315 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			315 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the interface between the inliner and a learned model.
 | 
						|
// It delegates model evaluation to either the AOT compiled model (the
 | 
						|
// 'release' mode) or a runtime-loaded model (the 'development' case).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
#if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
 | 
						|
 | 
						|
#include <limits>
 | 
						|
#include <unordered_map>
 | 
						|
#include <unordered_set>
 | 
						|
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/MLInlineAdvisor.h"
 | 
						|
#include "llvm/Analysis/MLModelRunner.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Path.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "inline-ml"
 | 
						|
 | 
						|
static cl::opt<float> SizeIncreaseThreshold(
 | 
						|
    "ml-advisor-size-increase-threshold", cl::Hidden,
 | 
						|
    cl::desc("Maximum factor by which expected native size may increase before "
 | 
						|
             "blocking any further inlining."),
 | 
						|
    cl::init(2.0));
 | 
						|
 | 
						|
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
 | 
						|
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
 | 
						|
    INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
 | 
						|
#undef POPULATE_NAMES
 | 
						|
};
 | 
						|
 | 
						|
const char *const llvm::DecisionName = "inlining_decision";
 | 
						|
const char *const llvm::DefaultDecisionName = "inlining_default";
 | 
						|
const char *const llvm::RewardName = "delta_size";
 | 
						|
 | 
						|
CallBase *getInlinableCS(Instruction &I) {
 | 
						|
  if (auto *CS = dyn_cast<CallBase>(&I))
 | 
						|
    if (Function *Callee = CS->getCalledFunction()) {
 | 
						|
      if (!Callee->isDeclaration()) {
 | 
						|
        return CS;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
 | 
						|
                                 std::unique_ptr<MLModelRunner> Runner)
 | 
						|
    : InlineAdvisor(
 | 
						|
          M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
 | 
						|
      ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
 | 
						|
      InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
 | 
						|
  assert(ModelRunner);
 | 
						|
 | 
						|
  // Extract the 'call site height' feature - the position of a call site
 | 
						|
  // relative to the farthest statically reachable SCC node. We don't mutate
 | 
						|
  // this value while inlining happens. Empirically, this feature proved
 | 
						|
  // critical in behavioral cloning - i.e. training a model to mimic the manual
 | 
						|
  // heuristic's decisions - and, thus, equally important for training for
 | 
						|
  // improvement.
 | 
						|
  for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
 | 
						|
    const std::vector<CallGraphNode *> &CGNodes = *I;
 | 
						|
    unsigned Level = 0;
 | 
						|
    for (auto *CGNode : CGNodes) {
 | 
						|
      Function *F = CGNode->getFunction();
 | 
						|
      if (!F || F->isDeclaration())
 | 
						|
        continue;
 | 
						|
      for (auto &I : instructions(F)) {
 | 
						|
        if (auto *CS = getInlinableCS(I)) {
 | 
						|
          auto *Called = CS->getCalledFunction();
 | 
						|
          auto Pos = FunctionLevels.find(Called);
 | 
						|
          // In bottom up traversal, an inlinable callee is either in the
 | 
						|
          // same SCC, or to a function in a visited SCC. So not finding its
 | 
						|
          // level means we haven't visited it yet, meaning it's in this SCC.
 | 
						|
          if (Pos == FunctionLevels.end())
 | 
						|
            continue;
 | 
						|
          Level = std::max(Level, Pos->second + 1);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (auto *CGNode : CGNodes) {
 | 
						|
      Function *F = CGNode->getFunction();
 | 
						|
      if (F && !F->isDeclaration())
 | 
						|
        FunctionLevels[F] = Level;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvisor::onPassEntry() {
 | 
						|
  // Function passes executed between InlinerPass runs may have changed the
 | 
						|
  // module-wide features.
 | 
						|
  NodeCount = 0;
 | 
						|
  EdgeCount = 0;
 | 
						|
  for (auto &F : M)
 | 
						|
    if (!F.isDeclaration()) {
 | 
						|
      ++NodeCount;
 | 
						|
      EdgeCount += getLocalCalls(F);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
 | 
						|
  return FAM.getResult<FunctionPropertiesAnalysis>(F)
 | 
						|
      .DirectCallsToDefinedFunctions;
 | 
						|
}
 | 
						|
 | 
						|
// Update the internal state of the advisor, and force invalidate feature
 | 
						|
// analysis. Currently, we maintain minimal (and very simple) global state - the
 | 
						|
// number of functions and the number of static calls. We also keep track of the
 | 
						|
// total IR size in this module, to stop misbehaving policies at a certain bloat
 | 
						|
// factor (SizeIncreaseThreshold)
 | 
						|
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
 | 
						|
                                           bool CalleeWasDeleted) {
 | 
						|
  assert(!ForceStop);
 | 
						|
  Function *Caller = Advice.getCaller();
 | 
						|
  Function *Callee = Advice.getCallee();
 | 
						|
 | 
						|
  // The caller features aren't valid anymore.
 | 
						|
  FAM.invalidate<FunctionPropertiesAnalysis>(*Caller);
 | 
						|
  int64_t IRSizeAfter =
 | 
						|
      getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
 | 
						|
  CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
 | 
						|
  if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
 | 
						|
    ForceStop = true;
 | 
						|
 | 
						|
  // We can delta-update module-wide features. We know the inlining only changed
 | 
						|
  // the caller, and maybe the callee (by deleting the latter).
 | 
						|
  // Nodes are simple to update.
 | 
						|
  // For edges, we 'forget' the edges that the caller and callee used to have
 | 
						|
  // before inlining, and add back what they currently have together.
 | 
						|
  int64_t NewCallerAndCalleeEdges =
 | 
						|
      FAM.getResult<FunctionPropertiesAnalysis>(*Caller)
 | 
						|
          .DirectCallsToDefinedFunctions;
 | 
						|
 | 
						|
  if (CalleeWasDeleted)
 | 
						|
    --NodeCount;
 | 
						|
  else
 | 
						|
    NewCallerAndCalleeEdges +=
 | 
						|
        FAM.getResult<FunctionPropertiesAnalysis>(*Callee)
 | 
						|
            .DirectCallsToDefinedFunctions;
 | 
						|
  EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
 | 
						|
  assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
 | 
						|
}
 | 
						|
 | 
						|
int64_t MLInlineAdvisor::getModuleIRSize() const {
 | 
						|
  int64_t Ret = 0;
 | 
						|
  for (auto &F : CG->getModule())
 | 
						|
    if (!F.isDeclaration())
 | 
						|
      Ret += getIRSize(F);
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
 | 
						|
  auto &Caller = *CB.getCaller();
 | 
						|
  auto &Callee = *CB.getCalledFunction();
 | 
						|
 | 
						|
  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
 | 
						|
    return FAM.getResult<AssumptionAnalysis>(F);
 | 
						|
  };
 | 
						|
  auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
 | 
						|
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
 | 
						|
 | 
						|
  auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
 | 
						|
  // If this is a "never inline" case, there won't be any changes to internal
 | 
						|
  // state we need to track, so we can just return the base InlineAdvice, which
 | 
						|
  // will do nothing interesting.
 | 
						|
  // Same thing if this is a recursive case.
 | 
						|
  if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
 | 
						|
      &Caller == &Callee)
 | 
						|
    return getMandatoryAdvice(CB, false);
 | 
						|
 | 
						|
  bool Mandatory =
 | 
						|
      MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
 | 
						|
 | 
						|
  // If we need to stop, we won't want to track anymore any state changes, so
 | 
						|
  // we just return the base InlineAdvice, which acts as a noop.
 | 
						|
  if (ForceStop) {
 | 
						|
    ORE.emit([&] {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
 | 
						|
             << "Won't attempt inlining because module size grew too much.";
 | 
						|
    });
 | 
						|
    return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
 | 
						|
  }
 | 
						|
 | 
						|
  int CostEstimate = 0;
 | 
						|
  if (!Mandatory) {
 | 
						|
    auto IsCallSiteInlinable =
 | 
						|
        llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
 | 
						|
    if (!IsCallSiteInlinable) {
 | 
						|
      // We can't inline this for correctness reasons, so return the base
 | 
						|
      // InlineAdvice, as we don't care about tracking any state changes (which
 | 
						|
      // won't happen).
 | 
						|
      return std::make_unique<InlineAdvice>(this, CB, ORE, false);
 | 
						|
    }
 | 
						|
    CostEstimate = *IsCallSiteInlinable;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mandatory)
 | 
						|
    return getMandatoryAdvice(CB, true);
 | 
						|
 | 
						|
  auto NrCtantParams = 0;
 | 
						|
  for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
 | 
						|
    NrCtantParams += (isa<Constant>(*I));
 | 
						|
  }
 | 
						|
 | 
						|
  auto &CallerBefore = FAM.getResult<FunctionPropertiesAnalysis>(Caller);
 | 
						|
  auto &CalleeBefore = FAM.getResult<FunctionPropertiesAnalysis>(Callee);
 | 
						|
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
 | 
						|
                          CalleeBefore.BasicBlockCount);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
 | 
						|
                          FunctionLevels[&Caller]);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
 | 
						|
                          CallerBefore.BlocksReachedFromConditionalInstruction);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
 | 
						|
                          CallerBefore.BasicBlockCount);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
 | 
						|
                          CalleeBefore.BlocksReachedFromConditionalInstruction);
 | 
						|
  ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
 | 
						|
  return getAdviceFromModel(CB, ORE);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<MLInlineAdvice>
 | 
						|
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
 | 
						|
                                    OptimizationRemarkEmitter &ORE) {
 | 
						|
  return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
 | 
						|
                                                                  bool Advice) {
 | 
						|
  // Make sure we track inlinings in all cases - mandatory or not.
 | 
						|
  if (Advice && !ForceStop)
 | 
						|
    return getMandatoryAdviceImpl(CB);
 | 
						|
 | 
						|
  // If this is a "never inline" case, there won't be any changes to internal
 | 
						|
  // state we need to track, so we can just return the base InlineAdvice, which
 | 
						|
  // will do nothing interesting.
 | 
						|
  // Same if we are forced to stop - we don't track anymore.
 | 
						|
  return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<MLInlineAdvice>
 | 
						|
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
 | 
						|
  return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::reportContextForRemark(
 | 
						|
    DiagnosticInfoOptimizationBase &OR) {
 | 
						|
  using namespace ore;
 | 
						|
  OR << NV("Callee", Callee->getName());
 | 
						|
  for (size_t I = 0; I < NumberOfFeatures; ++I)
 | 
						|
    OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
 | 
						|
  OR << NV("ShouldInline", isInliningRecommended());
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordInliningImpl() {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
 | 
						|
                         Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
 | 
						|
    const InlineResult &Result) {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
 | 
						|
                               DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
}
 | 
						|
void MLInlineAdvice::recordUnattemptedInliningImpl() {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
}
 | 
						|
#endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API)
 |