1967 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1967 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interface for lazy computation of value constraint
 | |
| // information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueLattice.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/AssemblyAnnotationWriter.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "lazy-value-info"
 | |
| 
 | |
| // This is the number of worklist items we will process to try to discover an
 | |
| // answer for a given value.
 | |
| static const unsigned MaxProcessedPerValue = 500;
 | |
| 
 | |
| char LazyValueInfoWrapperPass::ID = 0;
 | |
| LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
 | |
|   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
 | |
|                 "Lazy Value Information Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
 | |
|                 "Lazy Value Information Analysis", false, true)
 | |
| 
 | |
| namespace llvm {
 | |
|   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
 | |
| }
 | |
| 
 | |
| AnalysisKey LazyValueAnalysis::Key;
 | |
| 
 | |
| /// Returns true if this lattice value represents at most one possible value.
 | |
| /// This is as precise as any lattice value can get while still representing
 | |
| /// reachable code.
 | |
| static bool hasSingleValue(const ValueLatticeElement &Val) {
 | |
|   if (Val.isConstantRange() &&
 | |
|       Val.getConstantRange().isSingleElement())
 | |
|     // Integer constants are single element ranges
 | |
|     return true;
 | |
|   if (Val.isConstant())
 | |
|     // Non integer constants
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Combine two sets of facts about the same value into a single set of
 | |
| /// facts.  Note that this method is not suitable for merging facts along
 | |
| /// different paths in a CFG; that's what the mergeIn function is for.  This
 | |
| /// is for merging facts gathered about the same value at the same location
 | |
| /// through two independent means.
 | |
| /// Notes:
 | |
| /// * This method does not promise to return the most precise possible lattice
 | |
| ///   value implied by A and B.  It is allowed to return any lattice element
 | |
| ///   which is at least as strong as *either* A or B (unless our facts
 | |
| ///   conflict, see below).
 | |
| /// * Due to unreachable code, the intersection of two lattice values could be
 | |
| ///   contradictory.  If this happens, we return some valid lattice value so as
 | |
| ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
 | |
| ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
 | |
| static ValueLatticeElement intersect(const ValueLatticeElement &A,
 | |
|                                      const ValueLatticeElement &B) {
 | |
|   // Undefined is the strongest state.  It means the value is known to be along
 | |
|   // an unreachable path.
 | |
|   if (A.isUnknown())
 | |
|     return A;
 | |
|   if (B.isUnknown())
 | |
|     return B;
 | |
| 
 | |
|   // If we gave up for one, but got a useable fact from the other, use it.
 | |
|   if (A.isOverdefined())
 | |
|     return B;
 | |
|   if (B.isOverdefined())
 | |
|     return A;
 | |
| 
 | |
|   // Can't get any more precise than constants.
 | |
|   if (hasSingleValue(A))
 | |
|     return A;
 | |
|   if (hasSingleValue(B))
 | |
|     return B;
 | |
| 
 | |
|   // Could be either constant range or not constant here.
 | |
|   if (!A.isConstantRange() || !B.isConstantRange()) {
 | |
|     // TODO: Arbitrary choice, could be improved
 | |
|     return A;
 | |
|   }
 | |
| 
 | |
|   // Intersect two constant ranges
 | |
|   ConstantRange Range =
 | |
|       A.getConstantRange().intersectWith(B.getConstantRange());
 | |
|   // Note: An empty range is implicitly converted to unknown or undef depending
 | |
|   // on MayIncludeUndef internally.
 | |
|   return ValueLatticeElement::getRange(
 | |
|       std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() |
 | |
|                             B.isConstantRangeIncludingUndef());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          LazyValueInfoCache Decl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// A callback value handle updates the cache when values are erased.
 | |
|   class LazyValueInfoCache;
 | |
|   struct LVIValueHandle final : public CallbackVH {
 | |
|     LazyValueInfoCache *Parent;
 | |
| 
 | |
|     LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
 | |
|       : CallbackVH(V), Parent(P) { }
 | |
| 
 | |
|     void deleted() override;
 | |
|     void allUsesReplacedWith(Value *V) override {
 | |
|       deleted();
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
 | |
| 
 | |
|   /// This is the cache kept by LazyValueInfo which
 | |
|   /// maintains information about queries across the clients' queries.
 | |
|   class LazyValueInfoCache {
 | |
|     /// This is all of the cached information for one basic block. It contains
 | |
|     /// the per-value lattice elements, as well as a separate set for
 | |
|     /// overdefined values to reduce memory usage. Additionally pointers
 | |
|     /// dereferenced in the block are cached for nullability queries.
 | |
|     struct BlockCacheEntry {
 | |
|       SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
 | |
|       SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
 | |
|       // None indicates that the nonnull pointers for this basic block
 | |
|       // block have not been computed yet.
 | |
|       Optional<NonNullPointerSet> NonNullPointers;
 | |
|     };
 | |
| 
 | |
|     /// Cached information per basic block.
 | |
|     DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
 | |
|         BlockCache;
 | |
|     /// Set of value handles used to erase values from the cache on deletion.
 | |
|     DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
 | |
| 
 | |
|     const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
 | |
|       auto It = BlockCache.find_as(BB);
 | |
|       if (It == BlockCache.end())
 | |
|         return nullptr;
 | |
|       return It->second.get();
 | |
|     }
 | |
| 
 | |
|     BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
 | |
|       auto It = BlockCache.find_as(BB);
 | |
|       if (It == BlockCache.end())
 | |
|         It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
 | |
|                        .first;
 | |
| 
 | |
|       return It->second.get();
 | |
|     }
 | |
| 
 | |
|     void addValueHandle(Value *Val) {
 | |
|       auto HandleIt = ValueHandles.find_as(Val);
 | |
|       if (HandleIt == ValueHandles.end())
 | |
|         ValueHandles.insert({ Val, this });
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     void insertResult(Value *Val, BasicBlock *BB,
 | |
|                       const ValueLatticeElement &Result) {
 | |
|       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
 | |
| 
 | |
|       // Insert over-defined values into their own cache to reduce memory
 | |
|       // overhead.
 | |
|       if (Result.isOverdefined())
 | |
|         Entry->OverDefined.insert(Val);
 | |
|       else
 | |
|         Entry->LatticeElements.insert({ Val, Result });
 | |
| 
 | |
|       addValueHandle(Val);
 | |
|     }
 | |
| 
 | |
|     Optional<ValueLatticeElement> getCachedValueInfo(Value *V,
 | |
|                                                      BasicBlock *BB) const {
 | |
|       const BlockCacheEntry *Entry = getBlockEntry(BB);
 | |
|       if (!Entry)
 | |
|         return None;
 | |
| 
 | |
|       if (Entry->OverDefined.count(V))
 | |
|         return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|       auto LatticeIt = Entry->LatticeElements.find_as(V);
 | |
|       if (LatticeIt == Entry->LatticeElements.end())
 | |
|         return None;
 | |
| 
 | |
|       return LatticeIt->second;
 | |
|     }
 | |
| 
 | |
|     bool isNonNullAtEndOfBlock(
 | |
|         Value *V, BasicBlock *BB,
 | |
|         function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
 | |
|       BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
 | |
|       if (!Entry->NonNullPointers) {
 | |
|         Entry->NonNullPointers = InitFn(BB);
 | |
|         for (Value *V : *Entry->NonNullPointers)
 | |
|           addValueHandle(V);
 | |
|       }
 | |
| 
 | |
|       return Entry->NonNullPointers->count(V);
 | |
|     }
 | |
| 
 | |
|     /// clear - Empty the cache.
 | |
|     void clear() {
 | |
|       BlockCache.clear();
 | |
|       ValueHandles.clear();
 | |
|     }
 | |
| 
 | |
|     /// Inform the cache that a given value has been deleted.
 | |
|     void eraseValue(Value *V);
 | |
| 
 | |
|     /// This is part of the update interface to inform the cache
 | |
|     /// that a block has been deleted.
 | |
|     void eraseBlock(BasicBlock *BB);
 | |
| 
 | |
|     /// Updates the cache to remove any influence an overdefined value in
 | |
|     /// OldSucc might have (unless also overdefined in NewSucc).  This just
 | |
|     /// flushes elements from the cache and does not add any.
 | |
|     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::eraseValue(Value *V) {
 | |
|   for (auto &Pair : BlockCache) {
 | |
|     Pair.second->LatticeElements.erase(V);
 | |
|     Pair.second->OverDefined.erase(V);
 | |
|     if (Pair.second->NonNullPointers)
 | |
|       Pair.second->NonNullPointers->erase(V);
 | |
|   }
 | |
| 
 | |
|   auto HandleIt = ValueHandles.find_as(V);
 | |
|   if (HandleIt != ValueHandles.end())
 | |
|     ValueHandles.erase(HandleIt);
 | |
| }
 | |
| 
 | |
| void LVIValueHandle::deleted() {
 | |
|   // This erasure deallocates *this, so it MUST happen after we're done
 | |
|   // using any and all members of *this.
 | |
|   Parent->eraseValue(*this);
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
 | |
|   BlockCache.erase(BB);
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
 | |
|                                         BasicBlock *NewSucc) {
 | |
|   // When an edge in the graph has been threaded, values that we could not
 | |
|   // determine a value for before (i.e. were marked overdefined) may be
 | |
|   // possible to solve now. We do NOT try to proactively update these values.
 | |
|   // Instead, we clear their entries from the cache, and allow lazy updating to
 | |
|   // recompute them when needed.
 | |
| 
 | |
|   // The updating process is fairly simple: we need to drop cached info
 | |
|   // for all values that were marked overdefined in OldSucc, and for those same
 | |
|   // values in any successor of OldSucc (except NewSucc) in which they were
 | |
|   // also marked overdefined.
 | |
|   std::vector<BasicBlock*> worklist;
 | |
|   worklist.push_back(OldSucc);
 | |
| 
 | |
|   const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
 | |
|   if (!Entry || Entry->OverDefined.empty())
 | |
|     return; // Nothing to process here.
 | |
|   SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
 | |
|                                       Entry->OverDefined.end());
 | |
| 
 | |
|   // Use a worklist to perform a depth-first search of OldSucc's successors.
 | |
|   // NOTE: We do not need a visited list since any blocks we have already
 | |
|   // visited will have had their overdefined markers cleared already, and we
 | |
|   // thus won't loop to their successors.
 | |
|   while (!worklist.empty()) {
 | |
|     BasicBlock *ToUpdate = worklist.back();
 | |
|     worklist.pop_back();
 | |
| 
 | |
|     // Skip blocks only accessible through NewSucc.
 | |
|     if (ToUpdate == NewSucc) continue;
 | |
| 
 | |
|     // If a value was marked overdefined in OldSucc, and is here too...
 | |
|     auto OI = BlockCache.find_as(ToUpdate);
 | |
|     if (OI == BlockCache.end() || OI->second->OverDefined.empty())
 | |
|       continue;
 | |
|     auto &ValueSet = OI->second->OverDefined;
 | |
| 
 | |
|     bool changed = false;
 | |
|     for (Value *V : ValsToClear) {
 | |
|       if (!ValueSet.erase(V))
 | |
|         continue;
 | |
| 
 | |
|       // If we removed anything, then we potentially need to update
 | |
|       // blocks successors too.
 | |
|       changed = true;
 | |
|     }
 | |
| 
 | |
|     if (!changed) continue;
 | |
| 
 | |
|     llvm::append_range(worklist, successors(ToUpdate));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// An assembly annotator class to print LazyValueCache information in
 | |
| /// comments.
 | |
| class LazyValueInfoImpl;
 | |
| class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
 | |
|   LazyValueInfoImpl *LVIImpl;
 | |
|   // While analyzing which blocks we can solve values for, we need the dominator
 | |
|   // information.
 | |
|   DominatorTree &DT;
 | |
| 
 | |
| public:
 | |
|   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
 | |
|       : LVIImpl(L), DT(DTree) {}
 | |
| 
 | |
|   void emitBasicBlockStartAnnot(const BasicBlock *BB,
 | |
|                                 formatted_raw_ostream &OS) override;
 | |
| 
 | |
|   void emitInstructionAnnot(const Instruction *I,
 | |
|                             formatted_raw_ostream &OS) override;
 | |
| };
 | |
| }
 | |
| namespace {
 | |
| // The actual implementation of the lazy analysis and update.  Note that the
 | |
| // inheritance from LazyValueInfoCache is intended to be temporary while
 | |
| // splitting the code and then transitioning to a has-a relationship.
 | |
| class LazyValueInfoImpl {
 | |
| 
 | |
|   /// Cached results from previous queries
 | |
|   LazyValueInfoCache TheCache;
 | |
| 
 | |
|   /// This stack holds the state of the value solver during a query.
 | |
|   /// It basically emulates the callstack of the naive
 | |
|   /// recursive value lookup process.
 | |
|   SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
 | |
| 
 | |
|   /// Keeps track of which block-value pairs are in BlockValueStack.
 | |
|   DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
 | |
| 
 | |
|   /// Push BV onto BlockValueStack unless it's already in there.
 | |
|   /// Returns true on success.
 | |
|   bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
 | |
|     if (!BlockValueSet.insert(BV).second)
 | |
|       return false;  // It's already in the stack.
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
 | |
|                       << BV.first->getName() << "\n");
 | |
|     BlockValueStack.push_back(BV);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
 | |
|   const DataLayout &DL; ///< A mandatory DataLayout
 | |
| 
 | |
|   /// Declaration of the llvm.experimental.guard() intrinsic,
 | |
|   /// if it exists in the module.
 | |
|   Function *GuardDecl;
 | |
| 
 | |
|   Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
 | |
|                                 BasicBlock *T, Instruction *CxtI = nullptr);
 | |
| 
 | |
|   // These methods process one work item and may add more. A false value
 | |
|   // returned means that the work item was not completely processed and must
 | |
|   // be revisited after going through the new items.
 | |
|   bool solveBlockValue(Value *Val, BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
 | |
|                                                         BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
 | |
|                                                        BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
 | |
|                                                       BasicBlock *BB);
 | |
|   Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
 | |
|                                       BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
 | |
|       Instruction *I, BasicBlock *BB,
 | |
|       std::function<ConstantRange(const ConstantRange &,
 | |
|                                   const ConstantRange &)> OpFn);
 | |
|   Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI,
 | |
|                                                         BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
 | |
|                                                     BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic(
 | |
|       WithOverflowInst *WO, BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
 | |
|                                                          BasicBlock *BB);
 | |
|   Optional<ValueLatticeElement> solveBlockValueExtractValue(
 | |
|       ExtractValueInst *EVI, BasicBlock *BB);
 | |
|   bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
 | |
|   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
 | |
|                                                      ValueLatticeElement &BBLV,
 | |
|                                                      Instruction *BBI);
 | |
| 
 | |
|   void solve();
 | |
| 
 | |
| public:
 | |
|   /// This is the query interface to determine the lattice value for the
 | |
|   /// specified Value* at the context instruction (if specified) or at the
 | |
|   /// start of the block.
 | |
|   ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
 | |
|                                       Instruction *CxtI = nullptr);
 | |
| 
 | |
|   /// This is the query interface to determine the lattice value for the
 | |
|   /// specified Value* at the specified instruction using only information
 | |
|   /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
 | |
|   /// recursive query is performed.
 | |
|   ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
 | |
| 
 | |
|   /// This is the query interface to determine the lattice
 | |
|   /// value for the specified Value* that is true on the specified edge.
 | |
|   ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
 | |
|                                      BasicBlock *ToBB,
 | |
|                                      Instruction *CxtI = nullptr);
 | |
| 
 | |
|   /// Complete flush all previously computed values
 | |
|   void clear() {
 | |
|     TheCache.clear();
 | |
|   }
 | |
| 
 | |
|   /// Printing the LazyValueInfo Analysis.
 | |
|   void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
 | |
|     LazyValueInfoAnnotatedWriter Writer(this, DTree);
 | |
|     F.print(OS, &Writer);
 | |
|   }
 | |
| 
 | |
|   /// This is part of the update interface to inform the cache
 | |
|   /// that a block has been deleted.
 | |
|   void eraseBlock(BasicBlock *BB) {
 | |
|     TheCache.eraseBlock(BB);
 | |
|   }
 | |
| 
 | |
|   /// This is the update interface to inform the cache that an edge from
 | |
|   /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
 | |
|   void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
 | |
| 
 | |
|   LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
 | |
|                     Function *GuardDecl)
 | |
|       : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| void LazyValueInfoImpl::solve() {
 | |
|   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
 | |
|       BlockValueStack.begin(), BlockValueStack.end());
 | |
| 
 | |
|   unsigned processedCount = 0;
 | |
|   while (!BlockValueStack.empty()) {
 | |
|     processedCount++;
 | |
|     // Abort if we have to process too many values to get a result for this one.
 | |
|     // Because of the design of the overdefined cache currently being per-block
 | |
|     // to avoid naming-related issues (IE it wants to try to give different
 | |
|     // results for the same name in different blocks), overdefined results don't
 | |
|     // get cached globally, which in turn means we will often try to rediscover
 | |
|     // the same overdefined result again and again.  Once something like
 | |
|     // PredicateInfo is used in LVI or CVP, we should be able to make the
 | |
|     // overdefined cache global, and remove this throttle.
 | |
|     if (processedCount > MaxProcessedPerValue) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "Giving up on stack because we are getting too deep\n");
 | |
|       // Fill in the original values
 | |
|       while (!StartingStack.empty()) {
 | |
|         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
 | |
|         TheCache.insertResult(e.second, e.first,
 | |
|                               ValueLatticeElement::getOverdefined());
 | |
|         StartingStack.pop_back();
 | |
|       }
 | |
|       BlockValueSet.clear();
 | |
|       BlockValueStack.clear();
 | |
|       return;
 | |
|     }
 | |
|     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
 | |
|     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
 | |
| 
 | |
|     if (solveBlockValue(e.second, e.first)) {
 | |
|       // The work item was completely processed.
 | |
|       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
 | |
| #ifndef NDEBUG
 | |
|       Optional<ValueLatticeElement> BBLV =
 | |
|           TheCache.getCachedValueInfo(e.second, e.first);
 | |
|       assert(BBLV && "Result should be in cache!");
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
 | |
|                  << *BBLV << "\n");
 | |
| #endif
 | |
| 
 | |
|       BlockValueStack.pop_back();
 | |
|       BlockValueSet.erase(e);
 | |
|     } else {
 | |
|       // More work needs to be done before revisiting.
 | |
|       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val,
 | |
|                                                                BasicBlock *BB) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(Val))
 | |
|     return ValueLatticeElement::get(VC);
 | |
| 
 | |
|   if (Optional<ValueLatticeElement> OptLatticeVal =
 | |
|           TheCache.getCachedValueInfo(Val, BB))
 | |
|     return OptLatticeVal;
 | |
| 
 | |
|   // We have hit a cycle, assume overdefined.
 | |
|   if (!pushBlockValue({ BB, Val }))
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   // Yet to be resolved.
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
 | |
|   switch (BBI->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::Load:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Invoke:
 | |
|     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
 | |
|       if (isa<IntegerType>(BBI->getType())) {
 | |
|         return ValueLatticeElement::getRange(
 | |
|             getConstantRangeFromMetadata(*Ranges));
 | |
|       }
 | |
|     break;
 | |
|   };
 | |
|   // Nothing known - will be intersected with other facts
 | |
|   return ValueLatticeElement::getOverdefined();
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
 | |
|   assert(!isa<Constant>(Val) && "Value should not be constant");
 | |
|   assert(!TheCache.getCachedValueInfo(Val, BB) &&
 | |
|          "Value should not be in cache");
 | |
| 
 | |
|   // Hold off inserting this value into the Cache in case we have to return
 | |
|   // false and come back later.
 | |
|   Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
 | |
|   if (!Res)
 | |
|     // Work pushed, will revisit
 | |
|     return false;
 | |
| 
 | |
|   TheCache.insertResult(Val, BB, *Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl(
 | |
|     Value *Val, BasicBlock *BB) {
 | |
|   Instruction *BBI = dyn_cast<Instruction>(Val);
 | |
|   if (!BBI || BBI->getParent() != BB)
 | |
|     return solveBlockValueNonLocal(Val, BB);
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BBI))
 | |
|     return solveBlockValuePHINode(PN, BB);
 | |
| 
 | |
|   if (auto *SI = dyn_cast<SelectInst>(BBI))
 | |
|     return solveBlockValueSelect(SI, BB);
 | |
| 
 | |
|   // If this value is a nonnull pointer, record it's range and bailout.  Note
 | |
|   // that for all other pointer typed values, we terminate the search at the
 | |
|   // definition.  We could easily extend this to look through geps, bitcasts,
 | |
|   // and the like to prove non-nullness, but it's not clear that's worth it
 | |
|   // compile time wise.  The context-insensitive value walk done inside
 | |
|   // isKnownNonZero gets most of the profitable cases at much less expense.
 | |
|   // This does mean that we have a sensitivity to where the defining
 | |
|   // instruction is placed, even if it could legally be hoisted much higher.
 | |
|   // That is unfortunate.
 | |
|   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
 | |
|   if (PT && isKnownNonZero(BBI, DL))
 | |
|     return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
 | |
| 
 | |
|   if (BBI->getType()->isIntegerTy()) {
 | |
|     if (auto *CI = dyn_cast<CastInst>(BBI))
 | |
|       return solveBlockValueCast(CI, BB);
 | |
| 
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
 | |
|       return solveBlockValueBinaryOp(BO, BB);
 | |
| 
 | |
|     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
 | |
|       return solveBlockValueExtractValue(EVI, BB);
 | |
| 
 | |
|     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
 | |
|       return solveBlockValueIntrinsic(II, BB);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                     << "' - unknown inst def found.\n");
 | |
|   return getFromRangeMetadata(BBI);
 | |
| }
 | |
| 
 | |
| static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
 | |
|   // TODO: Use NullPointerIsDefined instead.
 | |
|   if (Ptr->getType()->getPointerAddressSpace() == 0)
 | |
|     PtrSet.insert(getUnderlyingObject(Ptr));
 | |
| }
 | |
| 
 | |
| static void AddNonNullPointersByInstruction(
 | |
|     Instruction *I, NonNullPointerSet &PtrSet) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|     AddNonNullPointer(L->getPointerOperand(), PtrSet);
 | |
|   } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | |
|     AddNonNullPointer(S->getPointerOperand(), PtrSet);
 | |
|   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
 | |
|     if (MI->isVolatile()) return;
 | |
| 
 | |
|     // FIXME: check whether it has a valuerange that excludes zero?
 | |
|     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
 | |
|     if (!Len || Len->isZero()) return;
 | |
| 
 | |
|     AddNonNullPointer(MI->getRawDest(), PtrSet);
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
 | |
|       AddNonNullPointer(MTI->getRawSource(), PtrSet);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
 | |
|   if (NullPointerIsDefined(BB->getParent(),
 | |
|                            Val->getType()->getPointerAddressSpace()))
 | |
|     return false;
 | |
| 
 | |
|   Val = getUnderlyingObject(Val);
 | |
|   return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
 | |
|     NonNullPointerSet NonNullPointers;
 | |
|     for (Instruction &I : *BB)
 | |
|       AddNonNullPointersByInstruction(&I, NonNullPointers);
 | |
|     return NonNullPointers;
 | |
|   });
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal(
 | |
|     Value *Val, BasicBlock *BB) {
 | |
|   ValueLatticeElement Result;  // Start Undefined.
 | |
| 
 | |
|   // If this is the entry block, we must be asking about an argument.  The
 | |
|   // value is overdefined.
 | |
|   if (BB == &BB->getParent()->getEntryBlock()) {
 | |
|     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
|   }
 | |
| 
 | |
|   // Loop over all of our predecessors, merging what we know from them into
 | |
|   // result.  If we encounter an unexplored predecessor, we eagerly explore it
 | |
|   // in a depth first manner.  In practice, this has the effect of discovering
 | |
|   // paths we can't analyze eagerly without spending compile times analyzing
 | |
|   // other paths.  This heuristic benefits from the fact that predecessors are
 | |
|   // frequently arranged such that dominating ones come first and we quickly
 | |
|   // find a path to function entry.  TODO: We should consider explicitly
 | |
|   // canonicalizing to make this true rather than relying on this happy
 | |
|   // accident.
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB);
 | |
|     if (!EdgeResult)
 | |
|       // Explore that input, then return here
 | |
|       return None;
 | |
| 
 | |
|     Result.mergeIn(*EdgeResult);
 | |
| 
 | |
|     // If we hit overdefined, exit early.  The BlockVals entry is already set
 | |
|     // to overdefined.
 | |
|     if (Result.isOverdefined()) {
 | |
|       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                         << "' - overdefined because of pred (non local).\n");
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return the merged value, which is more precise than 'overdefined'.
 | |
|   assert(!Result.isOverdefined());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode(
 | |
|     PHINode *PN, BasicBlock *BB) {
 | |
|   ValueLatticeElement Result;  // Start Undefined.
 | |
| 
 | |
|   // Loop over all of our predecessors, merging what we know from them into
 | |
|   // result.  See the comment about the chosen traversal order in
 | |
|   // solveBlockValueNonLocal; the same reasoning applies here.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *PhiBB = PN->getIncomingBlock(i);
 | |
|     Value *PhiVal = PN->getIncomingValue(i);
 | |
|     // Note that we can provide PN as the context value to getEdgeValue, even
 | |
|     // though the results will be cached, because PN is the value being used as
 | |
|     // the cache key in the caller.
 | |
|     Optional<ValueLatticeElement> EdgeResult =
 | |
|         getEdgeValue(PhiVal, PhiBB, BB, PN);
 | |
|     if (!EdgeResult)
 | |
|       // Explore that input, then return here
 | |
|       return None;
 | |
| 
 | |
|     Result.mergeIn(*EdgeResult);
 | |
| 
 | |
|     // If we hit overdefined, exit early.  The BlockVals entry is already set
 | |
|     // to overdefined.
 | |
|     if (Result.isOverdefined()) {
 | |
|       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                         << "' - overdefined because of pred (local).\n");
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return the merged value, which is more precise than 'overdefined'.
 | |
|   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
 | |
|                                                  bool isTrueDest = true);
 | |
| 
 | |
| // If we can determine a constraint on the value given conditions assumed by
 | |
| // the program, intersect those constraints with BBLV
 | |
| void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
 | |
|         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
 | |
|   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
 | |
|   if (!BBI)
 | |
|     return;
 | |
| 
 | |
|   BasicBlock *BB = BBI->getParent();
 | |
|   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
| 
 | |
|     // Only check assumes in the block of the context instruction. Other
 | |
|     // assumes will have already been taken into account when the value was
 | |
|     // propagated from predecessor blocks.
 | |
|     auto *I = cast<CallInst>(AssumeVH);
 | |
|     if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
 | |
|       continue;
 | |
| 
 | |
|     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
 | |
|   }
 | |
| 
 | |
|   // If guards are not used in the module, don't spend time looking for them
 | |
|   if (GuardDecl && !GuardDecl->use_empty() &&
 | |
|       BBI->getIterator() != BB->begin()) {
 | |
|     for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
 | |
|                                      BB->rend())) {
 | |
|       Value *Cond = nullptr;
 | |
|       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
 | |
|         BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BBLV.isOverdefined()) {
 | |
|     // Check whether we're checking at the terminator, and the pointer has
 | |
|     // been dereferenced in this block.
 | |
|     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
 | |
|     if (PTy && BB->getTerminator() == BBI &&
 | |
|         isNonNullAtEndOfBlock(Val, BB))
 | |
|       BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect(
 | |
|     SelectInst *SI, BasicBlock *BB) {
 | |
|   // Recurse on our inputs if needed
 | |
|   Optional<ValueLatticeElement> OptTrueVal =
 | |
|       getBlockValue(SI->getTrueValue(), BB);
 | |
|   if (!OptTrueVal)
 | |
|     return None;
 | |
|   ValueLatticeElement &TrueVal = *OptTrueVal;
 | |
| 
 | |
|   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
 | |
|   // extra slots in the table if we can.
 | |
|   if (TrueVal.isOverdefined())
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   Optional<ValueLatticeElement> OptFalseVal =
 | |
|       getBlockValue(SI->getFalseValue(), BB);
 | |
|   if (!OptFalseVal)
 | |
|     return None;
 | |
|   ValueLatticeElement &FalseVal = *OptFalseVal;
 | |
| 
 | |
|   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
 | |
|   // extra slots in the table if we can.
 | |
|   if (FalseVal.isOverdefined())
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
 | |
|     const ConstantRange &TrueCR = TrueVal.getConstantRange();
 | |
|     const ConstantRange &FalseCR = FalseVal.getConstantRange();
 | |
|     Value *LHS = nullptr;
 | |
|     Value *RHS = nullptr;
 | |
|     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
 | |
|     // Is this a min specifically of our two inputs?  (Avoid the risk of
 | |
|     // ValueTracking getting smarter looking back past our immediate inputs.)
 | |
|     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
 | |
|         LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
 | |
|       ConstantRange ResultCR = [&]() {
 | |
|         switch (SPR.Flavor) {
 | |
|         default:
 | |
|           llvm_unreachable("unexpected minmax type!");
 | |
|         case SPF_SMIN:                   /// Signed minimum
 | |
|           return TrueCR.smin(FalseCR);
 | |
|         case SPF_UMIN:                   /// Unsigned minimum
 | |
|           return TrueCR.umin(FalseCR);
 | |
|         case SPF_SMAX:                   /// Signed maximum
 | |
|           return TrueCR.smax(FalseCR);
 | |
|         case SPF_UMAX:                   /// Unsigned maximum
 | |
|           return TrueCR.umax(FalseCR);
 | |
|         };
 | |
|       }();
 | |
|       return ValueLatticeElement::getRange(
 | |
|           ResultCR, TrueVal.isConstantRangeIncludingUndef() |
 | |
|                         FalseVal.isConstantRangeIncludingUndef());
 | |
|     }
 | |
| 
 | |
|     if (SPR.Flavor == SPF_ABS) {
 | |
|       if (LHS == SI->getTrueValue())
 | |
|         return ValueLatticeElement::getRange(
 | |
|             TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
 | |
|       if (LHS == SI->getFalseValue())
 | |
|         return ValueLatticeElement::getRange(
 | |
|             FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
 | |
|     }
 | |
| 
 | |
|     if (SPR.Flavor == SPF_NABS) {
 | |
|       ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
 | |
|       if (LHS == SI->getTrueValue())
 | |
|         return ValueLatticeElement::getRange(
 | |
|             Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
 | |
|       if (LHS == SI->getFalseValue())
 | |
|         return ValueLatticeElement::getRange(
 | |
|             Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Can we constrain the facts about the true and false values by using the
 | |
|   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
 | |
|   // TODO: We could potentially refine an overdefined true value above.
 | |
|   Value *Cond = SI->getCondition();
 | |
|   TrueVal = intersect(TrueVal,
 | |
|                       getValueFromCondition(SI->getTrueValue(), Cond, true));
 | |
|   FalseVal = intersect(FalseVal,
 | |
|                        getValueFromCondition(SI->getFalseValue(), Cond, false));
 | |
| 
 | |
|   // Handle clamp idioms such as:
 | |
|   //   %24 = constantrange<0, 17>
 | |
|   //   %39 = icmp eq i32 %24, 0
 | |
|   //   %40 = add i32 %24, -1
 | |
|   //   %siv.next = select i1 %39, i32 16, i32 %40
 | |
|   //   %siv.next = constantrange<0, 17> not <-1, 17>
 | |
|   // In general, this can handle any clamp idiom which tests the edge
 | |
|   // condition via an equality or inequality.
 | |
|   if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
 | |
|     ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|     Value *A = ICI->getOperand(0);
 | |
|     if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | |
|       auto addConstants = [](ConstantInt *A, ConstantInt *B) {
 | |
|         assert(A->getType() == B->getType());
 | |
|         return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
 | |
|       };
 | |
|       // See if either input is A + C2, subject to the constraint from the
 | |
|       // condition that A != C when that input is used.  We can assume that
 | |
|       // that input doesn't include C + C2.
 | |
|       ConstantInt *CIAdded;
 | |
|       switch (Pred) {
 | |
|       default: break;
 | |
|       case ICmpInst::ICMP_EQ:
 | |
|         if (match(SI->getFalseValue(), m_Add(m_Specific(A),
 | |
|                                              m_ConstantInt(CIAdded)))) {
 | |
|           auto ResNot = addConstants(CIBase, CIAdded);
 | |
|           FalseVal = intersect(FalseVal,
 | |
|                                ValueLatticeElement::getNot(ResNot));
 | |
|         }
 | |
|         break;
 | |
|       case ICmpInst::ICMP_NE:
 | |
|         if (match(SI->getTrueValue(), m_Add(m_Specific(A),
 | |
|                                             m_ConstantInt(CIAdded)))) {
 | |
|           auto ResNot = addConstants(CIBase, CIAdded);
 | |
|           TrueVal = intersect(TrueVal,
 | |
|                               ValueLatticeElement::getNot(ResNot));
 | |
|         }
 | |
|         break;
 | |
|       };
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ValueLatticeElement Result = TrueVal;
 | |
|   Result.mergeIn(FalseVal);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V,
 | |
|                                                        Instruction *CxtI,
 | |
|                                                        BasicBlock *BB) {
 | |
|   Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB);
 | |
|   if (!OptVal)
 | |
|     return None;
 | |
| 
 | |
|   ValueLatticeElement &Val = *OptVal;
 | |
|   intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI);
 | |
|   if (Val.isConstantRange())
 | |
|     return Val.getConstantRange();
 | |
| 
 | |
|   const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType());
 | |
|   return ConstantRange::getFull(OperandBitWidth);
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast(
 | |
|     CastInst *CI, BasicBlock *BB) {
 | |
|   // Without knowing how wide the input is, we can't analyze it in any useful
 | |
|   // way.
 | |
|   if (!CI->getOperand(0)->getType()->isSized())
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   // Filter out casts we don't know how to reason about before attempting to
 | |
|   // recurse on our operand.  This can cut a long search short if we know we're
 | |
|   // not going to be able to get any useful information anways.
 | |
|   switch (CI->getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::BitCast:
 | |
|     break;
 | |
|   default:
 | |
|     // Unhandled instructions are overdefined.
 | |
|     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                       << "' - overdefined (unknown cast).\n");
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
|   }
 | |
| 
 | |
|   // Figure out the range of the LHS.  If that fails, we still apply the
 | |
|   // transfer rule on the full set since we may be able to locally infer
 | |
|   // interesting facts.
 | |
|   Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
 | |
|   if (!LHSRes.hasValue())
 | |
|     // More work to do before applying this transfer rule.
 | |
|     return None;
 | |
|   const ConstantRange &LHSRange = LHSRes.getValue();
 | |
| 
 | |
|   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
 | |
| 
 | |
|   // NOTE: We're currently limited by the set of operations that ConstantRange
 | |
|   // can evaluate symbolically.  Enhancing that set will allows us to analyze
 | |
|   // more definitions.
 | |
|   return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
 | |
|                                                        ResultBitWidth));
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
 | |
|     Instruction *I, BasicBlock *BB,
 | |
|     std::function<ConstantRange(const ConstantRange &,
 | |
|                                 const ConstantRange &)> OpFn) {
 | |
|   // Figure out the ranges of the operands.  If that fails, use a
 | |
|   // conservative range, but apply the transfer rule anyways.  This
 | |
|   // lets us pick up facts from expressions like "and i32 (call i32
 | |
|   // @foo()), 32"
 | |
|   Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
 | |
|   Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
 | |
|   if (!LHSRes.hasValue() || !RHSRes.hasValue())
 | |
|     // More work to do before applying this transfer rule.
 | |
|     return None;
 | |
| 
 | |
|   const ConstantRange &LHSRange = LHSRes.getValue();
 | |
|   const ConstantRange &RHSRange = RHSRes.getValue();
 | |
|   return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp(
 | |
|     BinaryOperator *BO, BasicBlock *BB) {
 | |
|   assert(BO->getOperand(0)->getType()->isSized() &&
 | |
|          "all operands to binary operators are sized");
 | |
|   if (BO->getOpcode() == Instruction::Xor) {
 | |
|     // Xor is the only operation not supported by ConstantRange::binaryOp().
 | |
|     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                       << "' - overdefined (unknown binary operator).\n");
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
|   }
 | |
| 
 | |
|   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
 | |
|     unsigned NoWrapKind = 0;
 | |
|     if (OBO->hasNoUnsignedWrap())
 | |
|       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
 | |
|     if (OBO->hasNoSignedWrap())
 | |
|       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
 | |
| 
 | |
|     return solveBlockValueBinaryOpImpl(
 | |
|         BO, BB,
 | |
|         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
 | |
|         });
 | |
|   }
 | |
| 
 | |
|   return solveBlockValueBinaryOpImpl(
 | |
|       BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.binaryOp(BO->getOpcode(), CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement>
 | |
| LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
 | |
|                                                     BasicBlock *BB) {
 | |
|   return solveBlockValueBinaryOpImpl(
 | |
|       WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.binaryOp(WO->getBinaryOp(), CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic(
 | |
|     IntrinsicInst *II, BasicBlock *BB) {
 | |
|   if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
 | |
|     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                       << "' - overdefined (unknown intrinsic).\n");
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
|   }
 | |
| 
 | |
|   SmallVector<ConstantRange, 2> OpRanges;
 | |
|   for (Value *Op : II->args()) {
 | |
|     Optional<ConstantRange> Range = getRangeFor(Op, II, BB);
 | |
|     if (!Range)
 | |
|       return None;
 | |
|     OpRanges.push_back(*Range);
 | |
|   }
 | |
| 
 | |
|   return ValueLatticeElement::getRange(
 | |
|       ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges));
 | |
| }
 | |
| 
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue(
 | |
|     ExtractValueInst *EVI, BasicBlock *BB) {
 | |
|   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
 | |
|     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
 | |
|       return solveBlockValueOverflowIntrinsic(WO, BB);
 | |
| 
 | |
|   // Handle extractvalue of insertvalue to allow further simplification
 | |
|   // based on replaced with.overflow intrinsics.
 | |
|   if (Value *V = SimplifyExtractValueInst(
 | |
|           EVI->getAggregateOperand(), EVI->getIndices(),
 | |
|           EVI->getModule()->getDataLayout()))
 | |
|     return getBlockValue(V, BB);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                     << "' - overdefined (unknown extractvalue).\n");
 | |
|   return ValueLatticeElement::getOverdefined();
 | |
| }
 | |
| 
 | |
| static bool matchICmpOperand(const APInt *&Offset, Value *LHS, Value *Val,
 | |
|                              ICmpInst::Predicate Pred) {
 | |
|   if (LHS == Val)
 | |
|     return true;
 | |
| 
 | |
|   // Handle range checking idiom produced by InstCombine. We will subtract the
 | |
|   // offset from the allowed range for RHS in this case.
 | |
|   if (match(LHS, m_Add(m_Specific(Val), m_APInt(Offset))))
 | |
|     return true;
 | |
| 
 | |
|   // If (x | y) < C, then (x < C) && (y < C).
 | |
|   if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
 | |
|       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
 | |
|     return true;
 | |
| 
 | |
|   // If (x & y) > C, then (x > C) && (y > C).
 | |
|   if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
 | |
|       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Get value range for a "(Val + Offset) Pred RHS" condition.
 | |
| static ValueLatticeElement getValueFromSimpleICmpCondition(
 | |
|     CmpInst::Predicate Pred, Value *RHS, const APInt *Offset) {
 | |
|   ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
 | |
|                          /*isFullSet=*/true);
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
 | |
|     RHSRange = ConstantRange(CI->getValue());
 | |
|   else if (Instruction *I = dyn_cast<Instruction>(RHS))
 | |
|     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
 | |
|       RHSRange = getConstantRangeFromMetadata(*Ranges);
 | |
| 
 | |
|   ConstantRange TrueValues =
 | |
|       ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
 | |
| 
 | |
|   if (Offset)
 | |
|     TrueValues = TrueValues.subtract(*Offset);
 | |
| 
 | |
|   return ValueLatticeElement::getRange(std::move(TrueValues));
 | |
| }
 | |
| 
 | |
| static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
 | |
|                                                      bool isTrueDest) {
 | |
|   Value *LHS = ICI->getOperand(0);
 | |
|   Value *RHS = ICI->getOperand(1);
 | |
| 
 | |
|   // Get the predicate that must hold along the considered edge.
 | |
|   CmpInst::Predicate EdgePred =
 | |
|       isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
 | |
| 
 | |
|   if (isa<Constant>(RHS)) {
 | |
|     if (ICI->isEquality() && LHS == Val) {
 | |
|       if (EdgePred == ICmpInst::ICMP_EQ)
 | |
|         return ValueLatticeElement::get(cast<Constant>(RHS));
 | |
|       else if (!isa<UndefValue>(RHS))
 | |
|         return ValueLatticeElement::getNot(cast<Constant>(RHS));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Val->getType()->isIntegerTy())
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   const APInt *Offset = nullptr;
 | |
|   if (matchICmpOperand(Offset, LHS, Val, EdgePred))
 | |
|     return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
 | |
| 
 | |
|   CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
 | |
|   if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
 | |
|     return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
 | |
| 
 | |
|   // If (Val & Mask) == C then all the masked bits are known and we can compute
 | |
|   // a value range based on that.
 | |
|   const APInt *Mask, *C;
 | |
|   if (EdgePred == ICmpInst::ICMP_EQ &&
 | |
|       match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
 | |
|       match(RHS, m_APInt(C))) {
 | |
|     KnownBits Known;
 | |
|     Known.Zero = ~*C & *Mask;
 | |
|     Known.One = *C & *Mask;
 | |
|     return ValueLatticeElement::getRange(
 | |
|         ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
 | |
|   }
 | |
| 
 | |
|   return ValueLatticeElement::getOverdefined();
 | |
| }
 | |
| 
 | |
| // Handle conditions of the form
 | |
| // extractvalue(op.with.overflow(%x, C), 1).
 | |
| static ValueLatticeElement getValueFromOverflowCondition(
 | |
|     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
 | |
|   // TODO: This only works with a constant RHS for now. We could also compute
 | |
|   // the range of the RHS, but this doesn't fit into the current structure of
 | |
|   // the edge value calculation.
 | |
|   const APInt *C;
 | |
|   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   // Calculate the possible values of %x for which no overflow occurs.
 | |
|   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
 | |
|       WO->getBinaryOp(), *C, WO->getNoWrapKind());
 | |
| 
 | |
|   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
 | |
|   // constrained to it's inverse (all values that might cause overflow).
 | |
|   if (IsTrueDest)
 | |
|     NWR = NWR.inverse();
 | |
|   return ValueLatticeElement::getRange(NWR);
 | |
| }
 | |
| 
 | |
| static ValueLatticeElement
 | |
| getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
 | |
|                       SmallDenseMap<Value*, ValueLatticeElement> &Visited);
 | |
| 
 | |
| static ValueLatticeElement
 | |
| getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
 | |
|                           SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
 | |
|     return getValueFromICmpCondition(Val, ICI, isTrueDest);
 | |
| 
 | |
|   if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
 | |
|     if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
 | |
|       if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
 | |
|         return getValueFromOverflowCondition(Val, WO, isTrueDest);
 | |
| 
 | |
|   Value *L, *R;
 | |
|   bool IsAnd;
 | |
|   if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
 | |
|     IsAnd = true;
 | |
|   else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
 | |
|     IsAnd = false;
 | |
|   else
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   // Prevent infinite recursion if Cond references itself as in this example:
 | |
|   //  Cond: "%tmp4 = and i1 %tmp4, undef"
 | |
|   //    BL: "%tmp4 = and i1 %tmp4, undef"
 | |
|   //    BR: "i1 undef"
 | |
|   if (L == Cond || R == Cond)
 | |
|     return ValueLatticeElement::getOverdefined();
 | |
| 
 | |
|   // if (L && R) -> intersect L and R
 | |
|   // if (!(L || R)) -> intersect L and R
 | |
|   // if (L || R) -> union L and R
 | |
|   // if (!(L && R)) -> union L and R
 | |
|   if (isTrueDest ^ IsAnd) {
 | |
|     ValueLatticeElement V = getValueFromCondition(Val, L, isTrueDest, Visited);
 | |
|     if (V.isOverdefined())
 | |
|       return V;
 | |
|     V.mergeIn(getValueFromCondition(Val, R, isTrueDest, Visited));
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   return intersect(getValueFromCondition(Val, L, isTrueDest, Visited),
 | |
|                    getValueFromCondition(Val, R, isTrueDest, Visited));
 | |
| }
 | |
| 
 | |
| static ValueLatticeElement
 | |
| getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
 | |
|                       SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
 | |
|   auto I = Visited.find(Cond);
 | |
|   if (I != Visited.end())
 | |
|     return I->second;
 | |
| 
 | |
|   auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
 | |
|   Visited[Cond] = Result;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
 | |
|                                           bool isTrueDest) {
 | |
|   assert(Cond && "precondition");
 | |
|   SmallDenseMap<Value*, ValueLatticeElement> Visited;
 | |
|   return getValueFromCondition(Val, Cond, isTrueDest, Visited);
 | |
| }
 | |
| 
 | |
| // Return true if Usr has Op as an operand, otherwise false.
 | |
| static bool usesOperand(User *Usr, Value *Op) {
 | |
|   return is_contained(Usr->operands(), Op);
 | |
| }
 | |
| 
 | |
| // Return true if the instruction type of Val is supported by
 | |
| // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
 | |
| // Call this before calling constantFoldUser() to find out if it's even worth
 | |
| // attempting to call it.
 | |
| static bool isOperationFoldable(User *Usr) {
 | |
|   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
 | |
| }
 | |
| 
 | |
| // Check if Usr can be simplified to an integer constant when the value of one
 | |
| // of its operands Op is an integer constant OpConstVal. If so, return it as an
 | |
| // lattice value range with a single element or otherwise return an overdefined
 | |
| // lattice value.
 | |
| static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
 | |
|                                             const APInt &OpConstVal,
 | |
|                                             const DataLayout &DL) {
 | |
|   assert(isOperationFoldable(Usr) && "Precondition");
 | |
|   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
 | |
|   // Check if Usr can be simplified to a constant.
 | |
|   if (auto *CI = dyn_cast<CastInst>(Usr)) {
 | |
|     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
 | |
|     if (auto *C = dyn_cast_or_null<ConstantInt>(
 | |
|             SimplifyCastInst(CI->getOpcode(), OpConst,
 | |
|                              CI->getDestTy(), DL))) {
 | |
|       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
 | |
|     }
 | |
|   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
 | |
|     bool Op0Match = BO->getOperand(0) == Op;
 | |
|     bool Op1Match = BO->getOperand(1) == Op;
 | |
|     assert((Op0Match || Op1Match) &&
 | |
|            "Operand 0 nor Operand 1 isn't a match");
 | |
|     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
 | |
|     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
 | |
|     if (auto *C = dyn_cast_or_null<ConstantInt>(
 | |
|             SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
 | |
|       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
 | |
|     }
 | |
|   } else if (isa<FreezeInst>(Usr)) {
 | |
|     assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
 | |
|     return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
 | |
|   }
 | |
|   return ValueLatticeElement::getOverdefined();
 | |
| }
 | |
| 
 | |
| /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
 | |
| /// Val is not constrained on the edge.  Result is unspecified if return value
 | |
| /// is false.
 | |
| static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
 | |
|                                                        BasicBlock *BBFrom,
 | |
|                                                        BasicBlock *BBTo) {
 | |
|   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
 | |
|   // know that v != 0.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
 | |
|     // If this is a conditional branch and only one successor goes to BBTo, then
 | |
|     // we may be able to infer something from the condition.
 | |
|     if (BI->isConditional() &&
 | |
|         BI->getSuccessor(0) != BI->getSuccessor(1)) {
 | |
|       bool isTrueDest = BI->getSuccessor(0) == BBTo;
 | |
|       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
 | |
|              "BBTo isn't a successor of BBFrom");
 | |
|       Value *Condition = BI->getCondition();
 | |
| 
 | |
|       // If V is the condition of the branch itself, then we know exactly what
 | |
|       // it is.
 | |
|       if (Condition == Val)
 | |
|         return ValueLatticeElement::get(ConstantInt::get(
 | |
|                               Type::getInt1Ty(Val->getContext()), isTrueDest));
 | |
| 
 | |
|       // If the condition of the branch is an equality comparison, we may be
 | |
|       // able to infer the value.
 | |
|       ValueLatticeElement Result = getValueFromCondition(Val, Condition,
 | |
|                                                          isTrueDest);
 | |
|       if (!Result.isOverdefined())
 | |
|         return Result;
 | |
| 
 | |
|       if (User *Usr = dyn_cast<User>(Val)) {
 | |
|         assert(Result.isOverdefined() && "Result isn't overdefined");
 | |
|         // Check with isOperationFoldable() first to avoid linearly iterating
 | |
|         // over the operands unnecessarily which can be expensive for
 | |
|         // instructions with many operands.
 | |
|         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
 | |
|           const DataLayout &DL = BBTo->getModule()->getDataLayout();
 | |
|           if (usesOperand(Usr, Condition)) {
 | |
|             // If Val has Condition as an operand and Val can be folded into a
 | |
|             // constant with either Condition == true or Condition == false,
 | |
|             // propagate the constant.
 | |
|             // eg.
 | |
|             //   ; %Val is true on the edge to %then.
 | |
|             //   %Val = and i1 %Condition, true.
 | |
|             //   br %Condition, label %then, label %else
 | |
|             APInt ConditionVal(1, isTrueDest ? 1 : 0);
 | |
|             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
 | |
|           } else {
 | |
|             // If one of Val's operand has an inferred value, we may be able to
 | |
|             // infer the value of Val.
 | |
|             // eg.
 | |
|             //    ; %Val is 94 on the edge to %then.
 | |
|             //    %Val = add i8 %Op, 1
 | |
|             //    %Condition = icmp eq i8 %Op, 93
 | |
|             //    br i1 %Condition, label %then, label %else
 | |
|             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
 | |
|               Value *Op = Usr->getOperand(i);
 | |
|               ValueLatticeElement OpLatticeVal =
 | |
|                   getValueFromCondition(Op, Condition, isTrueDest);
 | |
|               if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
 | |
|                 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (!Result.isOverdefined())
 | |
|         return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the edge was formed by a switch on the value, then we may know exactly
 | |
|   // what it is.
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
 | |
|     Value *Condition = SI->getCondition();
 | |
|     if (!isa<IntegerType>(Val->getType()))
 | |
|       return None;
 | |
|     bool ValUsesConditionAndMayBeFoldable = false;
 | |
|     if (Condition != Val) {
 | |
|       // Check if Val has Condition as an operand.
 | |
|       if (User *Usr = dyn_cast<User>(Val))
 | |
|         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
 | |
|             usesOperand(Usr, Condition);
 | |
|       if (!ValUsesConditionAndMayBeFoldable)
 | |
|         return None;
 | |
|     }
 | |
|     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
 | |
|            "Condition != Val nor Val doesn't use Condition");
 | |
| 
 | |
|     bool DefaultCase = SI->getDefaultDest() == BBTo;
 | |
|     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
 | |
|     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
 | |
| 
 | |
|     for (auto Case : SI->cases()) {
 | |
|       APInt CaseValue = Case.getCaseValue()->getValue();
 | |
|       ConstantRange EdgeVal(CaseValue);
 | |
|       if (ValUsesConditionAndMayBeFoldable) {
 | |
|         User *Usr = cast<User>(Val);
 | |
|         const DataLayout &DL = BBTo->getModule()->getDataLayout();
 | |
|         ValueLatticeElement EdgeLatticeVal =
 | |
|             constantFoldUser(Usr, Condition, CaseValue, DL);
 | |
|         if (EdgeLatticeVal.isOverdefined())
 | |
|           return None;
 | |
|         EdgeVal = EdgeLatticeVal.getConstantRange();
 | |
|       }
 | |
|       if (DefaultCase) {
 | |
|         // It is possible that the default destination is the destination of
 | |
|         // some cases. We cannot perform difference for those cases.
 | |
|         // We know Condition != CaseValue in BBTo.  In some cases we can use
 | |
|         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
 | |
|         // only do this when f is identity (i.e. Val == Condition), but we
 | |
|         // should be able to do this for any injective f.
 | |
|         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
 | |
|           EdgesVals = EdgesVals.difference(EdgeVal);
 | |
|       } else if (Case.getCaseSuccessor() == BBTo)
 | |
|         EdgesVals = EdgesVals.unionWith(EdgeVal);
 | |
|     }
 | |
|     return ValueLatticeElement::getRange(std::move(EdgesVals));
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
 | |
| /// the basic block if the edge does not constrain Val.
 | |
| Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue(
 | |
|     Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(Val))
 | |
|     return ValueLatticeElement::get(VC);
 | |
| 
 | |
|   ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo)
 | |
|       .getValueOr(ValueLatticeElement::getOverdefined());
 | |
|   if (hasSingleValue(LocalResult))
 | |
|     // Can't get any more precise here
 | |
|     return LocalResult;
 | |
| 
 | |
|   Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom);
 | |
|   if (!OptInBlock)
 | |
|     return None;
 | |
|   ValueLatticeElement &InBlock = *OptInBlock;
 | |
| 
 | |
|   // Try to intersect ranges of the BB and the constraint on the edge.
 | |
|   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
 | |
|                                                 BBFrom->getTerminator());
 | |
|   // We can use the context instruction (generically the ultimate instruction
 | |
|   // the calling pass is trying to simplify) here, even though the result of
 | |
|   // this function is generally cached when called from the solve* functions
 | |
|   // (and that cached result might be used with queries using a different
 | |
|   // context instruction), because when this function is called from the solve*
 | |
|   // functions, the context instruction is not provided. When called from
 | |
|   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
 | |
|   // but then the result is not cached.
 | |
|   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
 | |
| 
 | |
|   return intersect(LocalResult, InBlock);
 | |
| }
 | |
| 
 | |
| ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
 | |
|                                                        Instruction *CxtI) {
 | |
|   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
 | |
|                     << BB->getName() << "'\n");
 | |
| 
 | |
|   assert(BlockValueStack.empty() && BlockValueSet.empty());
 | |
|   Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB);
 | |
|   if (!OptResult) {
 | |
|     solve();
 | |
|     OptResult = getBlockValue(V, BB);
 | |
|     assert(OptResult && "Value not available after solving");
 | |
|   }
 | |
|   ValueLatticeElement Result = *OptResult;
 | |
|   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
 | |
|   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
 | |
|                     << "'\n");
 | |
| 
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     return ValueLatticeElement::get(C);
 | |
| 
 | |
|   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
 | |
|   if (auto *I = dyn_cast<Instruction>(V))
 | |
|     Result = getFromRangeMetadata(I);
 | |
|   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ValueLatticeElement LazyValueInfoImpl::
 | |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
 | |
|                Instruction *CxtI) {
 | |
|   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
 | |
|                     << FromBB->getName() << "' to '" << ToBB->getName()
 | |
|                     << "'\n");
 | |
| 
 | |
|   Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI);
 | |
|   if (!Result) {
 | |
|     solve();
 | |
|     Result = getEdgeValue(V, FromBB, ToBB, CxtI);
 | |
|     assert(Result && "More work to do after problem solved?");
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n");
 | |
|   return *Result;
 | |
| }
 | |
| 
 | |
| void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | |
|                                    BasicBlock *NewSucc) {
 | |
|   TheCache.threadEdgeImpl(OldSucc, NewSucc);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            LazyValueInfo Impl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This lazily constructs the LazyValueInfoImpl.
 | |
| static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
 | |
|                                   const Module *M) {
 | |
|   if (!PImpl) {
 | |
|     assert(M && "getCache() called with a null Module");
 | |
|     const DataLayout &DL = M->getDataLayout();
 | |
|     Function *GuardDecl = M->getFunction(
 | |
|         Intrinsic::getName(Intrinsic::experimental_guard));
 | |
|     PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
 | |
|   }
 | |
|   return *static_cast<LazyValueInfoImpl*>(PImpl);
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
 | |
|   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | |
| 
 | |
|   if (Info.PImpl)
 | |
|     getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
 | |
| 
 | |
|   // Fully lazy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
 | |
| 
 | |
| LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
 | |
| 
 | |
| void LazyValueInfo::releaseMemory() {
 | |
|   // If the cache was allocated, free it.
 | |
|   if (PImpl) {
 | |
|     delete &getImpl(PImpl, AC, nullptr);
 | |
|     PImpl = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
 | |
|                                FunctionAnalysisManager::Invalidator &Inv) {
 | |
|   // We need to invalidate if we have either failed to preserve this analyses
 | |
|   // result directly or if any of its dependencies have been invalidated.
 | |
|   auto PAC = PA.getChecker<LazyValueAnalysis>();
 | |
|   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
 | |
| 
 | |
| LazyValueInfo LazyValueAnalysis::run(Function &F,
 | |
|                                      FunctionAnalysisManager &FAM) {
 | |
|   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
 | |
|   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
 | |
| 
 | |
|   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
 | |
| }
 | |
| 
 | |
| /// Returns true if we can statically tell that this value will never be a
 | |
| /// "useful" constant.  In practice, this means we've got something like an
 | |
| /// alloca or a malloc call for which a comparison against a constant can
 | |
| /// only be guarding dead code.  Note that we are potentially giving up some
 | |
| /// precision in dead code (a constant result) in favour of avoiding a
 | |
| /// expensive search for a easily answered common query.
 | |
| static bool isKnownNonConstant(Value *V) {
 | |
|   V = V->stripPointerCasts();
 | |
|   // The return val of alloc cannot be a Constant.
 | |
|   if (isa<AllocaInst>(V))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
 | |
|   // Bail out early if V is known not to be a Constant.
 | |
|   if (isKnownNonConstant(V))
 | |
|     return nullptr;
 | |
| 
 | |
|   BasicBlock *BB = CxtI->getParent();
 | |
|   ValueLatticeElement Result =
 | |
|       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
 | |
| 
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   if (Result.isConstantRange()) {
 | |
|     const ConstantRange &CR = Result.getConstantRange();
 | |
|     if (const APInt *SingleVal = CR.getSingleElement())
 | |
|       return ConstantInt::get(V->getContext(), *SingleVal);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
 | |
|                                               bool UndefAllowed) {
 | |
|   assert(V->getType()->isIntegerTy());
 | |
|   unsigned Width = V->getType()->getIntegerBitWidth();
 | |
|   BasicBlock *BB = CxtI->getParent();
 | |
|   ValueLatticeElement Result =
 | |
|       getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
 | |
|   if (Result.isUnknown())
 | |
|     return ConstantRange::getEmpty(Width);
 | |
|   if (Result.isConstantRange(UndefAllowed))
 | |
|     return Result.getConstantRange(UndefAllowed);
 | |
|   // We represent ConstantInt constants as constant ranges but other kinds
 | |
|   // of integer constants, i.e. ConstantExpr will be tagged as constants
 | |
|   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
 | |
|          "ConstantInt value must be represented as constantrange");
 | |
|   return ConstantRange::getFull(Width);
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified value is known to be a
 | |
| /// constant on the specified edge. Return null if not.
 | |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
 | |
|                                            BasicBlock *ToBB,
 | |
|                                            Instruction *CxtI) {
 | |
|   Module *M = FromBB->getModule();
 | |
|   ValueLatticeElement Result =
 | |
|       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
 | |
| 
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   if (Result.isConstantRange()) {
 | |
|     const ConstantRange &CR = Result.getConstantRange();
 | |
|     if (const APInt *SingleVal = CR.getSingleElement())
 | |
|       return ConstantInt::get(V->getContext(), *SingleVal);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
 | |
|                                                     BasicBlock *FromBB,
 | |
|                                                     BasicBlock *ToBB,
 | |
|                                                     Instruction *CxtI) {
 | |
|   unsigned Width = V->getType()->getIntegerBitWidth();
 | |
|   Module *M = FromBB->getModule();
 | |
|   ValueLatticeElement Result =
 | |
|       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
 | |
| 
 | |
|   if (Result.isUnknown())
 | |
|     return ConstantRange::getEmpty(Width);
 | |
|   if (Result.isConstantRange())
 | |
|     return Result.getConstantRange();
 | |
|   // We represent ConstantInt constants as constant ranges but other kinds
 | |
|   // of integer constants, i.e. ConstantExpr will be tagged as constants
 | |
|   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
 | |
|          "ConstantInt value must be represented as constantrange");
 | |
|   return ConstantRange::getFull(Width);
 | |
| }
 | |
| 
 | |
| static LazyValueInfo::Tristate
 | |
| getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
 | |
|                    const DataLayout &DL, TargetLibraryInfo *TLI) {
 | |
|   // If we know the value is a constant, evaluate the conditional.
 | |
|   Constant *Res = nullptr;
 | |
|   if (Val.isConstant()) {
 | |
|     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
 | |
|     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
 | |
|       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
| 
 | |
|   if (Val.isConstantRange()) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | |
|     if (!CI) return LazyValueInfo::Unknown;
 | |
| 
 | |
|     const ConstantRange &CR = Val.getConstantRange();
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       if (!CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::False;
 | |
| 
 | |
|       if (CR.isSingleElement())
 | |
|         return LazyValueInfo::True;
 | |
|     } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|       if (!CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::True;
 | |
| 
 | |
|       if (CR.isSingleElement())
 | |
|         return LazyValueInfo::False;
 | |
|     } else {
 | |
|       // Handle more complex predicates.
 | |
|       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
 | |
|           (ICmpInst::Predicate)Pred, CI->getValue());
 | |
|       if (TrueValues.contains(CR))
 | |
|         return LazyValueInfo::True;
 | |
|       if (TrueValues.inverse().contains(CR))
 | |
|         return LazyValueInfo::False;
 | |
|     }
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
| 
 | |
|   if (Val.isNotConstant()) {
 | |
|     // If this is an equality comparison, we can try to fold it knowing that
 | |
|     // "V != C1".
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       // !C1 == C -> false iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Val.getNotConstant(), C, DL,
 | |
|                                             TLI);
 | |
|       if (Res->isNullValue())
 | |
|         return LazyValueInfo::False;
 | |
|     } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|       // !C1 != C -> true iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Val.getNotConstant(), C, DL,
 | |
|                                             TLI);
 | |
|       if (Res->isNullValue())
 | |
|         return LazyValueInfo::True;
 | |
|     }
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
| 
 | |
|   return LazyValueInfo::Unknown;
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified value comparison with a constant is known to
 | |
| /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
 | |
| LazyValueInfo::Tristate
 | |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
 | |
|                                   BasicBlock *FromBB, BasicBlock *ToBB,
 | |
|                                   Instruction *CxtI) {
 | |
|   Module *M = FromBB->getModule();
 | |
|   ValueLatticeElement Result =
 | |
|       getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
 | |
| 
 | |
|   return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
 | |
| }
 | |
| 
 | |
| LazyValueInfo::Tristate
 | |
| LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
 | |
|                               Instruction *CxtI, bool UseBlockValue) {
 | |
|   // Is or is not NonNull are common predicates being queried. If
 | |
|   // isKnownNonZero can tell us the result of the predicate, we can
 | |
|   // return it quickly. But this is only a fastpath, and falling
 | |
|   // through would still be correct.
 | |
|   Module *M = CxtI->getModule();
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
|   if (V->getType()->isPointerTy() && C->isNullValue() &&
 | |
|       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
 | |
|     if (Pred == ICmpInst::ICMP_EQ)
 | |
|       return LazyValueInfo::False;
 | |
|     else if (Pred == ICmpInst::ICMP_NE)
 | |
|       return LazyValueInfo::True;
 | |
|   }
 | |
| 
 | |
|   ValueLatticeElement Result = UseBlockValue
 | |
|       ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
 | |
|       : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
 | |
|   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
 | |
|   if (Ret != Unknown)
 | |
|     return Ret;
 | |
| 
 | |
|   // Note: The following bit of code is somewhat distinct from the rest of LVI;
 | |
|   // LVI as a whole tries to compute a lattice value which is conservatively
 | |
|   // correct at a given location.  In this case, we have a predicate which we
 | |
|   // weren't able to prove about the merged result, and we're pushing that
 | |
|   // predicate back along each incoming edge to see if we can prove it
 | |
|   // separately for each input.  As a motivating example, consider:
 | |
|   // bb1:
 | |
|   //   %v1 = ... ; constantrange<1, 5>
 | |
|   //   br label %merge
 | |
|   // bb2:
 | |
|   //   %v2 = ... ; constantrange<10, 20>
 | |
|   //   br label %merge
 | |
|   // merge:
 | |
|   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
 | |
|   //   %pred = icmp eq i32 %phi, 8
 | |
|   // We can't tell from the lattice value for '%phi' that '%pred' is false
 | |
|   // along each path, but by checking the predicate over each input separately,
 | |
|   // we can.
 | |
|   // We limit the search to one step backwards from the current BB and value.
 | |
|   // We could consider extending this to search further backwards through the
 | |
|   // CFG and/or value graph, but there are non-obvious compile time vs quality
 | |
|   // tradeoffs.
 | |
|   if (CxtI) {
 | |
|     BasicBlock *BB = CxtI->getParent();
 | |
| 
 | |
|     // Function entry or an unreachable block.  Bail to avoid confusing
 | |
|     // analysis below.
 | |
|     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|     if (PI == PE)
 | |
|       return Unknown;
 | |
| 
 | |
|     // If V is a PHI node in the same block as the context, we need to ask
 | |
|     // questions about the predicate as applied to the incoming value along
 | |
|     // each edge. This is useful for eliminating cases where the predicate is
 | |
|     // known along all incoming edges.
 | |
|     if (auto *PHI = dyn_cast<PHINode>(V))
 | |
|       if (PHI->getParent() == BB) {
 | |
|         Tristate Baseline = Unknown;
 | |
|         for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
 | |
|           Value *Incoming = PHI->getIncomingValue(i);
 | |
|           BasicBlock *PredBB = PHI->getIncomingBlock(i);
 | |
|           // Note that PredBB may be BB itself.
 | |
|           Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
 | |
|                                                CxtI);
 | |
| 
 | |
|           // Keep going as long as we've seen a consistent known result for
 | |
|           // all inputs.
 | |
|           Baseline = (i == 0) ? Result /* First iteration */
 | |
|             : (Baseline == Result ? Baseline : Unknown); /* All others */
 | |
|           if (Baseline == Unknown)
 | |
|             break;
 | |
|         }
 | |
|         if (Baseline != Unknown)
 | |
|           return Baseline;
 | |
|       }
 | |
| 
 | |
|     // For a comparison where the V is outside this block, it's possible
 | |
|     // that we've branched on it before. Look to see if the value is known
 | |
|     // on all incoming edges.
 | |
|     if (!isa<Instruction>(V) ||
 | |
|         cast<Instruction>(V)->getParent() != BB) {
 | |
|       // For predecessor edge, determine if the comparison is true or false
 | |
|       // on that edge. If they're all true or all false, we can conclude
 | |
|       // the value of the comparison in this block.
 | |
|       Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
 | |
|       if (Baseline != Unknown) {
 | |
|         // Check that all remaining incoming values match the first one.
 | |
|         while (++PI != PE) {
 | |
|           Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
 | |
|           if (Ret != Baseline) break;
 | |
|         }
 | |
|         // If we terminated early, then one of the values didn't match.
 | |
|         if (PI == PE) {
 | |
|           return Baseline;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Unknown;
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | |
|                                BasicBlock *NewSucc) {
 | |
|   if (PImpl) {
 | |
|     getImpl(PImpl, AC, PredBB->getModule())
 | |
|         .threadEdge(PredBB, OldSucc, NewSucc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::eraseBlock(BasicBlock *BB) {
 | |
|   if (PImpl) {
 | |
|     getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
 | |
|   if (PImpl) {
 | |
|     getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Print the LVI for the function arguments at the start of each basic block.
 | |
| void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
 | |
|     const BasicBlock *BB, formatted_raw_ostream &OS) {
 | |
|   // Find if there are latticevalues defined for arguments of the function.
 | |
|   auto *F = BB->getParent();
 | |
|   for (auto &Arg : F->args()) {
 | |
|     ValueLatticeElement Result = LVIImpl->getValueInBlock(
 | |
|         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
 | |
|     if (Result.isUnknown())
 | |
|       continue;
 | |
|     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function prints the LVI analysis for the instruction I at the beginning
 | |
| // of various basic blocks. It relies on calculated values that are stored in
 | |
| // the LazyValueInfoCache, and in the absence of cached values, recalculate the
 | |
| // LazyValueInfo for `I`, and print that info.
 | |
| void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
 | |
|     const Instruction *I, formatted_raw_ostream &OS) {
 | |
| 
 | |
|   auto *ParentBB = I->getParent();
 | |
|   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
 | |
|   // We can generate (solve) LVI values only for blocks that are dominated by
 | |
|   // the I's parent. However, to avoid generating LVI for all dominating blocks,
 | |
|   // that contain redundant/uninteresting information, we print LVI for
 | |
|   // blocks that may use this LVI information (such as immediate successor
 | |
|   // blocks, and blocks that contain uses of `I`).
 | |
|   auto printResult = [&](const BasicBlock *BB) {
 | |
|     if (!BlocksContainingLVI.insert(BB).second)
 | |
|       return;
 | |
|     ValueLatticeElement Result = LVIImpl->getValueInBlock(
 | |
|         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
 | |
|       OS << "; LatticeVal for: '" << *I << "' in BB: '";
 | |
|       BB->printAsOperand(OS, false);
 | |
|       OS << "' is: " << Result << "\n";
 | |
|   };
 | |
| 
 | |
|   printResult(ParentBB);
 | |
|   // Print the LVI analysis results for the immediate successor blocks, that
 | |
|   // are dominated by `ParentBB`.
 | |
|   for (auto *BBSucc : successors(ParentBB))
 | |
|     if (DT.dominates(ParentBB, BBSucc))
 | |
|       printResult(BBSucc);
 | |
| 
 | |
|   // Print LVI in blocks where `I` is used.
 | |
|   for (auto *U : I->users())
 | |
|     if (auto *UseI = dyn_cast<Instruction>(U))
 | |
|       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
 | |
|         printResult(UseI->getParent());
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Printer class for LazyValueInfo results.
 | |
| class LazyValueInfoPrinter : public FunctionPass {
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   LazyValueInfoPrinter() : FunctionPass(ID) {
 | |
|     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|     AU.addRequired<LazyValueInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   // Get the mandatory dominator tree analysis and pass this in to the
 | |
|   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     dbgs() << "LVI for function '" << F.getName() << "':\n";
 | |
|     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
 | |
|     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     LVI.printLVI(F, DTree, dbgs());
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char LazyValueInfoPrinter::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
 | |
|                 "Lazy Value Info Printer Pass", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
 | |
|                 "Lazy Value Info Printer Pass", false, false)
 |