 | |
|                                  const SimplifyQuery &Q, unsigned MaxRecurse,
 | |
|                                  Constant *TrueOrFalse) {
 | |
|   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
 | |
|   if (SimplifiedCmp == Cond) {
 | |
|     // %cmp simplified to the select condition (%cond).
 | |
|     return TrueOrFalse;
 | |
|   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
 | |
|     // It didn't simplify. However, if composed comparison is equivalent
 | |
|     // to the select condition (%cond) then we can replace it.
 | |
|     return TrueOrFalse;
 | |
|   }
 | |
|   return SimplifiedCmp;
 | |
| }
 | |
| 
 | |
| /// Simplify comparison with true branch of select
 | |
| static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                      Value *RHS, Value *Cond,
 | |
|                                      const SimplifyQuery &Q,
 | |
|                                      unsigned MaxRecurse) {
 | |
|   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
 | |
|                             getTrue(Cond->getType()));
 | |
| }
 | |
| 
 | |
| /// Simplify comparison with false branch of select
 | |
| static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                       Value *RHS, Value *Cond,
 | |
|                                       const SimplifyQuery &Q,
 | |
|                                       unsigned MaxRecurse) {
 | |
|   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
 | |
|                             getFalse(Cond->getType()));
 | |
| }
 | |
| 
 | |
| /// We know comparison with both branches of select can be simplified, but they
 | |
| /// are not equal. This routine handles some logical simplifications.
 | |
| static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
 | |
|                                                Value *Cond,
 | |
|                                                const SimplifyQuery &Q,
 | |
|                                                unsigned MaxRecurse) {
 | |
|   // If the false value simplified to false, then the result of the compare
 | |
|   // is equal to "Cond && TCmp".  This also catches the case when the false
 | |
|   // value simplified to false and the true value to true, returning "Cond".
 | |
|   if (match(FCmp, m_Zero()))
 | |
|     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // If the true value simplified to true, then the result of the compare
 | |
|   // is equal to "Cond || FCmp".
 | |
|   if (match(TCmp, m_One()))
 | |
|     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // Finally, if the false value simplified to true and the true value to
 | |
|   // false, then the result of the compare is equal to "!Cond".
 | |
|   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
 | |
|     if (Value *V = SimplifyXorInst(
 | |
|             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
 | |
|       return V;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Does the given value dominate the specified phi node?
 | |
| static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     // Arguments and constants dominate all instructions.
 | |
|     return true;
 | |
| 
 | |
|   // If we are processing instructions (and/or basic blocks) that have not been
 | |
|   // fully added to a function, the parent nodes may still be null. Simply
 | |
|   // return the conservative answer in these cases.
 | |
|   if (!I->getParent() || !P->getParent() || !I->getFunction())
 | |
|     return false;
 | |
| 
 | |
|   // If we have a DominatorTree then do a precise test.
 | |
|   if (DT)
 | |
|     return DT->dominates(I, P);
 | |
| 
 | |
|   // Otherwise, if the instruction is in the entry block and is not an invoke,
 | |
|   // then it obviously dominates all phi nodes.
 | |
|   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
 | |
|       !isa<InvokeInst>(I) && !isa<CallBrInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Try to simplify a binary operator of form "V op OtherOp" where V is
 | |
| /// "(B0 opex B1)" by distributing 'op' across 'opex' as
 | |
| /// "(B0 op OtherOp) opex (B1 op OtherOp)".
 | |
| static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
 | |
|                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   auto *B = dyn_cast<BinaryOperator>(V);
 | |
|   if (!B || B->getOpcode() != OpcodeToExpand)
 | |
|     return nullptr;
 | |
|   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
 | |
|   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
 | |
|                            MaxRecurse);
 | |
|   if (!L)
 | |
|     return nullptr;
 | |
|   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
 | |
|                            MaxRecurse);
 | |
|   if (!R)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Does the expanded pair of binops simplify to the existing binop?
 | |
|   if ((L == B0 && R == B1) ||
 | |
|       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
 | |
|     ++NumExpand;
 | |
|     return B;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, return "L op' R" if it simplifies.
 | |
|   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
 | |
|   if (!S)
 | |
|     return nullptr;
 | |
| 
 | |
|   ++NumExpand;
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
 | |
| /// distributing op over op'.
 | |
| static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
 | |
|                                      Value *L, Value *R,
 | |
|                                      Instruction::BinaryOps OpcodeToExpand,
 | |
|                                      const SimplifyQuery &Q,
 | |
|                                      unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
 | |
|     return V;
 | |
|   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
 | |
|     return V;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Generic simplifications for associative binary operations.
 | |
| /// Returns the simpler value, or null if none was found.
 | |
| static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
 | |
|                                        Value *LHS, Value *RHS,
 | |
|                                        const SimplifyQuery &Q,
 | |
|                                        unsigned MaxRecurse) {
 | |
|   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
 | |
| 
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "B op C" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
 | |
|       // It does!  Return "A op V" if it simplifies or is already available.
 | |
|       // If V equals B then "A op V" is just the LHS.
 | |
|       if (V == B) return LHS;
 | |
|       // Otherwise return "A op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "A op B" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op C" if it simplifies or is already available.
 | |
|       // If V equals B then "V op C" is just the RHS.
 | |
|       if (V == B) return RHS;
 | |
|       // Otherwise return "V op C" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The remaining transforms require commutativity as well as associativity.
 | |
|   if (!Instruction::isCommutative(Opcode))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op B" if it simplifies or is already available.
 | |
|       // If V equals A then "V op B" is just the LHS.
 | |
|       if (V == A) return LHS;
 | |
|       // Otherwise return "V op B" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "B op V" if it simplifies or is already available.
 | |
|       // If V equals C then "B op V" is just the RHS.
 | |
|       if (V == C) return RHS;
 | |
|       // Otherwise return "B op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a binary operation with a select instruction as an operand,
 | |
| /// try to simplify the binop by seeing whether evaluating it on both branches
 | |
| /// of the select results in the same value. Returns the common value if so,
 | |
| /// otherwise returns null.
 | |
| static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
 | |
|                                     Value *RHS, const SimplifyQuery &Q,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   SelectInst *SI;
 | |
|   if (isa<SelectInst>(LHS)) {
 | |
|     SI = cast<SelectInst>(LHS);
 | |
|   } else {
 | |
|     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | |
|     SI = cast<SelectInst>(RHS);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the true and false branches of the select.
 | |
|   Value *TV;
 | |
|   Value *FV;
 | |
|   if (SI == LHS) {
 | |
|     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
 | |
|   } else {
 | |
|     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // If they simplified to the same value, then return the common value.
 | |
|   // If they both failed to simplify then return null.
 | |
|   if (TV == FV)
 | |
|     return TV;
 | |
| 
 | |
|   // If one branch simplified to undef, return the other one.
 | |
|   if (TV && Q.isUndefValue(TV))
 | |
|     return FV;
 | |
|   if (FV && Q.isUndefValue(FV))
 | |
|     return TV;
 | |
| 
 | |
|   // If applying the operation did not change the true and false select values,
 | |
|   // then the result of the binop is the select itself.
 | |
|   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | |
|     return SI;
 | |
| 
 | |
|   // If one branch simplified and the other did not, and the simplified
 | |
|   // value is equal to the unsimplified one, return the simplified value.
 | |
|   // For example, select (cond, X, X & Z) & Z -> X & Z.
 | |
|   if ((FV && !TV) || (TV && !FV)) {
 | |
|     // Check that the simplified value has the form "X op Y" where "op" is the
 | |
|     // same as the original operation.
 | |
|     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | |
|     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
 | |
|       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | |
|       // We already know that "op" is the same as for the simplified value.  See
 | |
|       // if the operands match too.  If so, return the simplified value.
 | |
|       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | |
|       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | |
|       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | |
|       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|       if (Simplified->isCommutative() &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(0) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a comparison with a select instruction, try to simplify the
 | |
| /// comparison by seeing whether both branches of the select result in the same
 | |
| /// value. Returns the common value if so, otherwise returns null.
 | |
| /// For example, if we have:
 | |
| ///  %tmp = select i1 %cmp, i32 1, i32 2
 | |
| ///  %cmp1 = icmp sle i32 %tmp, 3
 | |
| /// We can simplify %cmp1 to true, because both branches of select are
 | |
| /// less than 3. We compose new comparison by substituting %tmp with both
 | |
| /// branches of select and see if it can be simplified.
 | |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const SimplifyQuery &Q,
 | |
|                                   unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the select is on the LHS.
 | |
|   if (!isa<SelectInst>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | |
|   SelectInst *SI = cast<SelectInst>(LHS);
 | |
|   Value *Cond = SI->getCondition();
 | |
|   Value *TV = SI->getTrueValue();
 | |
|   Value *FV = SI->getFalseValue();
 | |
| 
 | |
|   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
 | |
|   // Does "cmp TV, RHS" simplify?
 | |
|   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
 | |
|   if (!TCmp)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Does "cmp FV, RHS" simplify?
 | |
|   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
 | |
|   if (!FCmp)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If both sides simplified to the same value, then use it as the result of
 | |
|   // the original comparison.
 | |
|   if (TCmp == FCmp)
 | |
|     return TCmp;
 | |
| 
 | |
|   // The remaining cases only make sense if the select condition has the same
 | |
|   // type as the result of the comparison, so bail out if this is not so.
 | |
|   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
 | |
|     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a binary operation with an operand that is a PHI instruction,
 | |
| /// try to simplify the binop by seeing whether evaluating it on the incoming
 | |
| /// phi values yields the same result for every value. If so returns the common
 | |
| /// value, otherwise returns null.
 | |
| static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
 | |
|                                  Value *RHS, const SimplifyQuery &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   PHINode *PI;
 | |
|   if (isa<PHINode>(LHS)) {
 | |
|     PI = cast<PHINode>(LHS);
 | |
|     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!valueDominatesPHI(RHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   } else {
 | |
|     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | |
|     PI = cast<PHINode>(RHS);
 | |
|     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!valueDominatesPHI(LHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (Value *Incoming : PI->incoming_values()) {
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = PI == LHS ?
 | |
|       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
 | |
|       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// In the case of a comparison with a PHI instruction, try to simplify the
 | |
| /// comparison by seeing whether comparing with all of the incoming phi values
 | |
| /// yields the same result every time. If so returns the common result,
 | |
| /// otherwise returns null.
 | |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the phi is on the LHS.
 | |
|   if (!isa<PHINode>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | |
|   PHINode *PI = cast<PHINode>(LHS);
 | |
| 
 | |
|   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|   if (!valueDominatesPHI(RHS, PI, Q.DT))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
 | |
|     Value *Incoming = PI->getIncomingValue(u);
 | |
|     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     // Change the context instruction to the "edge" that flows into the phi.
 | |
|     // This is important because that is where incoming is actually "evaluated"
 | |
|     // even though it is used later somewhere else.
 | |
|     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
 | |
|                                MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
 | |
|                                        Value *&Op0, Value *&Op1,
 | |
|                                        const SimplifyQuery &Q) {
 | |
|   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (auto *CRHS = dyn_cast<Constant>(Op1))
 | |
|       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
 | |
| 
 | |
|     // Canonicalize the constant to the RHS if this is a commutative operation.
 | |
|     if (Instruction::isCommutative(Opcode))
 | |
|       std::swap(Op0, Op1);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Add, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X + undef -> undef
 | |
|   if (Q.isUndefValue(Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // X + 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // If two operands are negative, return 0.
 | |
|   if (isKnownNegation(Op0, Op1))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X + (Y - X) -> Y
 | |
|   // (Y - X) + X -> Y
 | |
|   // Eg: X + -X -> 0
 | |
|   Value *Y = nullptr;
 | |
|   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
 | |
|       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
 | |
|     return Y;
 | |
| 
 | |
|   // X + ~X -> -1   since   ~X = -X-1
 | |
|   Type *Ty = Op0->getType();
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Ty);
 | |
| 
 | |
|   // add nsw/nuw (xor Y, signmask), signmask --> Y
 | |
|   // The no-wrapping add guarantees that the top bit will be set by the add.
 | |
|   // Therefore, the xor must be clearing the already set sign bit of Y.
 | |
|   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
 | |
|       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
 | |
|     return Y;
 | |
| 
 | |
|   // add nuw %x, -1  ->  -1, because %x can only be 0.
 | |
|   if (IsNUW && match(Op1, m_AllOnes()))
 | |
|     return Op1; // Which is -1.
 | |
| 
 | |
|   /// i1 add -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Add over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A + select(cond, B, C)" means evaluating
 | |
|   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
 | |
|                              const SimplifyQuery &Query) {
 | |
|   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Compute the base pointer and cumulative constant offsets for V.
 | |
| ///
 | |
| /// This strips all constant offsets off of V, leaving it the base pointer, and
 | |
| /// accumulates the total constant offset applied in the returned constant. It
 | |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | |
| /// no constant offsets applied.
 | |
| ///
 | |
| /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
 | |
| /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
 | |
| /// folding.
 | |
| static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
 | |
|                                                 bool AllowNonInbounds = false) {
 | |
|   assert(V->getType()->isPtrOrPtrVectorTy());
 | |
| 
 | |
|   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
 | |
|   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
 | |
| 
 | |
|   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
 | |
|   // As that strip may trace through `addrspacecast`, need to sext or trunc
 | |
|   // the offset calculated.
 | |
|   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
 | |
|   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
 | |
| 
 | |
|   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
 | |
|     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
 | |
|   return OffsetIntPtr;
 | |
| }
 | |
| 
 | |
| /// Compute the constant difference between two pointer values.
 | |
| /// If the difference is not a constant, returns zero.
 | |
| static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
 | |
|                                           Value *RHS) {
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are not related via constant offsets to the same base
 | |
|   // value, there is nothing we can do here.
 | |
|   if (LHS != RHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, the difference of LHS - RHS can be computed as:
 | |
|   //    LHS - RHS
 | |
|   //  = (LHSOffset + Base) - (RHSOffset + Base)
 | |
|   //  = LHSOffset - RHSOffset
 | |
|   return ConstantExpr::getSub(LHSOffset, RHSOffset);
 | |
| }
 | |
| 
 | |
| /// Given operands for a Sub, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X - undef -> undef
 | |
|   // undef - X -> undef
 | |
|   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X - 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X - X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // Is this a negation?
 | |
|   if (match(Op0, m_Zero())) {
 | |
|     // 0 - X -> 0 if the sub is NUW.
 | |
|     if (isNUW)
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (Known.Zero.isMaxSignedValue()) {
 | |
|       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
 | |
|       // Op1 must be 0 because negating the minimum signed value is undefined.
 | |
|       if (isNSW)
 | |
|         return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|       // 0 - X -> X if X is 0 or the minimum signed value.
 | |
|       return Op1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
 | |
|   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
 | |
|   Value *X = nullptr, *Y = nullptr, *Z = Op1;
 | |
|   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
 | |
|     // See if "V === Y - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "X + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "Y + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
 | |
|   // For example, X - (X + 1) -> -1
 | |
|   X = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
 | |
|     // See if "V === X - Y" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Z" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
 | |
|   // For example, X - (X - Y) -> Y.
 | |
|   Z = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
 | |
|     // See if "V === Z - X" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V + Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
| 
 | |
|   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
 | |
|   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
 | |
|       match(Op1, m_Trunc(m_Value(Y))))
 | |
|     if (X->getType() == Y->getType())
 | |
|       // See if "V === X - Y" simplifies.
 | |
|       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|         // It does!  Now see if "trunc V" simplifies.
 | |
|         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
 | |
|                                         Q, MaxRecurse - 1))
 | |
|           // It does, return the simplified "trunc V".
 | |
|           return W;
 | |
| 
 | |
|   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
 | |
|   if (match(Op0, m_PtrToInt(m_Value(X))) &&
 | |
|       match(Op1, m_PtrToInt(m_Value(Y))))
 | |
|     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
 | |
|       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
 | |
| 
 | |
|   // i1 sub -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Threading Sub over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A - select(cond, B, C)" means evaluating
 | |
|   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a Mul, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X * undef -> 0
 | |
|   // X * 0 -> 0
 | |
|   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X * 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X / Y) * Y -> X if the division is exact.
 | |
|   Value *X = nullptr;
 | |
|   if (Q.IIQ.UseInstrInfo &&
 | |
|       (match(Op0,
 | |
|              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
 | |
|        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
 | |
|     return X;
 | |
| 
 | |
|   // i1 mul -> and.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Mul distributes over Add. Try some generic simplifications based on this.
 | |
|   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
 | |
|                                         Instruction::Add, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Check for common or similar folds of integer division or integer remainder.
 | |
| /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
 | |
| static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   Type *Ty = Op0->getType();
 | |
| 
 | |
|   // X / undef -> poison
 | |
|   // X % undef -> poison
 | |
|   if (Q.isUndefValue(Op1))
 | |
|     return PoisonValue::get(Ty);
 | |
| 
 | |
|   // X / 0 -> poison
 | |
|   // X % 0 -> poison
 | |
|   // We don't need to preserve faults!
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return PoisonValue::get(Ty);
 | |
| 
 | |
|   // If any element of a constant divisor fixed width vector is zero or undef
 | |
|   // the behavior is undefined and we can fold the whole op to poison.
 | |
|   auto *Op1C = dyn_cast<Constant>(Op1);
 | |
|   auto *VTy = dyn_cast<FixedVectorType>(Ty);
 | |
|   if (Op1C && VTy) {
 | |
|     unsigned NumElts = VTy->getNumElements();
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       Constant *Elt = Op1C->getAggregateElement(i);
 | |
|       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
 | |
|         return PoisonValue::get(Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // undef / X -> 0
 | |
|   // undef % X -> 0
 | |
|   if (Q.isUndefValue(Op0))
 | |
|     return Constant::getNullValue(Ty);
 | |
| 
 | |
|   // 0 / X -> 0
 | |
|   // 0 % X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X / X -> 1
 | |
|   // X % X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
 | |
| 
 | |
|   // X / 1 -> X
 | |
|   // X % 1 -> 0
 | |
|   // If this is a boolean op (single-bit element type), we can't have
 | |
|   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
 | |
|   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
 | |
|   Value *X;
 | |
|   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
 | |
|       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
 | |
|     return IsDiv ? Op0 : Constant::getNullValue(Ty);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given a predicate and two operands, return true if the comparison is true.
 | |
| /// This is a helper for div/rem simplification where we return some other value
 | |
| /// when we can prove a relationship between the operands.
 | |
| static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                        const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
 | |
|   Constant *C = dyn_cast_or_null<Constant>(V);
 | |
|   return (C && C->isAllOnesValue());
 | |
| }
 | |
| 
 | |
| /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
 | |
| /// to simplify X % Y to X.
 | |
| static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
 | |
|                       unsigned MaxRecurse, bool IsSigned) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return false;
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     // |X| / |Y| --> 0
 | |
|     //
 | |
|     // We require that 1 operand is a simple constant. That could be extended to
 | |
|     // 2 variables if we computed the sign bit for each.
 | |
|     //
 | |
|     // Make sure that a constant is not the minimum signed value because taking
 | |
|     // the abs() of that is undefined.
 | |
|     Type *Ty = X->getType();
 | |
|     const APInt *C;
 | |
|     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
 | |
|       // Is the variable divisor magnitude always greater than the constant
 | |
|       // dividend magnitude?
 | |
|       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
 | |
|       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
 | |
|       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
 | |
|       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
 | |
|           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
 | |
|         return true;
 | |
|     }
 | |
|     if (match(Y, m_APInt(C))) {
 | |
|       // Special-case: we can't take the abs() of a minimum signed value. If
 | |
|       // that's the divisor, then all we have to do is prove that the dividend
 | |
|       // is also not the minimum signed value.
 | |
|       if (C->isMinSignedValue())
 | |
|         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
 | |
| 
 | |
|       // Is the variable dividend magnitude always less than the constant
 | |
|       // divisor magnitude?
 | |
|       // |X| < |C| --> X > -abs(C) and X < abs(C)
 | |
|       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
 | |
|       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
 | |
|       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
 | |
|           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // IsSigned == false.
 | |
|   // Is the dividend unsigned less than the divisor?
 | |
|   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| /// These are simplifications common to SDiv and UDiv.
 | |
| static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Value *V = simplifyDivRem(Op0, Op1, true, Q))
 | |
|     return V;
 | |
| 
 | |
|   bool IsSigned = Opcode == Instruction::SDiv;
 | |
| 
 | |
|   // (X * Y) / Y -> X if the multiplication does not overflow.
 | |
|   Value *X;
 | |
|   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
 | |
|     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
 | |
|     // If the Mul does not overflow, then we are good to go.
 | |
|     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
 | |
|         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
 | |
|       return X;
 | |
|     // If X has the form X = A / Y, then X * Y cannot overflow.
 | |
|     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
 | |
|         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
 | |
|       return X;
 | |
|   }
 | |
| 
 | |
|   // (X rem Y) / Y -> 0
 | |
|   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
 | |
|   ConstantInt *C1, *C2;
 | |
|   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_ConstantInt(C2))) {
 | |
|     bool Overflow;
 | |
|     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
 | |
|     if (Overflow)
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// These are simplifications common to SRem and URem.
 | |
| static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Value *V = simplifyDivRem(Op0, Op1, false, Q))
 | |
|     return V;
 | |
| 
 | |
|   // (X % Y) % Y -> X % Y
 | |
|   if ((Opcode == Instruction::SRem &&
 | |
|        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (Opcode == Instruction::URem &&
 | |
|        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X << Y) % X -> 0
 | |
|   if (Q.IIQ.UseInstrInfo &&
 | |
|       ((Opcode == Instruction::SRem &&
 | |
|         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
 | |
|        (Opcode == Instruction::URem &&
 | |
|         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If X / Y == 0, then X % Y == X.
 | |
|   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an SDiv, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   // If two operands are negated and no signed overflow, return -1.
 | |
|   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a UDiv, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an SRem, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
 | |
|   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
 | |
|   Value *X;
 | |
|   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
 | |
|     return ConstantInt::getNullValue(Op0->getType());
 | |
| 
 | |
|   // If the two operands are negated, return 0.
 | |
|   if (isKnownNegation(Op0, Op1))
 | |
|     return ConstantInt::getNullValue(Op0->getType());
 | |
| 
 | |
|   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a URem, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Returns true if a shift by \c Amount always yields poison.
 | |
| static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
 | |
|   Constant *C = dyn_cast<Constant>(Amount);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   // X shift by undef -> poison because it may shift by the bitwidth.
 | |
|   if (Q.isUndefValue(C))
 | |
|     return true;
 | |
| 
 | |
|   // Shifting by the bitwidth or more is undefined.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|     if (CI->getValue().getLimitedValue() >=
 | |
|         CI->getType()->getScalarSizeInBits())
 | |
|       return true;
 | |
| 
 | |
|   // If all lanes of a vector shift are undefined the whole shift is.
 | |
|   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
 | |
|     for (unsigned I = 0,
 | |
|                   E = cast<FixedVectorType>(C->getType())->getNumElements();
 | |
|          I != E; ++I)
 | |
|       if (!isPoisonShift(C->getAggregateElement(I), Q))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // 0 shift by X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X shift by 0 -> X
 | |
|   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
 | |
|   // would be poison.
 | |
|   Value *X;
 | |
|   if (match(Op1, m_Zero()) ||
 | |
|       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
 | |
|     return Op0;
 | |
| 
 | |
|   // Fold undefined shifts.
 | |
|   if (isPoisonShift(Op1, Q))
 | |
|     return PoisonValue::get(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If any bits in the shift amount make that value greater than or equal to
 | |
|   // the number of bits in the type, the shift is undefined.
 | |
|   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|   if (Known.One.getLimitedValue() >= Known.getBitWidth())
 | |
|     return PoisonValue::get(Op0->getType());
 | |
| 
 | |
|   // If all valid bits in the shift amount are known zero, the first operand is
 | |
|   // unchanged.
 | |
|   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
 | |
|   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Shl, LShr or AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // X >> X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // undef >> X -> 0
 | |
|   // undef >> X -> undef (if it's exact)
 | |
|   if (Q.isUndefValue(Op0))
 | |
|     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // The low bit cannot be shifted out of an exact shift if it is set.
 | |
|   if (isExact) {
 | |
|     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (Op0Known.One[0])
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Shl, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // undef << X -> 0
 | |
|   // undef << X -> undef if (if it's NSW/NUW)
 | |
|   if (Q.isUndefValue(Op0))
 | |
|     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X >> A) << A -> X
 | |
|   Value *X;
 | |
|   if (Q.IIQ.UseInstrInfo &&
 | |
|       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
 | |
|     return X;
 | |
| 
 | |
|   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
 | |
|   if (isNUW && match(Op0, m_Negative()))
 | |
|     return Op0;
 | |
|   // NOTE: could use computeKnownBits() / LazyValueInfo,
 | |
|   // but the cost-benefit analysis suggests it isn't worth it.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an LShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
 | |
|   // We can return X as we do in the above case since OR alters no bits in X.
 | |
|   // SimplifyDemandedBits in InstCombine can do more general optimization for
 | |
|   // bit manipulation. This pattern aims to provide opportunities for other
 | |
|   // optimizers by supporting a simple but common case in InstSimplify.
 | |
|   Value *Y;
 | |
|   const APInt *ShRAmt, *ShLAmt;
 | |
|   if (match(Op1, m_APInt(ShRAmt)) &&
 | |
|       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
 | |
|       *ShRAmt == *ShLAmt) {
 | |
|     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     const unsigned Width = Op0->getType()->getScalarSizeInBits();
 | |
|     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
 | |
|     if (ShRAmt->uge(EffWidthY))
 | |
|       return X;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an AShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // all ones >>a X -> -1
 | |
|   // Do not return Op0 because it may contain undef elements if it's a vector.
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   // Arithmetic shifting an all-sign-bit value is a no-op.
 | |
|   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
 | |
|                                          ICmpInst *UnsignedICmp, bool IsAnd,
 | |
|                                          const SimplifyQuery &Q) {
 | |
|   Value *X, *Y;
 | |
| 
 | |
|   ICmpInst::Predicate EqPred;
 | |
|   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
 | |
|       !ICmpInst::isEquality(EqPred))
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate UnsignedPred;
 | |
| 
 | |
|   Value *A, *B;
 | |
|   // Y = (A - B);
 | |
|   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
 | |
|     if (match(UnsignedICmp,
 | |
|               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
 | |
|         ICmpInst::isUnsigned(UnsignedPred)) {
 | |
|       // A >=/<= B || (A - B) != 0  <-->  true
 | |
|       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
 | |
|            UnsignedPred == ICmpInst::ICMP_ULE) &&
 | |
|           EqPred == ICmpInst::ICMP_NE && !IsAnd)
 | |
|         return ConstantInt::getTrue(UnsignedICmp->getType());
 | |
|       // A </> B && (A - B) == 0  <-->  false
 | |
|       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
 | |
|            UnsignedPred == ICmpInst::ICMP_UGT) &&
 | |
|           EqPred == ICmpInst::ICMP_EQ && IsAnd)
 | |
|         return ConstantInt::getFalse(UnsignedICmp->getType());
 | |
| 
 | |
|       // A </> B && (A - B) != 0  <-->  A </> B
 | |
|       // A </> B || (A - B) != 0  <-->  (A - B) != 0
 | |
|       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
 | |
|                                           UnsignedPred == ICmpInst::ICMP_UGT))
 | |
|         return IsAnd ? UnsignedICmp : ZeroICmp;
 | |
| 
 | |
|       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
 | |
|       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
 | |
|       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
 | |
|                                           UnsignedPred == ICmpInst::ICMP_UGE))
 | |
|         return IsAnd ? ZeroICmp : UnsignedICmp;
 | |
|     }
 | |
| 
 | |
|     // Given  Y = (A - B)
 | |
|     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
 | |
|     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
 | |
|     if (match(UnsignedICmp,
 | |
|               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
 | |
|       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
 | |
|           EqPred == ICmpInst::ICMP_NE &&
 | |
|           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return UnsignedICmp;
 | |
|       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
 | |
|           EqPred == ICmpInst::ICMP_EQ &&
 | |
|           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | |
|         return UnsignedICmp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
 | |
|       ICmpInst::isUnsigned(UnsignedPred))
 | |
|     ;
 | |
|   else if (match(UnsignedICmp,
 | |
|                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
 | |
|            ICmpInst::isUnsigned(UnsignedPred))
 | |
|     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // X > Y && Y == 0  -->  Y == 0  iff X != 0
 | |
|   // X > Y || Y == 0  -->  X > Y   iff X != 0
 | |
|   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
 | |
|       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | |
|     return IsAnd ? ZeroICmp : UnsignedICmp;
 | |
| 
 | |
|   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
 | |
|   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
 | |
|       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | |
|     return IsAnd ? UnsignedICmp : ZeroICmp;
 | |
| 
 | |
|   // The transforms below here are expected to be handled more generally with
 | |
|   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
 | |
|   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
 | |
|   // these are candidates for removal.
 | |
| 
 | |
|   // X < Y && Y != 0  -->  X < Y
 | |
|   // X < Y || Y != 0  -->  Y != 0
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
 | |
|     return IsAnd ? UnsignedICmp : ZeroICmp;
 | |
| 
 | |
|   // X >= Y && Y == 0  -->  Y == 0
 | |
|   // X >= Y || Y == 0  -->  X >= Y
 | |
|   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
 | |
|     return IsAnd ? ZeroICmp : UnsignedICmp;
 | |
| 
 | |
|   // X < Y && Y == 0  -->  false
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
 | |
|       IsAnd)
 | |
|     return getFalse(UnsignedICmp->getType());
 | |
| 
 | |
|   // X >= Y || Y != 0  -->  true
 | |
|   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
 | |
|       !IsAnd)
 | |
|     return getTrue(UnsignedICmp->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   Value *A ,*B;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
 | |
|       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
 | |
|   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
 | |
|   // can eliminate Op1 from this 'and'.
 | |
|   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
 | |
|     return Op0;
 | |
| 
 | |
|   // Check for any combination of predicates that are guaranteed to be disjoint.
 | |
|   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
 | |
|       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
 | |
|     return getFalse(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   Value *A ,*B;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
 | |
|       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
 | |
|   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
 | |
|   // can eliminate Op0 from this 'or'.
 | |
|   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
 | |
|     return Op1;
 | |
| 
 | |
|   // Check for any combination of predicates that cover the entire range of
 | |
|   // possibilities.
 | |
|   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
 | |
|       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
 | |
|     return getTrue(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Test if a pair of compares with a shared operand and 2 constants has an
 | |
| /// empty set intersection, full set union, or if one compare is a superset of
 | |
| /// the other.
 | |
| static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
 | |
|                                                 bool IsAnd) {
 | |
|   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
 | |
|   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
 | |
|     return nullptr;
 | |
| 
 | |
|   const APInt *C0, *C1;
 | |
|   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
 | |
|       !match(Cmp1->getOperand(1), m_APInt(C1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
 | |
|   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
 | |
| 
 | |
|   // For and-of-compares, check if the intersection is empty:
 | |
|   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
 | |
|   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
 | |
|     return getFalse(Cmp0->getType());
 | |
| 
 | |
|   // For or-of-compares, check if the union is full:
 | |
|   // (icmp X, C0) || (icmp X, C1) --> full set --> true
 | |
|   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
 | |
|     return getTrue(Cmp0->getType());
 | |
| 
 | |
|   // Is one range a superset of the other?
 | |
|   // If this is and-of-compares, take the smaller set:
 | |
|   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
 | |
|   // If this is or-of-compares, take the larger set:
 | |
|   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
 | |
|   if (Range0.contains(Range1))
 | |
|     return IsAnd ? Cmp1 : Cmp0;
 | |
|   if (Range1.contains(Range0))
 | |
|     return IsAnd ? Cmp0 : Cmp1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
 | |
|                                            bool IsAnd) {
 | |
|   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
 | |
|   if (!match(Cmp0->getOperand(1), m_Zero()) ||
 | |
|       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
 | |
|     return nullptr;
 | |
| 
 | |
|   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
 | |
|   Value *X = Cmp0->getOperand(0);
 | |
|   Value *Y = Cmp1->getOperand(0);
 | |
| 
 | |
|   // If one of the compares is a masked version of a (not) null check, then
 | |
|   // that compare implies the other, so we eliminate the other. Optionally, look
 | |
|   // through a pointer-to-int cast to match a null check of a pointer type.
 | |
| 
 | |
|   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
 | |
|   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
 | |
|   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
 | |
|   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
 | |
|   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
 | |
|       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
 | |
|     return Cmp1;
 | |
| 
 | |
|   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
 | |
|   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
 | |
|   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
 | |
|   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
 | |
|   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
 | |
|       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
 | |
|     return Cmp0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
 | |
|                                         const InstrInfoQuery &IIQ) {
 | |
|   // (icmp (add V, C0), C1) & (icmp V, C0)
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   const APInt *C0, *C1;
 | |
|   Value *V;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
 | |
|   if (AddInst->getOperand(1) != Op1->getOperand(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
|   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
 | |
|   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
 | |
| 
 | |
|   const APInt Delta = *C1 - *C0;
 | |
|   if (C0->isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (C0->getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to eliminate compares with signed or unsigned min/max constants.
 | |
| static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
 | |
|                                                  bool IsAnd) {
 | |
|   // Canonicalize an equality compare as Cmp0.
 | |
|   if (Cmp1->isEquality())
 | |
|     std::swap(Cmp0, Cmp1);
 | |
|   if (!Cmp0->isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   // The non-equality compare must include a common operand (X). Canonicalize
 | |
|   // the common operand as operand 0 (the predicate is swapped if the common
 | |
|   // operand was operand 1).
 | |
|   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
 | |
|   Value *X = Cmp0->getOperand(0);
 | |
|   ICmpInst::Predicate Pred1;
 | |
|   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
 | |
|   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
 | |
|     return nullptr;
 | |
|   if (ICmpInst::isEquality(Pred1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The equality compare must be against a constant. Flip bits if we matched
 | |
|   // a bitwise not. Convert a null pointer constant to an integer zero value.
 | |
|   APInt MinMaxC;
 | |
|   const APInt *C;
 | |
|   if (match(Cmp0->getOperand(1), m_APInt(C)))
 | |
|     MinMaxC = HasNotOp ? ~*C : *C;
 | |
|   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
 | |
|     MinMaxC = APInt::getNullValue(8);
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
 | |
|   if (!IsAnd) {
 | |
|     Pred0 = ICmpInst::getInversePredicate(Pred0);
 | |
|     Pred1 = ICmpInst::getInversePredicate(Pred1);
 | |
|   }
 | |
| 
 | |
|   // Normalize to unsigned compare and unsigned min/max value.
 | |
|   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
 | |
|   if (ICmpInst::isSigned(Pred1)) {
 | |
|     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
 | |
|     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
 | |
|   }
 | |
| 
 | |
|   // (X != MAX) && (X < Y) --> X < Y
 | |
|   // (X == MAX) || (X >= Y) --> X >= Y
 | |
|   if (MinMaxC.isMaxValue())
 | |
|     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
 | |
|       return Cmp1;
 | |
| 
 | |
|   // (X != MIN) && (X > Y) -->  X > Y
 | |
|   // (X == MIN) || (X <= Y) --> X <= Y
 | |
|   if (MinMaxC.isMinValue())
 | |
|     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
 | |
|       return Cmp1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
 | |
|                                  const SimplifyQuery &Q) {
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
 | |
|     return X;
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
 | |
|     return X;
 | |
|   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
 | |
|                                        const InstrInfoQuery &IIQ) {
 | |
|   // (icmp (add V, C0), C1) | (icmp V, C0)
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   const APInt *C0, *C1;
 | |
|   Value *V;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
 | |
|   if (AddInst->getOperand(1) != Op1->getOperand(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
|   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
 | |
|   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
 | |
| 
 | |
|   const APInt Delta = *C1 - *C0;
 | |
|   if (C0->isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (C0->getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
 | |
|                                 const SimplifyQuery &Q) {
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
 | |
|     return X;
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
 | |
|     return X;
 | |
|   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
 | |
|                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
 | |
|   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
 | |
|   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
 | |
|   if (LHS0->getType() != RHS0->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
 | |
|   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
 | |
|       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
 | |
|     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
 | |
|     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
 | |
|     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
 | |
|     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
 | |
|     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
 | |
|     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
 | |
|     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
 | |
|     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
 | |
|     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
 | |
|         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
 | |
|       return RHS;
 | |
| 
 | |
|     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
 | |
|     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
 | |
|     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
 | |
|     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
 | |
|     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
 | |
|     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
 | |
|     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
 | |
|     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
 | |
|     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
 | |
|         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
 | |
|       return LHS;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
 | |
|                                   Value *Op0, Value *Op1, bool IsAnd) {
 | |
|   // Look through casts of the 'and' operands to find compares.
 | |
|   auto *Cast0 = dyn_cast<CastInst>(Op0);
 | |
|   auto *Cast1 = dyn_cast<CastInst>(Op1);
 | |
|   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
 | |
|       Cast0->getSrcTy() == Cast1->getSrcTy()) {
 | |
|     Op0 = Cast0->getOperand(0);
 | |
|     Op1 = Cast1->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   Value *V = nullptr;
 | |
|   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
 | |
|   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
 | |
|   if (ICmp0 && ICmp1)
 | |
|     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
 | |
|               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
 | |
| 
 | |
|   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
 | |
|   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
 | |
|   if (FCmp0 && FCmp1)
 | |
|     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
 | |
| 
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
|   if (!Cast0)
 | |
|     return V;
 | |
| 
 | |
|   // If we looked through casts, we can only handle a constant simplification
 | |
|   // because we are not allowed to create a cast instruction here.
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Check that the Op1 is in expected form, i.e.:
 | |
| ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
 | |
| ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
 | |
| static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
 | |
|                                                           Value *X) {
 | |
|   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
 | |
|   // We should only be extracting the overflow bit.
 | |
|   if (!Extract || !Extract->getIndices().equals(1))
 | |
|     return false;
 | |
|   Value *Agg = Extract->getAggregateOperand();
 | |
|   // This should be a multiplication-with-overflow intrinsic.
 | |
|   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
 | |
|                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
 | |
|     return false;
 | |
|   // One of its multipliers should be the value we checked for zero before.
 | |
|   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
 | |
|                               m_Argument<1>(m_Specific(X)))))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
 | |
| /// other form of check, e.g. one that was using division; it may have been
 | |
| /// guarded against division-by-zero. We can drop that check now.
 | |
| /// Look for:
 | |
| ///   %Op0 = icmp ne i4 %X, 0
 | |
| ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
 | |
| ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
 | |
| ///   %??? = and i1 %Op0, %Op1
 | |
| /// We can just return  %Op1
 | |
| static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   Value *X;
 | |
|   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
 | |
|       Pred != ICmpInst::Predicate::ICMP_NE)
 | |
|     return nullptr;
 | |
|   // Is Op1 in expected form?
 | |
|   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
 | |
|     return nullptr;
 | |
|   // Can omit 'and', and just return the overflow bit.
 | |
|   return Op1;
 | |
| }
 | |
| 
 | |
| /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
 | |
| /// other form of check, e.g. one that was using division; it may have been
 | |
| /// guarded against division-by-zero. We can drop that check now.
 | |
| /// Look for:
 | |
| ///   %Op0 = icmp eq i4 %X, 0
 | |
| ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
 | |
| ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
 | |
| ///   %NotOp1 = xor i1 %Op1, true
 | |
| ///   %or = or i1 %Op0, %NotOp1
 | |
| /// We can just return  %NotOp1
 | |
| static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
 | |
|                                                             Value *NotOp1) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   Value *X;
 | |
|   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
 | |
|       Pred != ICmpInst::Predicate::ICMP_EQ)
 | |
|     return nullptr;
 | |
|   // We expect the other hand of an 'or' to be a 'not'.
 | |
|   Value *Op1;
 | |
|   if (!match(NotOp1, m_Not(m_Value(Op1))))
 | |
|     return nullptr;
 | |
|   // Is Op1 in expected form?
 | |
|   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
 | |
|     return nullptr;
 | |
|   // Can omit 'and', and just return the inverted overflow bit.
 | |
|   return NotOp1;
 | |
| }
 | |
| 
 | |
| /// Given a bitwise logic op, check if the operands are add/sub with a common
 | |
| /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
 | |
| static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
 | |
|                                     Instruction::BinaryOps Opcode) {
 | |
|   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
 | |
|   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
 | |
|   Value *X;
 | |
|   Constant *C1, *C2;
 | |
|   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
 | |
|        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
 | |
|       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
 | |
|        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
 | |
|     if (ConstantExpr::getNot(C1) == C2) {
 | |
|       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
 | |
|       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
 | |
|       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
 | |
|       Type *Ty = Op0->getType();
 | |
|       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
 | |
|                                         : ConstantInt::getAllOnesValue(Ty);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an And, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X & undef -> 0
 | |
|   if (Q.isUndefValue(Op1))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X & 0 = 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & -1 = X
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & ~A  =  ~A & A  =  0
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (A | ?) & A = A
 | |
|   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
 | |
|     return Op1;
 | |
| 
 | |
|   // A & (A | ?) = A
 | |
|   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
 | |
|     return Op0;
 | |
| 
 | |
|   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
 | |
|     return V;
 | |
| 
 | |
|   // A mask that only clears known zeros of a shifted value is a no-op.
 | |
|   Value *X;
 | |
|   const APInt *Mask;
 | |
|   const APInt *ShAmt;
 | |
|   if (match(Op1, m_APInt(Mask))) {
 | |
|     // If all bits in the inverted and shifted mask are clear:
 | |
|     // and (shl X, ShAmt), Mask --> shl X, ShAmt
 | |
|     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
 | |
|         (~(*Mask)).lshr(*ShAmt).isNullValue())
 | |
|       return Op0;
 | |
| 
 | |
|     // If all bits in the inverted and shifted mask are clear:
 | |
|     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
 | |
|         (~(*Mask)).shl(*ShAmt).isNullValue())
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   // If we have a multiplication overflow check that is being 'and'ed with a
 | |
|   // check that one of the multipliers is not zero, we can omit the 'and', and
 | |
|   // only keep the overflow check.
 | |
|   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
 | |
|     return V;
 | |
|   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
 | |
|     return V;
 | |
| 
 | |
|   // A & (-A) = A if A is a power of two or zero.
 | |
|   if (match(Op0, m_Neg(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Neg(m_Specific(Op0)))) {
 | |
|     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
 | |
|                                Q.DT))
 | |
|       return Op0;
 | |
|     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
 | |
|                                Q.DT))
 | |
|       return Op1;
 | |
|   }
 | |
| 
 | |
|   // This is a similar pattern used for checking if a value is a power-of-2:
 | |
|   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
 | |
|   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
 | |
|   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
 | |
|       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|     return Constant::getNullValue(Op1->getType());
 | |
|   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
 | |
|       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
 | |
|     return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Or.  Try some generic simplifications based on this.
 | |
|   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
 | |
|                                         Instruction::Or, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Xor.  Try some generic simplifications based on this.
 | |
|   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
 | |
|                                         Instruction::Xor, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
 | |
|     if (Op0->getType()->isIntOrIntVectorTy(1)) {
 | |
|       // A & (A && B) -> A && B
 | |
|       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
 | |
|         return Op1;
 | |
|       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
 | |
|         return Op0;
 | |
|     }
 | |
|     // If the operation is with the result of a select instruction, check
 | |
|     // whether operating on either branch of the select always yields the same
 | |
|     // value.
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // Assuming the effective width of Y is not larger than A, i.e. all bits
 | |
|   // from X and Y are disjoint in (X << A) | Y,
 | |
|   // if the mask of this AND op covers all bits of X or Y, while it covers
 | |
|   // no bits from the other, we can bypass this AND op. E.g.,
 | |
|   // ((X << A) | Y) & Mask -> Y,
 | |
|   //     if Mask = ((1 << effective_width_of(Y)) - 1)
 | |
|   // ((X << A) | Y) & Mask -> X << A,
 | |
|   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
 | |
|   // SimplifyDemandedBits in InstCombine can optimize the general case.
 | |
|   // This pattern aims to help other passes for a common case.
 | |
|   Value *Y, *XShifted;
 | |
|   if (match(Op1, m_APInt(Mask)) &&
 | |
|       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
 | |
|                                      m_Value(XShifted)),
 | |
|                         m_Value(Y)))) {
 | |
|     const unsigned Width = Op0->getType()->getScalarSizeInBits();
 | |
|     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
 | |
|     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
 | |
|     if (EffWidthY <= ShftCnt) {
 | |
|       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
 | |
|                                                 Q.DT);
 | |
|       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
 | |
|       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
 | |
|       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
 | |
|       // If the mask is extracting all bits from X or Y as is, we can skip
 | |
|       // this AND op.
 | |
|       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
 | |
|         return Y;
 | |
|       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
 | |
|         return XShifted;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an Or, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                              unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X | undef -> -1
 | |
|   // X | -1 = -1
 | |
|   // Do not return Op1 because it may contain undef elements if it's a vector.
 | |
|   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // X | X = X
 | |
|   // X | 0 = X
 | |
|   if (Op0 == Op1 || match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A | ~A  =  ~A | A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A & ?) | A = A
 | |
|   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | (A & ?) = A
 | |
|   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
 | |
|     return Op0;
 | |
| 
 | |
|   // ~(A & ?) | A = -1
 | |
|   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
 | |
|     return Constant::getAllOnesValue(Op1->getType());
 | |
| 
 | |
|   // A | ~(A & ?) = -1
 | |
|   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
 | |
|     return V;
 | |
| 
 | |
|   Value *A, *B, *NotA;
 | |
|   // (A & ~B) | (A ^ B) -> (A ^ B)
 | |
|   // (~B & A) | (A ^ B) -> (A ^ B)
 | |
|   // (A & ~B) | (B ^ A) -> (B ^ A)
 | |
|   // (~B & A) | (B ^ A) -> (B ^ A)
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op1;
 | |
| 
 | |
|   // Commute the 'or' operands.
 | |
|   // (A ^ B) | (A & ~B) -> (A ^ B)
 | |
|   // (A ^ B) | (~B & A) -> (A ^ B)
 | |
|   // (B ^ A) | (A & ~B) -> (B ^ A)
 | |
|   // (B ^ A) | (~B & A) -> (B ^ A)
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // (A & B) | (~A ^ B) -> (~A ^ B)
 | |
|   // (B & A) | (~A ^ B) -> (~A ^ B)
 | |
|   // (A & B) | (B ^ ~A) -> (B ^ ~A)
 | |
|   // (B & A) | (B ^ ~A) -> (B ^ ~A)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op1;
 | |
| 
 | |
|   // Commute the 'or' operands.
 | |
|   // (~A ^ B) | (A & B) -> (~A ^ B)
 | |
|   // (~A ^ B) | (B & A) -> (~A ^ B)
 | |
|   // (B ^ ~A) | (A & B) -> (B ^ ~A)
 | |
|   // (B ^ ~A) | (B & A) -> (B ^ ~A)
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // (~A & B) | ~(A | B) --> ~A
 | |
|   // (~A & B) | ~(B | A) --> ~A
 | |
|   // (B & ~A) | ~(A | B) --> ~A
 | |
|   // (B & ~A) | ~(B | A) --> ~A
 | |
|   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
 | |
|                          m_Value(B))) &&
 | |
|       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
 | |
|     return NotA;
 | |
| 
 | |
|   // Commute the 'or' operands.
 | |
|   // ~(A | B) | (~A & B) --> ~A
 | |
|   // ~(B | A) | (~A & B) --> ~A
 | |
|   // ~(A | B) | (B & ~A) --> ~A
 | |
|   // ~(B | A) | (B & ~A) --> ~A
 | |
|   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
 | |
|                          m_Value(B))) &&
 | |
|       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
 | |
|     return NotA;
 | |
| 
 | |
|   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
 | |
|     return V;
 | |
| 
 | |
|   // If we have a multiplication overflow check that is being 'and'ed with a
 | |
|   // check that one of the multipliers is not zero, we can omit the 'and', and
 | |
|   // only keep the overflow check.
 | |
|   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
 | |
|     return V;
 | |
|   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
 | |
|     return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Or distributes over And.  Try some generic simplifications based on this.
 | |
|   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
 | |
|                                         Instruction::And, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
 | |
|     if (Op0->getType()->isIntOrIntVectorTy(1)) {
 | |
|       // A | (A || B) -> A || B
 | |
|       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
 | |
|         return Op1;
 | |
|       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
 | |
|         return Op0;
 | |
|     }
 | |
|     // If the operation is with the result of a select instruction, check
 | |
|     // whether operating on either branch of the select always yields the same
 | |
|     // value.
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
|   }
 | |
| 
 | |
|   // (A & C1)|(B & C2)
 | |
|   const APInt *C1, *C2;
 | |
|   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
 | |
|     if (*C1 == ~*C2) {
 | |
|       // (A & C1)|(B & C2)
 | |
|       // If we have: ((V + N) & C1) | (V & C2)
 | |
|       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|       // replace with V+N.
 | |
|       Value *N;
 | |
|       if (C2->isMask() && // C2 == 0+1+
 | |
|           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return A;
 | |
|       }
 | |
|       // Or commutes, try both ways.
 | |
|       if (C1->isMask() &&
 | |
|           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return B;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a Xor, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // A ^ undef -> undef
 | |
|   if (Q.isUndefValue(Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A ^ 0 = A
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A ^ A = 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // A ^ ~A  =  ~A ^ A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
 | |
|     return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Xor over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
 | |
|   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| 
 | |
| static Type *GetCompareTy(Value *Op) {
 | |
|   return CmpInst::makeCmpResultType(Op->getType());
 | |
| }
 | |
| 
 | |
| /// Rummage around inside V looking for something equivalent to the comparison
 | |
| /// "LHS Pred RHS". Return such a value if found, otherwise return null.
 | |
| /// Helper function for analyzing max/min idioms.
 | |
| static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
 | |
|                                          Value *LHS, Value *RHS) {
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(V);
 | |
|   if (!SI)
 | |
|     return nullptr;
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
|   if (!Cmp)
 | |
|     return nullptr;
 | |
|   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
 | |
|   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
 | |
|     return Cmp;
 | |
|   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
 | |
|       LHS == CmpRHS && RHS == CmpLHS)
 | |
|     return Cmp;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // A significant optimization not implemented here is assuming that alloca
 | |
| // addresses are not equal to incoming argument values. They don't *alias*,
 | |
| // as we say, but that doesn't mean they aren't equal, so we take a
 | |
| // conservative approach.
 | |
| //
 | |
| // This is inspired in part by C++11 5.10p1:
 | |
| //   "Two pointers of the same type compare equal if and only if they are both
 | |
| //    null, both point to the same function, or both represent the same
 | |
| //    address."
 | |
| //
 | |
| // This is pretty permissive.
 | |
| //
 | |
| // It's also partly due to C11 6.5.9p6:
 | |
| //   "Two pointers compare equal if and only if both are null pointers, both are
 | |
| //    pointers to the same object (including a pointer to an object and a
 | |
| //    subobject at its beginning) or function, both are pointers to one past the
 | |
| //    last element of the same array object, or one is a pointer to one past the
 | |
| //    end of one array object and the other is a pointer to the start of a
 | |
| //    different array object that happens to immediately follow the first array
 | |
| //    object in the address space.)
 | |
| //
 | |
| // C11's version is more restrictive, however there's no reason why an argument
 | |
| // couldn't be a one-past-the-end value for a stack object in the caller and be
 | |
| // equal to the beginning of a stack object in the callee.
 | |
| //
 | |
| // If the C and C++ standards are ever made sufficiently restrictive in this
 | |
| // area, it may be possible to update LLVM's semantics accordingly and reinstate
 | |
| // this optimization.
 | |
| static Constant *
 | |
| computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
 | |
|                    const DominatorTree *DT, CmpInst::Predicate Pred,
 | |
|                    AssumptionCache *AC, const Instruction *CxtI,
 | |
|                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
 | |
|   // First, skip past any trivial no-ops.
 | |
|   LHS = LHS->stripPointerCasts();
 | |
|   RHS = RHS->stripPointerCasts();
 | |
| 
 | |
|   // A non-null pointer is not equal to a null pointer.
 | |
|   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
 | |
|       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
 | |
|                            IIQ.UseInstrInfo))
 | |
|     return ConstantInt::get(GetCompareTy(LHS),
 | |
|                             !CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // We can only fold certain predicates on pointer comparisons.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return nullptr;
 | |
| 
 | |
|     // Equality comaprisons are easy to fold.
 | |
|   case CmpInst::ICMP_EQ:
 | |
|   case CmpInst::ICMP_NE:
 | |
|     break;
 | |
| 
 | |
|     // We can only handle unsigned relational comparisons because 'inbounds' on
 | |
|     // a GEP only protects against unsigned wrapping.
 | |
|   case CmpInst::ICMP_UGT:
 | |
|   case CmpInst::ICMP_UGE:
 | |
|   case CmpInst::ICMP_ULT:
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     // However, we have to switch them to their signed variants to handle
 | |
|     // negative indices from the base pointer.
 | |
|     Pred = ICmpInst::getSignedPredicate(Pred);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Strip off any constant offsets so that we can reason about them.
 | |
|   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
 | |
|   // here and compare base addresses like AliasAnalysis does, however there are
 | |
|   // numerous hazards. AliasAnalysis and its utilities rely on special rules
 | |
|   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
 | |
|   // doesn't need to guarantee pointer inequality when it says NoAlias.
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are related via constant offsets to the same base
 | |
|   // value, we can replace it with an icmp which just compares the offsets.
 | |
|   if (LHS == RHS)
 | |
|     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
 | |
| 
 | |
|   // Various optimizations for (in)equality comparisons.
 | |
|   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
 | |
|     // Different non-empty allocations that exist at the same time have
 | |
|     // different addresses (if the program can tell). Global variables always
 | |
|     // exist, so they always exist during the lifetime of each other and all
 | |
|     // allocas. Two different allocas usually have different addresses...
 | |
|     //
 | |
|     // However, if there's an @llvm.stackrestore dynamically in between two
 | |
|     // allocas, they may have the same address. It's tempting to reduce the
 | |
|     // scope of the problem by only looking at *static* allocas here. That would
 | |
|     // cover the majority of allocas while significantly reducing the likelihood
 | |
|     // of having an @llvm.stackrestore pop up in the middle. However, it's not
 | |
|     // actually impossible for an @llvm.stackrestore to pop up in the middle of
 | |
|     // an entry block. Also, if we have a block that's not attached to a
 | |
|     // function, we can't tell if it's "static" under the current definition.
 | |
|     // Theoretically, this problem could be fixed by creating a new kind of
 | |
|     // instruction kind specifically for static allocas. Such a new instruction
 | |
|     // could be required to be at the top of the entry block, thus preventing it
 | |
|     // from being subject to a @llvm.stackrestore. Instcombine could even
 | |
|     // convert regular allocas into these special allocas. It'd be nifty.
 | |
|     // However, until then, this problem remains open.
 | |
|     //
 | |
|     // So, we'll assume that two non-empty allocas have different addresses
 | |
|     // for now.
 | |
|     //
 | |
|     // With all that, if the offsets are within the bounds of their allocations
 | |
|     // (and not one-past-the-end! so we can't use inbounds!), and their
 | |
|     // allocations aren't the same, the pointers are not equal.
 | |
|     //
 | |
|     // Note that it's not necessary to check for LHS being a global variable
 | |
|     // address, due to canonicalization and constant folding.
 | |
|     if (isa<AllocaInst>(LHS) &&
 | |
|         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
 | |
|       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
 | |
|       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
 | |
|       uint64_t LHSSize, RHSSize;
 | |
|       ObjectSizeOpts Opts;
 | |
|       Opts.NullIsUnknownSize =
 | |
|           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
 | |
|       if (LHSOffsetCI && RHSOffsetCI &&
 | |
|           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
 | |
|           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
 | |
|         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
 | |
|         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
 | |
|         if (!LHSOffsetValue.isNegative() &&
 | |
|             !RHSOffsetValue.isNegative() &&
 | |
|             LHSOffsetValue.ult(LHSSize) &&
 | |
|             RHSOffsetValue.ult(RHSSize)) {
 | |
|           return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                   !CmpInst::isTrueWhenEqual(Pred));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Repeat the above check but this time without depending on DataLayout
 | |
|       // or being able to compute a precise size.
 | |
|       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
 | |
|           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
 | |
|           LHSOffset->isNullValue() &&
 | |
|           RHSOffset->isNullValue())
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
|     }
 | |
| 
 | |
|     // Even if an non-inbounds GEP occurs along the path we can still optimize
 | |
|     // equality comparisons concerning the result. We avoid walking the whole
 | |
|     // chain again by starting where the last calls to
 | |
|     // stripAndComputeConstantOffsets left off and accumulate the offsets.
 | |
|     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
 | |
|     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
 | |
|     if (LHS == RHS)
 | |
|       return ConstantExpr::getICmp(Pred,
 | |
|                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
 | |
|                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
 | |
| 
 | |
|     // If one side of the equality comparison must come from a noalias call
 | |
|     // (meaning a system memory allocation function), and the other side must
 | |
|     // come from a pointer that cannot overlap with dynamically-allocated
 | |
|     // memory within the lifetime of the current function (allocas, byval
 | |
|     // arguments, globals), then determine the comparison result here.
 | |
|     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
 | |
|     getUnderlyingObjects(LHS, LHSUObjs);
 | |
|     getUnderlyingObjects(RHS, RHSUObjs);
 | |
| 
 | |
|     // Is the set of underlying objects all noalias calls?
 | |
|     auto IsNAC = [](ArrayRef<const Value *> Objects) {
 | |
|       return all_of(Objects, isNoAliasCall);
 | |
|     };
 | |
| 
 | |
|     // Is the set of underlying objects all things which must be disjoint from
 | |
|     // noalias calls. For allocas, we consider only static ones (dynamic
 | |
|     // allocas might be transformed into calls to malloc not simultaneously
 | |
|     // live with the compared-to allocation). For globals, we exclude symbols
 | |
|     // that might be resolve lazily to symbols in another dynamically-loaded
 | |
|     // library (and, thus, could be malloc'ed by the implementation).
 | |
|     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
 | |
|       return all_of(Objects, [](const Value *V) {
 | |
|         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
 | |
|         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
 | |
|                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
 | |
|                  !GV->isThreadLocal();
 | |
|         if (const Argument *A = dyn_cast<Argument>(V))
 | |
|           return A->hasByValAttr();
 | |
|         return false;
 | |
|       });
 | |
|     };
 | |
| 
 | |
|     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
 | |
|         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|     // Fold comparisons for non-escaping pointer even if the allocation call
 | |
|     // cannot be elided. We cannot fold malloc comparison to null. Also, the
 | |
|     // dynamic allocation call could be either of the operands.
 | |
|     Value *MI = nullptr;
 | |
|     if (isAllocLikeFn(LHS, TLI) &&
 | |
|         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
 | |
|       MI = LHS;
 | |
|     else if (isAllocLikeFn(RHS, TLI) &&
 | |
|              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
 | |
|       MI = RHS;
 | |
|     // FIXME: We should also fold the compare when the pointer escapes, but the
 | |
|     // compare dominates the pointer escape
 | |
|     if (MI && !PointerMayBeCaptured(MI, true, true))
 | |
|       return ConstantInt::get(GetCompareTy(LHS),
 | |
|                               CmpInst::isFalseWhenEqual(Pred));
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fail.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold an icmp when its operands have i1 scalar type.
 | |
| static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const SimplifyQuery &Q) {
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Type *OpTy = LHS->getType();   // The operand type.
 | |
|   if (!OpTy->isIntOrIntVectorTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // A boolean compared to true/false can be simplified in 14 out of the 20
 | |
|   // (10 predicates * 2 constants) possible combinations. Cases not handled here
 | |
|   // require a 'not' of the LHS, so those must be transformed in InstCombine.
 | |
|   if (match(RHS, m_Zero())) {
 | |
|     switch (Pred) {
 | |
|     case CmpInst::ICMP_NE:  // X !=  0 -> X
 | |
|     case CmpInst::ICMP_UGT: // X >u  0 -> X
 | |
|     case CmpInst::ICMP_SLT: // X <s  0 -> X
 | |
|       return LHS;
 | |
| 
 | |
|     case CmpInst::ICMP_ULT: // X <u  0 -> false
 | |
|     case CmpInst::ICMP_SGT: // X >s  0 -> false
 | |
|       return getFalse(ITy);
 | |
| 
 | |
|     case CmpInst::ICMP_UGE: // X >=u 0 -> true
 | |
|     case CmpInst::ICMP_SLE: // X <=s 0 -> true
 | |
|       return getTrue(ITy);
 | |
| 
 | |
|     default: break;
 | |
|     }
 | |
|   } else if (match(RHS, m_One())) {
 | |
|     switch (Pred) {
 | |
|     case CmpInst::ICMP_EQ:  // X ==   1 -> X
 | |
|     case CmpInst::ICMP_UGE: // X >=u  1 -> X
 | |
|     case CmpInst::ICMP_SLE: // X <=s -1 -> X
 | |
|       return LHS;
 | |
| 
 | |
|     case CmpInst::ICMP_UGT: // X >u   1 -> false
 | |
|     case CmpInst::ICMP_SLT: // X <s  -1 -> false
 | |
|       return getFalse(ITy);
 | |
| 
 | |
|     case CmpInst::ICMP_ULE: // X <=u  1 -> true
 | |
|     case CmpInst::ICMP_SGE: // X >=s -1 -> true
 | |
|       return getTrue(ITy);
 | |
| 
 | |
|     default: break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     /// For signed comparison, the values for an i1 are 0 and -1
 | |
|     /// respectively. This maps into a truth table of:
 | |
|     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
 | |
|     ///  0  |  0  |  1 (0 >= 0)   |  1
 | |
|     ///  0  |  1  |  1 (0 >= -1)  |  1
 | |
|     ///  1  |  0  |  0 (-1 >= 0)  |  0
 | |
|     ///  1  |  1  |  1 (-1 >= -1) |  1
 | |
|     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try hard to fold icmp with zero RHS because this is a common case.
 | |
| static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                    Value *RHS, const SimplifyQuery &Q) {
 | |
|   if (!match(RHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown ICmp predicate!");
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     return getFalse(ITy);
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     return getTrue(ITy);
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getTrue(ITy);
 | |
|     if (LHSKnown.isNonNegative())
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLE: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getTrue(ITy);
 | |
|     if (LHSKnown.isNonNegative() &&
 | |
|         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGE: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getFalse(ITy);
 | |
|     if (LHSKnown.isNonNegative())
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGT: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getFalse(ITy);
 | |
|     if (LHSKnown.isNonNegative() &&
 | |
|         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                        Value *RHS, const InstrInfoQuery &IIQ) {
 | |
|   Type *ITy = GetCompareTy(RHS); // The return type.
 | |
| 
 | |
|   Value *X;
 | |
|   // Sign-bit checks can be optimized to true/false after unsigned
 | |
|   // floating-point casts:
 | |
|   // icmp slt (bitcast (uitofp X)),  0 --> false
 | |
|   // icmp sgt (bitcast (uitofp X)), -1 --> true
 | |
|   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
 | |
|     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
 | |
|       return ConstantInt::getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
 | |
|       return ConstantInt::getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   const APInt *C;
 | |
|   if (!match(RHS, m_APIntAllowUndef(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Rule out tautological comparisons (eg., ult 0 or uge 0).
 | |
|   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
 | |
|   if (RHS_CR.isEmptySet())
 | |
|     return ConstantInt::getFalse(ITy);
 | |
|   if (RHS_CR.isFullSet())
 | |
|     return ConstantInt::getTrue(ITy);
 | |
| 
 | |
|   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
 | |
|   if (!LHS_CR.isFullSet()) {
 | |
|     if (RHS_CR.contains(LHS_CR))
 | |
|       return ConstantInt::getTrue(ITy);
 | |
|     if (RHS_CR.inverse().contains(LHS_CR))
 | |
|       return ConstantInt::getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
 | |
|   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
 | |
|   const APInt *MulC;
 | |
|   if (ICmpInst::isEquality(Pred) &&
 | |
|       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
 | |
|         *MulC != 0 && C->urem(*MulC) != 0) ||
 | |
|        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
 | |
|         *MulC != 0 && C->srem(*MulC) != 0)))
 | |
|     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyICmpWithBinOpOnLHS(
 | |
|     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
 | |
|     const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   Type *ITy = GetCompareTy(RHS); // The return type.
 | |
| 
 | |
|   Value *Y = nullptr;
 | |
|   // icmp pred (or X, Y), X
 | |
|   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
 | |
|     if (Pred == ICmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
| 
 | |
|     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
 | |
|       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (RHSKnown.isNonNegative() && YKnown.isNegative())
 | |
|         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
 | |
|       if (RHSKnown.isNegative() || YKnown.isNonNegative())
 | |
|         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (and X, Y), X
 | |
|   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   // icmp pred (urem X, Y), Y
 | |
|   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE: {
 | |
|       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE: {
 | |
|       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (urem X, Y), X
 | |
|   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // x >> y <=u x
 | |
|   // x udiv y <=u x.
 | |
|   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
 | |
|       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
 | |
|     // icmp pred (X op Y), X
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   // (x*C1)/C2 <= x for C1 <= C2.
 | |
|   // This holds even if the multiplication overflows: Assume that x != 0 and
 | |
|   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
 | |
|   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
 | |
|   //
 | |
|   // Additionally, either the multiplication and division might be represented
 | |
|   // as shifts:
 | |
|   // (x*C1)>>C2 <= x for C1 < 2**C2.
 | |
|   // (x<<C1)/C2 <= x for 2**C1 < C2.
 | |
|   const APInt *C1, *C2;
 | |
|   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
 | |
|        C1->ule(*C2)) ||
 | |
|       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
 | |
|        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
 | |
|       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
 | |
|        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If only one of the icmp's operands has NSW flags, try to prove that:
 | |
| //
 | |
| //   icmp slt (x + C1), (x +nsw C2)
 | |
| //
 | |
| // is equivalent to:
 | |
| //
 | |
| //   icmp slt C1, C2
 | |
| //
 | |
| // which is true if x + C2 has the NSW flags set and:
 | |
| // *) C1 < C2 && C1 >= 0, or
 | |
| // *) C2 < C1 && C1 <= 0.
 | |
| //
 | |
| static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                     Value *RHS) {
 | |
|   // TODO: only support icmp slt for now.
 | |
|   if (Pred != CmpInst::ICMP_SLT)
 | |
|     return false;
 | |
| 
 | |
|   // Canonicalize nsw add as RHS.
 | |
|   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
 | |
|     std::swap(LHS, RHS);
 | |
|   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
 | |
|     return false;
 | |
| 
 | |
|   Value *X;
 | |
|   const APInt *C1, *C2;
 | |
|   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
 | |
|       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
 | |
|     return false;
 | |
| 
 | |
|   return (C1->slt(*C2) && C1->isNonNegative()) ||
 | |
|          (C2->slt(*C1) && C1->isNonPositive());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// TODO: A large part of this logic is duplicated in InstCombine's
 | |
| /// foldICmpBinOp(). We should be able to share that and avoid the code
 | |
| /// duplication.
 | |
| static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                     Value *RHS, const SimplifyQuery &Q,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
 | |
|   if (MaxRecurse && (LBO || RBO)) {
 | |
|     // Analyze the case when either LHS or RHS is an add instruction.
 | |
|     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
 | |
|     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
 | |
|     if (LBO && LBO->getOpcode() == Instruction::Add) {
 | |
|       A = LBO->getOperand(0);
 | |
|       B = LBO->getOperand(1);
 | |
|       NoLHSWrapProblem =
 | |
|           ICmpInst::isEquality(Pred) ||
 | |
|           (CmpInst::isUnsigned(Pred) &&
 | |
|            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
 | |
|           (CmpInst::isSigned(Pred) &&
 | |
|            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
 | |
|     }
 | |
|     if (RBO && RBO->getOpcode() == Instruction::Add) {
 | |
|       C = RBO->getOperand(0);
 | |
|       D = RBO->getOperand(1);
 | |
|       NoRHSWrapProblem =
 | |
|           ICmpInst::isEquality(Pred) ||
 | |
|           (CmpInst::isUnsigned(Pred) &&
 | |
|            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
 | |
|           (CmpInst::isSigned(Pred) &&
 | |
|            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
 | |
|     }
 | |
| 
 | |
|     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
 | |
|                                       Constant::getNullValue(RHS->getType()), Q,
 | |
|                                       MaxRecurse - 1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
 | |
|       if (Value *V =
 | |
|               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
 | |
|                                C == LHS ? D : C, Q, MaxRecurse - 1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
 | |
|     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
 | |
|                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
 | |
|     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
 | |
|       // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|       Value *Y, *Z;
 | |
|       if (A == C) {
 | |
|         // C + B == C + D  ->  B == D
 | |
|         Y = B;
 | |
|         Z = D;
 | |
|       } else if (A == D) {
 | |
|         // D + B == C + D  ->  B == C
 | |
|         Y = B;
 | |
|         Z = C;
 | |
|       } else if (B == C) {
 | |
|         // A + C == C + D  ->  A == D
 | |
|         Y = A;
 | |
|         Z = D;
 | |
|       } else {
 | |
|         assert(B == D);
 | |
|         // A + D == C + D  ->  A == C
 | |
|         Y = A;
 | |
|         Z = C;
 | |
|       }
 | |
|       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LBO)
 | |
|     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   if (RBO)
 | |
|     if (Value *V = simplifyICmpWithBinOpOnLHS(
 | |
|             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // 0 - (zext X) pred C
 | |
|   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
 | |
|     const APInt *C;
 | |
|     if (match(RHS, m_APInt(C))) {
 | |
|       if (C->isStrictlyPositive()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
 | |
|           return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
|         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
 | |
|           return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|       }
 | |
|       if (C->isNonNegative()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLE)
 | |
|           return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
|         if (Pred == ICmpInst::ICMP_SGT)
 | |
|           return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //   If C2 is a power-of-2 and C is not:
 | |
|   //   (C2 << X) == C --> false
 | |
|   //   (C2 << X) != C --> true
 | |
|   const APInt *C;
 | |
|   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
 | |
|       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
 | |
|     // C2 << X can equal zero in some circumstances.
 | |
|     // This simplification might be unsafe if C is zero.
 | |
|     //
 | |
|     // We know it is safe if:
 | |
|     // - The shift is nsw. We can't shift out the one bit.
 | |
|     // - The shift is nuw. We can't shift out the one bit.
 | |
|     // - C2 is one.
 | |
|     // - C isn't zero.
 | |
|     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
 | |
|         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
 | |
|         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
 | |
|       if (Pred == ICmpInst::ICMP_EQ)
 | |
|         return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|       if (Pred == ICmpInst::ICMP_NE)
 | |
|         return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: This is overly constrained. LHS can be any power-of-2.
 | |
|   // (1 << X)  >u 0x8000 --> false
 | |
|   // (1 << X) <=u 0x8000 --> true
 | |
|   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
|   }
 | |
| 
 | |
|   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
 | |
|       LBO->getOperand(1) == RBO->getOperand(1)) {
 | |
|     switch (LBO->getOpcode()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::LShr:
 | |
|       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
 | |
|           !Q.IIQ.isExact(RBO))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case Instruction::SDiv:
 | |
|       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
 | |
|           !Q.IIQ.isExact(RBO))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::AShr:
 | |
|       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::Shl: {
 | |
|       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
 | |
|       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
 | |
|       if (!NUW && !NSW)
 | |
|         break;
 | |
|       if (!NSW && ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Simplify integer comparisons where at least one operand of the compare
 | |
| /// matches an integer min/max idiom.
 | |
| static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                      Value *RHS, const SimplifyQuery &Q,
 | |
|                                      unsigned MaxRecurse) {
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Value *A, *B;
 | |
|   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
 | |
| 
 | |
|   // Signed variants on "max(a,b)>=a -> true".
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // smax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred smax(A, B).
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // smin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred smin(A, B).
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_SGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_SGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unsigned variants on "max(a,b)>=a -> true".
 | |
|   P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // umax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred umax(A, B).
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // umin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred umin(A, B).
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_ULE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_UGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_ULT:
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Comparing 1 each of min/max with a common operand?
 | |
|   // Canonicalize min operand to RHS.
 | |
|   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
 | |
|       match(LHS, m_SMin(m_Value(), m_Value()))) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Value *C, *D;
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
 | |
|       (A == C || A == D || B == C || B == D)) {
 | |
|     // smax(A, B) >=s smin(A, D) --> true
 | |
|     if (Pred == CmpInst::ICMP_SGE)
 | |
|       return getTrue(ITy);
 | |
|     // smax(A, B) <s smin(A, D) --> false
 | |
|     if (Pred == CmpInst::ICMP_SLT)
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // umax(A, B) >=u umin(A, D) --> true
 | |
|     if (Pred == CmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
|     // umax(A, B) <u umin(A, D) --> false
 | |
|     if (Pred == CmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
 | |
|                                                Value *LHS, Value *RHS,
 | |
|                                                const SimplifyQuery &Q) {
 | |
|   // Gracefully handle instructions that have not been inserted yet.
 | |
|   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
 | |
|     return nullptr;
 | |
| 
 | |
|   for (Value *AssumeBaseOp : {LHS, RHS}) {
 | |
|     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
 | |
|       if (!AssumeVH)
 | |
|         continue;
 | |
| 
 | |
|       CallInst *Assume = cast<CallInst>(AssumeVH);
 | |
|       if (Optional<bool> Imp =
 | |
|               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
 | |
|                                  Q.DL))
 | |
|         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
 | |
|           return ConstantInt::get(GetCompareTy(LHS), *Imp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an ICmpInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
| 
 | |
|   // For EQ and NE, we can always pick a value for the undef to make the
 | |
|   // predicate pass or fail, so we can return undef.
 | |
|   // Matches behavior in llvm::ConstantFoldCompareInstruction.
 | |
|   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
 | |
|     return UndefValue::get(ITy);
 | |
| 
 | |
|   // icmp X, X -> true/false
 | |
|   // icmp X, undef -> true/false because undef could be X.
 | |
|   if (LHS == RHS || Q.isUndefValue(RHS))
 | |
|     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
 | |
|     return V;
 | |
| 
 | |
|   // If both operands have range metadata, use the metadata
 | |
|   // to simplify the comparison.
 | |
|   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
 | |
|     auto RHS_Instr = cast<Instruction>(RHS);
 | |
|     auto LHS_Instr = cast<Instruction>(LHS);
 | |
| 
 | |
|     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
 | |
|         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
 | |
|       auto RHS_CR = getConstantRangeFromMetadata(
 | |
|           *RHS_Instr->getMetadata(LLVMContext::MD_range));
 | |
|       auto LHS_CR = getConstantRangeFromMetadata(
 | |
|           *LHS_Instr->getMetadata(LLVMContext::MD_range));
 | |
| 
 | |
|       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
 | |
|       if (Satisfied_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getTrue(RHS->getContext());
 | |
| 
 | |
|       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
 | |
|                 CmpInst::getInversePredicate(Pred), RHS_CR);
 | |
|       if (InversedSatisfied_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getFalse(RHS->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compare of cast, for example (zext X) != 0 -> X != 0
 | |
|   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
 | |
|     Instruction *LI = cast<CastInst>(LHS);
 | |
|     Value *SrcOp = LI->getOperand(0);
 | |
|     Type *SrcTy = SrcOp->getType();
 | |
|     Type *DstTy = LI->getType();
 | |
| 
 | |
|     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
 | |
|     // if the integer type is the same size as the pointer type.
 | |
|     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
 | |
|         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
 | |
|       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|         // Transfer the cast to the constant.
 | |
|         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
 | |
|                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
 | |
|                                         Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
 | |
|         if (RI->getOperand(0)->getType() == SrcTy)
 | |
|           // Compare without the cast.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<ZExtInst>(LHS)) {
 | |
|       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that signed predicates become unsigned.
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                           SrcOp, RI->getOperand(0), Q,
 | |
|                                           MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
 | |
|       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | |
|         if (SrcOp == RI->getOperand(0)) {
 | |
|           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
 | |
|             return ConstantInt::getTrue(ITy);
 | |
|           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
 | |
|             return ConstantInt::getFalse(ITy);
 | |
|         }
 | |
|       }
 | |
|       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two zero-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                         SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
 | |
|         // there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           // LHS <u RHS.
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_NE:
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
 | |
|           // is non-negative then LHS <s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<SExtInst>(LHS)) {
 | |
|       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that the predicate does not change.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
 | |
|       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | |
|         if (SrcOp == RI->getOperand(0)) {
 | |
|           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
 | |
|             return ConstantInt::getTrue(ITy);
 | |
|           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
 | |
|             return ConstantInt::getFalse(ITy);
 | |
|         }
 | |
|       }
 | |
|       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two sign-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are all equal, while RHS has varying
 | |
|         // bits there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_NE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
 | |
|           // LHS >s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
 | |
|           // LHS >u RHS.
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             // Comparison is true iff the LHS <s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             // Comparison is true iff the LHS >=s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp eq|ne X, Y -> false|true if X != Y
 | |
|   if (ICmpInst::isEquality(Pred) &&
 | |
|       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
 | |
|     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
 | |
|     return V;
 | |
| 
 | |
|   // Simplify comparisons of related pointers using a powerful, recursive
 | |
|   // GEP-walk when we have target data available..
 | |
|   if (LHS->getType()->isPointerTy())
 | |
|     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
 | |
|                                      Q.IIQ, LHS, RHS))
 | |
|       return C;
 | |
|   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
 | |
|     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
 | |
|       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
 | |
|               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
 | |
|           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
 | |
|               Q.DL.getTypeSizeInBits(CRHS->getType()))
 | |
|         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
 | |
|                                          Q.IIQ, CLHS->getPointerOperand(),
 | |
|                                          CRHS->getPointerOperand()))
 | |
|           return C;
 | |
| 
 | |
|   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
 | |
|     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
 | |
|           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
 | |
|           (ICmpInst::isEquality(Pred) ||
 | |
|            (GLHS->isInBounds() && GRHS->isInBounds() &&
 | |
|             Pred == ICmpInst::getSignedPredicate(Pred)))) {
 | |
|         // The bases are equal and the indices are constant.  Build a constant
 | |
|         // expression GEP with the same indices and a null base pointer to see
 | |
|         // what constant folding can make out of it.
 | |
|         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
 | |
|         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
 | |
|         Constant *NewLHS = ConstantExpr::getGetElementPtr(
 | |
|             GLHS->getSourceElementType(), Null, IndicesLHS);
 | |
| 
 | |
|         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
 | |
|         Constant *NewRHS = ConstantExpr::getGetElementPtr(
 | |
|             GLHS->getSourceElementType(), Null, IndicesRHS);
 | |
|         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
 | |
|         return ConstantFoldConstant(NewICmp, Q.DL);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an FCmpInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                FastMathFlags FMF, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   Type *RetTy = GetCompareTy(LHS);
 | |
|   if (Pred == FCmpInst::FCMP_FALSE)
 | |
|     return getFalse(RetTy);
 | |
|   if (Pred == FCmpInst::FCMP_TRUE)
 | |
|     return getTrue(RetTy);
 | |
| 
 | |
|   // Fold (un)ordered comparison if we can determine there are no NaNs.
 | |
|   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
 | |
|     if (FMF.noNaNs() ||
 | |
|         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
 | |
|       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
 | |
| 
 | |
|   // NaN is unordered; NaN is not ordered.
 | |
|   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
 | |
|          "Comparison must be either ordered or unordered");
 | |
|   if (match(RHS, m_NaN()))
 | |
|     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
 | |
| 
 | |
|   // fcmp pred x, undef  and  fcmp pred undef, x
 | |
|   // fold to true if unordered, false if ordered
 | |
|   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
 | |
|     // Choosing NaN for the undef will always make unordered comparison succeed
 | |
|     // and ordered comparison fail.
 | |
|     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
 | |
|   }
 | |
| 
 | |
|   // fcmp x,x -> true/false.  Not all compares are foldable.
 | |
|   if (LHS == RHS) {
 | |
|     if (CmpInst::isTrueWhenEqual(Pred))
 | |
|       return getTrue(RetTy);
 | |
|     if (CmpInst::isFalseWhenEqual(Pred))
 | |
|       return getFalse(RetTy);
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS.
 | |
|   // TODO: Use match with a specific FP value, so these work with vectors with
 | |
|   // undef lanes.
 | |
|   const APFloat *C;
 | |
|   if (match(RHS, m_APFloat(C))) {
 | |
|     // Check whether the constant is an infinity.
 | |
|     if (C->isInfinity()) {
 | |
|       if (C->isNegative()) {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OLT:
 | |
|           // No value is ordered and less than negative infinity.
 | |
|           return getFalse(RetTy);
 | |
|         case FCmpInst::FCMP_UGE:
 | |
|           // All values are unordered with or at least negative infinity.
 | |
|           return getTrue(RetTy);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       } else {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OGT:
 | |
|           // No value is ordered and greater than infinity.
 | |
|           return getFalse(RetTy);
 | |
|         case FCmpInst::FCMP_ULE:
 | |
|           // All values are unordered with and at most infinity.
 | |
|           return getTrue(RetTy);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // LHS == Inf
 | |
|       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
 | |
|         return getFalse(RetTy);
 | |
|       // LHS != Inf
 | |
|       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
 | |
|         return getTrue(RetTy);
 | |
|       // LHS == Inf || LHS == NaN
 | |
|       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
 | |
|           isKnownNeverNaN(LHS, Q.TLI))
 | |
|         return getFalse(RetTy);
 | |
|       // LHS != Inf && LHS != NaN
 | |
|       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
 | |
|           isKnownNeverNaN(LHS, Q.TLI))
 | |
|         return getTrue(RetTy);
 | |
|     }
 | |
|     if (C->isNegative() && !C->isNegZero()) {
 | |
|       assert(!C->isNaN() && "Unexpected NaN constant!");
 | |
|       // TODO: We can catch more cases by using a range check rather than
 | |
|       //       relying on CannotBeOrderedLessThanZero.
 | |
|       switch (Pred) {
 | |
|       case FCmpInst::FCMP_UGE:
 | |
|       case FCmpInst::FCMP_UGT:
 | |
|       case FCmpInst::FCMP_UNE:
 | |
|         // (X >= 0) implies (X > C) when (C < 0)
 | |
|         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|           return getTrue(RetTy);
 | |
|         break;
 | |
|       case FCmpInst::FCMP_OEQ:
 | |
|       case FCmpInst::FCMP_OLE:
 | |
|       case FCmpInst::FCMP_OLT:
 | |
|         // (X >= 0) implies !(X < C) when (C < 0)
 | |
|         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|           return getFalse(RetTy);
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check comparison of [minnum/maxnum with constant] with other constant.
 | |
|     const APFloat *C2;
 | |
|     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
 | |
|          *C2 < *C) ||
 | |
|         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
 | |
|          *C2 > *C)) {
 | |
|       bool IsMaxNum =
 | |
|           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
 | |
|       // The ordered relationship and minnum/maxnum guarantee that we do not
 | |
|       // have NaN constants, so ordered/unordered preds are handled the same.
 | |
|       switch (Pred) {
 | |
|       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
 | |
|         // minnum(X, LesserC)  == C --> false
 | |
|         // maxnum(X, GreaterC) == C --> false
 | |
|         return getFalse(RetTy);
 | |
|       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
 | |
|         // minnum(X, LesserC)  != C --> true
 | |
|         // maxnum(X, GreaterC) != C --> true
 | |
|         return getTrue(RetTy);
 | |
|       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
 | |
|       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
 | |
|         // minnum(X, LesserC)  >= C --> false
 | |
|         // minnum(X, LesserC)  >  C --> false
 | |
|         // maxnum(X, GreaterC) >= C --> true
 | |
|         // maxnum(X, GreaterC) >  C --> true
 | |
|         return ConstantInt::get(RetTy, IsMaxNum);
 | |
|       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
 | |
|       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
 | |
|         // minnum(X, LesserC)  <= C --> true
 | |
|         // minnum(X, LesserC)  <  C --> true
 | |
|         // maxnum(X, GreaterC) <= C --> false
 | |
|         // maxnum(X, GreaterC) <  C --> false
 | |
|         return ConstantInt::get(RetTy, !IsMaxNum);
 | |
|       default:
 | |
|         // TRUE/FALSE/ORD/UNO should be handled before this.
 | |
|         llvm_unreachable("Unexpected fcmp predicate");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (match(RHS, m_AnyZeroFP())) {
 | |
|     switch (Pred) {
 | |
|     case FCmpInst::FCMP_OGE:
 | |
|     case FCmpInst::FCMP_ULT:
 | |
|       // Positive or zero X >= 0.0 --> true
 | |
|       // Positive or zero X <  0.0 --> false
 | |
|       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
 | |
|           CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
 | |
|       break;
 | |
|     case FCmpInst::FCMP_UGE:
 | |
|     case FCmpInst::FCMP_OLT:
 | |
|       // Positive or zero or nan X >= 0.0 --> true
 | |
|       // Positive or zero or nan X <  0.0 --> false
 | |
|       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               FastMathFlags FMF, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
 | |
|                                      const SimplifyQuery &Q,
 | |
|                                      bool AllowRefinement,
 | |
|                                      unsigned MaxRecurse) {
 | |
|   // Trivial replacement.
 | |
|   if (V == Op)
 | |
|     return RepOp;
 | |
| 
 | |
|   // We cannot replace a constant, and shouldn't even try.
 | |
|   if (isa<Constant>(Op))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Consider:
 | |
|   //   %cmp = icmp eq i32 %x, 2147483647
 | |
|   //   %add = add nsw i32 %x, 1
 | |
|   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
 | |
|   //
 | |
|   // We can't replace %sel with %add unless we strip away the flags (which will
 | |
|   // be done in InstCombine).
 | |
|   // TODO: This is unsound, because it only catches some forms of refinement.
 | |
|   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The simplification queries below may return the original value. Consider:
 | |
|   //   %div = udiv i32 %arg, %arg2
 | |
|   //   %mul = mul nsw i32 %div, %arg2
 | |
|   //   %cmp = icmp eq i32 %mul, %arg
 | |
|   //   %sel = select i1 %cmp, i32 %div, i32 undef
 | |
|   // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
 | |
|   // simplifies back to %arg. This can only happen because %mul does not
 | |
|   // dominate %div. To ensure a consistent return value contract, we make sure
 | |
|   // that this case returns nullptr as well.
 | |
|   auto PreventSelfSimplify = [V](Value *Simplified) {
 | |
|     return Simplified != V ? Simplified : nullptr;
 | |
|   };
 | |
| 
 | |
|   // If this is a binary operator, try to simplify it with the replaced op.
 | |
|   if (auto *B = dyn_cast<BinaryOperator>(I)) {
 | |
|     if (MaxRecurse) {
 | |
|       if (B->getOperand(0) == Op)
 | |
|         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp,
 | |
|                                                  B->getOperand(1), Q,
 | |
|                                                  MaxRecurse - 1));
 | |
|       if (B->getOperand(1) == Op)
 | |
|         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(),
 | |
|                                                  B->getOperand(0), RepOp, Q,
 | |
|                                                  MaxRecurse - 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Same for CmpInsts.
 | |
|   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
 | |
|     if (MaxRecurse) {
 | |
|       if (C->getOperand(0) == Op)
 | |
|         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp,
 | |
|                                                    C->getOperand(1), Q,
 | |
|                                                    MaxRecurse - 1));
 | |
|       if (C->getOperand(1) == Op)
 | |
|         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(),
 | |
|                                                    C->getOperand(0), RepOp, Q,
 | |
|                                                    MaxRecurse - 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Same for GEPs.
 | |
|   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|     if (MaxRecurse) {
 | |
|       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
 | |
|       transform(GEP->operands(), NewOps.begin(),
 | |
|                 [&](Value *V) { return V == Op ? RepOp : V; });
 | |
|       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
 | |
|                                                  NewOps, Q, MaxRecurse - 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: We could hand off more cases to instsimplify here.
 | |
| 
 | |
|   // If all operands are constant after substituting Op for RepOp then we can
 | |
|   // constant fold the instruction.
 | |
|   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
 | |
|     // Build a list of all constant operands.
 | |
|     SmallVector<Constant *, 8> ConstOps;
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       if (I->getOperand(i) == Op)
 | |
|         ConstOps.push_back(CRepOp);
 | |
|       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
 | |
|         ConstOps.push_back(COp);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // All operands were constants, fold it.
 | |
|     if (ConstOps.size() == I->getNumOperands()) {
 | |
|       if (CmpInst *C = dyn_cast<CmpInst>(I))
 | |
|         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
 | |
|                                                ConstOps[1], Q.DL, Q.TLI);
 | |
| 
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|         if (!LI->isVolatile())
 | |
|           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
 | |
| 
 | |
|       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
 | |
|                                     const SimplifyQuery &Q,
 | |
|                                     bool AllowRefinement) {
 | |
|   return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
 | |
|                                   RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Try to simplify a select instruction when its condition operand is an
 | |
| /// integer comparison where one operand of the compare is a constant.
 | |
| static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
 | |
|                                     const APInt *Y, bool TrueWhenUnset) {
 | |
|   const APInt *C;
 | |
| 
 | |
|   // (X & Y) == 0 ? X & ~Y : X  --> X
 | |
|   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
 | |
|   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|       *Y == ~*C)
 | |
|     return TrueWhenUnset ? FalseVal : TrueVal;
 | |
| 
 | |
|   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
 | |
|   // (X & Y) != 0 ? X : X & ~Y  --> X
 | |
|   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|       *Y == ~*C)
 | |
|     return TrueWhenUnset ? FalseVal : TrueVal;
 | |
| 
 | |
|   if (Y->isPowerOf2()) {
 | |
|     // (X & Y) == 0 ? X | Y : X  --> X | Y
 | |
|     // (X & Y) != 0 ? X | Y : X  --> X
 | |
|     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|         *Y == *C)
 | |
|       return TrueWhenUnset ? TrueVal : FalseVal;
 | |
| 
 | |
|     // (X & Y) == 0 ? X : X | Y  --> X
 | |
|     // (X & Y) != 0 ? X : X | Y  --> X | Y
 | |
|     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|         *Y == *C)
 | |
|       return TrueWhenUnset ? TrueVal : FalseVal;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// An alternative way to test if a bit is set or not uses sgt/slt instead of
 | |
| /// eq/ne.
 | |
| static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
 | |
|                                            ICmpInst::Predicate Pred,
 | |
|                                            Value *TrueVal, Value *FalseVal) {
 | |
|   Value *X;
 | |
|   APInt Mask;
 | |
|   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
 | |
|     return nullptr;
 | |
| 
 | |
|   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
 | |
|                                Pred == ICmpInst::ICMP_EQ);
 | |
| }
 | |
| 
 | |
| /// Try to simplify a select instruction when its condition operand is an
 | |
| /// integer comparison.
 | |
| static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
 | |
|                                          Value *FalseVal, const SimplifyQuery &Q,
 | |
|                                          unsigned MaxRecurse) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   Value *CmpLHS, *CmpRHS;
 | |
|   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize ne to eq predicate.
 | |
|   if (Pred == ICmpInst::ICMP_NE) {
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     std::swap(TrueVal, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
 | |
|     Value *X;
 | |
|     const APInt *Y;
 | |
|     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
 | |
|       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
 | |
|                                            /*TrueWhenUnset=*/true))
 | |
|         return V;
 | |
| 
 | |
|     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
 | |
|     Value *ShAmt;
 | |
|     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
 | |
|                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
 | |
|     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
 | |
|     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
 | |
|     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
 | |
|       return X;
 | |
| 
 | |
|     // Test for a zero-shift-guard-op around rotates. These are used to
 | |
|     // avoid UB from oversized shifts in raw IR rotate patterns, but the
 | |
|     // intrinsics do not have that problem.
 | |
|     // We do not allow this transform for the general funnel shift case because
 | |
|     // that would not preserve the poison safety of the original code.
 | |
|     auto isRotate =
 | |
|         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
 | |
|                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
 | |
|     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
 | |
|     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
 | |
|     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
 | |
|         Pred == ICmpInst::ICMP_EQ)
 | |
|       return FalseVal;
 | |
| 
 | |
|     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
 | |
|     // X == 0 ? -abs(X) : abs(X) --> abs(X)
 | |
|     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
 | |
|         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
 | |
|       return FalseVal;
 | |
|     if (match(TrueVal,
 | |
|               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
 | |
|         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
 | |
|       return FalseVal;
 | |
|   }
 | |
| 
 | |
|   // Check for other compares that behave like bit test.
 | |
|   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
 | |
|                                               TrueVal, FalseVal))
 | |
|     return V;
 | |
| 
 | |
|   // If we have an equality comparison, then we know the value in one of the
 | |
|   // arms of the select. See if substituting this value into the arm and
 | |
|   // simplifying the result yields the same value as the other arm.
 | |
|   if (Pred == ICmpInst::ICMP_EQ) {
 | |
|     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
 | |
|                                /* AllowRefinement */ false, MaxRecurse) ==
 | |
|             TrueVal ||
 | |
|         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
 | |
|                                /* AllowRefinement */ false, MaxRecurse) ==
 | |
|             TrueVal)
 | |
|       return FalseVal;
 | |
|     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
 | |
|                                /* AllowRefinement */ true, MaxRecurse) ==
 | |
|             FalseVal ||
 | |
|         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
 | |
|                                /* AllowRefinement */ true, MaxRecurse) ==
 | |
|             FalseVal)
 | |
|       return FalseVal;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to simplify a select instruction when its condition operand is a
 | |
| /// floating-point comparison.
 | |
| static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
 | |
|                                      const SimplifyQuery &Q) {
 | |
|   FCmpInst::Predicate Pred;
 | |
|   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
 | |
|       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // This transform is safe if we do not have (do not care about) -0.0 or if
 | |
|   // at least one operand is known to not be -0.0. Otherwise, the select can
 | |
|   // change the sign of a zero operand.
 | |
|   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
 | |
|                           Q.CxtI->hasNoSignedZeros();
 | |
|   const APFloat *C;
 | |
|   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
 | |
|                           (match(F, m_APFloat(C)) && C->isNonZero())) {
 | |
|     // (T == F) ? T : F --> F
 | |
|     // (F == T) ? T : F --> F
 | |
|     if (Pred == FCmpInst::FCMP_OEQ)
 | |
|       return F;
 | |
| 
 | |
|     // (T != F) ? T : F --> T
 | |
|     // (F != T) ? T : F --> T
 | |
|     if (Pred == FCmpInst::FCMP_UNE)
 | |
|       return T;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for a SelectInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (auto *CondC = dyn_cast<Constant>(Cond)) {
 | |
|     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
 | |
|       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
 | |
|         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
 | |
| 
 | |
|     // select undef, X, Y -> X or Y
 | |
|     if (Q.isUndefValue(CondC))
 | |
|       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
 | |
| 
 | |
|     // TODO: Vector constants with undef elements don't simplify.
 | |
| 
 | |
|     // select true, X, Y  -> X
 | |
|     if (CondC->isAllOnesValue())
 | |
|       return TrueVal;
 | |
|     // select false, X, Y -> Y
 | |
|     if (CondC->isNullValue())
 | |
|       return FalseVal;
 | |
|   }
 | |
| 
 | |
|   // select i1 Cond, i1 true, i1 false --> i1 Cond
 | |
|   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
 | |
|          "Select must have bool or bool vector condition");
 | |
|   assert(TrueVal->getType() == FalseVal->getType() &&
 | |
|          "Select must have same types for true/false ops");
 | |
|   if (Cond->getType() == TrueVal->getType() &&
 | |
|       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
 | |
|     return Cond;
 | |
| 
 | |
|   // select ?, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return TrueVal;
 | |
| 
 | |
|   // If the true or false value is undef, we can fold to the other value as
 | |
|   // long as the other value isn't poison.
 | |
|   // select ?, undef, X -> X
 | |
|   if (Q.isUndefValue(TrueVal) &&
 | |
|       isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT))
 | |
|     return FalseVal;
 | |
|   // select ?, X, undef -> X
 | |
|   if (Q.isUndefValue(FalseVal) &&
 | |
|       isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT))
 | |
|     return TrueVal;
 | |
| 
 | |
|   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
 | |
|   Constant *TrueC, *FalseC;
 | |
|   if (isa<FixedVectorType>(TrueVal->getType()) &&
 | |
|       match(TrueVal, m_Constant(TrueC)) &&
 | |
|       match(FalseVal, m_Constant(FalseC))) {
 | |
|     unsigned NumElts =
 | |
|         cast<FixedVectorType>(TrueC->getType())->getNumElements();
 | |
|     SmallVector<Constant *, 16> NewC;
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       // Bail out on incomplete vector constants.
 | |
|       Constant *TEltC = TrueC->getAggregateElement(i);
 | |
|       Constant *FEltC = FalseC->getAggregateElement(i);
 | |
|       if (!TEltC || !FEltC)
 | |
|         break;
 | |
| 
 | |
|       // If the elements match (undef or not), that value is the result. If only
 | |
|       // one element is undef, choose the defined element as the safe result.
 | |
|       if (TEltC == FEltC)
 | |
|         NewC.push_back(TEltC);
 | |
|       else if (Q.isUndefValue(TEltC) &&
 | |
|                isGuaranteedNotToBeUndefOrPoison(FEltC))
 | |
|         NewC.push_back(FEltC);
 | |
|       else if (Q.isUndefValue(FEltC) &&
 | |
|                isGuaranteedNotToBeUndefOrPoison(TEltC))
 | |
|         NewC.push_back(TEltC);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     if (NewC.size() == NumElts)
 | |
|       return ConstantVector::get(NewC);
 | |
|   }
 | |
| 
 | |
|   if (Value *V =
 | |
|           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
 | |
|     return V;
 | |
| 
 | |
|   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
 | |
|   if (Imp)
 | |
|     return *Imp ? TrueVal : FalseVal;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                 const SimplifyQuery &Q) {
 | |
|   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an GetElementPtrInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
 | |
|                               const SimplifyQuery &Q, unsigned) {
 | |
|   // The type of the GEP pointer operand.
 | |
|   unsigned AS =
 | |
|       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
 | |
| 
 | |
|   // getelementptr P -> P.
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // Compute the (pointer) type returned by the GEP instruction.
 | |
|   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
 | |
|   Type *GEPTy = PointerType::get(LastType, AS);
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
 | |
|     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
 | |
|   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
 | |
|     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
 | |
| 
 | |
|   // getelementptr poison, idx -> poison
 | |
|   // getelementptr baseptr, poison -> poison
 | |
|   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
 | |
|     return PoisonValue::get(GEPTy);
 | |
| 
 | |
|   if (Q.isUndefValue(Ops[0]))
 | |
|     return UndefValue::get(GEPTy);
 | |
| 
 | |
|   bool IsScalableVec = isa<ScalableVectorType>(SrcTy);
 | |
| 
 | |
|   if (Ops.size() == 2) {
 | |
|     // getelementptr P, 0 -> P.
 | |
|     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
 | |
|       return Ops[0];
 | |
| 
 | |
|     Type *Ty = SrcTy;
 | |
|     if (!IsScalableVec && Ty->isSized()) {
 | |
|       Value *P;
 | |
|       uint64_t C;
 | |
|       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
 | |
|       // getelementptr P, N -> P if P points to a type of zero size.
 | |
|       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
 | |
|         return Ops[0];
 | |
| 
 | |
|       // The following transforms are only safe if the ptrtoint cast
 | |
|       // doesn't truncate the pointers.
 | |
|       if (Ops[1]->getType()->getScalarSizeInBits() ==
 | |
|           Q.DL.getPointerSizeInBits(AS)) {
 | |
|         auto PtrToInt = [GEPTy](Value *P) -> Value * {
 | |
|           Value *Temp;
 | |
|           if (match(P, m_PtrToInt(m_Value(Temp))))
 | |
|             if (Temp->getType() == GEPTy)
 | |
|               return Temp;
 | |
|           return nullptr;
 | |
|         };
 | |
| 
 | |
|         // FIXME: The following transforms are only legal if P and V have the
 | |
|         // same provenance (PR44403). Check whether getUnderlyingObject() is
 | |
|         // the same?
 | |
| 
 | |
|         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
 | |
|         if (TyAllocSize == 1 &&
 | |
|             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
 | |
|           if (Value *R = PtrToInt(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (ashr (sub P, V), C) -> Q
 | |
|         // if P points to a type of size 1 << C.
 | |
|         if (match(Ops[1],
 | |
|                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_ConstantInt(C))) &&
 | |
|             TyAllocSize == 1ULL << C)
 | |
|           if (Value *R = PtrToInt(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (sdiv (sub P, V), C) -> Q
 | |
|         // if P points to a type of size C.
 | |
|         if (match(Ops[1],
 | |
|                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_SpecificInt(TyAllocSize))))
 | |
|           if (Value *R = PtrToInt(P))
 | |
|             return R;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
 | |
|       all_of(Ops.slice(1).drop_back(1),
 | |
|              [](Value *Idx) { return match(Idx, m_Zero()); })) {
 | |
|     unsigned IdxWidth =
 | |
|         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
 | |
|     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
 | |
|       APInt BasePtrOffset(IdxWidth, 0);
 | |
|       Value *StrippedBasePtr =
 | |
|           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
 | |
|                                                             BasePtrOffset);
 | |
| 
 | |
|       // Avoid creating inttoptr of zero here: While LLVMs treatment of
 | |
|       // inttoptr is generally conservative, this particular case is folded to
 | |
|       // a null pointer, which will have incorrect provenance.
 | |
| 
 | |
|       // gep (gep V, C), (sub 0, V) -> C
 | |
|       if (match(Ops.back(),
 | |
|                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
 | |
|           !BasePtrOffset.isNullValue()) {
 | |
|         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
 | |
|         return ConstantExpr::getIntToPtr(CI, GEPTy);
 | |
|       }
 | |
|       // gep (gep V, C), (xor V, -1) -> C-1
 | |
|       if (match(Ops.back(),
 | |
|                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
 | |
|           !BasePtrOffset.isOneValue()) {
 | |
|         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
 | |
|         return ConstantExpr::getIntToPtr(CI, GEPTy);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is constant foldable.
 | |
|   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
 | |
|                                             Ops.slice(1));
 | |
|   return ConstantFoldConstant(CE, Q.DL);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an InsertValueInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
 | |
|                                       unsigned) {
 | |
|   if (Constant *CAgg = dyn_cast<Constant>(Agg))
 | |
|     if (Constant *CVal = dyn_cast<Constant>(Val))
 | |
|       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
 | |
| 
 | |
|   // insertvalue x, undef, n -> x
 | |
|   if (Q.isUndefValue(Val))
 | |
|     return Agg;
 | |
| 
 | |
|   // insertvalue x, (extractvalue y, n), n
 | |
|   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
 | |
|     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
 | |
|         EV->getIndices() == Idxs) {
 | |
|       // insertvalue undef, (extractvalue y, n), n -> y
 | |
|       if (Q.isUndefValue(Agg))
 | |
|         return EV->getAggregateOperand();
 | |
| 
 | |
|       // insertvalue y, (extractvalue y, n), n -> y
 | |
|       if (Agg == EV->getAggregateOperand())
 | |
|         return Agg;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                      ArrayRef<unsigned> Idxs,
 | |
|                                      const SimplifyQuery &Q) {
 | |
|   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
 | |
|                                        const SimplifyQuery &Q) {
 | |
|   // Try to constant fold.
 | |
|   auto *VecC = dyn_cast<Constant>(Vec);
 | |
|   auto *ValC = dyn_cast<Constant>(Val);
 | |
|   auto *IdxC = dyn_cast<Constant>(Idx);
 | |
|   if (VecC && ValC && IdxC)
 | |
|     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
 | |
| 
 | |
|   // For fixed-length vector, fold into poison if index is out of bounds.
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|     if (isa<FixedVectorType>(Vec->getType()) &&
 | |
|         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
 | |
|       return PoisonValue::get(Vec->getType());
 | |
|   }
 | |
| 
 | |
|   // If index is undef, it might be out of bounds (see above case)
 | |
|   if (Q.isUndefValue(Idx))
 | |
|     return PoisonValue::get(Vec->getType());
 | |
| 
 | |
|   // If the scalar is poison, or it is undef and there is no risk of
 | |
|   // propagating poison from the vector value, simplify to the vector value.
 | |
|   if (isa<PoisonValue>(Val) ||
 | |
|       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
 | |
|     return Vec;
 | |
| 
 | |
|   // If we are extracting a value from a vector, then inserting it into the same
 | |
|   // place, that's the input vector:
 | |
|   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
 | |
|   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
 | |
|     return Vec;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an ExtractValueInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
 | |
|                                        const SimplifyQuery &, unsigned) {
 | |
|   if (auto *CAgg = dyn_cast<Constant>(Agg))
 | |
|     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
 | |
| 
 | |
|   // extractvalue x, (insertvalue y, elt, n), n -> elt
 | |
|   unsigned NumIdxs = Idxs.size();
 | |
|   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
 | |
|        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
 | |
|     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
 | |
|     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
 | |
|     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
 | |
|     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
 | |
|         Idxs.slice(0, NumCommonIdxs)) {
 | |
|       if (NumIdxs == NumInsertValueIdxs)
 | |
|         return IVI->getInsertedValueOperand();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
 | |
|                                       const SimplifyQuery &Q) {
 | |
|   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an ExtractElementInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
 | |
|                                          const SimplifyQuery &Q, unsigned) {
 | |
|   auto *VecVTy = cast<VectorType>(Vec->getType());
 | |
|   if (auto *CVec = dyn_cast<Constant>(Vec)) {
 | |
|     if (auto *CIdx = dyn_cast<Constant>(Idx))
 | |
|       return ConstantExpr::getExtractElement(CVec, CIdx);
 | |
| 
 | |
|     // The index is not relevant if our vector is a splat.
 | |
|     if (auto *Splat = CVec->getSplatValue())
 | |
|       return Splat;
 | |
| 
 | |
|     if (Q.isUndefValue(Vec))
 | |
|       return UndefValue::get(VecVTy->getElementType());
 | |
|   }
 | |
| 
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
 | |
|     // For fixed-length vector, fold into undef if index is out of bounds.
 | |
|     if (isa<FixedVectorType>(VecVTy) &&
 | |
|         IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements()))
 | |
|       return PoisonValue::get(VecVTy->getElementType());
 | |
|     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
 | |
|       return Elt;
 | |
|   }
 | |
| 
 | |
|   // An undef extract index can be arbitrarily chosen to be an out-of-range
 | |
|   // index value, which would result in the instruction being poison.
 | |
|   if (Q.isUndefValue(Idx))
 | |
|     return PoisonValue::get(VecVTy->getElementType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
 | |
|                                         const SimplifyQuery &Q) {
 | |
|   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// See if we can fold the given phi. If not, returns null.
 | |
| static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
 | |
|   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
 | |
|   //          here, because the PHI we may succeed simplifying to was not
 | |
|   //          def-reachable from the original PHI!
 | |
| 
 | |
|   // If all of the PHI's incoming values are the same then replace the PHI node
 | |
|   // with the common value.
 | |
|   Value *CommonValue = nullptr;
 | |
|   bool HasUndefInput = false;
 | |
|   for (Value *Incoming : PN->incoming_values()) {
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PN) continue;
 | |
|     if (Q.isUndefValue(Incoming)) {
 | |
|       // Remember that we saw an undef value, but otherwise ignore them.
 | |
|       HasUndefInput = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (CommonValue && Incoming != CommonValue)
 | |
|       return nullptr;  // Not the same, bail out.
 | |
|     CommonValue = Incoming;
 | |
|   }
 | |
| 
 | |
|   // If CommonValue is null then all of the incoming values were either undef or
 | |
|   // equal to the phi node itself.
 | |
|   if (!CommonValue)
 | |
|     return UndefValue::get(PN->getType());
 | |
| 
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot return X as the result of the PHI node unless it
 | |
|   // dominates the PHI block.
 | |
|   if (HasUndefInput)
 | |
|     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
 | |
|                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (auto *C = dyn_cast<Constant>(Op))
 | |
|     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
 | |
| 
 | |
|   if (auto *CI = dyn_cast<CastInst>(Op)) {
 | |
|     auto *Src = CI->getOperand(0);
 | |
|     Type *SrcTy = Src->getType();
 | |
|     Type *MidTy = CI->getType();
 | |
|     Type *DstTy = Ty;
 | |
|     if (Src->getType() == Ty) {
 | |
|       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
 | |
|       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
 | |
|       Type *SrcIntPtrTy =
 | |
|           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
 | |
|       Type *MidIntPtrTy =
 | |
|           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
 | |
|       Type *DstIntPtrTy =
 | |
|           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
 | |
|       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
 | |
|                                          SrcIntPtrTy, MidIntPtrTy,
 | |
|                                          DstIntPtrTy) == Instruction::BitCast)
 | |
|         return Src;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // bitcast x -> x
 | |
|   if (CastOpc == Instruction::BitCast)
 | |
|     if (Op->getType() == Ty)
 | |
|       return Op;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// For the given destination element of a shuffle, peek through shuffles to
 | |
| /// match a root vector source operand that contains that element in the same
 | |
| /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
 | |
| static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
 | |
|                                    int MaskVal, Value *RootVec,
 | |
|                                    unsigned MaxRecurse) {
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bail out if any mask value is undefined. That kind of shuffle may be
 | |
|   // simplified further based on demanded bits or other folds.
 | |
|   if (MaskVal == -1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The mask value chooses which source operand we need to look at next.
 | |
|   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
 | |
|   int RootElt = MaskVal;
 | |
|   Value *SourceOp = Op0;
 | |
|   if (MaskVal >= InVecNumElts) {
 | |
|     RootElt = MaskVal - InVecNumElts;
 | |
|     SourceOp = Op1;
 | |
|   }
 | |
| 
 | |
|   // If the source operand is a shuffle itself, look through it to find the
 | |
|   // matching root vector.
 | |
|   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
 | |
|     return foldIdentityShuffles(
 | |
|         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
 | |
|         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // TODO: Look through bitcasts? What if the bitcast changes the vector element
 | |
|   // size?
 | |
| 
 | |
|   // The source operand is not a shuffle. Initialize the root vector value for
 | |
|   // this shuffle if that has not been done yet.
 | |
|   if (!RootVec)
 | |
|     RootVec = SourceOp;
 | |
| 
 | |
|   // Give up as soon as a source operand does not match the existing root value.
 | |
|   if (RootVec != SourceOp)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The element must be coming from the same lane in the source vector
 | |
|   // (although it may have crossed lanes in intermediate shuffles).
 | |
|   if (RootElt != DestElt)
 | |
|     return nullptr;
 | |
| 
 | |
|   return RootVec;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
 | |
|                                         ArrayRef<int> Mask, Type *RetTy,
 | |
|                                         const SimplifyQuery &Q,
 | |
|                                         unsigned MaxRecurse) {
 | |
|   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
 | |
|     return UndefValue::get(RetTy);
 | |
| 
 | |
|   auto *InVecTy = cast<VectorType>(Op0->getType());
 | |
|   unsigned MaskNumElts = Mask.size();
 | |
|   ElementCount InVecEltCount = InVecTy->getElementCount();
 | |
| 
 | |
|   bool Scalable = InVecEltCount.isScalable();
 | |
| 
 | |
|   SmallVector<int, 32> Indices;
 | |
|   Indices.assign(Mask.begin(), Mask.end());
 | |
| 
 | |
|   // Canonicalization: If mask does not select elements from an input vector,
 | |
|   // replace that input vector with poison.
 | |
|   if (!Scalable) {
 | |
|     bool MaskSelects0 = false, MaskSelects1 = false;
 | |
|     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       if (Indices[i] == -1)
 | |
|         continue;
 | |
|       if ((unsigned)Indices[i] < InVecNumElts)
 | |
|         MaskSelects0 = true;
 | |
|       else
 | |
|         MaskSelects1 = true;
 | |
|     }
 | |
|     if (!MaskSelects0)
 | |
|       Op0 = PoisonValue::get(InVecTy);
 | |
|     if (!MaskSelects1)
 | |
|       Op1 = PoisonValue::get(InVecTy);
 | |
|   }
 | |
| 
 | |
|   auto *Op0Const = dyn_cast<Constant>(Op0);
 | |
|   auto *Op1Const = dyn_cast<Constant>(Op1);
 | |
| 
 | |
|   // If all operands are constant, constant fold the shuffle. This
 | |
|   // transformation depends on the value of the mask which is not known at
 | |
|   // compile time for scalable vectors
 | |
|   if (Op0Const && Op1Const)
 | |
|     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
 | |
| 
 | |
|   // Canonicalization: if only one input vector is constant, it shall be the
 | |
|   // second one. This transformation depends on the value of the mask which
 | |
|   // is not known at compile time for scalable vectors
 | |
|   if (!Scalable && Op0Const && !Op1Const) {
 | |
|     std::swap(Op0, Op1);
 | |
|     ShuffleVectorInst::commuteShuffleMask(Indices,
 | |
|                                           InVecEltCount.getKnownMinValue());
 | |
|   }
 | |
| 
 | |
|   // A splat of an inserted scalar constant becomes a vector constant:
 | |
|   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
 | |
|   // NOTE: We may have commuted above, so analyze the updated Indices, not the
 | |
|   //       original mask constant.
 | |
|   // NOTE: This transformation depends on the value of the mask which is not
 | |
|   // known at compile time for scalable vectors
 | |
|   Constant *C;
 | |
|   ConstantInt *IndexC;
 | |
|   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
 | |
|                                           m_ConstantInt(IndexC)))) {
 | |
|     // Match a splat shuffle mask of the insert index allowing undef elements.
 | |
|     int InsertIndex = IndexC->getZExtValue();
 | |
|     if (all_of(Indices, [InsertIndex](int MaskElt) {
 | |
|           return MaskElt == InsertIndex || MaskElt == -1;
 | |
|         })) {
 | |
|       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
 | |
| 
 | |
|       // Shuffle mask undefs become undefined constant result elements.
 | |
|       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
 | |
|       for (unsigned i = 0; i != MaskNumElts; ++i)
 | |
|         if (Indices[i] == -1)
 | |
|           VecC[i] = UndefValue::get(C->getType());
 | |
|       return ConstantVector::get(VecC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
 | |
|   // value type is same as the input vectors' type.
 | |
|   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
 | |
|     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
 | |
|         is_splat(OpShuf->getShuffleMask()))
 | |
|       return Op0;
 | |
| 
 | |
|   // All remaining transformation depend on the value of the mask, which is
 | |
|   // not known at compile time for scalable vectors.
 | |
|   if (Scalable)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't fold a shuffle with undef mask elements. This may get folded in a
 | |
|   // better way using demanded bits or other analysis.
 | |
|   // TODO: Should we allow this?
 | |
|   if (is_contained(Indices, -1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if every element of this shuffle can be mapped back to the
 | |
|   // corresponding element of a single root vector. If so, we don't need this
 | |
|   // shuffle. This handles simple identity shuffles as well as chains of
 | |
|   // shuffles that may widen/narrow and/or move elements across lanes and back.
 | |
|   Value *RootVec = nullptr;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     // Note that recursion is limited for each vector element, so if any element
 | |
|     // exceeds the limit, this will fail to simplify.
 | |
|     RootVec =
 | |
|         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
 | |
| 
 | |
|     // We can't replace a widening/narrowing shuffle with one of its operands.
 | |
|     if (!RootVec || RootVec->getType() != RetTy)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return RootVec;
 | |
| }
 | |
| 
 | |
| /// Given operands for a ShuffleVectorInst, fold the result or return null.
 | |
| Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
 | |
|                                        ArrayRef<int> Mask, Type *RetTy,
 | |
|                                        const SimplifyQuery &Q) {
 | |
|   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Constant *foldConstant(Instruction::UnaryOps Opcode,
 | |
|                               Value *&Op, const SimplifyQuery &Q) {
 | |
|   if (auto *C = dyn_cast<Constant>(Op))
 | |
|     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given the operand for an FNeg, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
 | |
|     return C;
 | |
| 
 | |
|   Value *X;
 | |
|   // fneg (fneg X) ==> X
 | |
|   if (match(Op, m_FNeg(m_Value(X))))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Constant *propagateNaN(Constant *In) {
 | |
|   // If the input is a vector with undef elements, just return a default NaN.
 | |
|   if (!In->isNaN())
 | |
|     return ConstantFP::getNaN(In->getType());
 | |
| 
 | |
|   // Propagate the existing NaN constant when possible.
 | |
|   // TODO: Should we quiet a signaling NaN?
 | |
|   return In;
 | |
| }
 | |
| 
 | |
| /// Perform folds that are common to any floating-point operation. This implies
 | |
| /// transforms based on undef/NaN because the operation itself makes no
 | |
| /// difference to the result.
 | |
| static Constant *simplifyFPOp(ArrayRef<Value *> Ops,
 | |
|                               FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   for (Value *V : Ops) {
 | |
|     bool IsNan = match(V, m_NaN());
 | |
|     bool IsInf = match(V, m_Inf());
 | |
|     bool IsUndef = Q.isUndefValue(V);
 | |
| 
 | |
|     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
 | |
|     // (an undef operand can be chosen to be Nan/Inf), then the result of
 | |
|     // this operation is poison.
 | |
|     if (FMF.noNaNs() && (IsNan || IsUndef))
 | |
|       return PoisonValue::get(V->getType());
 | |
|     if (FMF.noInfs() && (IsInf || IsUndef))
 | |
|       return PoisonValue::get(V->getType());
 | |
| 
 | |
|     if (IsUndef || IsNan)
 | |
|       return propagateNaN(cast<Constant>(V));
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an FAdd, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fadd X, -0 ==> X
 | |
|   if (match(Op1, m_NegZeroFP()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fadd X, 0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_PosZeroFP()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
 | |
|     return Op0;
 | |
| 
 | |
|   // With nnan: -X + X --> 0.0 (and commuted variant)
 | |
|   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
 | |
|   // Negative zeros are allowed because we always end up with positive zero:
 | |
|   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
 | |
|   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
 | |
|   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
 | |
|   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
 | |
|   if (FMF.noNaNs()) {
 | |
|     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
 | |
|         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
 | |
|       return ConstantFP::getNullValue(Op0->getType());
 | |
| 
 | |
|     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
 | |
|         match(Op1, m_FNeg(m_Specific(Op0))))
 | |
|       return ConstantFP::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   // (X - Y) + Y --> X
 | |
|   // Y + (X - Y) --> X
 | |
|   Value *X;
 | |
|   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
 | |
|       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
 | |
|        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an FSub, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fsub X, +0 ==> X
 | |
|   if (match(Op1, m_PosZeroFP()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub X, -0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_NegZeroFP()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub -0.0, (fsub -0.0, X) ==> X
 | |
|   // fsub -0.0, (fneg X) ==> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NegZeroFP()) &&
 | |
|       match(Op1, m_FNeg(m_Value(X))))
 | |
|     return X;
 | |
| 
 | |
|   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
 | |
|   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
 | |
|   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
 | |
|       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
 | |
|        match(Op1, m_FNeg(m_Value(X)))))
 | |
|     return X;
 | |
| 
 | |
|   // fsub nnan x, x ==> 0.0
 | |
|   if (FMF.noNaNs() && Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // Y - (Y - X) --> X
 | |
|   // (X + Y) - Y --> X
 | |
|   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
 | |
|       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
 | |
|        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fmul X, 1.0 ==> X
 | |
|   if (match(Op1, m_FPOne()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fmul 1.0, X ==> X
 | |
|   if (match(Op0, m_FPOne()))
 | |
|     return Op1;
 | |
| 
 | |
|   // fmul nnan nsz X, 0 ==> 0
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
 | |
|     return ConstantFP::getNullValue(Op0->getType());
 | |
| 
 | |
|   // fmul nnan nsz 0, X ==> 0
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
 | |
|     return ConstantFP::getNullValue(Op1->getType());
 | |
| 
 | |
|   // sqrt(X) * sqrt(X) --> X, if we can:
 | |
|   // 1. Remove the intermediate rounding (reassociate).
 | |
|   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
 | |
|   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
 | |
|   Value *X;
 | |
|   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
 | |
|       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given the operands for an FMul, see if we can fold the result
 | |
| static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // Now apply simplifications that do not require rounding.
 | |
|   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X / 1.0 -> X
 | |
|   if (match(Op1, m_FPOne()))
 | |
|     return Op0;
 | |
| 
 | |
|   // 0 / X -> 0
 | |
|   // Requires that NaNs are off (X could be zero) and signed zeroes are
 | |
|   // ignored (X could be positive or negative, so the output sign is unknown).
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
 | |
|     return ConstantFP::getNullValue(Op0->getType());
 | |
| 
 | |
|   if (FMF.noNaNs()) {
 | |
|     // X / X -> 1.0 is legal when NaNs are ignored.
 | |
|     // We can ignore infinities because INF/INF is NaN.
 | |
|     if (Op0 == Op1)
 | |
|       return ConstantFP::get(Op0->getType(), 1.0);
 | |
| 
 | |
|     // (X * Y) / Y --> X if we can reassociate to the above form.
 | |
|     Value *X;
 | |
|     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
 | |
|       return X;
 | |
| 
 | |
|     // -X /  X -> -1.0 and
 | |
|     //  X / -X -> -1.0 are legal when NaNs are ignored.
 | |
|     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
 | |
|     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
 | |
|         match(Op1, m_FNegNSZ(m_Specific(Op0))))
 | |
|       return ConstantFP::get(Op0->getType(), -1.0);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
 | |
|     return C;
 | |
| 
 | |
|   // Unlike fdiv, the result of frem always matches the sign of the dividend.
 | |
|   // The constant match may include undef elements in a vector, so return a full
 | |
|   // zero constant as the result.
 | |
|   if (FMF.noNaNs()) {
 | |
|     // +0 % X -> 0
 | |
|     if (match(Op0, m_PosZeroFP()))
 | |
|       return ConstantFP::getNullValue(Op0->getType());
 | |
|     // -0 % X -> -0
 | |
|     if (match(Op0, m_NegZeroFP()))
 | |
|       return ConstantFP::getNegativeZero(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| //=== Helper functions for higher up the class hierarchy.
 | |
| 
 | |
| /// Given the operand for a UnaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
 | |
|                            unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FNeg:
 | |
|     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given the operand for a UnaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| /// Try to use FastMathFlags when folding the result.
 | |
| static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
 | |
|                              const FastMathFlags &FMF,
 | |
|                              const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FNeg:
 | |
|     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
 | |
|   default:
 | |
|     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
 | |
|   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
 | |
|                           const SimplifyQuery &Q) {
 | |
|   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a BinaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::Sub:
 | |
|     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::Mul:
 | |
|     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::SDiv:
 | |
|     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::UDiv:
 | |
|     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::SRem:
 | |
|     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::URem:
 | |
|     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Shl:
 | |
|     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::LShr:
 | |
|     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
 | |
|   case Instruction::AShr:
 | |
|     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
 | |
|   case Instruction::And:
 | |
|     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Or:
 | |
|     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Xor:
 | |
|     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::FDiv:
 | |
|     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::FRem:
 | |
|     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given operands for a BinaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| /// Try to use FastMathFlags when folding the result.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const FastMathFlags &FMF, const SimplifyQuery &Q,
 | |
|                             unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FDiv:
 | |
|     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   default:
 | |
|     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            const SimplifyQuery &Q) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            FastMathFlags FMF, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a CmpInst, see if we can fold the result.
 | |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | |
|     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
 | |
|   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static bool IsIdempotent(Intrinsic::ID ID) {
 | |
|   switch (ID) {
 | |
|   default: return false;
 | |
| 
 | |
|   // Unary idempotent: f(f(x)) = f(x)
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::roundeven:
 | |
|   case Intrinsic::canonicalize:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
 | |
|                                    const DataLayout &DL) {
 | |
|   GlobalValue *PtrSym;
 | |
|   APInt PtrOffset;
 | |
|   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
 | |
|   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
 | |
|   Type *Int32PtrTy = Int32Ty->getPointerTo();
 | |
|   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
 | |
| 
 | |
|   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
 | |
|   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
 | |
|     return nullptr;
 | |
| 
 | |
|   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
 | |
|   if (OffsetInt % 4 != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *C = ConstantExpr::getGetElementPtr(
 | |
|       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
 | |
|       ConstantInt::get(Int64Ty, OffsetInt / 4));
 | |
|   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
 | |
|   if (!Loaded)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
 | |
|   if (!LoadedCE)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (LoadedCE->getOpcode() == Instruction::Trunc) {
 | |
|     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
 | |
|     if (!LoadedCE)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (LoadedCE->getOpcode() != Instruction::Sub)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
 | |
|   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
 | |
|     return nullptr;
 | |
|   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
 | |
| 
 | |
|   Constant *LoadedRHS = LoadedCE->getOperand(1);
 | |
|   GlobalValue *LoadedRHSSym;
 | |
|   APInt LoadedRHSOffset;
 | |
|   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
 | |
|                                   DL) ||
 | |
|       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
 | |
|     return nullptr;
 | |
| 
 | |
|   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
 | |
| }
 | |
| 
 | |
| static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
 | |
|                                      const SimplifyQuery &Q) {
 | |
|   // Idempotent functions return the same result when called repeatedly.
 | |
|   Intrinsic::ID IID = F->getIntrinsicID();
 | |
|   if (IsIdempotent(IID))
 | |
|     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
 | |
|       if (II->getIntrinsicID() == IID)
 | |
|         return II;
 | |
| 
 | |
|   Value *X;
 | |
|   switch (IID) {
 | |
|   case Intrinsic::fabs:
 | |
|     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
 | |
|     break;
 | |
|   case Intrinsic::bswap:
 | |
|     // bswap(bswap(x)) -> x
 | |
|     if (match(Op0, m_BSwap(m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::bitreverse:
 | |
|     // bitreverse(bitreverse(x)) -> x
 | |
|     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::ctpop: {
 | |
|     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
 | |
|     // ctpop(and X, 1) --> and X, 1
 | |
|     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
 | |
|     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
 | |
|                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return Op0;
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::exp:
 | |
|     // exp(log(x)) -> x
 | |
|     if (Q.CxtI->hasAllowReassoc() &&
 | |
|         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::exp2:
 | |
|     // exp2(log2(x)) -> x
 | |
|     if (Q.CxtI->hasAllowReassoc() &&
 | |
|         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::log:
 | |
|     // log(exp(x)) -> x
 | |
|     if (Q.CxtI->hasAllowReassoc() &&
 | |
|         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::log2:
 | |
|     // log2(exp2(x)) -> x
 | |
|     if (Q.CxtI->hasAllowReassoc() &&
 | |
|         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
 | |
|          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
 | |
|                                                 m_Value(X))))) return X;
 | |
|     break;
 | |
|   case Intrinsic::log10:
 | |
|     // log10(pow(10.0, x)) -> x
 | |
|     if (Q.CxtI->hasAllowReassoc() &&
 | |
|         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
 | |
|                                                m_Value(X)))) return X;
 | |
|     break;
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::roundeven:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::rint: {
 | |
|     // floor (sitofp x) -> sitofp x
 | |
|     // floor (uitofp x) -> uitofp x
 | |
|     //
 | |
|     // Converting from int always results in a finite integral number or
 | |
|     // infinity. For either of those inputs, these rounding functions always
 | |
|     // return the same value, so the rounding can be eliminated.
 | |
|     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
 | |
|       return Op0;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) {
 | |
|   switch (IID) {
 | |
|   case Intrinsic::smax: return Intrinsic::smin;
 | |
|   case Intrinsic::smin: return Intrinsic::smax;
 | |
|   case Intrinsic::umax: return Intrinsic::umin;
 | |
|   case Intrinsic::umin: return Intrinsic::umax;
 | |
|   default: llvm_unreachable("Unexpected intrinsic");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
 | |
|   switch (IID) {
 | |
|   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
 | |
|   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
 | |
|   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
 | |
|   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
 | |
|   default: llvm_unreachable("Unexpected intrinsic");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
 | |
|   switch (IID) {
 | |
|   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
 | |
|   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
 | |
|   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
 | |
|   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
 | |
|   default: llvm_unreachable("Unexpected intrinsic");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given a min/max intrinsic, see if it can be removed based on having an
 | |
| /// operand that is another min/max intrinsic with shared operand(s). The caller
 | |
| /// is expected to swap the operand arguments to handle commutation.
 | |
| static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
 | |
|   Value *X, *Y;
 | |
|   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
 | |
|   if (!MM0)
 | |
|     return nullptr;
 | |
|   Intrinsic::ID IID0 = MM0->getIntrinsicID();
 | |
| 
 | |
|   if (Op1 == X || Op1 == Y ||
 | |
|       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
 | |
|     // max (max X, Y), X --> max X, Y
 | |
|     if (IID0 == IID)
 | |
|       return MM0;
 | |
|     // max (min X, Y), X --> X
 | |
|     if (IID0 == getMaxMinOpposite(IID))
 | |
|       return Op1;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
 | |
|                                       const SimplifyQuery &Q) {
 | |
|   Intrinsic::ID IID = F->getIntrinsicID();
 | |
|   Type *ReturnType = F->getReturnType();
 | |
|   unsigned BitWidth = ReturnType->getScalarSizeInBits();
 | |
|   switch (IID) {
 | |
|   case Intrinsic::abs:
 | |
|     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
 | |
|     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
 | |
|     // on the outer abs.
 | |
|     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
 | |
|       return Op0;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::smax:
 | |
|   case Intrinsic::smin:
 | |
|   case Intrinsic::umax:
 | |
|   case Intrinsic::umin: {
 | |
|     // If the arguments are the same, this is a no-op.
 | |
|     if (Op0 == Op1)
 | |
|       return Op0;
 | |
| 
 | |
|     // Canonicalize constant operand as Op1.
 | |
|     if (isa<Constant>(Op0))
 | |
|       std::swap(Op0, Op1);
 | |
| 
 | |
|     // Assume undef is the limit value.
 | |
|     if (Q.isUndefValue(Op1))
 | |
|       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
 | |
| 
 | |
|     const APInt *C;
 | |
|     if (match(Op1, m_APIntAllowUndef(C))) {
 | |
|       // Clamp to limit value. For example:
 | |
|       // umax(i8 %x, i8 255) --> 255
 | |
|       if (*C == getMaxMinLimit(IID, BitWidth))
 | |
|         return ConstantInt::get(ReturnType, *C);
 | |
| 
 | |
|       // If the constant op is the opposite of the limit value, the other must
 | |
|       // be larger/smaller or equal. For example:
 | |
|       // umin(i8 %x, i8 255) --> %x
 | |
|       if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth))
 | |
|         return Op0;
 | |
| 
 | |
|       // Remove nested call if constant operands allow it. Example:
 | |
|       // max (max X, 7), 5 -> max X, 7
 | |
|       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
 | |
|       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
 | |
|         // TODO: loosen undef/splat restrictions for vector constants.
 | |
|         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
 | |
|         const APInt *InnerC;
 | |
|         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
 | |
|             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
 | |
|              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
 | |
|              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
 | |
|              (IID == Intrinsic::umin && InnerC->ule(*C))))
 | |
|           return Op0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
 | |
|       return V;
 | |
|     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
 | |
|       return V;
 | |
| 
 | |
|     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
 | |
|     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
 | |
|       return Op0;
 | |
|     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
 | |
|       return Op1;
 | |
| 
 | |
|     if (Optional<bool> Imp =
 | |
|             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
 | |
|       return *Imp ? Op0 : Op1;
 | |
|     if (Optional<bool> Imp =
 | |
|             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
 | |
|       return *Imp ? Op1 : Op0;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|     // X - X -> { 0, false }
 | |
|     // X - undef -> { 0, false }
 | |
|     // undef - X -> { 0, false }
 | |
|     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
 | |
|       return Constant::getNullValue(ReturnType);
 | |
|     break;
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|     // X + undef -> { -1, false }
 | |
|     // undef + x -> { -1, false }
 | |
|     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
 | |
|       return ConstantStruct::get(
 | |
|           cast<StructType>(ReturnType),
 | |
|           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
 | |
|            Constant::getNullValue(ReturnType->getStructElementType(1))});
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|     // 0 * X -> { 0, false }
 | |
|     // X * 0 -> { 0, false }
 | |
|     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
 | |
|       return Constant::getNullValue(ReturnType);
 | |
|     // undef * X -> { 0, false }
 | |
|     // X * undef -> { 0, false }
 | |
|     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
 | |
|       return Constant::getNullValue(ReturnType);
 | |
|     break;
 | |
|   case Intrinsic::uadd_sat:
 | |
|     // sat(MAX + X) -> MAX
 | |
|     // sat(X + MAX) -> MAX
 | |
|     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
 | |
|       return Constant::getAllOnesValue(ReturnType);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Intrinsic::sadd_sat:
 | |
|     // sat(X + undef) -> -1
 | |
|     // sat(undef + X) -> -1
 | |
|     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
 | |
|     // For signed: Assume undef is ~X, in which case X + ~X = -1.
 | |
|     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
 | |
|       return Constant::getAllOnesValue(ReturnType);
 | |
| 
 | |
|     // X + 0 -> X
 | |
|     if (match(Op1, m_Zero()))
 | |
|       return Op0;
 | |
|     // 0 + X -> X
 | |
|     if (match(Op0, m_Zero()))
 | |
|       return Op1;
 | |
|     break;
 | |
|   case Intrinsic::usub_sat:
 | |
|     // sat(0 - X) -> 0, sat(X - MAX) -> 0
 | |
|     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
 | |
|       return Constant::getNullValue(ReturnType);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Intrinsic::ssub_sat:
 | |
|     // X - X -> 0, X - undef -> 0, undef - X -> 0
 | |
|     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
 | |
|       return Constant::getNullValue(ReturnType);
 | |
|     // X - 0 -> X
 | |
|     if (match(Op1, m_Zero()))
 | |
|       return Op0;
 | |
|     break;
 | |
|   case Intrinsic::load_relative:
 | |
|     if (auto *C0 = dyn_cast<Constant>(Op0))
 | |
|       if (auto *C1 = dyn_cast<Constant>(Op1))
 | |
|         return SimplifyRelativeLoad(C0, C1, Q.DL);
 | |
|     break;
 | |
|   case Intrinsic::powi:
 | |
|     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
 | |
|       // powi(x, 0) -> 1.0
 | |
|       if (Power->isZero())
 | |
|         return ConstantFP::get(Op0->getType(), 1.0);
 | |
|       // powi(x, 1) -> x
 | |
|       if (Power->isOne())
 | |
|         return Op0;
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::copysign:
 | |
|     // copysign X, X --> X
 | |
|     if (Op0 == Op1)
 | |
|       return Op0;
 | |
|     // copysign -X, X --> X
 | |
|     // copysign X, -X --> -X
 | |
|     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
 | |
|         match(Op1, m_FNeg(m_Specific(Op0))))
 | |
|       return Op1;
 | |
|     break;
 | |
|   case Intrinsic::maxnum:
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maximum:
 | |
|   case Intrinsic::minimum: {
 | |
|     // If the arguments are the same, this is a no-op.
 | |
|     if (Op0 == Op1) return Op0;
 | |
| 
 | |
|     // Canonicalize constant operand as Op1.
 | |
|     if (isa<Constant>(Op0))
 | |
|       std::swap(Op0, Op1);
 | |
| 
 | |
|     // If an argument is undef, return the other argument.
 | |
|     if (Q.isUndefValue(Op1))
 | |
|       return Op0;
 | |
| 
 | |
|     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
 | |
|     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
 | |
| 
 | |
|     // minnum(X, nan) -> X
 | |
|     // maxnum(X, nan) -> X
 | |
|     // minimum(X, nan) -> nan
 | |
|     // maximum(X, nan) -> nan
 | |
|     if (match(Op1, m_NaN()))
 | |
|       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
 | |
| 
 | |
|     // In the following folds, inf can be replaced with the largest finite
 | |
|     // float, if the ninf flag is set.
 | |
|     const APFloat *C;
 | |
|     if (match(Op1, m_APFloat(C)) &&
 | |
|         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
 | |
|       // minnum(X, -inf) -> -inf
 | |
|       // maxnum(X, +inf) -> +inf
 | |
|       // minimum(X, -inf) -> -inf if nnan
 | |
|       // maximum(X, +inf) -> +inf if nnan
 | |
|       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
 | |
|         return ConstantFP::get(ReturnType, *C);
 | |
| 
 | |
|       // minnum(X, +inf) -> X if nnan
 | |
|       // maxnum(X, -inf) -> X if nnan
 | |
|       // minimum(X, +inf) -> X
 | |
|       // maximum(X, -inf) -> X
 | |
|       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
 | |
|         return Op0;
 | |
|     }
 | |
| 
 | |
|     // Min/max of the same operation with common operand:
 | |
|     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
 | |
|     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
 | |
|       if (M0->getIntrinsicID() == IID &&
 | |
|           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
 | |
|         return Op0;
 | |
|     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
 | |
|       if (M1->getIntrinsicID() == IID &&
 | |
|           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
 | |
|         return Op1;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
 | |
| 
 | |
|   // Intrinsics with no operands have some kind of side effect. Don't simplify.
 | |
|   unsigned NumOperands = Call->getNumArgOperands();
 | |
|   if (!NumOperands)
 | |
|     return nullptr;
 | |
| 
 | |
|   Function *F = cast<Function>(Call->getCalledFunction());
 | |
|   Intrinsic::ID IID = F->getIntrinsicID();
 | |
|   if (NumOperands == 1)
 | |
|     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
 | |
| 
 | |
|   if (NumOperands == 2)
 | |
|     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
 | |
|                                    Call->getArgOperand(1), Q);
 | |
| 
 | |
|   // Handle intrinsics with 3 or more arguments.
 | |
|   switch (IID) {
 | |
|   case Intrinsic::masked_load:
 | |
|   case Intrinsic::masked_gather: {
 | |
|     Value *MaskArg = Call->getArgOperand(2);
 | |
|     Value *PassthruArg = Call->getArgOperand(3);
 | |
|     // If the mask is all zeros or undef, the "passthru" argument is the result.
 | |
|     if (maskIsAllZeroOrUndef(MaskArg))
 | |
|       return PassthruArg;
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::fshl:
 | |
|   case Intrinsic::fshr: {
 | |
|     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
 | |
|           *ShAmtArg = Call->getArgOperand(2);
 | |
| 
 | |
|     // If both operands are undef, the result is undef.
 | |
|     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
 | |
|       return UndefValue::get(F->getReturnType());
 | |
| 
 | |
|     // If shift amount is undef, assume it is zero.
 | |
|     if (Q.isUndefValue(ShAmtArg))
 | |
|       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
 | |
| 
 | |
|     const APInt *ShAmtC;
 | |
|     if (match(ShAmtArg, m_APInt(ShAmtC))) {
 | |
|       // If there's effectively no shift, return the 1st arg or 2nd arg.
 | |
|       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
 | |
|       if (ShAmtC->urem(BitWidth).isNullValue())
 | |
|         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::fma:
 | |
|   case Intrinsic::fmuladd: {
 | |
|     Value *Op0 = Call->getArgOperand(0);
 | |
|     Value *Op1 = Call->getArgOperand(1);
 | |
|     Value *Op2 = Call->getArgOperand(2);
 | |
|     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
 | |
|       return V;
 | |
|     return nullptr;
 | |
|   }
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
 | |
|   auto *F = dyn_cast<Function>(Call->getCalledOperand());
 | |
|   if (!F || !canConstantFoldCallTo(Call, F))
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<Constant *, 4> ConstantArgs;
 | |
|   unsigned NumArgs = Call->getNumArgOperands();
 | |
|   ConstantArgs.reserve(NumArgs);
 | |
|   for (auto &Arg : Call->args()) {
 | |
|     Constant *C = dyn_cast<Constant>(&Arg);
 | |
|     if (!C) {
 | |
|       if (isa<MetadataAsValue>(Arg.get()))
 | |
|         continue;
 | |
|       return nullptr;
 | |
|     }
 | |
|     ConstantArgs.push_back(C);
 | |
|   }
 | |
| 
 | |
|   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
 | |
|   // musttail calls can only be simplified if they are also DCEd.
 | |
|   // As we can't guarantee this here, don't simplify them.
 | |
|   if (Call->isMustTailCall())
 | |
|     return nullptr;
 | |
| 
 | |
|   // call undef -> poison
 | |
|   // call null -> poison
 | |
|   Value *Callee = Call->getCalledOperand();
 | |
|   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
 | |
|     return PoisonValue::get(Call->getType());
 | |
| 
 | |
|   if (Value *V = tryConstantFoldCall(Call, Q))
 | |
|     return V;
 | |
| 
 | |
|   auto *F = dyn_cast<Function>(Callee);
 | |
|   if (F && F->isIntrinsic())
 | |
|     if (Value *Ret = simplifyIntrinsic(Call, Q))
 | |
|       return Ret;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for a Freeze, see if we can fold the result.
 | |
| static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
 | |
|   // Use a utility function defined in ValueTracking.
 | |
|   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
 | |
|     return Op0;
 | |
|   // We have room for improvement.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFreezeInst(Op0, Q);
 | |
| }
 | |
| 
 | |
| /// See if we can compute a simplified version of this instruction.
 | |
| /// If not, this returns null.
 | |
| 
 | |
| Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
 | |
|                                  OptimizationRemarkEmitter *ORE) {
 | |
|   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
 | |
|   Value *Result;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
 | |
|     break;
 | |
|   case Instruction::FNeg:
 | |
|     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     Result =
 | |
|         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
 | |
|                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
 | |
|     break;
 | |
|   case Instruction::FSub:
 | |
|     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     Result =
 | |
|         SimplifySubInst(I->getOperand(0), I->getOperand(1),
 | |
|                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
 | |
|                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::SDiv:
 | |
|     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::SRem:
 | |
|     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::URem:
 | |
|     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     Result =
 | |
|         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
 | |
|                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
 | |
|                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     Result =
 | |
|         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
 | |
|                          I->getOperand(1), I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | |
|                                 I->getOperand(2), Q);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Value *, 8> Ops(I->operands());
 | |
|     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
 | |
|                              Ops, Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertValue: {
 | |
|     InsertValueInst *IV = cast<InsertValueInst>(I);
 | |
|     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
 | |
|                                      IV->getInsertedValueOperand(),
 | |
|                                      IV->getIndices(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertElement: {
 | |
|     auto *IE = cast<InsertElementInst>(I);
 | |
|     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
 | |
|                                        IE->getOperand(2), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ExtractValue: {
 | |
|     auto *EVI = cast<ExtractValueInst>(I);
 | |
|     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
 | |
|                                       EVI->getIndices(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ExtractElement: {
 | |
|     auto *EEI = cast<ExtractElementInst>(I);
 | |
|     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
 | |
|                                         EEI->getIndexOperand(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     auto *SVI = cast<ShuffleVectorInst>(I);
 | |
|     Result =
 | |
|         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
 | |
|                                   SVI->getShuffleMask(), SVI->getType(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     Result = SimplifyPHINode(cast<PHINode>(I), Q);
 | |
|     break;
 | |
|   case Instruction::Call: {
 | |
|     Result = SimplifyCall(cast<CallInst>(I), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Freeze:
 | |
|     Result = SimplifyFreezeInst(I->getOperand(0), Q);
 | |
|     break;
 | |
| #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
 | |
| #include "llvm/IR/Instruction.def"
 | |
| #undef HANDLE_CAST_INST
 | |
|     Result =
 | |
|         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
 | |
|     break;
 | |
|   case Instruction::Alloca:
 | |
|     // No simplifications for Alloca and it can't be constant folded.
 | |
|     Result = nullptr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /// If called on unreachable code, the above logic may report that the
 | |
|   /// instruction simplified to itself.  Make life easier for users by
 | |
|   /// detecting that case here, returning a safe value instead.
 | |
|   return Result == I ? UndefValue::get(I->getType()) : Result;
 | |
| }
 | |
| 
 | |
| /// Implementation of recursive simplification through an instruction's
 | |
| /// uses.
 | |
| ///
 | |
| /// This is the common implementation of the recursive simplification routines.
 | |
| /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
 | |
| /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
 | |
| /// instructions to process and attempt to simplify it using
 | |
| /// InstructionSimplify. Recursively visited users which could not be
 | |
| /// simplified themselves are to the optional UnsimplifiedUsers set for
 | |
| /// further processing by the caller.
 | |
| ///
 | |
| /// This routine returns 'true' only when *it* simplifies something. The passed
 | |
| /// in simplified value does not count toward this.
 | |
| static bool replaceAndRecursivelySimplifyImpl(
 | |
|     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
 | |
|     const DominatorTree *DT, AssumptionCache *AC,
 | |
|     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
 | |
|   bool Simplified = false;
 | |
|   SmallSetVector<Instruction *, 8> Worklist;
 | |
|   const DataLayout &DL = I->getModule()->getDataLayout();
 | |
| 
 | |
|   // If we have an explicit value to collapse to, do that round of the
 | |
|   // simplification loop by hand initially.
 | |
|   if (SimpleV) {
 | |
|     for (User *U : I->users())
 | |
|       if (U != I)
 | |
|         Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
 | |
|         !I->mayHaveSideEffects())
 | |
|       I->eraseFromParent();
 | |
|   } else {
 | |
|     Worklist.insert(I);
 | |
|   }
 | |
| 
 | |
|   // Note that we must test the size on each iteration, the worklist can grow.
 | |
|   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | |
|     I = Worklist[Idx];
 | |
| 
 | |
|     // See if this instruction simplifies.
 | |
|     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
 | |
|     if (!SimpleV) {
 | |
|       if (UnsimplifiedUsers)
 | |
|         UnsimplifiedUsers->insert(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Simplified = true;
 | |
| 
 | |
|     // Stash away all the uses of the old instruction so we can check them for
 | |
|     // recursive simplifications after a RAUW. This is cheaper than checking all
 | |
|     // uses of To on the recursive step in most cases.
 | |
|     for (User *U : I->users())
 | |
|       Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
 | |
|         !I->mayHaveSideEffects())
 | |
|       I->eraseFromParent();
 | |
|   }
 | |
|   return Simplified;
 | |
| }
 | |
| 
 | |
| bool llvm::replaceAndRecursivelySimplify(
 | |
|     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
 | |
|     const DominatorTree *DT, AssumptionCache *AC,
 | |
|     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
 | |
|   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
 | |
|   assert(SimpleV && "Must provide a simplified value.");
 | |
|   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
 | |
|                                            UnsimplifiedUsers);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
 | |
|   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | |
|   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
 | |
|   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
 | |
|   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
 | |
|   return {F.getParent()->getDataLayout(), TLI, DT, AC};
 | |
| }
 | |
| 
 | |
| const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
 | |
|                                          const DataLayout &DL) {
 | |
|   return {DL, &AR.TLI, &AR.DT, &AR.AC};
 | |
| }
 | |
| 
 | |
| template <class T, class... TArgs>
 | |
| const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
 | |
|                                          Function &F) {
 | |
|   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
 | |
|   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
 | |
|   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
 | |
|   return {F.getParent()->getDataLayout(), TLI, DT, AC};
 | |
| }
 | |
| template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
 | |
|                                                   Function &);
 | |
| }
 |